
Experiences Using Cloud Computing for A Scientific
Workflow Application

Jens-S. Vöckler, Gideon Juve,
Ewa Deelman, Mats Rynge

Information Sciences Institute
University of Southern California

{voeckler,gideon,deelman,rynge}@isi.edu

G. Bruce Berriman
Infrared Processing and Analysis Center

California Institute of Technology

gbb@ipac.caltech.edu

ABSTRACT

Clouds are rapidly becoming an important platform for sci-
entific applications. In this paper we describe our experi-
ences running a scientific workflow application in the cloud.
The application was developed to process astronomy data re-
leased by the Kepler project, a NASA mission to search for
Earth-like planets orbiting other stars. This workflow was
deployed across multiple clouds using the Pegasus Workflow
Management System. The clouds used include several sites
within the FutureGrid, NERSC’s Magellan cloud, and Ama-
zon EC2. We describe how the application was deployed,
evaluate its performance executing in different clouds (based
on Nimbus, Eucalyptus, and EC2), and discuss the chal-
lenges of deploying and executing workflows in a cloud en-
vironment. We also demonstrate how Pegasus was able to
support sky computing by executing a single workflow across
multiple cloud infrastructures simultaneously.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems

General Terms

Experimentation

Keywords

Pegasus, Periodograms, Cross Cloud Computing, Nimbus,
Eucalyptus, FutureGrid, EC2, Magellan, Workflow, Experi-
ence, Sky Computing

1. INTRODUCTION
Many important scientific applications can be expressed as

workflows, which describe the relationship between individ-
ual computational tasks and their input and output data in
a declarative way. When developing workflow applications
it is convenient to use an abstract workflow definition that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ScienceCloud’11, June 8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0699-7/11/06 ...$10.00.

is devoid of resource-specific details. This enables workflows
to be automatically adapted to run across different envi-
ronments. For complex workflows, abstraction also helps
scientists to express their workflows at a higher level with-
out being concerned about the details of how individual jobs
are invoked or how data is transferred between jobs. Such
abstract workflows can be processed by the Pegasus Work-
flow Management System [3], which automatically converts
abstract workflow descriptions into concrete execution plans
containing resource-specific information. In order to gener-
ate an executable workflow, Pegasus analyzes the abstract
workflow, adds auxiliary data transfer and cleanup jobs, per-
forms workflow optimizations such as task clustering and
workflow reduction, and generates resource-specific job de-
scriptions. The concrete workflow is passed to DAGMan
and Condor1 for execution on distributed resources.

Clouds are being investigated as a platform for the execu-
tion of scientific applications such as workflows. In contrast
to grids and other traditional HPC systems, clouds provide a
customizable infrastructure where applications can provision
the desired resources ahead of the execution and deploy the
required software environment on virtual machines (VMs).

Custom virtual machine images containing specific operat-
ing systems, services, and configuration can be constructed
for each application. These images can be deployed on VMs
in a number of different cloud platforms, including commer-
cial clouds such as Amazon EC22 and science clouds built
on top of open source cloud management software such as
Eucalyptus3, Nimbus4, Open Nebula5, and others.

Cloud management systems provide a service-oriented mo-
del for provisioning and managing computational resources.
In this model, scientists can request virtual machine re-
sources on-demand for their application. The ability to pro-
vision resources, however, is not sufficient to run a work-
flow application. The computational resources provided by
clouds are basic and in many cases only the base OS, net-
working and simple configuration is included. What is miss-
ing for scientific workflows are job and data management
services. Our approach is to use Pegasus and Condor to
provide these services.

For large applications it may be necessary to leverage a
number of different clouds to achieve scientifically meaning-
ful results in a reasonable amount of time. Provisioning re-

1http://www.cs.wisc.edu/condor/
2http://aws.amazon.com/ec2/
3http://open.eucalyptus.com/
4http://www.nimbusproject.org/
5http://opennebula.org/

Submit Host

Pegasus

Condor
Master

DAGMan

Worker Node

Condor
Worker

Workflow

Worker Node

Condor
Worker

Remote Execution Site

...

Local Site

Periodo
-grams

Periodo
-grams

Condor
Queue

Figure 1: Execution Environment.

sources across different clouds (also referred to as Sky Com-
puting [14]), provisions a distributed environment, where
issues of remote job submission, data management, and se-
curity, among other things, need to be addressed.
In this paper we describe how we used Pegasus and Con-

dor to execute an astronomy workflow on virtual machine
resources drawn from multiple cloud infrastructures. Below
we will describe how the application was deployed, evalu-
ate its performance executing in different clouds (based on
Nimbus, Eucalyptus, and EC2), describe the necessary sys-
tem tuning needed to scale up the application and the sys-
tem, and discuss the challenges of deploying and executing
workflows in cloud environments. We also demonstrate how
Pegasus was able to support sky computing by executing a
single workflow across multiple cloud infrastructures simul-
taneously.

2. APPROACH
In our work we view the process of running an application

in a distributed environment as a four-phase process:

1. provision the needed resources and configure the ser-
vices,

2. map the workflow onto the resources,
3. run the application, and
4. de-provision the resources.

Steps 2 and 3 can also be iterative if the execution envi-
ronment is dynamic.

2.1 Provisioning resources
In order to run on or across heterogeneous clouds, one

needs to build virtual machine images that can run in these
different environments. Usually, each cloud provides basic
images that can be customized with additional software and
services. One issue that comes up when building images for
scientific applications is the need for adequate storage within
the VM. In addition to the OS and application software, this
storage is used to hold a subset of input, intermediate, and
output data that are operated on by workflow jobs running
inside the VM. In the case of data-intensive workflows, this

storage often needs to be on the order of hundreds of giga-
bytes. If this storage is not available, applications need to
be able to perform remote I/O, a shared file system needs to
be deployed across the VMs, or the workflow management
system needs to manage the storage as the application is
progressing, performing careful staging and cleanup opera-
tions to ensure that the workflow footprint does not exceed
the available storage space. In most of our work we first
provision the necessary resources using client tools provided
by the various clouds. This provisioning process can be car-
ried out by hand (as we did in this paper), or by automated
tools such as Nimbus Context Broker [13], Wrangler [9] and
others. These tools also help configure the environment with
services necessary for remote job submission, data transfers,
job scheduling, etc. For our workflows, the goal of the provi-
sioning step is to construct a virtual Condor pool, where the
VMs act as Condor worker nodes and report to a Condor
Master node that runs on a submit host (SH) outside the
cloud. The submit host also runs Pegasus. Figure 1 shows
the basic deployment of the system.

It is possible to place the submit host within the cloud,
however, there are disadvantages to this approach. For ex-
ample, the network address for the Condor Master would be
dynamic and would need to be discovered by the user and
by the Condor worker nodes. Additionally, the user needs
to have a machine from which the provisioning commands
can be executed. This machine can also be used for hosting
the services required by Pegasus and Condor.

2.2 Mapping workflows onto cloud resources
Pegasus maps the resource-independent, user-provided,

workflow description (abstract workflow) onto the available
resources. The abstract workflow is expressed as a DAG (di-
rected acyclic graph) where nodes represent computational
tasks. These tasks describe the computations to be per-
formed in logical terms (logical name, logical input and out-
put data files). Edges in the DAG represent dependencies
between the nodes. The workflow can be constructed hier-
archically, with nodes representing entire sub-workflows.

Pegasus maps abstract workflows onto the available re-
sources to generate an executable workflow. The mapping
involves several steps, including:

1. pruning nodes from the abstract workflow which would
produce outputs that already exist

2. transforming abstract workflow nodes into executable
jobs that can be executed on remote resources by iden-
tifying specific executables, environment variables, in-
put and output file paths, etc.

3. adding tasks to create execution directories on remote
resources

4. adding tasks to stage data and executables into and
out of the execution site

5. adding tasks to delete temp. files from execution sites
6. adding tasks to register output files and meta-data in

information catalogs
7. performing workflow-level performance optimizations.

Once the executable workflow is constructed, Pegasus can
cluster several computational tasks together into a single
batch job [18]. Such clustering is often helpful in the case
where individual tasks are of short duration and may en-
counter large overheads during execution. These overheads

include scheduling delays in Condor and DAGMan, the la-
tency of sending jobs over the network to a remote site for
execution, and long wait times in remote scheduling queues.
When running on heterogeneous grids, Pegasus schedules

tasks onto specific sites and ensures that input data is staged
before the computations are scheduled onto the resources.
For the application described in this paper, Pegasus maps
the workflow onto a virtual Condor pool that does not use
a shared file system. Instead of adding transfer jobs to the
executable workflow, Pegasus uses Condor’s file transfer fea-
tures to transfer input and output files for each job. Thus
step 4 of the mapping process is omitted.

2.3 Executing the workflow
DAGMan, the workflow engine used by Pegasus WMS,

manages dependencies in the executable workflow and re-
leases jobs into a Condor queue when their dependencies
have been successfully executed (Figure 1). Condor sends
these jobs to the available Condor workers. In addition to
Pegasus, DAGMan and Condor also provide a number of
failure recovery mechanisms.

2.4 De-provision resources
After the workflow finishes execution, the virtual resources

are released either manually, using the cloud client inter-
faces, or using automated tools.

3. RELATED WORK
Researchers have been advocating for the use of virtual

machines for scientific computing for some time [1][12][5][7].
This early work describes the potential benefits of cloud
computing in the sciences, but does not relate the practi-
cal issues and challenges of running science applications in
the cloud.
Much research has been done to quantify the performance

of virtual machines and cloud platforms for scientific applica-
tions [15][16][22][23][24]. These efforts have focused mainly
on micro benchmarks and benchmark suites such as the NAS
parallel benchmarks6 and the HPC Challenge7. These stud-
ies are good sources of information about the performance
limitations of cloud platforms, but they do not convey the
overall experience of running real applications in the cloud.
A few studies have investigated the performance of real

science applications on clouds [8][4], but with few excep-
tions these studies have focused on tightly-coupled MPI ap-
plications, which are sensitive to network latency – an area
in which clouds have struggled to compete with HPC sys-
tems. In comparison, our work focuses on scientific work-
flows, which are loosely coupled parallel applications that
are more amenable to the relatively low-performance net-
works used in commercial and academic clouds.
Vecchiola, et al. have conducted research on workflow ap-

plications in the cloud [19]. They ran an fMRI workflow
on Amazon EC2 using S3 for storage, compared the per-
formance to Grid’5000, and analyzed the cost on different
numbers of nodes. In our own previous work we have studied
the cost and performance of workflows in the cloud via sim-
ulation [2], using an experimental Nimbus cloud [6], using
individual EC2 nodes [11], and using a variety of different
intermediate storage systems [10].

6http://www.nas.nasa.gov/Resources/Software/npb.html
7http://icl.cs.utk.edu/hpcc/.

Nimbus

Eucalyptus

manual
provi-
sioning

N-node

E-node

Pegasus WMS

Provisioning
Job-related

DAGMan
Condor

Submit Host
FutureGrid site

another FutureGrid site

startd

startd

collector

Figure 2: Provisioning Architecture in FutureGrid.

In this study we relate the practical experience of trying to
run a real scientific workflow application on an experimental
cloud test bed that is dedicated to science applications. In
contrast to previous workflow studies, our application rep-
resents a non-trivial amount of computation performed over
many days. This allows us to evaluate the scalability of our
application on the cloud as well as the performance and sta-
bility of the cloud over time. In addition, this work was
conducted on a distributed cloud test bed, the FutureGrid,
which enables us to evaluate our application across different
computing sites using different cloud management systems.

4. ENVIRONMENT SETUP
In this section, we describe the experimental cloud setup,

the workflow application, and the testbed we chose for the
experiments.

Figure 2 shows the provisioning architecture that was used
for the cloud setup. The cross-hatched box shows the sub-
mit host (SH), an entity located at the USC Information
Sciences Institute (ISI). The diagonally hatched resources
are examples of FutureGrid remote sites at various places
across the country (California, Midwest, Texas).

The dashed lines with white arrows indicate resource pro-
visioning. In our experiments, we manually allocated re-
sources, typically out of band, before running the workflow.
Manual provisioning permits us to dynamically adjust re-
sources, i.e. adding or subtracting resources. The provision-
ing uses either the Nimbus or Eucalyptus clients to allocate
resources and start Virtual Machines (VMs). In its current
form, FutureGrid has a fixed total number of resources allo-
cated to each management infrastructure, varying from site
to site, as shown in Table 1.

Our base virtual image contains CentOS 5.5 upon which
the latest Pegasus WMS runs. Its boot configuration starts
a Condor startd daemon on the resource. Part of this boot
process dynamically retrieves the latest configuration to re-
port back to the Condor collector at ISI. The solid lines with
black arrows show the Condor-I/O between remotely started
VMs and the SH.

Once the resource properly reports back to the Condor
collector on the SH, the remote resource becomes available
to execute Condor jobs. Jobs are scheduled by Condor itself
and dependencies are managed by DAGMan, all according
to a plan that is generated by Pegasus.

The file staging in this scenario depends on Condor-I/O.
We are working to include more efficient means of staging
data and support for encrypted data channels, i.e. GridFTP.

While this paper focuses on our experiments in the Future-
Grid testbed, a very similar deployment architecture was

Resource CPUs
Euca-
lyptus Nimbus

IU india 1,024 2.9GHz Xeon 400 -
UofC hotel 512 2.9GHz Xeon - 336
UCSD sierra 672 2.5GHz Xeon 144 160
UFl foxtrot 256 2.3GHz Xeon - 248
Total 3,136 544 744

Table 1: FutureGrid Available Nimbus- and Euca-
lyptus Resources in November 2010.

used both on the NERSC Magellan cloud, and on Amazon
EC2. The differences include the client software used to
provision the resources, and the format of the VM images.

4.1 Periodograms
The workflow application that this paper focuses on has

been developed to process astronomy data collected by the
Kepler satellite8. Kepler is a NASA mission that uses high-
precision photometry to search for transiting exoplanets a-
round main sequence stars. In May 2009, the Kepler team
began a photometric transit survey of 170,000 stars that has
a nominal mission lifetime of 3.5 years. By the end of 2010,
the project had released light curves of 210,664 stars. These
light curves, which record the brightness of a star over time,
contain measurements made over 229 days, with between
500 and 50,000 epochs per light curve.
Analyzing light curves to identify periodic signals, such

as those that arise from transiting planets and from stellar
variability, requires the calculation of periodograms, which
reveal periodic signals in time-series data and estimate their
significance.
Generating periodograms is a computationally-intensive

process that requires high-performance, distributed comput-
ing. We have developed a periodogram service, written in
C, that implements three common algorithms and that takes
advantage of the “brute force” nature of periodograms. The
processing of each frequency sampled in a periodogram is
performed independently of all other frequencies, and so pe-
riodogram calculations are easily performed in parallel. Ex-
amining all 210K light-curves using the 3 periodogram al-
gorithms would otherwise require approximately 41 days of
sequential computation. In order to manage the paralleliza-
tion process in a scalable, efficient manner, we have devel-
oped a workflow application for computing periodograms
and used it to generate an initial atlas of periodograms for
the light curves released by the Kepler mission.

4.2 FutureGrid
The FutureGrid project9 is designed to enable researchers

to address the computer science research challenges related
to the cloud computing systems. These include topics such
as authentication, authorization, scheduling, virtualization,
middleware design, interface design, and cybersecurity in
cloud platforms, as well as the optimization of grid- and
cloud-enabled applications from a variety of domain sci-
ences. FutureGrid provides novel computing capabilities de-
signed to enable reproducible experiments while simultane-
ously supporting dynamic provisioning [20].

8http://kepler.nasa.gov/
9https://portal.futuregrid.org/about

The FutureGrid testbed makes it possible for researchers
to conduct computer science experiments at scale in a cus-
tomizable environment. It includes a geographically dis-
tributed set of heterogeneous computing systems, a data
management system, and a dedicated network. It supports
virtual machine-based environments, as well as native oper-
ating systems for experiments aimed at minimizing overhead
and maximizing performance. Project participants integrate
existing open-source software packages to create an easy-to-
use software environment that supports the instantiation,
execution and recording of grid and cloud computing exper-
iments.

Using FutureGrid researchers are able to measure the over-
head of cloud technology by requesting linked experiments
on both virtual and bare-metal systems. FutureGrid enables
US scientists to develop and test new approaches to paral-
lel, grid and cloud computing, and compare and collabo-
rate with international efforts in this area. The FutureGrid
project provides an experimental platform that accommo-
dates batch, grid and cloud computing, allowing researchers
to attack a range of research questions associated with opti-
mizing, integrating and scheduling the different service mod-
els. These are only examples of possible uses of FutureGrid,
however such a testbed can host a wide variety of computer
science and domain science research.

Table 1 shows the locations and available resources of five
clusters at four FutureGrid sites across the US in Novem-
ber of 2010 (note that the sum of cores is larger than the
sum of the remaining columns due to cores used for manage-
ment and for other purposes like bare metal scheduling using
Moab). We used the Eucalyptus and Nimbus resources, and
constrained our resource usage to roughly a quarter of the
available resources in order to allow other users to proceed
with their experiments.

5. EXPERIMENTS
For the full periodograms atlas we processed all 210K

light-curves using 3 different algorithms. For this paper, we
applied only the most computationally intensive algorithm
plavchan [17]. In some cases we also used a smaller, 16K
light curve subset of the data.

The workflow generator, the component that creates the
abstract workflow that is given to the Pegasus planner, esti-
mates the runtime of each light curve based on the number
of data points, the algorithm being used, and the parame-
ters supplied for the algorithm. Each computational task is
categorized according to its estimated runtime as being:

very fast sub-second runtime,
fast runtime in seconds, or
slow runtime about an hour.

Based on our experiences with different application work-
flows [18], we decided to cluster the workflow tasks in order
to reduce both the scheduling overhead and the total num-
ber of Condor jobs. The majority of the experiments used
a simple numeric clustering scheme where very fast tasks
were clustered into groups of 100 tasks per job, fast tasks
were clustered into groups of 20 tasks per job and slow tasks
were not clustered at all. For the experiments in section 5.2
we specified a target runtime for the jobs of 60 minutes and
clustered the tasks based on their estimated runtime using
the simple first-fit bin packing algorithm.

Site RAM Swap
Cores
per VM

Requ.
Res.

Avail.
Hosts

Actv.
Hosts

Jobs Tasks Cumul.
Dur.

Euca india 6GB (0.5GB) 2 30 30 8 19 1,900 0.4 h
Euca sierra 6GB (0.5GB) 2 30 29 28 162 7,080 119.2 h
Nimbus sierra 2GB (0.0GB) 2 20 20 20 140 7,134 86.8 h
Nimbus foxtrot 2GB (0.0GB) 2 20 20 17 126 6,678 77.5 h
Nimbus hotel 2GB (0.0GB) 2 50 50 50 352 10,290 250.6 h

Total 150 149 123 799 33,082 534.5 h

Table 2: Statistics about Sites, Jobs and Tasks.

create_dir

100 very
fast plav

20 fast plav

1 slow plav

stage-out

stage-out

stage-out

.tbl file

.tbl file

.tbl file

.out file
.out.top file

.out file
.out.top file

.out file
.out.top file

Figure 3: Workflow stub examining light-curves us-
ing the plavchan algorithm.

A simplified version of the executable workflow generated
by Pegasus is shown in Figure 3. The initial root job cre-

ate_dir is an auxiliary job created by Pegasus to create a
temporary directory on the submit host where outputs can
be staged. Following the create dir job are many branches
containing a periodogram computation followed by a stage-
out job. Although Figure 3 only shows one branch per cat-
egory, in the actual workflow there could be many branches
per category depending on the total number of light curves
to examine. The periodogram jobs are where the majority
of time is spent. The stage-out jobs associated with each
branch execute on the submit machine to move files between
directories on the submit host. Stage-out jobs have only a
small contribution to the total runtime.
Input and output data for the workflow reside on the sub-

mit host. For these experiments we used a machine at ISI
in Marina del Rey, CA as the submit host. Condor-I/O was
used to stage input files before executing jobs on remote
resources, and to retrieve output files after each job finishes.
The input data was pre-compressed using gzip and uncom-

pressed on the remote resource before executing the compu-
tation. The outputs generated were compressed on the re-
mote resource before being staged back to the submit host.
Compressing the data resulted in space savings of more than
80 percent. This compression not only reduces the transfer
time, but also reduces the cost of data transfers to commer-
cial clouds such as Amazon EC2.

5.1 Experiments on FutureGrid
This section describes two experiments. In the first ex-

periment, we ran 33K light curves on FutureGrid. This ex-
periment computed periodograms for the 16K light curve
dataset twice, for a total of around 33K periodograms. The
second experiment ran the entire 210K light curve dataset on
FutureGrid using an improved software configuration based
on our experiences running the smaller dataset.

[%
]

0

10

20

30

40

50

60

70

80

90

100

Req. Res. Avail. Hosts Actv. Hosts Jobs Tasks Cumul. Dur.

20.0% 20.1%

6.5%
2.4% 5.7%

0.1%

20.0% 19.5%

22.8%
20.3%

21.4%
22.3%

13.3% 13.4%
16.3%

17.5%
21.6%

16.2%

13.3% 13.4%
13.8% 15.8%

20.2%

14.5%

33.3% 33.6% 40.7% 44.1% 31.1% 46.9%

Euca−india Euca−sierra Nimbus−sierra Nimbus−foxtrot Nimbus−hotel

Figure 4: Table 2 represented as percentages.

5.1.1 33k Periodograms

The 33K workflow contained 799 parallel branches as il-
lustrated in Figure 3, for a total of 1,599 Condor jobs, in-
cluding 1 setup job, 799 computational jobs, and 799 staging
jobs. The workflow included 217 very fast branches, 572 fast
branches, and 10 slow branches.

Column requested resources (Req. Res.) in Figure 4 and
Table 2 shows the number of resources requested from the
FutureGrid testbed before starting the workflow. Automatic
provisioning, including de-provisioning, is projected for the
FutureGrid Experiment Management framework, but is not
part of experiments shown in this paper.

The ratio between Nimbus and Eucalyptus resources was
3 to 2. One third of the resources were requested from site
hotel (50 Nimbus nodes), one third from site sierra (20 Eu-
calyptus + 30 Nimbus), and the final third shared between
sites foxtrot (20 Nimbus) and india (30 Eucalyptus). Only
site sierra was running both Nimbus and Eucalyptus. Run-
ning across multiple cloud management systems in separate
administrative domains–effectively using multiple clouds–is
an example of Sky Computing [14].

Table 2 shows the runtime information collected from the
workflow execution. All jobs were invoked using the kickstart
wrapper [21]. Kickstart invokes the native application code,
measures its runtime performance, and records execution
environment information.

Comparing the columns requested resources and available
hosts in Table 2 (and Figure 4), one will realize that not all
provisioned resources reported back properly. The discrep-
ancy in this case is that only 29 of the 30 resources requested
from the sierra Eucalyptus site were able to start. This fail-
ure was no problem for our execution environment, which
can handle variable numbers of resources without requiring
configuration changes.

The column active hosts in Table 2 shows the number of
hosts from each site that actively participated in the work-
flow. Not all hosts that were requested and reported back
to the submit host were able to be utilized by the Condor

time [s]

−600 0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200

s
lo

ts
 o

r
jo

b
s
 [

#
]

0

100

200

300

400

500

600

R.AVAIL

R.BUSY

J.SUBMIT

J.EXECUTE

Figure 5: Resources and Job States of 2×16k Light-Curves over Time.

Excerpt of Actual Workflow − Fraction of Jobs

time [min]

0.0 30.0 60.0 90.0 120.0

periodogram_ID0024624

periodogram_ID0022258

merge_medium_227

merge_medium_516

merge_medium_22

merge_medium_58

merge_small_198

merge_small_48

merge_medium_399

merge_medium_113

merge_small_0

merge_medium_441

merge_medium_83

create_dir_periodogram_0_futuregrid

Job duration Q delay Task duration Failed Task Job start

Figure 6: Fraction of Jobs over Time.

scheduler. As Figure 5 illustrates, we were unable to fully
saturate the given resources with jobs due to inefficiencies in
our initial configuration that limited the throughput of our
scheduler.
The distribution of jobs and tasks across the sites is shown

by the columns jobs and tasks. With the exception of site
india, which had only 8 of 30 hosts active, we were able to
get a good balance of jobs/tasks across all the clouds with
about 6-7 jobs completed per host per cloud.
The total workflow wall time duration (the elapsed clock

time from the start of the workflow to the end) amounted
to 7,541 seconds, or a little over two hours. Table 2 shows
that the cumulative sequential runtime of the computational
tasks amounts to over 534 hours. This is equivalent to a
speed-up of 254.8. Although the actual number of physical
cores in our virtual pool was 298, we were over-subscribing
the pool to create over 600 job slots. Considering the actual
number of CPU cores our observed speedup was good.
Figure 5 shows the resource utilization and jobs over time.

The x-axis origin was placed at the start of execution of the
DAGMan workflow. However, since resources were provi-

sioned prior to workflow execution, the x-axis starts in the
negative area, 10 minutes before the workflow started.

The first curve R.AVAIL in Figure 5 shows the slots as re-
sources come online and report back to the Condor collector
on the SH. The number of slots top out at 622 resources,
of which 596 were remote FutureGrid resources. Of the re-
maining 26 slots, 10 are attributed to the submit host, and
16 slots to 4 experimental VMs reporting from elsewhere,
which did not participate in the experiment. Each slot can
receive one Condor job.

The curve R.BUSY shows the slots marked as “busy” by
Condor. We oversubscribed the resources so that each core
had two slots, for a total of 4 slots per 2-core node.

The curve J.EXECUTE shows the Condor jobs marked as
“running” in the Condor queue. This curve closely mirrors
the R.BUSY curve, as it should. The two curves provide the
same data point but from a different perspective, one from
the view point of resources, and one from the view point of
jobs.

The curve J.SUBMIT shows the number of Condor jobs
marked as“idle” in its queue. We were carefully tailoring the

time [h]

0 1 2 3 4 5 6 7

s
lo

ts
 o

r
jo

b
s
 [

#
]

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300
R.AVAIL

R.BUSY

J.SUBMIT

J.EXECUTE

Figure 7: Resources and Job States of 210k Light-curves over Time.

performance configuration of DAGMan to not release any-
more “ready” jobs into the Condor queue when the amount
of “idle” jobs exceeded 100 jobs. This allows Condor to have
enough jobs to schedule to idle resources without leaving
thousands of jobs in the queue that would only increase the
time spent matchmaking.
Finally, Figure 6 shows a small subset of jobs in a Gantt

chart for illustrative purposed. A complete Gantt chart for
this workflow would have a y-axis showing 1,599 jobs. The
chart shows the create_dir job at the bottom and left-most,
3 very fast jobs merge_small*, 8 fast jobs merge_medium*,
and 2 jobs from the slow category perio*. It does not show
any staging jobs. It does show, however, that the separate
staging jobs only contribute negligibly to the workflow du-
ration, because the right boundary is determined by the end
of the workflow.
The yellow bar (solid color) preceding each job shows the

time the job spent in the Condor queue before being matched
to a resource. The gray boxes show the start and end times
of each task, as observed by kickstart [21]. In case of very
fast tasks, these are 100 extremely small, overlapping boxes.
The cross marks the point in time when the task started
executing according to Condor.

5.1.2 Scaling Up

After collecting experience running 16k sets of light-curves
in the previous experiments, we scaled up the workflow to
experiment with periodograms from all 210k light-curves.
The scalability issues required a delicate balance between
the ability to saturate remote resources without overloading
the submit host with too many transfers/connections.
Figure 5 helped us start tuning Condor for performance

to improve the resource saturation and to examine other
system components. Based on the initial experiments, we
came up with the following guidelines for scaling up the
system.

• Workflow Optimizations: Pegasus’ clustering should
be used for short-running jobs as it is useful for signifi-

cantly reducing the communication overhead for work-
flow tasks. Files to be staged should be compressed
because it provides benefits in shorter transfer times
and lower costs on commercial clouds.

• Submit host Unix settings: To scale-up, the num-
ber of file descriptors available to Condor should be
raised. Also, a sufficiently large port range needs to be
assigned to Condor to facilitate its communications.

• Submit host Condor configuration: This config-
uration controls how Condor daemons interact, i.e. to
use TCP for the collector, delays between negotiator
cycles, socket cache sizes, file descriptors per daemon,
and port ranges. The latter are limited resources, and
careful tuning is required for large scale operations.

We configured the submit host to use the Condor shared
port daemon, an entity to reduce the number of Inter-
net ports used by Condor.

• Condor DAGMan configuration: DAGMan set-
tings control how many jobs it will submit in a row, and
to prefer depth-first search over breadth-first search to
traverse the workflow graph. DAGMan runtime set-
tings give us a runtime ceiling to limit the number of
jobs DAGMan releases to Condor. We found the idle
limit more useful than the job count ceiling because
it takes into account the number of jobs that Condor
needs to manage at any time rather than having an
ever growing Condor queue.

• Remote host Condor configuration: This config-
uration controls how the Condor started on the VM is
configured. Most of these settings are similar to the
submit host settings.

We activated the Condor connection broker (CCB) on
the remote entity to enable VMs with a private net-
work address to be able to talk to the submit host. As
a by-product, it also reduces the number of Internet

Site CPU RAM Swap Workflow
Walltime

Cumul.
Duration

Speed
Up

Magellan 8 x 2.67GHz Nehalem 19GB (0.0GB) 5.2 h 226.6 h 43.6
Amazon 8 x 2.3GHz Xeon 7GB (0.0GB) 7.2 h 295.8 h 41.1
FutureGrid 8 x 2.5GHz Xeon 29GB (0.5GB) 5.7 h 248.0 h 43.5

Table 3: Comparison of 6 node (48 core) runs.

Site Req.
Res.

Actv.
Hosts

Jobs Tasks Cumul.
Dur.

Euca india 30 26 1,135 28,761 102.3
Euca sierra 30 29 1,074 24,600 125.8
Nimbus sierra 20 20 810 21,540 85.5
Nimbus foxtrot 20 20 1,428 34,480 164.1
Nimbus hotel 50 50 4,012 101,283 356.5

Total 150 145 8,459 210,664 834.2

Table 4: Scaling up to 210k periodograms.

ports required, and thus the number of file descriptors
on the submit host.

• Condor slots: They should equal the physical cores
available for computationally intensive tasks like the
periodogram experiments.

We ran a number of large-scale experiments. Here we
present the results of one run. When running at scale, both
system and application failures occur. In the case of the run
presented here, 99.8% of jobs completed successfully, while
20 jobs failed without possibility of automatic recovery, pos-
sibly due to problems with the data or the application. In
this run on FutureGrid, we were still over-subscribing the
CPU resources during the experiment.
Figure 7 shows the workflow execution. As before, we

requested the same set of resources as shown in the first
data column of Table 4. However, this time only 145 hosts
reported back to our submit host. Five Eucalyptus resources
did not start as shown in column active hosts in Table 4.
This means the curve R.AVAIL in Figure 7 tops out at

582 slots, including 6 slots for the submit machine. Curve
R.BUSY shows the number of slots that Condor thinks are
busy running jobs.
Unlike before, the J.EXECUTE curve in Figure 7 does

not follow the R.BUSY curve. The R.BUSY curve was
obtained from the Condor logs while the J.EXECUTE curve
was computed from the state transition of each Condor job
as reported by DAGMan’s debug log. A machine will reach
state “busy” before the job is started, and remains so for a
short while after the job exits.
Condor-I/O staging in of data files will make a job ap-

pear to be running in the Condor queue, but not in the
DAGMan information we tracked. Condor-I/O staging out
will let the job remain in the running state until staging is
finished. Scalability constraints limit the number of simul-
taneous Condor-I/O streams, which will have a dampening
effect on the number of short-running jobs.
Taking all effects into consideration still fails to explain

the large discrepancy between the two curves, however, we
trust R.BUSY to be the correct measurement. Based on
that, we were able to saturate the remote resources with
jobs from Condor’s resource perspective.

Curve J.SUBMIT shows an interesting outlier. We thought
we had tuned the number of idle jobs for DAGMan, but the
constraint was not propagated. This caused the submitted
jobs to grow in an unbounded way. About half an hour
into the workflow, after a manual configuration update was
signaled to DAGMan, we saw a drop in the number of sub-
mitted jobs. We suspect this signal to be partly responsible
for problems determining the proper count of J.EXECUTE.

Running the workflow through Pegasus provides us with
retries in case of job failures. However, after a finite number
of failing retries, it is better to give up than keep going. A
rescue workflow comprises the jobs to be run – after human
intervention.

Due to failed jobs in the workflow, for which we do not
have runtimes, and which artificially extend the workflow’s
wall time, it does not make sense to compute a speed-up.
However, the approximate speed-up is in line with the low
J.EXECUTE graph, and thus tells us that we have not
found the right balance in our tunings.

We were also able to successfully run the 210K dataset in
a grid environment using configurations not shown in this
paper. We used more conservative settings in that environ-
ment.

5.2 Cloud Comparison
We also investigated the performance of the 16K light

curve workflow on different cloud infrastructures including
academic and commercial clouds. To facilitate the compari-
son, we used Eucalyptus (with it’s EC2 interface) and Ama-
zon’s EC2. We ran the 16k light curve sample set on other
cloud infrastructure:

1. NERSC’s Magellan cloud (Eucalyptus),
2. Amazon’s cloud (EC2), and
3. FutureGrid’s sierra cloud (Eucalyptus).

The setup is identical to the one shown in Figure 2. The
resources are either Eucalyptus or EC2. In these separate
experiments, the number of nodes and core-selection was
constrained, because in the Amazon case, the computations
have a monetary cost associated with them.

The experiments allocated 6 nodes with 8 cores each in
all cases. Table 5 shows the various reported machine at-
tributes. Due to differences in virtually every aspect, dif-
ferences on the host systems notwithstanding, the workflow
task durations differ for each major cloud, despite the iden-
tical setup.

This experiment uses one Condor slot per physical CPU.
Given that 48 physical cores were available, a speed-up over
43 for two experiments is good.

Table 3 reports the fluctuations in runtime of the vari-
ous tasks on each site. The columns qt designate a quartile.
The column CD is the cumulative duration of tasks. It is
interesting to see how close the cumulative runtimes are to
each other. The longer runtime on the Amazon cloud can

Host Jobs Tasks CD [h] min [s] qt1 [s] med [s] qt3 [s] max [s] avg [s] stddev

192.168.3.194 55 2,345 35.8 1.0 1.1 1.2 135.5 4,022.1 55.0 109.9
192.168.3.195 57 2,577 38.3 1.0 1.1 3.5 135.3 143.7 53.5 65.1
192.168.3.196 62 2,778 39.1 1.0 1.0 1.1 135.2 4,033.2 50.7 99.3
192.168.3.197 61 2,904 37.4 1.0 1.0 1.1 135.1 144.0 46.4 63.4
192.168.3.198 63 2,965 38.8 1.0 1.0 1.8 135.1 4,018.0 47.1 96.3
192.168.3.199 62 2,972 37.1 1.0 1.0 3.5 134.9 4,020.5 44.9 95.7
TOTAL Magellan 360 16,541 226.6 1.0 1.0 1.2 135.2 4,033.2 49.3 89.8

10.125.81.3 59 2,419 52.4 1.3 1.4 4.7 178.6 192.0 78.0 86.9
10.125.81.43 62 2,816 49.7 1.3 1.4 4.4 171.3 5,614.1 63.6 136.0
10.125.81.166 61 3,179 46.8 1.3 1.3 1.5 169.8 5,535.2 53.0 125.5
10.125.82.156 57 2,347 50.3 1.3 1.3 1.6 178.3 5,571.8 77.1 142.9
10.125.82.197 59 2,708 49.4 1.3 1.3 1.5 171.5 5,580.9 65.7 135.2
10.125.82.233 62 3,072 47.2 1.3 1.3 1.4 170.3 189.5 55.3 81.3
TOTAL Amazon 360 16,541 295.8 1.3 1.3 1.6 172.7 5,614.1 64.4 120.4

10.0.4.130 61 2,794 41.6 1.1 1.2 3.9 149.2 4,362.7 53.6 107.4
10.0.4.131 63 3,017 41.4 1.1 1.2 1.2 149.2 155.4 49.3 69.2
10.0.4.132 60 2,734 40.8 1.1 1.2 1.4 149.2 4,394.4 53.8 110.9
10.0.4.133 53 2,250 41.4 1.2 1.2 3.9 149.4 4,390.5 66.2 116.7
10.0.4.134 58 2,557 42.0 1.2 1.2 3.9 149.4 156.8 59.1 72.1
10.0.4.135 65 3,189 40.8 1.2 1.2 1.2 149.0 4,413.3 46.1 102.4
TOTAL Sierra 360 16,541 248.0 1.1 1.2 1.3 149.2 4,413.3 54.0 97.8

Table 5: Comparison of runtimes on Magellan, Amazon and Sierra.

be explained by two factors: A lower CPU speed, and by
poor WAN performance. The Magellan cloud, and Future-
Grid sierra are both located in the same state as the submit
machine, but the Amazon cloud is much further away.
If you subtract the submit host tasks from the total tasks

per site, and recall that the first experiment from section 5.1
was running every periodogram from the same set twice,
the number of tasks match up. This makes the cumulative
durations comparable, if one assumes 534.5

2
= 267.3 hours,

in line with the experiments in this section.

6. CONCLUSIONS AND FUTURE WORK
We have demonstrated that sky computing is a viable and

effective solution for at least some scientific workflows. The
micro benchmark differences between the cloud infrastruc-
tures do not have a major effect on the overall user experi-
ence, and the convenience of being able to add and remove
resources at runtime outweighs the networking and system
management overheads. Some of the guidelines and find-
ings for scaling the setup, such as over subscription of CPU
resources are broadly applicable. Other findings, such as
Condor configuration and tuning, are specific to the use of
Pegasus / Condor, but should still be considered valuable
lessons learned and possibly applicable to similar setups us-
ing other tooling.
For further experiments, especially when employing peri-

odograms as the target application, we would like to inves-
tigate a number of issues:

• Better utilization of remote resources: explore increas-
ing the number of running jobs to saturate the given
resources and the tradeoffs involved with communica-
tion overheads associated with remote job execution.

• Different clustering strategies: explore the benefits of
different task cluster sizes.

• Submit host management: evaluate the tradeoffs be-
tween various system parameters and load on the sub-

mit host, which is related to the overall workflow per-
formance.

• Alternative data staging mechanisms, explore different
protocols, and storage solutions.

The above research will be greatly facilitated by computer
science testbeds such as FutureGrid, which aims to provide
a customizable environment that can be repeatedly instan-
tiated in the same form over time.

7. ACKNOWLEDGMENTS
This material is based upon work supported in part by

the National Science Foundation under Grant No. 0910812
to Indiana University for ”FutureGrid: An Experimental,
High-Performance Grid testbed.”Partners in the FutureGrid
project include U. Chicago, U. Florida, San Diego Super-
computer Center - UC San Diego, U. Southern California,
U. Texas at Austin, U. Tennessee at Knoxville, U. of Vir-
ginia, Purdue I., and T.-U. Dresden.

G. B. Berriman is supported by the NASA Exoplanet Sci-
ence Institute at the Infrared Processing and Analysis Cen-
ter, operated by the California Institute of Technology in
coordination with the Jet Propulsion Laboratory (JPL).

8. REFERENCES
[1] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and

S. E. Sprenkle. Dynamic virtual clusters in a grid site
manager. In In Proceedings of the Twelfth
International Symposium on High Performance
Distributed Computing (HPDC-12), 2003.

[2] E. Deelman, G. Singh, M. Livny, B. Berriman, and
J. Good. The cost of doing science on the cloud: the
Montage example. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08,
pages 50:1–50:12, Piscataway, NJ, USA, 2008. IEEE
Press.

[3] E. Deelman, G. Singh, M.-H. Su, J. Blythe, and
Y. e. a. Gil. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems.
Sci. Program., 13:219–237, July 2005.

[4] C. Evangelinos and C. Hill. Cloud Computing for
Parallel Scientific HPC Applications: Feasibility of
Running Coupled Atmosphere-Ocean Climate Models
on Amazon’s EC2. In Proceedings of the first workshop
on cloud Computing and its Applications (CCA08),
2008.

[5] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes. A
Case For Grid Computing On Virtual Machines. In
Proceedings of the 23rd International Conference on
Distributed Computing Systems, ICDCS ’03, pages
550–, Washington, DC, USA, 2003. IEEE Computer
Society.

[6] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, et al.
On the Use of Cloud Computing for Scientific
Workflows. In Proceedings of the 2008 Fourth IEEE
International Conference on eScience, pages 640–645,
Washington, DC, USA, 2008. IEEE Computer Society.

[7] W. Huang, J. Liu, B. Abali, and D. K. Panda. A case
for high performance computing with virtual
machines. In Proceedings of the 20th annual
international conference on Supercomputing, ICS ’06,
pages 125–134, New York, NY, USA, 2006. ACM.

[8] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon,
et al. Performance Analysis of High Performance
Computing Applications on the Amazon Web Services
Cloud. In CloudCom, pages 159–168. IEEE, 2010.

[9] G. Juve and E. Deelman. Wrangler: Virtual Cluster
Provisioning for the Cloud. In HPDC, 2011.

[10] G. Juve, E. Deelman, K. Vahi, and G. Mehta. Data
Sharing Options for Scientific Workflows on Amazon
EC2. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10,
pages 1–9, Washington, DC, USA, 2010. IEEE
Computer Society.

[11] G. Juve, E. Deelman, K. Vahi, G. Mehta, et al.
Scientific workflow applications on amazon ec2. In
E-Science Workshops, 2009 5th IEEE International
Conference on, pages 59 –66, Dec. 2009.

[12] K. Keahey, I. Foster, T. Freeman, and X. Zhang.
Virtual workspaces: Achieving quality of service and
quality of life in the Grid. Sci. Program., 13:265–275,
October 2005.

[13] K. Keahey and T. Freeman. Contextualization:
Providing One-Click Virtual Clusters. In eScience,
2008. eScience ’08. IEEE Fourth International
Conference on, pages 301 –308, dec. 2008.

[14] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes.
Sky Computing. IEEE Internet Computing, 13:43–51,
2009.

[15] J. Napper and P. Bientinesi. Can cloud computing
reach the top500? In Proceedings of the combined
workshops on UnConventional high performance
computing workshop plus memory access workshop,
UCHPC-MAW ’09, pages 17–20, New York, NY, USA,
2009. ACM.

[16] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, et al.
A Performance Analysis of EC2 Cloud Computing
Services for Scientific Computing. In 1st International
Conference on Cloud Computing. ICST Press, 2009.

[17] P. Plavchan, M. Jura, J. D. Kirkpatrick, R. M. Cutri,
and S. C. Gallagher. Near-Infrared Variability in the
2MASS Calibration Fields: A Search for Planetary
Transit Candidates. The Astrophysical Journal
Supplement Series, 175(1):191, 2008.

[18] G. Singh et al. Workflow task clustering for best effort
systems with Pegasus. In Proceedings of the 15th ACM
Mardi Gras conference., MG ’08, pages 9:1–9:8, New
York, NY, USA, 2008. ACM.

[19] C. Vecchiola, S. Pandey, and R. Buyya.
High-Performance Cloud Computing: A View of
Scientific Applications. In International Symposium on
Parallel Architectures, Algorithms, and Networks,
2009.

[20] G. von Laszewski, G. C. Fox, F. Wang, A. Younge,
A. Kulshrestha, et al. Design of the FutureGrid
Experiment Management Framework. In The
International Conference for High Performance
Computing, Networking, Storage and Analysis (SC10),
pages 1–10, New Orleans, LA, 11/2010 2010. IEEE.

[21] J. Vöckler, G. Mehta, Y. Zhao, E. Deelman, and
M. Wilde. Kickstarting Remote Applications. The 2nd
Workshop on Grid Computing Environments
(OGCE06) [unpublished], 11 2006.

[22] E. Walker. Benchmarking Amazon EC2 for
High-Performance Scientific Computing. In USENIX
Login, pages 18–23, 2008.

[23] L. Youseff, R. Wolski, B. Gorda, and R. Krintz.
Paravirtualization for HPC Systems. In In Proc.
Workshop on Xen in High-Performance Cluster and
Grid Computing, pages 474–486. Springer, 2006.

[24] W. Yu and J. S. Vetter. Xen-Based HPC: A Parallel
I/O Perspective. In ”Proceedings of the 2008 Eighth
IEEE International Symposium on Cluster Computing
and the Grid”, pages 154–161, Washington, DC, USA,
2008. IEEE Computer Society.

