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1 Legal information

See the file License.punf for the copyright notice and legal information.

2 Installation

No special installation is required. Just copy the executable into a folder
listed in the value of the PATH variable.

3 Description

Punf is a Petri net unfolder/unraveller, i.e.,it takes a Petri net and produces
a finite complete prefix of its unfolding, or a finite and complete merged pro-
cess. Such a prefix/merged process can be used for efficient model checking
(see, e.g., [14–16,18,22–24,26,28,29,31–38]). Currently the following classes
of Petri nets are supported:

Low-level nets in the FORMAT N or FORMAT N2 (.ll net) formats sup-
ported by the PEP tool.

Signal Transition Graphs in the STG (.stg or .g) format.

High-level nets (M-nets) in the FORMAT N2 (.hl net) format supported
by the PEP tool.

The produced prefix is in the .mci format supported by the PEP tool. The
methods used for implementing Punf are described in [19,20,22,25,27].

3.1 Low-level nets

Currently only 1-safe nets without weighted/read/inhibitor arcs are sup-
ported.

Remark 1 Currently Punf does NOT check whether the given net is safe,
and if you pass a non-safe Petri net to it then an incorrect prefix is likely to
be produced. Sometimes, though, Punf can detect non-safeness, e.g., in the
following cases:

• the initial marking is unsafe;

1



• the final marking of some local configuration in the prefix is unsafe;

• Punf detects that two configurations are equal w.r.t. the ERV adequate
order (see [8–10,27,36]).

3.2 Signal transition graphs

Currently STG must satisfy the following restrictions:

• The underlying Petri net must satisfy the restrictions formulated in
Section 3.1.

• The STG must be consistent (see [5, 22, 28, 30, 37, 38, 40]). Note that
Punf does NOT check the consistency.

• The STG should contain neither ‘don’t care’ (e.g., a∗) nor level (e.g.,
â 0, â 1) transitions.

• Boolean guards on transitions are not supported.

• Signals with free return-to-zero are not supported.

• Channels are not supported.

• The ‘.capacity’ clause is ignored.

The clauses ‘.initial state’, ‘.concurrent’, ‘.late’, ‘.ordered’, ‘.time’, ‘.slow’,
‘.slowenv’, and ‘.implement’ are not essential for building a prefix and ignored
by Punf.

The main distinctions between STG unfolding prefixes and the usual ones
are:

• The signal codes are taken into account as a part of final state when
checking the cut-off condition (see Figure 1).

• An event e corresponding to a dummy signal can only be declared cut-
off if its corresponding configuration C is a subset of [e], and [e] \ C
contains only dummies. This allows to determine the set of signals
enabled (perhaps, via a chain of dummies) by a configuration of the
prefix. This behaviour is automatically specified if the STG contains
local (i.e., output or internal) signals, but can be suppressed with the
-d command-line option.
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Figure 1: A consistent STG (a), the ‘usual’ finite and complete prefix of its
underlying net (b), and the ‘proper’ STG unfolding prefix (c). Note that
in the ‘usual’ prefix e4 is a cut-off event and a reachable state with the code
{a 7→ 0, b 7→ 1, c 7→ 1, d 7→ 1} is not represented.

3.3 High-level nets

As an experimental feature, Punf can unfold high-level nets, viz. M-nets
(see [1,2,12,13,22]). The resulting prefix is very similar to that generated from
the low-level expansion of an M-net, so all the verification tools employing
prefixes can be re-used. This feature is useful for verification of data-intensive
systems, since net expansions often blow up in such a case. The direct
unfolding approach avoids building the intermediate low-level net, and thus
solves this problem. Moreover, some extensions (e.g., infinite types) are now
supported.

Currently Punf supports the following token types:

• The black token • (dot);

• Booleans ff and tt;

• Integers;

• Tuples and sets (including nested ones) built upon the described types.
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Channels and stacks are not supported yet.
If the type of a place is not specified, Punf assumes that this place can

hold any token, implementing thus the possibility of having infinite types.
Note that the resulting prefix can be infinite in this case, so the termination
cannot always be guaranteed. But if it is finite, it is possible to find the exact
type of each place of the M-net.

The following restrictions must be satisfied:

• The M-net must be ordinary, i.e., the arcs cannot be labelled by more
than one variable.

• The M-net must be strictly safe, i.e., no reachable marking puts more
than one token in any place. Note the distinction between safe and
strictly safe M-nets: safe M-nets don’t put several tokens of the same
colour in the same place, while strictly safe M-nets don’t put several
tokens in the same place even if all the tokens have different colours.
The low-level expansion of a safe M-net is a safe low-level net. In the
low-level expansion of a strictly safe M-net all places corresponding to
the same low-level place are mutually exclusive.

• All the variables appearing in the guard of a transition or on its out-
going arcs must be assigned a value (see below).

3.4 The syntax of transition guards

Currently Punf does not have a constraint solver implemented. Instead, it
processes a transition guard as a sequence of assignments and predicates with
the following syntax, subject to certain contextual restrictions formulated
later in this section:

Guard → Clause & Guard | Clause

Clause → Predicate | Assignment

Predicate → Expression

Assignment → var = Expression | Expression = var

Each Expression is composed of constants and variables with the help of
parentheses, the n-tuple constructor (·,...,·), the set constructor {·,...,·},
the ternary conditional operator if(·,·,·), and the unary and binary opera-
tors listed in Table 1. For convenience, the following synonyms are defined:

4



Operators Math notation Explanation
| ∨ logical disjunction
& ∧ logical conjunction
! ¬ the unary logical negation
=, #, <, <=, >, >= =, 6=, <,≤, >,≥ relations
:, /:, <:, /<, <<:,

/<<:, >:, />:, >>:, />>:

∈, /∈,⊂, 6⊂,⊆,*
,⊃, 6⊃,⊇,+

relations involving sets

\/, /\, \ ∪,∩, \ set union, intersection and
difference

+, - +,− addition and substraction
*, /, % ·, /,mod multiplication, division,

and remainder of division
-, card −, | · | unary minus and set

cardinality

Table 1: Unary and binary operators (in order of decreasing precedence).

Operator | & ! # %

Synonym or and not /= mod

Note that the conditional operator if(·,·,·) and the operations involving
sets are an extension to the syntax provided by the PEP tool. Another
extension is that it is allowed to label transition-place arcs by arbitrary valid
expressions rather than only by variables. The place-transition arcs must be
labelled by patterns, i.e., expressions built from constants and variables with
the help of the brackets and the n-ary tuple constructors. Figure 2 illustrates
the syntax.

Definition 1 A variable v occurring in a Clause is assigned a value if
either v appears in the labels of the transition’s incoming arcs or it was the
var in an Assignment textually preceding the Clause in the Guard.

With this definition, the contextual restrictions can be formulated as follows:

• All variables occurring in an Expression must have been assigned a
value.

• In the rule for Assignment, var must be a variable which is not
assigned a value (otherwise this would be interpreted as a Predicate

rather than an Assignment).
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Figure 2: An M-net system modelling the Euclid’s algorithm for computing
the greatest common divisor of two non-negative integers.

For example, the Clause x=y can be interpreted in three different ways,
depending on the context:

• if both x and y have already been assigned values then x=y is a Pred-

icate checking whether these values are equal;

• if only x has been assigned a value then x=y is an assignment to y, and
y will be considered as having a value in the rest of the guard;

• if only y has been assigned a value then x=y is an assignment to x, and
x will be considered as having a value in the rest of the guard;

• if neither x nor y has been assigned a value then x=y is a syntax mistake.

For example, the guard x’=’x+1 & z=’x*’y & z=2*’y+’x, where ’x and ’y

are the variables appearing in the labels of the transition’s incoming arcs, is
parsed in the following way. Since x’ is not assigned a value in the first
Clause, the it is interpreted as an assignment, and x’ gets assigned a value
(note that ’x and x’ are different variables). Similarly, z is assigned a value in
the second Clause. The third Clause is interpreted as a Predicate since
z has already been assigned a value. But the guard x’=’x+1 & z+1=2*’y+’x

& z=’x*’y would cause a syntax error, since at the time the second Clause

is parsed z has not been assigned a value yet.
These rules might seem too restrictive, but in practice it is almost always

possible to transform transition guards into a form acceptable for Punf. The
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conditional operator if(·,·,·) often comes in handy for this purpose. For
example, consider the guard ’x=1 & z=5*’y | ’x#1 & z=7*’y, where ’x

and ’y are the variables appearing in the labels of the transition’s incoming
arcs and thus are assigned values. It would be interpreted as a Predicate

(since | is its main operator) and cause a syntax error. In order to make
the guard acceptable for Punf one can rewrite it as z=if(’x=1, 5*’y,

z=7*’y).
The Expression’s labelling the transition’s outgoing arcs are parsed

after the guard, so all the variables which have been assigned values can be
used there.

4 Command-line parameters

Help on command-line parameters can be obtained by running

punf -h

5 Bug reports

Please, submit bug reports to Victor.Khomenko@ncl.ac.uk with the original
Petri net and a short description of the problem. We do not guarantee prompt
bug fixes, though we will try our best.
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