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Abstract

In this paper, a method for estimating task execu-
tion times is presented, in order to facilitate dynamic
scheduling in a heterogeneous metacomputing environ-
ment. Execution time is treated as a random variable
and is statistically estimated from past observations.
This method predicts the execution time as a function of
several parameters of the input data, and does not re-
quire any direct information about the algorithms used
by the tasks or the architecture of the machines. Tech-
niques based upon the concept of analytic benchmark-
ing/code profiling [7] are used to accurately determine
the performance differences between machines, allow-
ing observations to be shared between machines. Ex-
perimental results using real data are presented.
Keywords: Heterogeneous Distributed Computing, Ex-
ecution Time Estimation, Nonparametric Regression,
Analytic Benchmarking, Distance Matrices.

1 Introduction

Heterogeneous metacomputing is a type of paral-
lel computing, where a large, distributed network of
heterogeneous machines is used as a single computa-
tional entity. Applications executing in this environ-
ment consist of a set of coarse-grained, precedence-
constrained tasks, where the precedence structure can
be represented using a directed acyclic graph (DAG).
The performance of an application in this environment
is largely determined by the manner in which these
tasks are assigned to the machines; the construction of
such and assignment is called the matching and schedul-
ing problem. Matching and scheduling algorithms need
to know the execution time of each task on each ma-
chine to perform well, and most matching and schedul-
ing algorithms for DAGs in the literature assume that

the execution time of a given task is a known quantity.
However, the execution time of a task on a given ma-
chine depends upon many factors, including the prob-
lem size and the input data, and is not trivial to de-
termine a priori. In a heterogeneous environment, the
wide variety of machine architectures further compli-
cates the process of determining the execution time,
since the execution time is also machine dependent.
Methods are clearly needed which can accurately pre-
dict the execution time of a task on a variety of ma-
chines as a function of the features of the data set. This
problem is called the execution time estimation prob-
lem.
In the literature, there are three major classes of so-

lutions to the execution time estimation problem: code
analysis [18], analytic benchmarking/code profiling [7,
11, 12, 16, 20, 22, 23] and statistical prediction [3, 10,
13]. In code analysis, an execution time estimate is
found through analysis of the source code of the task.
A given code analysis technique is typically limited to
a specific code type or a limited class of architectures.
Thus, these methods are not very applicable to a broad
definition of heterogeneous computing, and will not be
examined here.
A class of methods which are more useful in a

heterogeneous metacomputing environment is analytic
benchmarking/code profiling. Analytic benchmark-
ing/code profilingwas first presented by Freund [7], and
has been extended by Pease et al. [16], Yang et al. [22,
23], Khokhar et al. [11, 12], and Siegel [20]. Analytic
benchmarking defines a number of primitive code types.
On each machine, benchmarks are obtained which de-
termine the performance of the machine for each code
type. Code profiling attempts to determine the compo-
sition of a task, in terms of the same code types. The
analytic benchmarking data and the code profiling data
are then combined to produce an execution time esti-
mate. Analytic benchmarking/code profiling has two



disadvantages. First, it lacks a proven mechanism for
producing an execution time estimate from the bench-
marking and profiling data over a wide range of algo-
rithms and architectures. Second, it cannot easily com-
pensate for variations in the input data set. However,
analytic benchmarking is a powerful comparative tool
in that it can determine the relative performance differ-
ences between machines.
The third class of execution time estimation algo-

rithms, statistical prediction algorithms, make predic-
tions using past observations. A set of past observations
is kept for each machine, which are used to make new
execution time predictions. The matching and schedul-
ing algorithm uses these predictions (and other infor-
mation) to choose a machine to execute the task. While
the task executes on the chosen machine, the execu-
tion time is measured, and this measurement is subse-
quently added to the set of previous observations. Thus,
as the number of observations increases, the estimates
produced by a statistical algorithm will improve. Statis-
tical prediction algorithms have been presented by Iver-
son et al. [10], Kidd et al. [13], and Devarakonda and
Iyer [3]. Statistical methods have the advantages that
they are able to compensate for parameters of the input
data (such as the problem size) and do not need any di-
rect knowledge of the internal design of the algorithm
or the machine. However, statistical techniques lack an
intrinsic method of sharing observations between ma-
chines. By allowing observations to be shared between
machines, the execution time estimate on a machine
with few observations can be improved by using obser-
vations from machines with similar performance char-
acteristics.
Given the advantages and disadvantages of both ana-

lytic benchmarking/code profiling and statistical meth-
ods, this paper presents a hybridmethod, which uses an-
alytic benchmarking techniques to create a unified set of
observations describing both the input data features and
the machine capabilities. This unified observation space
is then used by a statistical method to produce execution
time estimates. In this paper, as in much of the DAG
scheduling literature, each task is assumed to have ex-
clusive use of the machine on which it executes. Thus,
the execution time of a task is not a function of the other
tasks in the system, and is only a function of the ma-
chine capabilities and input data. This method models
the execution time of a task as a random variable, allow-
ing the matching and scheduling algorithm to consider
the uncertainty present in the execution time estimate.
(Several papers have discussed the idea of scheduling
with random quantities, including King [14], Tan and
Siegel [21], Armstrong [2], Li et al. [15] and Hou and
Shin [9].)
The remainder of this paper is organized as follows.

First, the stochastic model of the execution time of a
task is presented in Section 2. Section 3 presents the
prediction algorithm which uses this model. Section 4
presents the results of simulations using real data, and
conclusions are offered in Section 5.

2 Modeling the Execution Time as a Ran-
dom Variable

The execution time of a task on a given machine
largely depends on the size and properties of the in-
put data set. For example, the execution time of many
matrix algorithms depends upon the size of the matrix.
Furthermore, if the matrix algorithm was iterative in na-
ture, the execution time may also depend upon the con-
dition of the matrix and the desired precision of the re-
sults. In principle, it is possible to quantify these prop-
erties of the input data set as a vector of numeric pa-
rameters . Thus, the execution time
of the task can be modeled as a function of
this parameter vector. However, in many instances, it
is not computationally practical to determine all pa-
rameters. Therefore, it is assumed that only a limited
number of these parameters will be explicitly
modeled. Thus, the parameter vector
will be used to model the execution time of the task.
However, the presence of unmodeled factors will cause
a certain amount of error to be present in an estimate of
the execution time. To compensate for this error, the ex-
ecution time of a task is modeled as a random variable .
This random quantity can be represented as:

(1)

where is deterministic, and is purely stochas-
tic. In this equation, represents the unmodeled fac-
tors affecting the execution time, while repre-
sents the modeled factors, and therefore depends upon a
-dimensional vector of parameters .
In essence, represents the mean of given ,
while represents the zero-mean random error present
in the estimate.
While the unmodeled factors which affect are un-

known, it is possible to determine their effect upon
the execution time indirectly by estimating properties
of the random variable . Additionally, while does
not directly depend upon the parameter vector

, in practice, does display some depen-
dence on the modeled parameters, due to the fact that
the modeled and unmodeled parameters may not be sta-
tistically independent. Thus, some degree of correlation
may exist between these sets.
Given this model, the goal of the execution time es-

timation problem is to obtain estimates of and



for some given parameter vector . Before presenting
the specific details of how these values are estimated,
examples of how two real algorithms behave under this
model will be presented to illustrate the concepts pre-
sented here. The first example shows an algorithm
where the set of unmodeled parameters has a very small
effect upon the execution time (i.e. is small). Fig-
ure 1 shows the execution time of the Cholesky matrix
decomposition algorithm for various problem sizes on
a single machine. The relative continuity of this curve
shows that has a very small impact on the execution
time.

The opposite case is illustrated in Figure 2. This
algorithm attempts to determine if a given number is
prime through the process of trial division. The exe-
cution time of this algorithm, for a given number , is
essentially a function of the smallest prime factor of the
number . However, it is not practical to compute the
smallest prime factor of the number , since the compu-
tational cost of this problem is equivalent to determin-
ing if the number is prime. However, it is possible to use
the magnitude of the number as a parameter, since this
value bounds the magnitude of the smallest prime fac-
tor. Thus there is a loose correlation between the mag-
nitude of the number and the execution time, which can
be seen in the figure. Thus, even in this extreme exam-
ple, it is still possible to obtain some information about
the execution time of the task which can be used by
the matching and scheduling algorithm. In the next sec-
tion, the techniques used to estimate the values of
and will be presented.

3 Execution Time Estimation Algorithm

The algorithm developed in this paper is presented in
two sections. Section 3.1 poses the execution time esti-
mation problem as a regression problem, and presents
a k-Nearest Neighbor (k-NN) regression algorithm to
compute estimates from a set of previous observations.
For clarity of presentation, the regression algorithm is
described using only the vector of parameters describ-
ing the task input data. While this algorithm can com-
pute the execution time of a task on a single machine as
a function the input data set, it lacks an intrinsic ability
to share observations between dissimilar machines. To
eliminate this restriction, the regression vector is aug-
mented in Section 3.2 to include a parameterization of
different machines. Thus, the execution time may be
estimated using previous observations as a function of
both machine type and task characteristics.

3.1 Nonparametric Regression

Given that the execution time of a task is modeled
as a random variable (as in equation 1), the goal of this
paper is to present methods to obtain estimates
and of and for a given a parameter vector
which characterizes the input data set. This will be ac-
complished through the use of a set of previous ob-
servations of the execution time , where
is an observed execution time for the parameter vec-
tor . The parameter vectors of the previous
observations are samples in the parameter space ( -
dimensional real vectors). In statistics, this problem is
called a regression problem. Note that, as presented
in this section, each machine requires a separate set of
observations. This restriction will be relaxed in Sec-
tion 3.2.
There are a variety of different techniques to solve

regression problems, which can be divided into two
classes: parametric techniques and nonparametric
techniques. In general, parametric techniques require
knowledge of the functional form of and .
Since, in this paper, it is difficult to make any as-
sumptions about the functional form of the model with-
out specific knowledge of the task and the machine
in question, parametric techniques are not well suited
to this problem [10]. Nonparametric regression tech-
niques (also called nonparametric estimators or smooth-
ing techniques) are considered to be data driven, since
the estimate depends only upon the set of previous ob-
servations, and not on any assumptions about
or . Therefore, nonparametric techniques will be used
in this paper.
All nonparametric regression techniques com-

pute using a variation of the equation

(2)

where is a weighting function, or kernel [8].
Observe that, for any given vector , is a
weighted average of the execution time values, , of the
previous observations. The weight function

typically assigns higher weights to observations close
to the parameter , and lower weights to observations
farther away from . This is illustrated in Figure 3 for
a scalar parameter . In practice, many nonpara-
metric regression techniques only include in the average
points within some neighborhood of the parameter ,
making the estimate a local average of the obser-
vations near the parameter vector .
A similar technique can be used to determine the

properties of . As mentioned above, is a zero-mean
random variable, which can have an arbitrary probabil-
ity density function (pdf). This arbitrary nature of



0 100 200 300 400 500 600

0

2

4

6

8

10

Matrix Size

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

Figure 1. Execution time of the Cholesky Decomposition Algorithm.
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Figure 2. Execution time of the Trial Division Algorithm.
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Figure 3. Assigning Weights to Observa-
tions.

makes the estimation process difficult. To maintain sim-
plicity, only an estimate of the variance of will be
computed in this paper. Given an estimate ,
can be computed to be

(3)

In this paper, the k-Nearest Neighbor (k-NN) algo-
rithm is used (although, in principle, any nonparamet-
ric technique could be adapted). In k-NN smoothing,
the estimate is constructed from the observa-
tions with parameter vectors closest to the parameter
vector . With regard to the execution time estima-
tion problem, there are two primary advantages of k-
NN smoothing. First, since the estimate is always con-
structed from an average of points, the method can
easily adapt to sparse or dense regions in the observa-
tions. Second, the method can be implemented in a
computationally efficient manner. The computational
complexity of the method is , where
is the dimensionality of the parameter vector, and is
the number of past observations.
While conceptually simple, there are many factors to

consider when using the k-NN algorithm. For example,
an important issue in k-NN smoothing is the choice of
the value . If too many observations are included in
the average, the bias will be too
large, and the details of will be lost. On the other
hand, if too few observations are averaged, the vari-
ance of will be too large,
resulting in a curve which is “noisy.” Choosing to ob-
tain a balance between these two extremes is known as
the bias-variance tradeoff, and is present in all nonpara-
metric regression techniques. In general, should grow
in proportion to such that and as

[4].
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Figure 4. Effects of estimates at the
boundary.

Another factor in the design of a nonparametric re-
gression algorithm is the ability to tolerate erroneous
data points in the set of observations. (This type of es-
timator is said to be a robust estimator.) These points,
called outliers, do not conform to the model described
in equation 1. The technique used to make the estima-
tor robust is called L-Smoothing [8], where a fixed per-
centage of the observationswith the largest and smallest
values of are eliminated from the local average.
A final issue encountered when using nonparametric

regression techniques is the behavior of the estimates
near the boundaries of the set of observations (i.e., no
observations lie beyond the boundary). As the param-
eter value approaches a boundary, the local aver-
age becomes biased, since more observation points will
be on one side of point than the other. The one-
dimensional case is illustrated in Figure 4, where the
estimated function will become biased near the
boundary [6, 8]. To ensure accurate estimates near the
boundary, a nonparametric regression technique needs
to be able to compensate for this effect. A formal defini-
tion of the k-NN algorithm, including solutions to these
issues, is presented in Appendix A.

3.2 Parameterizing Machine Performance

If the k-NN algorithm is used as presented above,
a separate set of observations must be maintained for
each machine. This condition is caused by the lack
of a mechanism to translate performance differences of
the machines into numeric parameters which can be in-
corporated into the execution time model presented in
equation 1. There are two compelling reasons why it
is desirable to eliminate this restriction and to form a
unified set of observations. First, separate sets makes
the process of adding new machines (or applications)



to the network difficult, since a few initial observations
are required in each set for the algorithm to function ef-
fectively. Thus, widespread benchmarking is required
to obtain such an initial set for each machine. Second,
a starvation problem can exist, where a machine with
few observations will tend to produce poor execution
time estimates. If these poor estimates are larger than
the actual execution time, it is unlikely that the schedul-
ing algorithm will choose to execute the task on that
machine. Thus, the machine will not get any new ob-
servations from which estimates could be improved.
To jointly utilize observed execution times across all

machines, a method is needed to characterize the avail-
able machines using numeric parameters which can
then be included in the parameter vector. This needs to
be accomplished such that the distance between any two
machines, in terms of their parameterization, is a rough
indication of the similarity of the performance of those
machines. This process can be accomplished through
the use of analytic benchmarking [7].
Analytic benchmarking characterizes the perfor-

mance of a machine using a series of benchmarks. In
theory, each of these benchmarks should correspond to
a primitive code type; code types form a basis which
can exactly characterize the performance of a machine
for any task. Because the construction of an ideal set of
benchmarks is difficult (if not impossible), a rigorous
definition of primitive code types is avoided, and in-
stead it is assumed that a reasonable set of benchmarks
is available to approximate the performance differences
between machines. These benchmarks can be used to
span where each axis corresponds to the results of
one of the benchmarks, either in terms of the time re-
quired to execute the benchmark or the rate at which
the machine performs iterations of the benchmark. This
space will be called the machine space. Thus, a ma-
chine can be represented by a point
in the machine space, where is the result for bench-
mark on machine . will be called the benchmark
vector for machine .
The points in this space can then be used to con-

struct an augmented parameter vector, which can be
used with the method presented in Section 3.1. Given
the -dimensional machine space defined above, and a
task with an execution time that is a function of a vector
of parameters , an augmented param-
eter vector in the unified parameter space can be con-
structed by concatenating the benchmark vector and
the parameter vector , creating an -dimensional
parameter vector. Thus, the execution time observation
of the task on machine is associated with the aug-
mented parameter vector .
While it is desirable to use a large number of bench-

marks to accurately characterize machine performance,

the dimensionality of the resulting parameter vector is
large. An increase in the dimensionality of the pa-
rameter vector increases the computational cost of the
k-NN smoothing algorithm, and decreases the rate at
which converges towards the true curve
(due to the requirement of maintaining the bias-variance
tradeoff). Therefore, it is desirable to minimize the di-
mensionality of the benchmark vector , while max-
imizing the amount of information it contains. Since
the distance relationship between the points contains
the information on the relative performance differences
between the machines, this goal can be accomplished
by reducing the number of dimensions in the machine
space, while attempting to preserve the distance rela-
tionship between the points. Potter and Chiang [17]
present an algorithm that can be used to embed the
benchmark vectors in an -dimensional subspace,
where . The details of this algorithm are given
in Appendix B.
This embedding creates a new machine parameter

space of smaller dimension, called the reduced machine
space. This space is combined with the parameters
characterizing the input data to yield a unified param-
eter space, as outlined above.

3.3 Summary of the Complete Algorithm

In this section, the k-NN regression technique of Sec-
tion 3.1 is applied to the augmented parameter vec-
tor method described in Section 3.2, to create the
completed execution time estimation algorithm. The
algorithm begins with a set of previous observa-
tions of the execution time , where

and is the machine from
which observation was obtained. Given this set, a
parameter vector describing the in-
put data set, and the reduced machine space contain-
ing a point for each machine , pseu-
docode for this algorithm can be constructed as follows.

Execution Time Estimation Algorithm:
begin

For each candidate machine with
benchmark vector

begin
Compute and , where

.
end
Give estimates computed above to
matching and scheduling algorithm.
The algorithm will return a
machine chosen to execute the task.

Execute task on machine , and
measure the execution time .

Add observation to the



set of previous observations, where
.

.
end

It can be seen that every time a given task is run on a
machine in the system, a new observation is added to
the set of previous observations. Thus, the quality of
the predictions improves with time.
One issue which has not been addressed is the source

of an initial set of observations. Since the execution
time estimate is a function of the set of previous obser-
vations, at least one initial observation is required when
a new task/application is introduced into the system.
Thus, the task must be executed on a few selected ma-
chines in order to obtain a few initial estimates. These
values are easily obtained during the development, test-
ing, and debugging of the application.

4 Evaluation

To evaluate the performance of the methods pre-
sented in this paper, two sets of experiments were per-
formed using real data. A machine space was con-
structed using the benchmarks from the Byte bench-
mark suite [1]. These benchmarks consist of a variety
of integer and floating point benchmarks. These bench-
marks were executed on different machines running
different flavors of UNIX. The results from these bench-
marks were normalized, giving all benchmarks equal
weight. This -dimensional space was then reduced
to a -dimensional space using the algorithm outlined
in Section 3.2. The normalized result of this embedding
is pictured in Figure 5. In this 16 machine environment,
experiments were performed using real data obtained
from the Cholesky decomposition and trial division al-
gorithms presented in Section 2.
The first set of experiments emulates the situation

where a new machine is added to the network. This
experiment compares the performance of the execution
time estimation algorithm when observations can and
cannot be shared between machines. In this experi-
ment, the execution time of the Cholesky decomposi-
tion algorithm was estimated on a single machine for 5
different matrix sizes. The number of observations on
the machine was varied between and . The average
prediction error is compared for three different simula-
tions. The results of these three simulations are given in
Figure 6, which show how the average error in
changes as the number of observations increases.
The first simulation shows the performance of the

method when observations are not shared between ma-
chines. The execution time was computed to be a
function of a scalar parameter: the size of the matrix.
The second and third simulations show the performance

of the algorithm when it is able to use observations
on other machines, taking advantage of an additional

observations uniformly distributed across the re-
maining machines. In the second simulation, the -
dimensional reduced machine space is used. Thus, by
using the size of the input data set and the -dimensional
embedding as parameters, the execution time was a
function of a -dimensional parameter vector. The third
simulation used the full -dimensional machine space
in the multidimensional algorithm. In this case, the ex-
ecution time was a function of an -dimensional pa-
rameter vector. In all of these simulations, the value
of used to make an estimate of the execution time on
a given machine was defined to be ,
where is the number of observations for machine ,
which satisfies the bias-variance tradeoff requirements
outlined in Section 3.1.
As shown in Figure 6, the ability to share observa-

tions between machines gives the algorithms used in
the second and third simulations a significant perfor-
mance advantage over the first algorithm when there
are few observations from which to compute an es-
timate. The latter simulations produce prediction er-
rors around , versus errors around using the
first method. The performance difference between the
two observations-sharing methods is negligible. For
larger numbers of observations, all three methods per-
form equally, with prediction errors around using
a few ’s of observations. To compare the computa-
tional costs of these three algorithms, Figure 7 shows
the measured CPU time of each algorithm as a function
of (the size of the entire observations set). This fig-
ure shows that using a reduced parameter space is con-
siderably more efficient than using the full parameter
space, making the reduced parameter space approach
the best choice when considering both accuracy and ef-
ficiency. The algorithm was implemented using MAT-
LAB’s scripting language, and the CPU time was mea-
sured on an HP B180L workstation. While the mea-
sured CPU times are small, it is likely that a more ef-
ficient implementation could result from a conventional
programming language.
In the second set of experiments, estimates were

computed using the trial division algorithm on a single
machine (no observation sharing was done in this ex-
periment). As shown in Figure 2, the execution time of
this algorithm is very loosely correlated to the parame-
ter vector . Thus, in this extreme example, the error
in the execution time estimates will always be large, re-
gardless of the number of past observations. However,
these experiments demonstrate the utility of estimating
the sample variance of the execution time, and using
this value to bound the execution time. Two different
simulations were performed, where and were
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Figure 5. 3-Dimensional Distance Embedding of Machine Space.

computed for evenly-spaced problem sizes using
and observations, respectively. These results are
presented in Figures 8 and 9, which show and

. It can be seen in the figures that
does act as a reasonable upper bound on the execution
time. Thus, the combination of both the estimated exe-
cution time and the uncertainty, , could be used by an
appropriatematching and scheduling algorithm to make
good scheduling decisions, despite the fact that the pa-
rameter vector may not contain sufficient information
to obtain an accurate execution time estimate. Further-
more, Figure 8 illustrates how the execution time esti-
mate conforms to the set of past observations, where the
estimated curves form a distinct “hump” around the two
observations with large execution times.

5 Conclusions

This paper presents a statistical execution time esti-
mation algorithm for use in a heterogeneous distributed
computing environment. This algorithm treats the exe-
cution time as a random variable, and makes predictions
using past observations of the execution time. These es-
timates compensate for the properties of the input data
set and the machine type, without requiring any direct
knowledge of the internal operation of the task or ma-
chine. The random model allows the algorithm to de-

termine the probable execution time of the task, even in
situations where the estimate has a large amount of un-
certainty. This algorithm is unique in that it is able to
use observations from dissimilar machines when mak-
ing predictions, through the process of analytic bench-
marking. This ability greatly simplifies the process of
adding new machines to the system. Furthermore, an
algorithm is presented which can be used to reduce the
number of parameters introduced by the analytic bench-
marking process. As shown in Figure 6, experimental
results indicate that this method can make accurate ex-
ecution time estimates over a wide range of parameter
values using a few dozen past observations.

A Appendix: k-NN Regression

The k-NN regression algorithm, and other statistical
techniques shown in this section, are derived from the
methods surveyed in the books by Härdle [8] and Eu-
bank [6], unless noted otherwise. Given a parameter
vector and a set of previous obser-
vations , the k-NNmethod can be formally
defined as follows. Let

(4)
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The k-NN method uses the elements in to form a
weighted average of observations, similar to equation 2.
L-Smoothing [8] is used to make the weighted av-

erage robust (i.e., able to tolerate outliers in the data
set). A fixed percentage of the observations with the
largest and smallest values are not included in the lo-
cal average. L-Smoothing can be implemented by sort-
ing the observations by , then com-
puting to be

(5)

and to be

(6)

The value of , where , controls the per-
centage of observations excluded from the average.
Next, the weight assigned to each observa-

tion will be defined. First, consider a weighting func-
tion (also called a kernel function) for a single dimen-
sion . It is desirable for this weighting function to give
higher weights to the observations closer to the param-
eter value . A weighting function which satisfies
this condition is the Epanechnikov Kernel [5, 6],
where

(7)

and . This function is symmetric, with a maxi-
mum at , and can be shifted, scaled and normal-
ized such that the point corresponds to the pa-
rameter value . In this way, the function gives higher
weights to observations near the parameter value, and
lower weights to more distant observations. To formally
present this concept, the scaled Epanechnikov kernel,
for dimension , is defined to be

(8)

The Epanechnikov kernel is scaled by the factor ,
which, for the points in , is defined to be

(9)

Given these definitions, a scaled kernel function
can be computed for each dimension , where

. Each of these functions can then be combined
into a single multidimensional kernel function ,
where and

(10)

Finally, the scaled multidimensional kernel can be
shifted and normalized to form our weighting se-
quence , where, for

(11)

where is a normalizing factor, defined to be

(12)

This factor ensures that the sum of the weights will be
one.
A modified kernel function is used for parameter

values near the boundary, in order to compensate for
boundary effects. This method, first presented by
Rice [19], parameterizes the kernel function, which
eliminates the bias near the boundaries, and yields vari-
ance near the boundaries that is the same order of mag-
nitude as for points in the interior [19].
To define this method, first assume observations in

dimension are bounded to the interval . Now,
after computing the set , if an observation

with or is in the set ,
a boundary kernel will need to be used for dimension
in equation 10. Otherwise, the regular kernel function
is used. To define the boundary kernel, first define the
parameter

(13)

where is as defined in equation 9, and is the th
element of the parameter vector . Next, define

(14)

For the Epanechnikov Kernel, let

(15)

Then, let

(16)

Now a new kernel function can be defined to be

(17)

The function can be directly substituted for the
function defined in equation 8.



B Appendix: Embedding Points in an -
dimensional Space

Potter and Chiang [17] present an algorithm to em-
bed points in a lower dimensional space in a manner
which attempts to preserve the distance relationship
between the points. This method begins with the -
dimensional machine space defined above, which con-
tains points representing
the available machines. As mentioned above, the dis-
tance relationship between these points will be repre-
sented using a Euclidean distance matrix

(a real matrix) in , where

(18)

and .
The goal of this algorithm is to find a set of points

in , where , with distance matrix providing
the best-fit to . The algorithm operates as follows.

1. Compute the Euclidean distance matrix from
the points in .

2. Compute the orthogonal projection matrix ,
which is defined to be

(19)

where is a vector in , and is
an identity matrix.

3. Construct the matrix

(20)

4. Diagonalize with an orthogonal matrix and a
diagonal matrix , such that

(21)

5. Form by retaining the largest eigenvalues in
and setting the rest to zero.

6. Compute the matrix

(22)

The rows of the matrix C will give the coordinates of
the points in which have a distance relationship
closest to that of the original points [17].
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[10] M. A. Iverson, F. Özgüner, and G. Follen. Run-time
statistical estimation of task execution times for hetero-
geneous distributed computing. In Proc. of the 1996
High Performance Distributed Computing Conference,
pages 263–270, Syracuse, NY, Aug. 1996.

[11] A. Khokhar, V. Prasanna, M. Shaaban, and C.-L. Wang.
Heterogeneous supercomputing: Problems and issues.
In Proc. of the 1992 Workshop on Heterogeneous Pro-
cessing, pages 3–12. IEEE Computer Society Press,
Mar. 1992.

[12] A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and
C.-L. Wang. Heterogeneous computing: Challenges
and opportunities. IEEE Computer, 26(6):18–27, June
1993.

[13] T. Kidd, D. Hensgen, L. Moore, R. Freund, D. Charley,
M. Halderman, and M. Janakiraman. Studies in the
useful predictability of programs in a distributed and
homogeneous environment. The Smartnet Home Page
(http://papaya.nosc.mil:80/SmartNet/), 1995.

[14] W. R. King. A stochastic personnel-assignment model.
Operational Research, 13(1):67–81, Jan. 1965.

[15] Y. A. Li, J. K. Antonio, H. J. Siegel, M. Tan, and D. K.
Watson. Estimating the distribution of execution times
for SIMD/SPMDmixed-mode programs. In Proc. of the
1995 Heterogeneous Computing Workshop, pages 35–
46. IEEE Computer Society Press, Apr. 1995.



[16] D. Pease, A. Ghafoor, I. Ahmad, D. L. Andrews,
K. Foudil-Bey, T. E. Karpinski, M. A. Mikki, and
M. Zerrouki. PAWS: A performance evaluation tool for
parallel computing systems. IEEE Computer, 24(1):18–
29, Jan. 1991.

[17] L. C. Potter and D. Chiang. Distance matrices and mod-
ified cyclic projections for molecular conformations.
In Proceedings of the 1992 Inter. Conf. on Acoustics,
Speech, and Signal Processing, pages 173–176. IEEE
Press, 1992.

[18] B. Reistad and D. K. Gifford. Static dependent costs
for estimating execution time. In Proc. of the 1994
ACMConference on LISP and functional programming,
pages 65–78. ACM Press, June 1994.

[19] J. Rice. Boundary modification for kernel regression.
Communications in Statistics—Theory and Methods,
13(7):893–900, 1984.

[20] H. J. Siegel. Heterogeneous computing. Annual Re-
search Summary 5.92, http://ece.www.ecn.purdue.edu/
Researchsummary/Section5/sec5 92.html, 1994.

[21] M. Tan and H. J. Siegel. A stochastic model of a ded-
icated heterogeneous computing system for establish-
ing a greedy approach to developing data relocation
heuristics. In Proc. of the 1997 Heterogeneous Comput-
ing Workshop, pages 122–34, Geneva, Apr. 1997. IEEE
Computer Society Press.

[22] J. Yang, I. Ahmad, and A. Ghafoor. Estimation of exe-
cution times on heterogeneous supercomputer architec-
tures. In the 1993 Inter. Conf. on Parallel Processing,
volume 1, pages 219–226. CRC Press, Aug. 1993.

[23] T. Yang and A. Gerasoulis. DSC: Scheduling tasks
on an unbounded number of processors. IEEE Trans.
Parallel and Distributed Systems, 5(6):951–967, Sept.
1994.

Michael Iverson received the B.S. degree in Com-
puter Engineering at Michigan State University in 1992,
and the M.S. degree in Electrical Engineering at The
Ohio State University in 1994. He is currently research-
ing topics in heterogeneous distributed computing for
his Ph.D. dissertation. Mr. Iverson has also developed
Internet video conferencing systems and wireless net-
working systems for Ohio State. Upon completion of
his degree, he will be employed at Iverson Industries
Inc. of Wyandotte, Michigan.
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