
Punf Documentation and User Guide
Version 8.51 (parallel)

Victor Khomenko

Newcastle University, UK

June 2012

1 Legal information

See the file License.punf for the copyright notice and legal information.

2 Installation

No special installation is required. Just copy the executable into a folder
listed in the value of the PATH variable.

3 Description

Punf is a Petri net unfolder/unraveller, i.e.,it takes a Petri net and produces
a finite complete prefix of its unfolding, or a finite and complete merged pro-
cess. Such a prefix/merged process can be used for efficient model checking
(see, e.g., [14–16,18,22–24,26,28,29,31–38]). Currently the following classes
of Petri nets are supported:

Low-level nets in the FORMAT N or FORMAT N2 (.ll net) formats sup-
ported by the PEP tool.

Signal Transition Graphs in the STG (.stg or .g) format.

High-level nets (M-nets) in the FORMAT N2 (.hl net) format supported
by the PEP tool.

The produced prefix is in the .mci format supported by the PEP tool. The
methods used for implementing Punf are described in [19,20,22,25,27].

3.1 Low-level nets

Currently only 1-safe nets without weighted/read/inhibitor arcs are sup-
ported.

Remark 1 Currently Punf does NOT check whether the given net is safe,
and if you pass a non-safe Petri net to it then an incorrect prefix is likely to
be produced. Sometimes, though, Punf can detect non-safeness, e.g., in the
following cases:

• the initial marking is unsafe;

1

• the final marking of some local configuration in the prefix is unsafe;

• Punf detects that two configurations are equal w.r.t. the ERV adequate
order (see [8–10,27,36]).

3.2 Signal transition graphs

Currently STG must satisfy the following restrictions:

• The underlying Petri net must satisfy the restrictions formulated in
Section 3.1.

• The STG must be consistent (see [5, 22, 28, 30, 37, 38, 40]). Note that
Punf does NOT check the consistency.

• The STG should contain neither ‘don’t care’ (e.g., a∗) nor level (e.g.,
â 0, â 1) transitions.

• Boolean guards on transitions are not supported.

• Signals with free return-to-zero are not supported.

• Channels are not supported.

• The ‘.capacity’ clause is ignored.

The clauses ‘.initial state’, ‘.concurrent’, ‘.late’, ‘.ordered’, ‘.time’, ‘.slow’,
‘.slowenv’, and ‘.implement’ are not essential for building a prefix and ignored
by Punf.

The main distinctions between STG unfolding prefixes and the usual ones
are:

• The signal codes are taken into account as a part of final state when
checking the cut-off condition (see Figure 1).

• An event e corresponding to a dummy signal can only be declared cut-
off if its corresponding configuration C is a subset of [e], and [e] \ C
contains only dummies. This allows to determine the set of signals
enabled (perhaps, via a chain of dummies) by a configuration of the
prefix. This behaviour is automatically specified if the STG contains
local (i.e., output or internal) signals, but can be suppressed with the
-d command-line option.

2

p1

a+ b+

c+ c+

p2

d+

d−

(a)

p1

e1 a+ e2 b+

e3 c+ e4 c+

p2e5 d+

e6 d−

p2

(b)

p1

e1 a+ e2 b+

e3 c+ e4 c+

e5 d+ e6 d+

e7 d− e8 d−

p2 p2

(c)

Figure 1: A consistent STG (a), the ‘usual’ finite and complete prefix of its
underlying net (b), and the ‘proper’ STG unfolding prefix (c). Note that
in the ‘usual’ prefix e4 is a cut-off event and a reachable state with the code
{a 7→ 0, b 7→ 1, c 7→ 1, d 7→ 1} is not represented.

3.3 High-level nets

As an experimental feature, Punf can unfold high-level nets, viz. M-nets
(see [1,2,12,13,22]). The resulting prefix is very similar to that generated from
the low-level expansion of an M-net, so all the verification tools employing
prefixes can be re-used. This feature is useful for verification of data-intensive
systems, since net expansions often blow up in such a case. The direct
unfolding approach avoids building the intermediate low-level net, and thus
solves this problem. Moreover, some extensions (e.g., infinite types) are now
supported.

Currently Punf supports the following token types:

• The black token • (dot);

• Booleans ff and tt;

• Integers;

• Tuples and sets (including nested ones) built upon the described types.

3

Channels and stacks are not supported yet.
If the type of a place is not specified, Punf assumes that this place can

hold any token, implementing thus the possibility of having infinite types.
Note that the resulting prefix can be infinite in this case, so the termination
cannot always be guaranteed. But if it is finite, it is possible to find the exact
type of each place of the M-net.

The following restrictions must be satisfied:

• The M-net must be ordinary, i.e., the arcs cannot be labelled by more
than one variable.

• The M-net must be strictly safe, i.e., no reachable marking puts more
than one token in any place. Note the distinction between safe and
strictly safe M-nets: safe M-nets don’t put several tokens of the same
colour in the same place, while strictly safe M-nets don’t put several
tokens in the same place even if all the tokens have different colours.
The low-level expansion of a safe M-net is a safe low-level net. In the
low-level expansion of a strictly safe M-net all places corresponding to
the same low-level place are mutually exclusive.

• All the variables appearing in the guard of a transition or on its out-
going arcs must be assigned a value (see below).

3.4 The syntax of transition guards

Currently Punf does not have a constraint solver implemented. Instead, it
processes a transition guard as a sequence of assignments and predicates with
the following syntax, subject to certain contextual restrictions formulated
later in this section:

Guard → Clause & Guard | Clause

Clause → Predicate | Assignment

Predicate → Expression

Assignment → var = Expression | Expression = var

Each Expression is composed of constants and variables with the help of
parentheses, the n-tuple constructor (·,...,·), the set constructor {·,...,·},
the ternary conditional operator if(·,·,·), and the unary and binary opera-
tors listed in Table 1. For convenience, the following synonyms are defined:

4

Operators Math notation Explanation
| ∨ logical disjunction
& ∧ logical conjunction
! ¬ the unary logical negation
=, #, <, <=, >, >= =, 6=, <,≤, >,≥ relations
:, /:, <:, /<, <<:,

/<<:, >:, />:, >>:, />>:

∈, /∈,⊂, 6⊂,⊆,*
,⊃, 6⊃,⊇,+

relations involving sets

\/, /\, \ ∪,∩, \ set union, intersection and
difference

+, - +,− addition and substraction
*, /, % ·, /,mod multiplication, division,

and remainder of division
-, card −, | · | unary minus and set

cardinality

Table 1: Unary and binary operators (in order of decreasing precedence).

Operator | & ! # %

Synonym or and not /= mod

Note that the conditional operator if(·,·,·) and the operations involving
sets are an extension to the syntax provided by the PEP tool. Another
extension is that it is allowed to label transition-place arcs by arbitrary valid
expressions rather than only by variables. The place-transition arcs must be
labelled by patterns, i.e., expressions built from constants and variables with
the help of the brackets and the n-ary tuple constructors. Figure 2 illustrates
the syntax.

Definition 1 A variable v occurring in a Clause is assigned a value if
either v appears in the labels of the transition’s incoming arcs or it was the
var in an Assignment textually preceding the Clause in the Guard.

With this definition, the contextual restrictions can be formulated as follows:

• All variables occurring in an Expression must have been assigned a
value.

• In the rule for Assignment, var must be a variable which is not
assigned a value (otherwise this would be interpreted as a Predicate

rather than an Assignment).

5

t1 m # 0

t2 tt

(m, n)

(n%m, m)

(0, n)

n

Figure 2: An M-net system modelling the Euclid’s algorithm for computing
the greatest common divisor of two non-negative integers.

For example, the Clause x=y can be interpreted in three different ways,
depending on the context:

• if both x and y have already been assigned values then x=y is a Pred-

icate checking whether these values are equal;

• if only x has been assigned a value then x=y is an assignment to y, and
y will be considered as having a value in the rest of the guard;

• if only y has been assigned a value then x=y is an assignment to x, and
x will be considered as having a value in the rest of the guard;

• if neither x nor y has been assigned a value then x=y is a syntax mistake.

For example, the guard x’=’x+1 & z=’x*’y & z=2*’y+’x, where ’x and ’y

are the variables appearing in the labels of the transition’s incoming arcs, is
parsed in the following way. Since x’ is not assigned a value in the first
Clause, the it is interpreted as an assignment, and x’ gets assigned a value
(note that ’x and x’ are different variables). Similarly, z is assigned a value in
the second Clause. The third Clause is interpreted as a Predicate since
z has already been assigned a value. But the guard x’=’x+1 & z+1=2*’y+’x

& z=’x*’y would cause a syntax error, since at the time the second Clause

is parsed z has not been assigned a value yet.
These rules might seem too restrictive, but in practice it is almost always

possible to transform transition guards into a form acceptable for Punf. The

6

conditional operator if(·,·,·) often comes in handy for this purpose. For
example, consider the guard ’x=1 & z=5*’y | ’x#1 & z=7*’y, where ’x

and ’y are the variables appearing in the labels of the transition’s incoming
arcs and thus are assigned values. It would be interpreted as a Predicate

(since | is its main operator) and cause a syntax error. In order to make
the guard acceptable for Punf one can rewrite it as z=if(’x=1, 5*’y,

z=7*’y).
The Expression’s labelling the transition’s outgoing arcs are parsed

after the guard, so all the variables which have been assigned values can be
used there.

4 Command-line parameters

Help on command-line parameters can be obtained by running

punf -h

5 Bug reports

Please, submit bug reports to Victor.Khomenko@ncl.ac.uk with the original
Petri net and a short description of the problem. We do not guarantee prompt
bug fixes, though we will try our best.

References

[1] E. Best, H. Fleischhack, W.Fraczak, R.Hopkins, H.Klaudel, and E.Pelz:
A Class of Composable High Level Petri Nets. Proc. of Application and
Theory of Petri Nets (ATPN’1995), G.DeMichelis and M.Diaz (Eds.).
Springer-Verlag, Lecture Notes in Computer Science 935 (1995) 103–120.

[2] E. Best, H. Fleischhack, W.Fraczak, R.Hopkins, H.Klaudel, and E.Pelz:
An M-net Semantics of B(PN)2 . Proc. of International Workshop
on Structures in Concurrency Theory (STRICT’1995), J. Desel (Ed.).
Berlin (1995) 85–100.

[3] E. Best and B.Grahlmann: PEP. Documentation and User Guide. Ver-
sion 1.4. Manual (1995).

7

[4] E. Best and B.Grahlmann: PEP— More Than a Petri Net Tool. Proc.
of International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’1996), T.Margaria and B. Steffen
(Eds.). Springer-Verlag, Lecture Notes in Computer Science 1055 (1996)
397–401.

[5] J. Cortadella, M.Kishinevsky, A.Kondratyev, L. Lavagno, and A.Ya-
kovlev: Petrify: a Tool for Manipulating Concurrent Specifications
and Synthesis of Asynchronous Controllers. IEICE Transactions on In-
formation and Systems E80-D(3) (1997) 315–325.

[6] J. Engelfriet: Branching Processes of Petri Nets. Acta Informatica 28
(1991) 575–591.

[7] J. Esparza: Decidability and Complexity of Petri Net Problems — an
Introduction. In: Lectures on Petri Nets I: Basic Models, W.Reisig and
G.Rozenberg (Eds.). Springer-Verlag, Lecture Notes in Computer Sci-
ence 1491 (1998) 374–428.

[8] J. Esparza and S.Römer: An Unfolding Algorithm for Synchronous
Products of Transition Systems. Proc. of International Conference on
Concurrency Theory (CONCUR’1999), J. C.M.Baeten and S.Mauw
(Eds.). Invited paper, Springer-Verlag, Lecture Notes in Computer Sci-
ence 1664 (1999) 2–20.

[9] J. Esparza, S. Römer and W.Vogler: An Improvement of McMillan’s Un-
folding Algorithm. Proc. of International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’1996),
T.Margaria and B. Steffen (Eds.). Springer-Verlag, Lecture Notes in
Computer Science 1055 (1996) 87–106.

[10] J. Esparza, S. Römer and W.Vogler: An Improvement of McMillan’s
Unfolding Algorithm. Formal Methods in System Design 20(3) (2002)
285–310.

[11] J. Esparza and C. Schröter: Reachability Analysis Using Net Un-
foldings. Proc. of Workshop on Concurrency, Specification and Pro-
gramming (CS&P’2000), H.D.Burkhard, L. Czaja, A. Skowron, and
P. Starke (Eds.). Informatik-Bericht 140(2). Humboldt-Universitat zu
Berlin (2000) 255–270.

8

[12] H. Fleischhack, B.Grahlmann: A Petri Net Semantics for B(PN)2 with
Procedures which Allows Verification. Technical Report 21, Universität
Hildesheim (1996).

[13] H. Fleischhack, B.Grahlmann: A Petri Net Semantics for B(PN)2 with
Procedures. Proc. of 2nd International Workshop on Software Engineer-
ing for Parallel and Distributed Systems (PDSE’1997), IEEE Computer
Society Press (1997) 15–27.

[14] K.Heljanko: Deadlock Checking for Complete Finite Prefixes Using
Logic Programs with Stable Model Semantics (Extended Abstract).
Proc. of Workshop on Concurrency, Specification and Programming
(CS&P’1998), Informatik-Bericht 110. Humboldt-Universitat zu Berlin
(1998) 106–115.

[15] K.Heljanko: Using Logic Programs with Stable Model Semantics to
Solve Deadlock and Reachability Problems for 1-Safe Petri Nets. Proc. of
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’1999), Springer-Verlag, Lecture Notes
in Computer Science 1579 (1999) 240–254.

[16] K.Heljanko: Deadlock and Reachability Checking with Finite Complete
Prefixes. Technical Report A56, Laboratory for Theoretical Computer
Science, HUT, Espoo, Finland (1999).

[17] K.Heljanko: Minimizing Finite Complete Prefixes. Proc. of Work-
shop on Concurrency, Specification and Programming (CS&P’1999),
Informatik-Bericht, Humboldt-Universitat zu Berlin (1999) 83–95.

[18] K.Heljanko: Using Logic Programs with Stable Model Semantics to
Solve Deadlock and Reachability Problems for 1-Safe Petri Nets. Fun-
damentae Informaticae 37(3) (1999) 247–268.

[19] K.Heljanko, V.Khomenko, and M.Koutny: Parallelisation of the Petri
Net Unfolding Algorithm. Technical Report CS-TR-733, Department of
Computing Science, University of Newcastle (2001).

[20] K.Heljanko, V.Khomenko, and M.Koutny: Parallelisation of the
Petri Net Unfolding Algorithm. Proc. of International Conference on
Tools and Algorithms for the Construction and Analysis of Systems

9

(TACAS’2002), Springer-Verlag, Lecture Notes in Computer Science
2280 (2002) 371–385.

[21] K. Jensen: Colored Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. EATCS Monographs on Theoretical Computer Science,
Springer-Verlag (1992).

[22] V.Khomenko: Model Checking Based on Petri Net Unfolding Prefixes.
PhD Thesis, Department of Computing Science, University of Newcastle
(2003).

[23] V.Khomenko, A.Kondratyev, M.Koutny, and V.Vogler: Merged Pro-
cesses — a New Condensed Representation of Petri Net Behaviour. Acta
Informatica 43(5) (2006) 307–330.

[24] V.Khomenko and M.Koutny: Verification of Bounded Petri Nets Using
Integer Programming. Formal Methods in System Design 30(2) (2007)
143–176.

[25] V.Khomenko and M.Koutny: Towards An Efficient Algorithm for Un-
folding Petri Nets. Proc. of International Conference on Concurrency
Theory (CONCUR’2001), P.G. Larsen and M.Nielsen (Eds.). Springer-
Verlag, Lecture Notes in Computer Science 2154 (2001) 366–380.

[26] V.Khomenko and M.Koutny: Branching Processes of High-Level Petri
Nets. Proc. of International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’2003), H.Garavel and
J.Hatcliff (Eds.). Springer-Verlag, Lecture Notes in Computer Science
2619 (2003) 458–472.

[27] V.Khomenko, M.Koutny, and V.Vogler: Canonical Prefixes of Petri Net
Unfoldings. Proc. of International Conference on Computer Aided Ver-
ification (CAV’2002), E. Brinksma and K.G. Larsen (Eds.). Springer-
Verlag, Lecture Notes in Computer Science 2404 (2002).

[28] V.Khomenko, M.Koutny, and A.Yakovlev: Detecting State Coding
Conflicts in STGs Using Integer Programming. Proc. of International
Conference on Design, Automation and Test in Europe (DATE’2002),
C.D.Kloos and J. Franca (Eds.). IEEE Computer Society Press (2002)
338–345.

10

[29] V.Khomenko and A.Mokhov: An Algorithm for Direct Construction of
Complete Merged Processes. Proc. of Application and Theory of Petri
Nets (ATPN’2011), L.M.Kristensen and L. Petrucci (Eds.). Springer-
Verlag, Lecture Notes in Computer Science 6709 (2011) 89–108.

[30] A.Kondratyev, J. Cortadella, M.Kishinevsky, E. Pastor, O.Roig, and
A.Yakovlev: Checking Signal Transition Graph Implementability by
Symbolic BDD Traversal. Proc. of International Conference on Design,
Automation and Test in Europe (DATE’1995), IEEE Computer Society
Press (1995) 325–332.

[31] A.Kondratyev, J. Cortadella, M.Kishinevsky, L. Lavagno, A.Taubin,
and A.Yakovlev: Identifying State Coding Conflicts in Asynchronous
System Specifications Using Petri Net Unfoldings. Proc. of Interna-
tional Conference on Application of Concurrency to Sysytem Design
(ICACSD’98), IEEE Computer Society Press (1998) 152–163.

[32] K. L.McMillan: Using Unfoldings to Avoid State Explosion Problem in
the Verification of Asynchronous Circuits. Proc. of International Con-
ference on Computer Aided Verification (CAV’1992), G. von Bochmann
and D.K.Probst (Eds.). Springer-Verlag, Lecture Notes in Computer
Science 663 (1992) 164–174.

[33] K. L.McMillan: Symbolic Model Checking: an approach to the state ex-
plosion problem. PhD thesis, CMU-CS-92-131 (1992).

[34] S.Melzer: Verifikation Verteilter Systeme mit Linearer — und Constra-
int-Programmierung. PhD Thesis. Technische Universität München, Utz
Verlag (1998).

[35] S.Melzer and S.Römer: Deadlock Checking Using Net Unfoldings.
Proc. of International Conference on Computer Aided Verification
(CAV’1997), O.Grumberg (Ed.). Springer-Verlag, Lecture Notes in
Computer Science 1254 (1997) 352–363.

[36] S. Römer: Entwicklung und Implementierung von Verifikationstechniken
auf der Basis von Netzentfaltungen. PhD thesis, Technische Universitat
Munchen (2000).

11

[37] A. Semenov: Verification and Synthesis of Asynchronous Control Cir-
cuits Using Petri Net Unfolding. PhD Thesis, University of Newcastle
upon Tyne (1997).

[38] A. Semenov, A.Yakovlev, E. Pastor, M.Peña, J. Cortadella, and L. La-
vagno: Partial Order Approach to Synthesis of Speed-Independent Cir-
cuits. Proc. of 3rd IEEE International Symposium on Advanced Research
in Asynchronous Circuits and Systems (ASYNC’1997), IEEE Computer
Society Press (1997) 254–265.

[39] N. Starodoubtsev, S. Bystrov, M.Goncharov, I. Klotchkov, and A. Smir-
nov: Towards Synthesis of Monotonic Asynchronous Circuits from Sig-
nal Transition Graphs. Proc. of International Conference on Application
of Concurrency to Sysytem Design (ICACSD’2001), IEEE Computer
Society Press (2001) 179–188.

[40] A.Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli: A Unified Sig-
nal Transition Graph Model for Asynchronous Control Circuit Synthesis.
Formal Methods in System Design 9(3) (1996) 139–188.

12

