Dr Andrew Stephen MCGough

Overview

Current Academic Post

Previous AcademicPosts

Publications
     - Books
     - Book Chapters
     - Journal Papers
     - Conference Papers
     - Workshop Papers
     - Technical Reports
     - Posters

Project Funding

External positions of responsibility

Academic Qualifications

Non-Academic Qualifications

Work Experience

Voluntury Work Experience

Interests

Teaching

References

Info

You can also view my papers by type.
These references will be linked to the papers in time. This Publication list has led to more than 1868 citations.
Further citation information can be obtained through my Google scholar page.

Publications

2021

A Deep Learning HPC Agent-Based Modeling Framework: Applications to Microbiology
A.~Stephen McGough, Miguel Fuentes-Cabrera, Jonathan Sakkos, Connor Robertson, Denis Taniguchi, Ketan Maheshwari, Paolo Zuliani, Joseph Weaver, Daniel Ducat, Bowen Li, Abdul Birnsheed, Suhas Somnath, and Tom Curtis
presentation at eScience 2021, Online, Sep. 2021


Towards a Framework for Teaching Artificial Intelligence to a Higher Education Audience
Becky Allen, Andrew~Stephen McGough, and Marie Devlin
ACM Transactions on Computing Education, 09 2021


Optimizing a domestic battery and solar photovoltaic system with deep reinforcement learning
Alexander Kell, A. McGough, and Matt Forshaw
Sustainable Computing: Informatics and Systems, 09 2021


PeaGlyph: Glyph Design for Investigation of Balanced Data Structures
Kenan Koc, Andrew~Stephen McGough, and Sara Fernstad
Information Visualization, 2021


Application of Machine Learning Techniques to an Agent-Based Model of Pantoea
Serena~H. Chen, Pablo Londo–o-Larrea, Andrew~Stephen Mcgough, Amber Bible, Chathika Gunaratne, Pablo A.~Araujo Granda, Jennifer Morrell-Falvey, Debsindhu Bhowmik, and Miguel Fuentes-Cabrera
Frontiers in Microbiology, 2021

[Official Publication]
Transfer Learning Approach for Occupancy Prediction in Smart Buildings
Mohamad Khalil, Stephen McGough, Zoya Pourmirza, Mehdi Pazhoohesh, and Sara Walker
In 2021 12th International Renewable Engineering Conference (IREC), p. 1--6, 2021

[Official Publication]
Using AI to improve our Understanding of Waste-water processing
A.~Stephen McGough
Keynote at the European Network for Business And Industrial Statistics at their Spring Meeting, Online, May 2021

[Slides]

Going Beyond, Scaling and Tuning Microbial Simulations towards Real-world Systems
A.~Stephen McGough
Invited talk to workshop on Wastewater Zero for Urban Sustainability, Online, May 2021

[Slides]

An introduction to Generative Adversarial Networks and their uses
A.~Stephen McGough
Invited talk to industry (joint event between the Petrolium Exploration Society of Great Britan and the Royal Statistical Society), Online, Mar. 2021

[Slides]

Beating Cybercrime with Artificial Intelligence
A.~Stephen McGough
Invited Talk to industry (Cafe Scientifiqie), Online, Mar. 2021

[Slides]

The impact of online machine-learning methods on long-term investment decisions and generator utilization in electricity markets
Alexander~J.M. Kell, A.~Stephen McGough, and Matthew Forshaw
Sustainable Computing: Informatics and Systems, 30:100532, 2021

[Official Publication][Free Paper]
Using the One Minute Paper to Gain Insight into Potential Threshold Concepts in Artificial Intelligence Courses
Becky Allen, Marie Devlin, and Andrew~Stephen McGough
p. 21--24 Computing Education Practice 2021, 2021

2020

NDD20: A large-scale few-shot dolphin dataset for coarse and fine-grained categorisation
Cameron Trotter, Georgia Atkinson, Matt Sharpe, Kirsten Richardson, A.~Stephen McGough, Nick Wright, Ben Burville, and Per Berggren
FGIC6, CVPR 2020, 2020

[Free Paper]
Exploring market power using deep reinforcement learning for intelligent bidding strategies
Alexander~JM Kell, Matthew Forshaw, and A~Stephen McGough
The 4th IEEE International Workshop on Big Data for Financial News and Data at 2020 IEEE International Conference on Big Data (IEEE BigData 2020), 2020

[Free Paper]
Deep Reinforcement Learning in Electricity Generation Investment for the Minimization of Long-Term Carbon Emissions and Electricity Costs
Alexander~JM Kell, Pablo Salas, Mercure Jean-Francois, Forshaw Matthew, and McGough~Andrew Stephen
Virtual, Dec. 2020 Tackling Climate Change with ML (NeurIPS)

[Free Paper]
Not Half Bad: Exploring Half-Precision in Graph Convolutional Neural Networks
John Brennan, Stephen Bonner, Amir~Atapour Abarghouei, Philip T.~G. Jackson, Boguslaw Obara, and Andrew~Stephen McGough
volume abs/2010.12635 IEEE International Conference on Big Data, Dec 2020

[Free Paper]
Bonsai-Net: One-Shot Neural Architecture Search via Differentiable Pruners
Rob Geada, Dennis Prangle, and Andrew~Stephen McGough
arXiv e-prints, CVPR workshop 2020, p. arXiv:2006.09264, June 2020

[Free Paper]
Optimizing Carbon Tax for Decentralized Electricity Markets Using an Agent-Based Model
Alexander J.~M. Kell, A.~Stephen McGough, and Matthew Forshaw
In Proceedings of the Eleventh ACM International Conference on Future Energy Systems, e-Energy '20, p. 454–460, New York, NY, USA, 2020 Association for Computing Machinery

[Free Paper]
The Northumberland Dolphin Dataset 2020
Cameron~Patrick Trotter, Kirsten Richardson, Georgia Atkinson, Matt Sharpe, Andrew McGough, Nicholas Wright, Per Berggren, and Ben Burville
May 2020


Long-Term Electricity Market Agent Based Model Validation Using Genetic Algorithm Based Optimization
Alexander J.~M. Kell, Matthew Forshaw, and A.~Stephen McGough
In Proceedings of the Eleventh ACM International Conference on Future Energy Systems, e-Energy '20, p. 1–13, New York, NY, USA, 2020 Association for Computing Machinery

[Free Paper]
Distributed Disk Store
M~S Ullah and Andrew~Stephen McGough
In International Conference on Computing Advancements, jan 2020

[Free Paper]
Resolving the cybersecurity Data Sharing Paradox to scale up cybersecurity via a co-production approach towards data sharing
Amir Atapour-Abarghouei, Andrew~Stephen McGough, and David~Stanley Wall
In IEEE International Conference on Big Data, dec 2020

[Free Paper]
Deep Learning: State of the art Machine Learning
A.~Stephen McGough
Talk to industry, Online, Feb. 2020


How we can use Machine Learning to improve simulations
A.~Stephen McGough
Seminar, Rutherford Appleton Laboratory, Jan. 2020


Beyond the topics: how deep learning can improve the discriminability of probabilistic topic modelling
Noura Al~Moubayed, Stephen McGough, and Bashar Awwad Shiekh~Hasan
PeerJ Computer Science, 6:e252, Jan. 2020

[Free Paper]

2019

MIGarage Newcastle
A.~Stephen McGough
Invited talk, MIGarage one year anniversary, Digital Catapult, London, UK, Feb. 2019


Accademic Engagement - Digital Catapult
A.~Stephen McGough and Catarina Fernandes
Pannel member at Academic Network for Intelligent Mobility, Transport Catapult, London, UK, Mar. 2019


Provenance, AI and proof in court
A.~Stephen McGough
Invited talk at the Provenance, security & machine learning Workshop, Alan Turing Institute, UK, Nov. 2019


Good Ransomware and Bad Ransomware, but which is which?
A.~Stephen McGough
Invited talk at the North East Fraud Forum Annual Conference, Newcastle, UK, Nov. 2019


Applications of AI to security, energy efficiency and nature
A.~Stephen McGough
Invited talk at Roesearch Computing Summer School 2019, Imperial College London, UK, Sep. 2019


AI For Security
A.~Stephen McGough
Talk at UK-Japan Robotics and AI research collaboration workshop, Edinburgh, UK, Sep. 2019


Using Deep Learning and Genetic Algorithms for fine-tuning simulations
A.~Stephen McGough, Lino Valdovinos, and Miguel Fuentes-Cabrera
Sep. 2019


Cloud, Crime, Ransomware and the problems of Data
A.~Stephen McGough
Talk, Defence and Security programme meetup, Alan Turing Institute, UK, Jan. 2019


Volenti non fit injuria: Ransomware and its Victims
A Atapour-Abarghouei, S Bonner, and AS McGough
In IEEE International Conference on Big Data (Deep Graph Learning: Methodologies and Applications) IEEE, dec 2019

[Free Paper]
A Kings Ransom for Encryption: Ransomware Classification using Augmented One-Shot Learning and Bayesian Approximation
A Atapour-Abarghouei, S Bonner, and AS McGough
In IEEE International Conference on Big Data (Deep Graph Learning: Methodologies and Applications) IEEE, dec 2019

[Free Paper]
Optimising energy and overhead for large parameter space simulations
AJM Kell, M Forshaw, and AS McGough
In Tenth International Green and Sustainable Computing Conference (IGSC) IEEE, oct 2019

[Free Paper]
Temporal neighbourhood aggregation : predicting future links in temporal graphs via recurrent variational graph convolutions.
Stephen Bonner, Amir Atapour-Abarghouei, Phillip Jackson, John Brennan, Ibad Kureshi, Georgios Theodoropoulos, Stephen McGough, and Boguslaw Obara
In IEEE International Conference on Big Data (Deep Graph Learning: Methodologies and Applications) IEEE, dec 2019

[Free Paper]
NUFEB: A Massively Parallel Simulator for Individual-based Modelling of Microbial Communities
Bowen Li, Denis Taniguchi, Jayathilake~Pahala Gedara, Valentina Gogulancea, Rebeca Gonzalez-Cabaleiro, Jinju Chen, Andrew~Stephen McGough, Irina~Dana Ofiteru, Thomas~P Curtis, and Paolo Zuliani
bioRxiv, p. 648204, 2019


The Northumberland Dolphin Dataset: A Multimedia Individual Cetacean Dataset for Fine-Grained Categorisation
Cameron Trotter, Georgia Atkinson, Matthew Sharpe, A~Stephen McGough, Nick Wright, and Per Berggren
2019


On the Use of Neural Text Generation for the Task of Optical Character Recognition
Mahnaz Mohammadi, Sardar Jaf, Andrew~Stephen McGough, Toby~P Breckon, Peter Matthews, Georgios Theodoropoulos, and Boguslaw Obara
In 16th ACS/IEEE International Conference on Computer Systems and Applications, 2019

[Official Publication]
Individual based model links thermodynamics, chemical speciation and environmental conditions to microbial growth
Valentina Gogulancea, Rebeca Gonz\'alez-Cabaleiro, Bowen Li, Denis Taniguchi, Pahala~Gedara Jayathilake, Jinju Chen, Darren Wilkinson, David Swailes, Andrew~Stephen McGough, Paolo Zuliani, and  others
Frontiers in microbiology, 10:1871, 2019


Exploring the semantic content of unsupervised graph embeddings: an empirical study.
Stephen Bonner, Ibad Kureshi, John Brennan, Georgios Theodoropoulos, Stephen McGough, and Boguslaw Obara
Data science and engineering., 2019


Modelling Carbon Tax in the UK Electricity Market using an Agent-Based Model
Alexander Kell, Matthew Forshaw, and A~Stephen McGough
In Proceedings of the Tenth ACM International Conference on Future Energy Systems, p. 425--427 ACM, 2019


ElecSim: Monte-Carlo Open-Source Agent-Based Model to Inform Policy for Long-Term Electricity Planning
Alexander Kell, Matthew Forshaw, and A~Stephen McGough
In Proceedings of the Tenth ACM International Conference on Future Energy Systems, p. 556--565 ACM, 2019

2018

Get your head out of the Clouds: clear truths on how AI can help Cloud security
A.~Stephen McGough
Invited talk at AI Forum, London, UK, July 2018


Real-world & scale simulations through parallel computing
A.~Stephen McGough and Denis Taniguchi
Invited talk at Bridging theory and practice in ecological engineering workshop, Narbonne, France, June 2018


Detecting Anomalies Cloud Crime and Ransomware
A.~Stephen McGough
Invited talk at the North East Fraud Forum, Gateshead, UK, June 2018


How can Machine Learning help with Crime, Security and Justice? and what are the limitations
A.~Stephen McGough
Invited talk at Technologies of Crime, Justice and Security Conference, Leeds, UK, Mar. 2018


Machine Intelligence @ Newcastle
A.~Stephen McGough
Invited talk at the MIGarage Launch, Digital Catapult, London, UK, Jan. 2018


Simulation of virtual machine live migration in high throughput computing environments
Osama Alrajeh, Matthew Forshaw, Andrew~Stephen McGough, and Nigel Thomas
In 2018 IEEE/ACM 22nd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), p. 1--8 IEEE, 2018


Using Machine Learning to reduce the energy wasted in Volunteer Computing Environments
AS McGough, M Forshaw, J Brennan, Moubayed Al, S Bonner, and  others
In 9th International Green and Sustainable Computing Conference (IGSC 2018) Newcastle University, 2018


TMIXT: A process flow for Transcribing MIXed handwritten and machine-printed Text
Fady Medhat, Mahnaz Mohammadi, Sardar Jaf, Chris~G Willcocks, Toby~P Breckon, Peter Matthews, Andrew~Stephen McGough, Georgios Theodoropoulos, and Boguslaw Obara
In 2018 IEEE International Conference on Big Data (Big Data), p. 2986--2994 IEEE, 2018


Predicting the Computational Cost of Deep Learning Models
Daniel Justus, John Brennan, Stephen Bonner, and Andrew~Stephen McGough
In 2018 IEEE International Conference on Big Data (Big Data), p. 3873--3882 IEEE, 2018


Temporal Graph Offset Reconstruction: Towards Temporally Robust Graph Representation Learning
Stephen Bonner, John Brennan, Ibad Kureshi, Georgios Theodoropoulos, Andrew~Stephen McGough, and Boguslaw Obara
In 2018 IEEE International Conference on Big Data (Big Data), p. 3737--3746 IEEE, 2018


Stacked Denoising Autoencoders for Mortality Risk Prediction Using Imbalanced Clinical Data
Zakhriya Alhassan, David Budgen, Riyad Alshammari, Tahani Daghstani, A~Stephen McGough, and Noura Al~Moubayed
In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), p. 541--546 IEEE, 2018


CAM: A Combined Attention Model for Natural Language Inference
Amit Gajbhiye, Sardar Jaf, Noura Al~Moubayed, Steven Bradley, and A~Stephen McGough
In 2018 IEEE International Conference on Big Data (Big Data), p. 1009--1014 IEEE, 2018


Clustering Vehicles based on Trips Identified from Automatic Number Plate Recognition Camera Scans
M Silva, PMP~andForshaw and AS McGough
In 1st International Workshop on Big Traffic Data Analytics, BigTraffic 2018, 2018


Black-box Variational Inference for Stochastic Differential Equations
Thomas Ryder, Andrew Golightly, A~Stephen McGough, and Dennis Prangle
In Thirty-fifth International Conference on Machine Learning, ICML, 2018


An exploration of dropout with RNNs for natural language inference.
Amit Gajbhiye, Sardar Jaf, Noura Al-Moubayed, A. Stephen~McGough, and Steven Bradley
Lecture notes in computer science Springer, October 2018
ICANN 2018: 27th International Conference on Artificial Neural Networks, 4-7 October 2018.


Type-2 Diabetes Mellitus diagnosis from time series clinical data using Deep Learning models.
Zakhriya Alhassan, Stephen McGough, Riyad Alshammari, Tahini Daghstani, David Budgen, and Noura~Al Moubayed
In 27th International Conference on Artificial Neural Networks (ICANN)., Lecture Notes in Computer Science Springer, October 2018


Segmenting Residential Smart Meter Data for Short-Term Load Forecasting
Alexander Kell, A.~Stephen McGough, and Matthew Forshaw
In Proceedings of the Ninth International Conference on Future Energy Systems, e-Energy '18, p. 91--96, New York, NY, USA, 2018 ACM


Introduction to special issue on Energy-Aware Simulation and Modelling (ENERGY-SIM)
A.~Stephen McGough and Matthew Forshaw
Sustainable Computing: Informatics and Systems, 2018

[Official Publication]
Evaluation of Energy Consumption of Replicated Tasks in a Volunteer Computing Environment
A.~Stephen McGough and Matthew Forshaw
In Companion of the 2018 ACM/SPEC International Conference on Performance Engineering, ICPE '18, p. 85--90, New York, NY, USA, 2018 ACM

[Official Publication]
Building an advanced Biological Simulation System using Atomistic Simulation tools
A.~Stephen McGough
Talk - reviewed selection, New Horizons in Atomistic Simulation; N8 HPC, CCP5 & UKCP Network Event, Jan. 2018

[Official Publication][Slides]

Black-Box Autoregressive Density Estimation for State-Space Models
T Ryder, A Golighty, AS McGough, and D Prangle
Technical report, arXiv, 2018

[Free Paper]

2017

Sentiment Analysis using Probabilistic Topic Modelling and Unsupervised Deep Learning
A.~Stephen McGough and Noura~Al Moubayed
Seminar, Newcastle University, UK, June 2017


PARALLEM: massively Parallel Landscape Evolution Modelling
A.~Stephen McGough and Darrel Maddy
Seminar, Sheffield University, Nov. 2017

[Slides]

Evaluating the quality of graph embeddings via topological feature reconstruction.
Stephen Bonner, John Brennan, Ibad Kureshi, Georgios Theodoropoulos, Stephen McGough, and Boguslaw Obara
In IEEE International Conference on Big Data IEEE, November 2017

[Official Publication][Free Paper]
Enhanced detection of movement onset in EEG through deep oversampling
N.~A. Moubayed, B.~A.~S. Hasan, and A.~S. McGough
In 2017 International Joint Conference on Neural Networks (IJCNN), p. 71--78, May 2017

[Official Publication][Free Paper][Slides]

Identifying Changes in the Cybersecurity Threat Landscape Using the LDA-Web Topic Modelling Data Search Engine
Noura Al~Moubayed, David Wall, and A.~Stephen McGough
In Theo Tryfonas, editor, Human Aspects of Information Security, Privacy and Trust: 5th International Conference, HAS 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017, Proceedings, p. 287--295, Cham, 2017 Springer International Publishing

[Official Publication][Free Paper][Slides]

A mechanistic Individual-based Model of microbial communities
Pahala~Gedara Jayathilake, Prashant Gupta, Bowen Li, Curtis Madsen, Oluwole Oyebamiji, Rebeca González-Cabaleiro, Steve Rushton, Ben Bridgens, David Swailes, Ben Allen, A.~Stephen McGough, Paolo Zuliani, Irina~Dana Ofiteru, Darren Wilkinson, Jinju Chen, and Tom Curtis
PLOS ONE, 12(8):1--26, 08 2017

[Official Publication][Free Paper]
Using Machine Learning in Trace-driven Energy-Aware Simulations of High-Throughput Computing Systems
A.~Stephen McGough, Noura Al~Moubayed, and Matthew Forshaw
In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion, ICPE '17 Companion, p. 55--60, New York, NY, USA, 2017 ACM

[Official Publication][Free Paper][Slides]

Massively Parallel Landscape-Evolution Modelling using General Purpose Graphical Processing Units
A.~Stephen McGough and Darrel Maddy
Talk - reviewed selection, GTC 2017, May 2017

[Slides]

Sentiment Analysis Through the Use of Unsupervised Deep Learning
A.~Stephen McGough and Noura~Al Moubayed
Talk - reviewed selection, GTC 2017, May 2017

[Slides]

2016

GFP-X: A Parallel Approach To Massive Graph Comparison Using Spark
Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, and Andrew~Stephen McGough
In IEEE International Conference on Big Data, p. 1--10, 2016

[Official Publication][Free Paper][Slides]

Deep Topology Classification: A New Approach for Massive Graph Classification
Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, and Andrew~Stephen McGough
In IEEE International Conference on Big Data, p. 1--8, 2016

[Official Publication][Free Paper][Slides]

The Case for Energy-aware Simulation and Modelling of Internet of Things (IoT)
Matthew Forshaw, Nigel Thomas, and A.~Stephen McGough
In Proceedings of the 2Nd International Workshop on Energy-Aware Simulation, ENERGY-SIM '16, p. 5:1--5:4, New York, NY, USA, 2016 ACM

[Official Publication][Free Paper]
SMS Spam Filtering Using Probabilistic Topic Modelling and Stacked Denoising Autoencoder
Noura Al~Moubayed, Toby Breckon, Peter Matthews, and A.~Stephen McGough
In Alessandro~E.P. Villa, Paolo Masulli, and Antonio~Javier Pons~Rivero, editors, Artificial Neural Networks and Machine Learning -- ICANN 2016: 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II, p. 423--430, Cham, 2016 Springer International Publishing

[Official Publication][Free Paper]
Efficient Comparison of Massive Graphs Through The Use Of 'Graph Fingerprints'
Stephen Bonner, John Brennan, Ibad Kureshi, and McGough~Andrew Stephen
In Twelfth Workshop on Mining and Learning with Graphs (MLG) at KDD'16, MLG12, p. 1--8 ACM, 2016

[Official Publication]
HTC-Sim: a trace-driven simulation framework for energy consumption in high-throughput computing systems
M. Forshaw, A.S. McGough, and N. Thomas
Concurrency and Computation: Practice and Experience, 28(12):3260--3290, 2016
cpe.3804

[Official Publication][Free Paper]
A new frontier in design -- the simulation of open-engineered biological systems: NUFEB 1.0 and Beyond
 Stephen McGough
Oak Ridge National Labs, TN, USA, July 2016


Massively Parallel Landscape Evolution Modelling -- the PARALLEM approach
A.S. McGough, D. Maddy, J. Wainwright, S. Liang, M. Rapoportas, A. Trueman, R. Grey, and G.~Kumar Vinodi
Oxford, May 2016


Anomaly Detection and Categorization Using Unsupervised Deep Learning
A.~Stephen McGough, Noura~Al Moubayed, Jonathan Cumming, Eduardo Cabrera, Peter Matthews, Toby~P. Breckon, Ed Ruck-Keene, and Georgios Theodoropoulosi
Talk - reviewed selection, GTC 2016, Apr. 2016

[Slides]

Anomaly Detection and Categorization Using Unsupervised Deep Learning
A.~Stephen McGough, Noura~Al Moubayed, Jonathan Cumming, Eduardo Cabrera, Peter Matthews, Toby~P. Breckon, Ed Ruck-Keene, and Georgios Theodoropoulosi
Invited Talk, Deep Learning Meets TensorFlow Mega Meetup, Silicon Valley, CA, Apr. 2016

[Slides]

Anomaly Detection and Categorisation Using Unsupervised Deep Learning from Semi-structured Data Sources
A.~Stephen McGough, Noura~Al Moubayed, Chris Willcocks, Ed Ruck-Keene, Peter Matthews, Toby~P. Breckon, and Boguslaw Obara
Invited Talk at DEFENCE INFORMATION SYMPOSIUM 2016, London, UK, Sep. 2016


Northern Cloud Cybercrime Centre
A.~Stephen McGough
Talk at RCUK Cloud Working Group Workshop 2016, London, UK, Nov. 2016

2015

Detecting Insider Threats Using Ben--ware: Beneficial Intelligent Software for Identifying Anomalous Human Behaviour
Andrew~Stephen *McGough, Budi Arief, Carl Gamble, David Wall, John Brennan, John Fitzgerald, Aad vanMoorsel, Sujeewa Alwis, Georgios Theodoropoulos, and Ed Ruck-Keene
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications,, 6(4):3--46, 2015

[Official Publication][Free Paper]
Insider Threats: Identifying Anomalous Human Behaviour in Heterogeneous Systems Using Beneficial Intelligent Software (Ben-ware)
Andrew~Stephen McGough, David Wall, John Brennan, Georgios Theodoropoulos, Ed Ruck-Keene, Budi Arief, Carl Gamble, John Fitzgerald, Aad vanMoorsel, and Sujeewa Alwis
In Proceedings of the 7th ACM CCS International Workshop on Managing Insider Security Threats, MIST '15, p. 1--12, New York, NY, USA, 2015 ACM

[Official Publication][Free Paper][Slides]

Data quality assessment and anomaly detection via map / reduce and linked data : a case study in the medical domain.
S. Bonner, S. McGough, I. Kureshi, J. Brennan, G. Theodoropoulos, L. Moss, D. Corsar, and G. Antoniou
In IEEE International Conference on Big Data IEEE, January 2015

[Official Publication][Free Paper][Slides]

Energy-aware simulation of workflow execution in High Throughput Computing systems.
A.~Stephen McGough and Matthew Forshaw
In 19th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications, 14-16 October 2015, Chengdu, China ; proceedings. IEEE, October 2015

[Free Paper][Slides]

Flipping the priority : effects of prioritising HTC jobs on energy consumption in a multi-use cluster.
Matthew Forshaw and A.Stephen McGough
In Georgios Theodoropoulos, Gary Tan~Soon Huat, and Claudia Szabo, editors, Proceedings of the 8th International Conference on Simulation Tools and Techniques, SIMUTools '15, August 26-28, Athens, Greece., p. 357--364, Brussels, Belgium, August 2015 Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST)

[Official Publication][Free Paper][Slides]

Energy-efficient Checkpointing in High-throughput Cycle-stealing Distributed Systems
Matthew Forshaw, A.~Stephen McGough, and Nigel Thomas
Electronic Notes in Theoretical Computer Science, 310(0):65 -- 90, 2015
Proceedings of the Seventh International Workshop on the Practical Application of Stochastic Modelling (PASM)

[Official Publication][Free Paper]

2014

Trace-Driven Simulation for Energy Consumption in High Throughput Computing Systems
Matthew Forshaw, Nigel Thomas, and A.~Stephen McGough
In Proceedings of the 2014 IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications, DS-RT '14, p. 27--34, Washington, DC, USA, 2014 IEEE Computer Society

[Official Publication][Free Paper][Slides]

On Energy-efficient Checkpointing in High-throughput Cycle-stealing Distributed Systems
Matthew Forshaw,  A.S.McGough, and Nigel Thomas
In 3rd International Conference on Smart Grids and Green IT systems, Barcelona, Spain, Apr. 2014

[Free Paper]
Energy-efficient checkpointing in high-throughput cycle-stealing distributed systems
Matthew Forshaw, A.~Stephen McGough, and Nigel Thomas
In Seventh International Workshop on Practical Applications of Stochastic Modelling (PASM), 2014

[Free Paper]
Comparison of a cost-effective virtual Cloud cluster with an existing campus cluster
A~Stephen McGough, Matthew Forshaw, Clive Gerrard, Stuart Wheater, Ben Allen, and Paul Robinson
Future Generation Computer Systems, 2014

[Official Publication][Free Paper]
Reduction of wasted energy in a volunteer computing system through Reinforcement Learning
A~Stephen McGough and Matthew Forshaw
Sustainable Computing: Informatics and Systems, 2014

[Official Publication][Free Paper]
Optimal Hiring of Cloud Servers
AndrewStephen McGough and Isi Mitrani
In Andras Horvath and Katinka Wolter, editors, Computer Performance Engineering, volume 8721 of Lecture Notes in Computer Science, p. 1--15 Springer International Publishing, 2014

[Official Publication][Free Paper][Slides]

Modelling 50,000 Years of Landscape Evolution in the Upper Thames Valley, UK: Preliminary Results from PARALLEM
J Wainwright, D Maddy, AS McGough, A Trueman, RM Briant, and C Stemerdink
pres, San Fransisco, USA, Dec. 2014

[Free Paper]

2013

2012

2011

2010

2009

2008

2007

Workflows for eScience: Scientific Worflows for Grids
A.S. McGough, W. Lee, J. Cohen, E. Katsiri, and J. Darlington
I.J. Taylor, D. Gannon, E. Deelman, and M.S. Shields, editors
Chapter ICENI
June 2007

[Free Paper]
Enabling Scientists through Workflow and Quality of Service
 A.S. McGough and A Akram and D Colling and L Guo and C Kotsokalis and M Krznaric and P Kyberd and J Martyniak
In INGRID07: Proceedings of the 2nd International Workshop on Distributed Collaborative Laboratories - Instrumenting the Grid, S. Margherita Ligure Portofino, Italy, Apr. 2007

[Official Publication][Free Paper]
On Quality of Service Support for Grid Computing
 T. Ferrari and E. Ronchieri and C. Kotsokalis and P. Tsanakas and D. Colling and Y. Hassoun and A.S. McGough and Y. Patel and Chenxi Huang
In INGRID07: Proceedings of the 2nd International Workshop on Distributed Collaborative Laboratories - Instrumenting the Grid, S. Margherita Ligure Portofino, Italy, Apr. 2007

[Free Paper]
GRIDCC: Real-timeWorkflow system
 A.S.McGough and Asif Akram and Li Guo and Marko Krznaric and Luke Dickens and David Colling and Janusz Martyniak and Roger Powell and Paul Kyberd and Constantinos Kotsokalis
In The 2nd Workshop on Workflows in Support of Large-Scale Science, HPDC2007, Monterey Bay California, USA, June 2007

[Free Paper]
Enabling QoS for Service-Oriented Workflow on GRID
 L. Guo and A.S.McGough and Asif Akram David Colling and Janusz Martyniak and Marko Krznaric
In proceedings of the 7th International Conference on Computer and Information Technology (CIT2007), University of Aizu, Fukushima Japan, Oct. 2007

[Official Publication]
GRIDCC: A Real-time Grid workflow system with QoS
 A.S.McGough, Asif Akram, Li Guo, Marko Krznaric, Luke Dickens, David Colling, Janusz Martyniak, Roger Powell, Paul Kyberd, Chenxi Huang, Costantinos Kotsokalis, and Panayiotis Tsanakas
Scientific Programming, 15(4):213--234, dec 2007

[Free Paper]
Distributed Computation Example Systems - OMII as an Example
A.S. McGough
Seminar, International Summer School on Grid Computing 2007, Gripsholmsviken, Mariefred, Sweeden, July 2007


Practical Experience of Job Description and Submission using the OMII web services
A.S. McGough
Seminar, International Summer School on Grid Computing 2007, Gripsholmsviken, Mariefred, Sweeden, July 2007


QoS for Service Based Workflow on Grid
Asif Akram, Stephen McGough, David Colling, Luke Dickens, Marko Krznaric, and Janusz Martyniak
In UK e-Science 2007 All Hands Meeting, September 2007

[Free Paper]

2006

GridSAM, A Standards Based Approach to Job Submission
A.S. McGough
Seminar, University of Bath, Nov. 2006


Capacity Planning and Stochastic Scheduling in Large-Scale Grids
Ali Afzal, John Darlington, and A.~Stephen McGough
In E-SCIENCE '06: Proceedings of the Second IEEE International Conference on e-Science and Grid Computing, p. 86, Washington, DC, USA, 2006 IEEE Computer Society

[Official Publication]
Stochastic Workflow Scheduling with QoS Guarantees in Grid Computing Environments
Ali Afzal, John Darlington, and A.~Stephen McGough
In GCC '06: Proceedings of the Fifth International Conference on Grid and Cooperative Computing (GCC'06), p. 185--194, Washington, DC, USA, 2006 IEEE Computer Society

[Official Publication]
QoS-Constrained Stochastic Workflow Scheduling in Enterprise and Scientific Grids
A. Afzal, J. Darlington, and A~S. McGough
In Grid Computing, 7th IEEE/ACM International Conference on, p. 1--8, Barcelona, Spain, Sep. 2006

[Official Publication]
QoS support for workflows in a volatile Grid
Y. Patel, A.S. McGough, and J. Darlington
In Grid Computing, 7th IEEE/ACM International Conference on, p. 64--71, Barcelona, Spain, Sep. 2006

[Official Publication]
A Profitable Broker in a Volatile Utility Grid
Y. Patel, A.~S. McGough, and J. Darlington
In International Conference on Self-Organization and Autonomous Systems in Computing and Communications (SOAS’2006), p. 167--176, Erfurt, Germany, Sep. 2006


Grid Workflow Scheduling in WOSE
Y. Patel, A.~S. McGough, and J. Darlington
In The UK All Hands Meeting 2006, p. 566--573, Nottingham, UK, Sep. 2006

[Free Paper][Slides]

Grid Enabling Legacy Applications through a Standard Job Submission Interface
 A.S.McGough, W. Lee, and S. Das
In 15th IEEE International Symposium on High Performance Distributed Computing, Paris, France, June 2006
Grid Enabling Legacy Applications (GELA) workshop

[Free Paper]
GRIDCC - Providing a real-time Grid for distributed instrumentation
P.R. Hobson, A.S. McGough, and D.J. Colling
in CHEP 2006, Mumbai, India, Feb. 2006

[Free Paper]
Workflow, Planning and Performance
A.S. McGough
in Trends in High Performance Distributed Computing, Amsterdam, Holland, Mar. 2006


Workflow deployment in ICENI II
A.S. McGough, W. Lee, and J. Darlington
volume 3993 of Lecture Notes in Computer Science, p. 964--971, Reading, UK, Apr. 2006

[Official Publication]
Adding Instruments and Workflow Support to Existing Grid Architectures
D.J. Colling, L.W. Dickens, T. Ferrari, Y. Hassoun, C.A. Kotsokalis, M. Krznaric, J. Martyniak, A.S. McGough, and E. Ronchieri
volume 3993 of Lecture Notes in Computer Science, p. 956--963, Reading, UK, Apr. 2006

[Official Publication]
The GRIDCC Project
A.S. McGough and D.J. Colling
In Utility Grid 2006, New Delhi, India, Jan. 2006

[Official Publication]
A Service-orientated Utility Grid Architecture Utilising Pay-per-use Resources
J. Cohen, W. Lee, J. Darlington, and A.S. McGough
In Utility Grid 2006, New Delhi, India, Jan. 2006

[Official Publication]
ICENI II
A.S. McGough, W. Lee, and J. Darlington
In Utility Grid 2006, New Delhi, India, Jan. 2006

[Official Publication]
An End-to-end Workflow Pipeline for Large-scale Grid Computing
A.Stephen McGough, Jeremy Cohen, John Darlington, Eleftheria Katsiri, William Lee, Sofia Panagiotidi, and Yash Patel
Journal of Grid Computing, p. 1--23, Feb. 2006

[Official Publication]
A Profitable Broker in a Volatile Utility Grid
Yash Patel, A.Stephen McGough, and J Darlington
International Transactions on Systems Science and Applications, 2(2):167--176, 2006

[Free Paper]

2005

Job Submission Description Language (JSDL) Specification, Version 1.0
 Ali Anjomshoaa and Fred Brisard and Michel Drescher and Donal Fellows and An Ly and Stephen McGough and Darren Pulsipher and Andreas Savva
GGF Standard GFD.56, Nov. 2005

[Free Paper]
The GRIDCC Project
A.S. McGough and D.J. Colling
in Instruments and Sensors on the Grid, Melbourne, Australia, Dec. 2005


Performance Evaluation of the GridSAM Job Submission and Monitoring System
W. Lee, A.S. McGough, and J. Darlington
In UK e-Science All Hands Meeting, p. 915--922, Nottingham, UK, Sep. 2005
ISBN 1-904425-53-4

[Free Paper]
ICENI II Architecture
A.S. McGough, W. Lee, and J. Darlington
In UK e-Science All Hands Meeting, p. 441--448, Nottingham, UK, Sep. 2005
ISBN 1-904425-53-4

[Free Paper]
Lightweight Solution for Protein Annotation
S. Das, A.S. McGough, J. Cohen, and J. Darlington
In UK e-Science All Hands Meeting, p. 396--402, Nottingham, UK, Sep. 2005
ISBN 1-904425-53-4

[Free Paper]
Making the Grid Predictable through Reservations and Performance Modelling
A.S. McGough, A. Afzal, J. Darlington, N. Furmento, A. Mayer, and L. Young
The Computer Journal, 48(3):358--368, 2005

[Official Publication]
RealityGrid: An Integrated Approach to Middleware through ICENI
Jeremy Cohen, A.Stephen McGough, John Darlington, Nathalie Furmento, Gary Kong, and Anthony Mayer
Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 363(1833):1817--1827, Aug. 2005

[Official Publication]
e-Protein: A distributed Pipeline for Structure-based Proteome Annotation using Grid Technology
S. Das, A.S. McGough, Keiran Fleming, John Darlington, and Michael Sternberg
ISMB 2005, Michigan, USA, June 2005

2004

Workflow expression: Comparison of spatial and temporal approaches
Anthony Mayer, Steve McGough, Nathalie Furmento, William Lee, Murtaza Gulamali, Steven Newhouse, and John Darlington
In Workflow in grid systems workshop, GGF-10, Berlin, volume 9, 2004

[Free Paper]
Component Models and Systems for Grid Applications
A. Mayer, S. McGough, N. Furmento, J. Cohen, M. Gulamali, L. Young, A. Afzal, S. Newhouse, and J. Darlington
V. Getov and T. Kielmann, editors
volume 1 of CoreGRID series, Chapter ICENI: An Integrated Grid Middleware to Support e-Science, p. 109--124
Springer, June 2004

[Official Publication]
A Componentized Approach to Grid Enabling Seismic Wave Modeling Application
D. Bhardwaj, J. Cohen, A.S. McGough, and S. Newhouse
In The International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), volume 3320 of Lecture Notes in Computer Science, p. 94--97, Singapore, Dec. 2004

[Official Publication]
Performance guided scheduling in GENIE through ICENI
M.Y. Gulamali, A.S. McGough, R.J. Marsh, N.R. Edwards, T.M. Lenton, P.J. Valdes, S.J. Cox, S.J. Newhouse, J. Darlington, and  theGENIEteam
In UK e-Science All Hands Meeting, p. 792--799, Nottingham, UK, Sep. 2004
ISBN 1-904425-21-6

[Free Paper][Slides]

A Standard Based Approach to Job Submission through Web Services
W. Lee, A.S. McGough, S. Newhouse, and J. Darlington
In UK e-Science All Hands Meeting, p. 901--905, Nottingham, UK, Sep. 2004
ISBN 1-904425-21-6

[Free Paper][Slides]

Workflow Enactment in ICENI
A.S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington
In UK e-Science All Hands Meeting, p. 894--900, Nottingham, UK, Sep. 2004
ISBN 1-904425-21-6

[Free Paper][Slides]

Performance Architecture within ICENI
A.S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington
In UK e-Science All Hands Meeting, p. 906--911, Nottingham, UK, Sep. 2004
ISBN 1-904425-21-6

[Free Paper][Slides]

Using ICENI to run parameter sweep applications across multiple Grid resources
 M.Y.Gulamali, A.S. McGough, S.J. Newhouse, and J. Darlington
Mar. 2004

[Free Paper][Slides]

ICENI: An Integrated Grid Middleware to support e-Science
Anthony Mayer, Andrew~Stephen McGough, Nathalie Furmento, Jeremy Cohen, Murtaza Gulamali, Laurie Young, Ali Afzal, Steven Newhouse, and John Darlington
in ICS 2004 : 18th Annual ACM International Conference on Supercomputing, workshop on Component Models and Systems for Grid Applications, June 2004


Predictable Workflow Deployment Services
 A.S. McGough and Ali Afzal and Anthony Mayer and Steven Newhouse and Laurie Young
June 2004
in Global Grid Forum 11, Service Based Grid Workshop, Honolulu, Hawaii


WS-JDML: A Web Service Interface for Job Submission and Monitoring
 William Lee, A.S. McGough and Steven Newhouse
June 2004
in Global Grid Forum 11, Service Based Grid Workshop, Honolulu, Hawaii


Using ICENI to run parameter sweep applications across multiple Grid resources
 M.Y.Gulamali and A.S. McGough and S.J. Newhouse and J. Darlington
Mar. 2004
In Global Grid Forum 10, Case Studies on Grid Applications Workshop, Berlin, Germany


ICENI Making use of the Grid
Andrew~Stephen McGough, William Lee, Steven Newhouse, and John Darlington
GlobusWorld 2004, San Francisco, CA, Jan. 2004

2003

2002

2001

2000

1998

1997


Generated automatically on 2021-09-18 at 14:03