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Abstract

Merged process is a recently proposed condense representation of a Petri net’s behaviour similar

to a branching process (unfolding), which copes well not only with concurrency, but also with

other sources of state space explosion like sequences of choices. They are by orders of magnitude

more condense than traditional unfoldings, and yet can be used for efficient model checking.

However, constructing complete merged processes is difficult, and the only known algorithm

is based on building a (potentially much larger) complete unfolding prefix of a Petri net, whose

nodes are then merged. Obviously, this significantly reduces their appeal as a representation that

can be used for practical model checking.

In this paper we develop an algorithm that avoids constructing the intermediate unfolding

prefix, and builds a complete merged process directly. In particular, a challenging problem of

truncating a merged process is solved.

Keywords: merged process, unravelling, Petri net unfolding, model checking, SAT, 2QBF.

1. Introduction

Formal verification, and in particular model checking of concurrent systems is an important

and practical way of ensuring their correctness. However, the main drawback of model checking

is that it suffers from the state space explosion problem [1]. That is, even a relatively small system

specification can (and often does) yield a very large state space. To alleviate this problem, many

model checking techniques use a condense representation of the full state space of the system.

Among them, a prominent technique is McMillan’s (finite prefixes of) Petri net unfoldings (see,

e.g. [2–4]). They rely on the partial order view of concurrent computation, and represent system

states implicitly, using an acyclic unfolding prefix.

There are several common sources of state space explosion. One of them is concurrency,

and the unfolding techniques were primarily designed for efficient verification of highly concur-

rent systems. Indeed, complete prefixes are often exponentially smaller than the corresponding

reachability graphs, because they represent concurrency directly rather than by multidimensional

‘diamonds’ as it is done in reachability graphs. For example, if the original Petri net consists of

100 transitions which can fire once in parallel, the reachability graph will be a 100-dimensional

hypercube with 2100 vertices, whereas the complete prefix will be isomorphic to the net itself.
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Figure 1: Examples of Petri nets.

However, unfoldings do not cope well with some other important sources of state space explo-

sion, in particular with sequences of choices and non-safeness. Below we consider examples

illustrating this problem [5].

First, consider Fig. 1(a) with the dashed part not taken into account. The cut-off condition

proposed in [2] copes well with this Petri net (since the marking reached after either choice on

each stage is the same — in fact, there are few reachable markings), and the resulting prefix is

linear in the size of the original Petri net. However, if the dashed part of the figure is added,

the smallest complete prefix is exponential, since no event can be declared a cut-off (intuitively,

each reachable marking ‘remembers’ its past). Thus sequences of choices leading to different

markings often yield exponential prefixes.

Another problem arises when one tries to unfold non-safe Petri nets, e.g. one in Fig. 1(b).

Its smallest complete unfolding prefix contains mn instances of t, since the standard unfolding

distinguishes between different tokens on the same place. One way to cope with non-safe nets is

to convert them into safe ones and unfold the latter, as was proposed in [2]. However, such an

approach destroys concurrency among executed transitions and can lead to very large prefixes;

e.g. when applied to the Petri net in Fig. 1(c), it yields an exponential prefix, while the traditional

unfolding technique would yield a linear one [2].

The problems with unfolding prefixes described above should be viewed in the light of the

fact that all these examples have a very simple structure — viz. they are all acyclic, and thus

many model checking techniques, in particular those based on the marking equation [3, 6, 7],

could be applied directly to the original Petri nets. And so it may happen that an exponential

prefix is built for a relatively simple problem!

In [5], a new condense representation of a Petri net’s behaviour called merged processes

(MPs) was proposed, which remedies the problems outlined above. It copes well not only with

concurrency, but also with the other mentioned sources of state space explosion, viz. sequence of

choices and non-safeness. Moreover, this representation is sufficiently similar to the traditional

unfoldings, so that a large body of results developed for unfoldings can be re-used.

The main idea behind this representation is to fuse some nodes in the complete prefix, and

use the resulting net as the basis for verification. For example, the unfolding of the net shown

in Fig. 1(a) (even with the dashed part taken into account) will collapse back to the original net

after the fusion. In fact, this will happen in all the examples considered above.

It turns out that for a safe Petri net model checking of a reachability-like property (i.e. the

existence of a reachable state satisfying a predicate given by a Boolean expression) can be effi-

ciently performed on its MP, and [5] provides a method for reducing this problem to SAT (with

the size of the SAT instance being polynomial in the sizes of the MP and the property). Moreover,

the experimental results in [5] indicate that this method is quite practical.
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However, constructing complete MPs is difficult, and the only known algorithm is based on

building a (potentially much larger) complete unfolding prefix, whose nodes are then merged [5].

Obviously, this significantly reduces their appeal as a condense representation that can be used

for practical model checking.

In this paper we develop an algorithm (referred subsequently as the unravelling algorithm)

that avoids constructing the intermediate unfolding prefix, and builds a complete MP directly. In

particular, a challenging problem of truncating an MP is solved, by reducing it to 2QBF, i.e. to

satisfiability of a fully quantified Boolean formula of the form ∀X∃Y ϕ, where ϕ is a Boolean

formula in conjunctive normal form (CNF) and X and Y are disjoint sets of Boolean variables

such that X ∪ Y are exactly the variables occurring in ϕ.

This paper is an extended and more developed version of [8] and the corresponding technical

report [9]. While the previous version of the unravelling algorithm was just a proof of concept,

and could not compete with unfolders, the improvements described in this paper made it much

more competitive. In particular, the following advancements have been made:

• A new total adequate order that refines the size order and can be easily encoded in a SAT

instance has been developed, see Sect. 3.2. This had a positive impact on the performance

of the unravelling algorithm and the size of the computed MP.

• The comparison with the unfolding algorithm is now more fair and consistent:

– In [8, 9] the unfolding algorithm used in the cut-off check only local configurations

whereas the unravelling algorithm used all configurations; in this paper both algo-

rithms use all configurations in the cut-off check.

– Both algorithms in [8, 9] used the size-lexicographical adequate order (which is not

total), which is consistent, but detrimental for the unfolding algorithm as it works

much better with a total adequate order. However, the ERV adequate order [2] that

is commonly used by unfolders has a very poor encoding into SAT, and so would

be detrimental for the unravelling algorithm. In this paper both algorithms use the

newly developed total adequate order (see Sect. 3.2), that is good for both of them.

• A number of optimisations have been introduced into the implementation of the unravel-

ling algorithm, in particular a better use of incremental SAT.

2. Basic notions

In this section we recall the basic notions concerning SAT, QBF, Petri nets, their unfolding

prefixes and merged processes (see also [2, 4, 6, 7, 10–13]).

2.1. Boolean satisfiability (SAT)

The Boolean Satisfiability Problem (SAT) consists in finding a satisfying assignment, i.e. a

mapping A : Varϕ → {0, 1} defined on the set of variables Varϕ occurring in a given Boolean

expression ϕ such that ϕ|A evaluates to 1. This expression is often assumed to be given in the

conjunctive normal form (CNF) ϕ =
∧n

i=1

∨
l∈Li

l, i.e. it is represented as a conjunction of clauses,

which are disjunctions of literals, each literal l being either a variable or the negation of a vari-

able. It is assumed that no two literals in the same clause correspond to the same variable.

SAT is a canonical NP-complete problem. In order to solve it, SAT solvers perform exhaus-

tive search assigning the values 0 or 1 to the variables, using heuristics to reduce the search
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space [13]. Many leading SAT solvers, can be used in the incremental mode, i.e. after solving a

particular SAT instance the user can slightly change it (e.g. by adding and/or removing a small

number of clauses) and execute the solver again. This is often much more efficient than solving

these related instances as independent problems, because on the subsequent runs the solver can

use some of the useful information (e.g. learnt clauses [13]) collected so far.

2.2. Quantified Boolean formulae (QBF)

A Quantified Boolean Formula is a formula of the form Q1x1 . . .Qnxn ϕ, where each Qi is

either ∃ or ∀, each xi is a Boolean variable, and ϕ is a Boolean expression. It is fully quantified if

all the variables occurring in ϕ are quantified. For convenience, adjacent quantifiers of the same

type are often grouped together, so the formula can be re-written as Q1X1 . . .QkXk ϕ, where Xis

are pairwise disjoint non-empty sets of Boolean variables, and the quantifiers’ types alternate.

Furthermore, ϕ is often assumed to be given in CNF.

A fully quantified Boolean formula is equal to either 0 or 1, under the natural semantics.

The problem of determining if such a formula is equal to 1 is PSPACE-complete. However, if

the number of alternations of the quantifiers is a constant k, the complexity is the k th level of

Stockmeyer’s polynomial hierarchy PH [12]. PH is included in PSPACE, and it is conjectured

that PH does not collapse (i.e. the inclusion between its levels is strict); this would imply that the

inclusion of PH into PSPACE is also strict.

One can see that checking if a fully quantified QBF instance of the form ∃X ϕ is equal to 1

amounts to SAT. Also, QBF instances of the form

∀X∃Y ϕ (1)

are of particular interest for this paper. W.l.o.g., one can assume that ϕ is in CNF, as any instance

of (1) can be converted into this form without changing the number of alternation of quantifiers

and by only linearly increasing the size of the formula. The problem of checking if (1) equals

to 1 is called 2QBF [11]. This problem, though more complicated then SAT (unless PH col-

lapses), is nevertheless much simpler than general QBF and other PSPACE-complete problems

like model checking (as these problems are separated by infinitely many levels of PH, unless PH

collapses). Furthermore, though general QBF solvers have not reached maturity level of contem-

porary SAT solvers, 2QBF admits specialised methods, e.g. based on a pair of communicating

SAT solvers [11].

2.3. Petri nets

A net is a triple N
df

= (P,T, F) such that P and T are disjoint sets of respectively places and

transitions, and F ⊆ (P × T ) ∪ (T × P) is a flow relation. The net is finite if both P and T are

finite sets.

A marking of N is a multiset M of places, i.e. M : P → N. We adopt the standard rules

about drawing nets, viz. places are represented as circles, transitions as boxes, the flow relation

by arcs, and the marking is shown by placing tokens within circles. As usual, •z
df

= {y | (y, z) ∈ F}

and z•
df

= {y | (z, y) ∈ F} denote the preset and postset of z ∈ P ∪ T . In this paper, the presets of

transitions are restricted to be non-empty, i.e. •t , ∅ for every t ∈ T . For a finite net N, we define

the size of N as |N|
df

= |P| + |T | + |F|.

A Petri net (PN) is a pair Σ
df

= (N,MΣ) comprising a finite net N = (P,T, F) and an (initial)

marking MΣ. A transition t ∈ T is enabled at a marking M, denoted M[t〉, if for every p ∈ •t,

M(p) ≥ 1. Such a transition can be executed or fired, leading to a marking M′ given by M′
df

=
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M − •t + t•. We denote this by M[t〉M′. The set of reachable markings of Σ is the smallest

(w.r.t. ⊂) set [MΣ〉 containing MΣ and such that if M ∈ [MΣ〉 and M[t〉M′ for some t ∈ T then

M′ ∈ [MΣ〉. For a finite sequence of transitions σ = t1 . . . tk (k ≥ 0), we write M[σ〉M′ if there

are markings M1, . . . ,Mk+1 such that M1 = M, Mk+1 = M′ and Mi[ti〉Mi+1, for i = 1, . . . , k. If

M = MΣ, we call σ an execution of Σ.

A marking is deadlocked if it does not enable any transitions. A PN Σ is deadlock-free if

none of its reachable marking is deadlocked. It is k-bounded if, for every reachable marking M

and every place p ∈ P, M(p) ≤ k, and safe if it is 1-bounded. Moreover, Σ is bounded if it is

k-bounded for some k ∈ N. One can show that [MΣ〉 is finite iff Σ is bounded.

A powerful tool in analysis of PNs is the so called marking equation [7], which states that the

final number of tokens in any place p of a PN Σ can be calculated as MΣ(p) plus the number of

tokens brought to p minus the number of tokens taken from p. The feasibility of this equation is a

necessary condition for a marking to be reachable from MΣ. However, the marking equation can

have spurious solutions which do not correspond to any execution of Σ, i.e. it is not a sufficient

condition, and yields an over-approximation of [MΣ〉. However, for some PN classes, in partic-

ular for acyclic PNs (which include branching processes defined below), this equation gives an

exact characterisation of [MΣ〉 [7, Th. 16] — providing the basis for model checking algorithms

based on unfolding prefixes [3, 6]. Moreover, exact characterisations of [MΣ〉 can be obtained

for some further PN classes by augmenting the marking equation with additional constraints; in

particular, such a characterisation was obtained in [5] for MPs, and it will be essential for the

proposed unravelling algorithm.

2.4. Branching processes

A branching process β of a PN Σ is a finite or infinite labelled acyclic net which can be ob-

tained through unfolding Σ, by successive firings of transitions, under the following assumptions:

(i) one starts from a set of places (called conditions), one for each token of the initial marking;

(ii) for each new firing a fresh transition (called an event) is generated; and (iii) for each newly

produced token a fresh place (also called a condition) is generated. Each event (resp. condition)

is labelled by the corresponding transition (resp. place on which the corresponding token was

present).

There exists a unique (up to isomorphism) maximal (w.r.t. the prefix relation) branching

process βΣ of Σ called the unfolding of Σ [2, 14]. For example, the unfolding of the PN in

Fig. 2(a) is shown in part (b) of this figure.

The unfolding βΣ is infinite whenever Σ has executions of unbounded length; however, if Σ

has finitely many reachable states then the unfolding eventually starts to repeat itself and thus

can be truncated (by identifying a set of cut-off events beyond which the unfolding procedure is

not continued) without loss of essential information. For a branching process β obtained in this

way, the sets of conditions, events, arcs and cut-off events of β will be denoted by B, E, G and

Ecut, respectively (note that Ecut ⊆ E), and the labelling function by h. Note that when talking

about an execution of β, we will mean any execution from its implicit initial marking Mβ that

comprises the initial conditions.

Since β is acyclic, the transitive closure of its flow relation is a partial order < on B∪E, called

the causality relation. (The reflexive order corresponding to < will be denoted by ≤.) Intuitively,

all the events which are smaller than an event e ∈ E w.r.t. < must precede e in any run of β

containing e.

Two nodes x, y ∈ B ∪ E are in conflict, denoted x#y, if there are distinct events e, f ∈ E such

that •e ∩ • f , ∅ and e ≤ x and f ≤ y. Intuitively, no execution of β can contain two events in
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Figure 2: A Petri net (a); its unfolding with the occurrence-depths of conditions shown in brackets and the conditions to

be fused connected by dashed lines (b); and its unravelling (c).

conflict. Two nodes x, y ∈ B∪ E are concurrent, denoted x ‖ y, if neither x#y nor x ≤ y nor y ≤ x.

Intuitively, two concurrent events can be enabled simultaneously, and executed in any order, or

even concurrently, and two concurrent conditions can be simultaneously marked. For example,

in the branching process shown in Fig. 2(b) the following relationships hold: e1 < e5, e3#e4 and

c1 ‖ c4.

Due to structural properties of branching processes, the reachable markings of Σ can be

represented using configurations of β. A configuration is a finite set of events C ⊆ E such

that (i) for all e, f ∈ C, ¬(e# f ); and (ii) for every e ∈ C, f < e implies f ∈ C. For example,

in the branching process shown in Fig. 2(b) {e1, e3, e5} is a configuration whereas {e1, e2, e3} and

{e1, e5} are not (the former includes events in conflict, e1#e2, while the latter does not include e3,

a causal predecessor of e5). Intuitively, a configuration is a partially ordered execution, i.e. an

execution where the order of firing of some of its events (viz. concurrent ones) is not important.

For every event e of βΣ, [e]
df

= { f | f is an event of βΣ and f ≤ e} is called the local configuration

of e. Intuitively, it comprises e and all its causal predecessors.

After starting β from the implicit initial marking Mβ and executing all the events in C, one

reaches the marking (of β) denoted by Cut(C). Mark(C)
df

= h(Cut(C)) denotes the corresponding

marking of Σ, reached by firing a transition sequence corresponding to the events in C. Let Ecut

be a set of events of β. Then β is marking-complete w.r.t. Ecut if, for every reachable marking M

of Σ, there is a configuration C of β such that C ∩ Ecut = ∅ and Mark(C) = M. Moreover, β is

complete if it is marking-complete and, for each configuration C of β such that C ∩ Ecut = ∅ and

for each event e < C of βΣ such that C ∪ {e} is a configuration of βΣ, e is in β. This preservation
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of firings property is useful for deadlock detection.

Complete branching processes are often called complete (unfolding) prefixes. One can build

a complete prefix in such a way that the number of non-cut-off events |E\Ecut | does not exceed the

number of reachable markings of Σ [2, 3]. The unfolding algorithms described there declare an

event e cut-off if there is a smaller (w.r.t. some adequate order ⊳) corresponding configuration C

in the already built part of the prefix containing no cut-off events and such that Mark([e]) =

Mark(C); here an adequate order is a strict well-founded partial order ⊳ on configurations of

the unfolding that refines the set inclusion and is preserved by finite extensions, i.e. whenever

C ⊳C′ and C and C′ have the same final marking, C ⊕ I(E)⊳C′ ⊕ E holds, where E is any finite

extension of C′ and I(E) denotes an extension of C that is isomorphic to E. With some natural

conditions on the way this cutting is performed, the resulting prefix is unique, even though the

unfolding algorithm may be non-deterministic. This unique prefix is called canonical, and it can

be defined in an algorithm-independent way [10].

As already mentioned, in acyclic nets like β, a marking is reachable iff the corresponding

marking equation has a solution; since there is a correspondence between the reachable markings

of Σ and those of any of its marking-complete branching processes β, the latter can be used for

efficient model checking [3, 4, 6, 15].

2.5. Merged processes

Let β be a branching process of a PN Σ, and x be one of its nodes (condition or event). The

occurrence-depth of x is defined as the maximum number of h(x)-labelled nodes on any directed

path starting at an initial condition and terminating at x in the acyclic digraph representing β. The

occurrence-depth is well-defined since there is always at least one such a path, and the number

of all such paths is finite. In Fig. 2(b) the occurrence-depths of conditions are shown in brackets.

Definition 1 (merged process). Given a branching process β, the corresponding merged process

µ =Merge(β) is a PN which is obtained in two steps, as follows:

Step 1: the places of µ, called mp-conditions, are obtained by fusing together all the conditions

of β which have the same labels and occurrence-depths; each mp-condition inherits its label and

arcs from the fused conditions, and its initial marking is the total number of the initial conditions

which were fused into it.

Step 2: the transitions of µ, called mp-events, are obtained by merging all the events which have

the same labels, presets and postsets (after Step 1 was performed); each mp-event inherits its

label from the merged events (and has exactly the same connectivity as either of them), and it is

a cut-off mp-event iff all the events merged into it were cut-off events in β.

Moreover, µΣ
df

=Merge(βΣ) is the merged process corresponding to the unfolding of Σ, called

the unravelling of Σ. ♦

Fig. 2(b,c) illustrates this definition, which also yields an algorithm for computing Merge. In

the sequel, ~ will denote the mapping of the nodes of β to the corresponding nodes of µ, and we

will use ‘hats’ and ‘mp-’ to distinguish the elements of µ from those of β, in particular, Ê, B̂, Ĝ,

M̂µ, Êcut will denote the set of mp-events, the set of mp-conditions, the flow relation, the initial

marking and the set of cut-off mp-events of µ, and ĥ will denote the mapping of the nodes of µ

to the corresponding nodes of Σ.

Note that in general, µ is not acyclic (cycles can arise due to criss-cross fusions of conditions,

as illustrated in Fig. 2(b,c)). This, in turn, leads to complications for model checking, as the
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Figure 3: A Petri net (a); its unfolding (b); one of its unfolding prefixes (c); and the merged process corresponding to

both the unfolding and the depicted prefix (d).

marking equation for µ can have spurious solutions not corresponding to any reachable marking,

and thus has to be augmented with additional constraints, see Sect. 2.6.

A multiset Ĉ of mp-events is an mp-configuration of µ if Ĉ = ~(C) for some configuration

C of βΣ. Note that there is a subtlety in this definition: we have to use the unfolding βΣ of Σ

rather than an arbitrary branching process β satisfying µ = Merge(β), since µ may contain mp-

configurations which are not ~-images of any configuration in such a β, i.e. the mp-configurations

of µ might be ill-defined if µ can arise from several different branching processes. E.g., for the

PN in Fig. 3(a), consider the unfolding βΣ shown in part (b) and the branching process β shown

in part (c) of this figure: both give rise to the same (up to isomorphism) MP µ shown in part (d)

of the figure, and the mp-configuration {̂e2, ê3} of µ is not an image of any configuration of β, but

it is the image of the configuration {e2, e4} of βΣ.

If Ĉ is an mp-configuration then the corresponding mp-cut Cut(Ĉ) is defined as the marking

of µ reached by executing all1 the events of Ĉ starting from the initial marking M̂µ. Moreover,

Mark(Ĉ)
df

= ĥ(Cut(Ĉ)). Note that if Ĉ = ~(C) then Mark(Ĉ) = Mark(C).

MPs of safe PNs have a number of special properties. First of all, their mp-configurations

are sets (rather than multisets) of mp-events. Moreover, there is a one-to-one correspondence

between the mp-configurations of the unravelling and the configurations of the unfolding, such

that each mp-configuration Ĉ is isomorphic to the corresponding configuration C, in the sense

that the ĥ-labelled digraph induced by the nodes in Ĉ ∪ Ĉ• ∪ M̂µ in the unravelling is isomorphic

to the h-labelled digraph induced by the nodes in C ∪ C• ∪ Mβ in the unfolding. Furthermore,

one can partially transfer the notion of an event’s local configuration from branching processes to

MPs. Though the notion of the local configuration of an mp-event ê does not make sense, as ê can

have many of them, one can specify some additional information to make this local configuration

unique, viz. an mp-configuration Ĉ such that ê ∈ Ĉ within which the local configuration of ê must

be contained; it will be denoted by [̂e]
Ĉ

. (Note that the uniqueness is still not guaranteed for MPs

of unsafe PNs.)

1I.e., each mp-event in Ĉ is executed as many times as it occurs in Ĉ, and no other event is executed — this is always

possible. Cut(Ĉ) can be efficiently computed using, e.g. the marking equation [7].
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2.5.1. Canonical merged processes

Since Merge is a deterministic transformation, one can define the canonical MP as Merge(β),

where β is the canonical unfolding prefix of [10]. This allows for an easy import of the results

of [10] related to the canonicity. Furthermore, it simplifies the proof of correctness of the algo-

rithm proposed in this paper, as it is enough to prove that it constructs Merge(β′), where β′ is

obtained by removing the cut-off events from the canonical prefix.

However, Merge has problems with the cut-offs, as when merging events, it loses the in-

formation about their cut-off status, see Def. 1. For example, in Fig. 3(b) e4 can be declared a

cut-off, but this information is lost when it is merged with a non-cut-off event e3, resulting in the

MP shown in part (d) of the figure. This causes problems with the notion of completeness, which

cannot be easily fixed; hence [5] suggests to be content with marking-completeness, which is

sufficient for model checking.

The MPs produced by the unravelling algorithm proposed in this paper do not have this

problem, and can be easily made complete. (And they coincide with the MPs produced by

Merge on non-cut-off mp-events.) Therefore, they may be considered as better candidates for

being called canonical.

2.5.2. Finiteness of merged processes

It is easy to show that Merge(β) is finite iff β is finite [5]. Again, this allows one to import

all the finiteness results proved for unfolding prefixes [2, 10].

2.5.3. Completeness of merged processes

Marking-completeness of MPs is defined similarly to that of branching processes. An MP

µ is marking-complete w.r.t. Êcut if, for every reachable marking M of Σ, there exists an mp-

configuration Ĉ of µ such that Ĉ ∩ Êcut = ∅ and Mark(Ĉ) = M. Moreover, µ is complete if it

is marking-complete and, for each mp-configuration Ĉ of µ such that Ĉ ∩ Ecut = ∅ and each

mp-event ê < Ĉ of µΣ such that Ĉ ∪ {̂e} is an mp-configuration of µΣ, ê is in µ (i.e. the firings are

preserved).

Let C be a configuration of β and Ĉ = ~(C) be the corresponding mp-configuration of µ. One

can easily show that if C contains no cut-off events then Ĉ contains no cut-off mp-events, and

that Mark(C) = Mark(Ĉ). Hence, if β is a marking-complete branching process then Merge(β)

is a marking-complete MP [5].

Unfortunately, no such result holds for full completeness: [5] provides an example where

Merge(β) contains a false deadlock, even though β is a complete prefix of a deadlock-free PN.

Hence, model checking algorithms developed for unfolding prefixes relying on the preservation

of firings (e.g. some of the deadlock checking algorithms in [3, 4, 6, 15, 16]) cannot be easily

transferred to MPs. However, marking-completeness is sufficient for most purposes, as the tran-

sitions enabled by the final state of an mp-configuration can be easily found using the original

PN. (The model checking approach of [5], recalled in in Sect. 2.6, does not rely on preservation

of firings.)

In contrast, the algorithm proposed in this paper allows one to build a complete MP (i.e. to

preserve firings), and hence import the model checking algorithms making use of cut-off events,

in particular those for deadlock detection.

2.5.4. The size of a merged process

The fusion of conditions in Def. 1 can only decrease the number of conditions, without

affecting the number of events or arcs; moreover, merging events can only decrease the number of

9



Figure 4: The first chart compares the numbers of transitions in the original PN, events in its complete unfolding prefix,

and mp-events in the corresponding MP; the size of unfolding dominates in all but few benchmarks (viz. those with a

large number of dead transitions, where the size of PN dominates). The second chart is obtained from the first one by

removing the unfolding prefixes data and re-scaling; on all these benchmarks the size of the MP is either comparable

with the size of PN or even much smaller on benchmarks with many dead transitions.

events and arcs, without affecting the number of conditions. Hence, |Merge(β)| ≤ |β|, i.e. MPs are

no less condense than branching processes (but can be exponentially smaller, see the examples in

Sect. 1). This allows one to import all the upper bounds proved for unfolding prefixes [2, 10]. In

particular, since for every safe PN Σ one can build a marking-complete branching process with

the number of events not exceeding the number of reachable markings of Σ, the corresponding

MP has the same upper bound on the number of its mp-events.

However, the upper bound given by the size of the unfolding prefix is rather pessimistic;

in practice, MPs turn out to be much more compact than the corresponding unfolding prefixes.

Fig. 4 compares the numbers of transitions in the original PNs, the numbers of non-cut-off events

in their complete unfolding prefixes, and the numbers of non-cut-offmp-events in the correspond-

ing MPs on some of the benchmarks collected by J.C. Corbett [17]. The chart on the left shows

that MPs are usually much smaller than unfoldings. The picture on the right does not give the

sizes of the unfolding prefixes in order to improve the scale; it shows that in most cases the sizes

of MPs are close to those of the original PNs (and even smaller in some cases due to the presence

of dead nodes in the original PNs).

Since MPs are inherently more compact than unfolding prefixes, it would be natural to seek

sharper upper bounds than the trivial one given by the size of the unfolding prefix. In partic-

ular, [5] identifies two subclasses of PNs whose smallest complete unfolding prefixes can be

exponential in the size of the original PN, but whose complete MPs are only polynomial:

• Acyclic PNs (the unravelling of such a net Σ coincides with the net obtained from Σ by

removing its dead transitions and unreachable places).

• Live and safe free-choice PNs with transitions’ postsets of bounded size (the degree of

the polynomial depends on the bound on transitions’ postsets sizes). Note that the expres-

sive power of this class of PNs is comparable with that of the full class of live and safe

free-choice PNs, since every transition with a large postset can be replaced by a tree of

transitions with postsets of bounded size, so that the behaviour of the PN is preserved.
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2.6. Model checking based on merged processes

We briefly recall the main ideas of the reduction of a reachability-like property R to SAT

using MPs (see [5] for more details). Given a marking-complete MP µ of a safe PN, we associate

with each non-cut-off mp-event ê of µ a Boolean variable conf̂e. Hence, every assignment A

to these variables corresponds to the set Ĉ
df

= {̂e | A(conf̂e) = 1} of mp-events of µ. The SAT

instance has the form CONF ∧ VIOL, where the role of the configuration constraint, CONF ,

is to ensure that Ĉ is an mp-configuration of µ (not just an arbitrary set of mp-events), and the

role of the violation constraint, VIOL, is to express that the property R holds for the marking

Mark(Ĉ).

CONF has the form ME ∧ ACYCLIC ∧ NG, where ME expresses that Ĉ is a solution

of the marking equation [7] (i.e. the mp-events in Ĉ provide a valid token flow), ACYCLIC

conveys that the digraph induced by M̂µ ∪ Ĉ ∪ Ĉ• is acyclic, and NG (no-gap) expresses that

the mp-conditions labelled by the same place p are visited in an order consistent with their

occurrence-depths, without gaps.

To construct VIOL from R, one can first build a Boolean formula ‘computing’ Mark(Ĉ),

i.e. relating the variables conf∗ with new variables markp, for each place p of the PN, tracing

whether p ∈ Mark(Ĉ). Intuitively, markp = 1 iff some mp-condition ĉ labelled by p is in Cut(Ĉ),

i.e. conf̂e = 1 for some ê ∈ •ĉ and conf̂e = 0 for all ê ∈ ĉ•. Then one can simply substitute

all the references to places in R by the corresponding variables mark∗, which yields the VIOL

constraint.

The existence of a reduction to SAT means that MPs are much more amenable to model

checking than general safe PNs — e.g. most of ‘interesting’ behaviourial properties are known

to be PSPACE-complete for safe PNs [18], whereas checking reachability-like properties on a

marking-complete MP is only NP-complete. Since many such properties are known to be NP-

complete already for unfolding prefixes, the theoretical complexity is not worsened if one uses

MPs instead of unfolding prefixes.

On the practical side, the SAT instances for MPs are more complicated than those for un-

folding prefixes. However, as MPs are usually much smaller than unfolding prefixes, the model

checking runtimes are quite similar according to the experiments in [5]. Since space consider-

ations are of utmost importance in model checking, these results can be regarded as positive.

Furthermore, the encoding used in [5] for the ACYCLIC constraint was rather inefficient, and

there is a chance that it can be significantly improved, speeding up model checking.

3. Unravelling algorithm

In this section we present the main contribution of this paper, viz. an algorithm for construct-

ing a complete MP of a safe PN, that avoids building a complete unfolding prefix, see Fig. 5. We

also formally prove the correctness of this unravelling algorithm.

The unravelling algorithm constructs the MP by starting from the initial mp-conditions (they

exactly correspond to the initially marked places of the PN), and repeatedly adding possible

extensions to it, until a certain termination condition is fulfilled.

Definition 2 (Possible extension). An mp-event ê of µΣ is a possible extension of an MP µ of

Σ if ê is not in µ and adding ê (together with the mp-conditions in ê• that are not in µ yet) to µ

results in an MP of Σ.

11



input : Σ— a safe PN

output : µ— a marking-complete or complete MP of Σ

µ← the branching process comprised of the initial mp-conditions

conf sz← 0 /* current configuration size */

repeat

conf sz← conf sz + 1

pe← {possible extensions of µ} /* SAT */

cand ← {̂e ∈ pe | ê has a local configuration of size conf sz in µ} /* SAT */

/* filter out potential cut-offs */

slice← {̂e ∈ cand | ¬MaybeCutOff(µ ⊕ cand, ê, conf sz)}

µ← µ ⊕ slice

/* Invariant: µ =Merge(β⌈conf sz⌉) */

until slice = ∅ ∧

¬∃̂e ∈ pe : ê has a local mp-configuration of size > conf sz in µ ⊕ pe /* SAT */

/* optionally assign µ← µ ⊕ pe and mark the mp-events in pe as cut-offs */

/* Check if each local mp-configuration of ê of size conf sz in µ contains a cut-off */

MaybeCutOff(µ, ê, conf sz) ≡

/* 2QBF */

∀ local mp-configurations Ĉ of ê in µ such that |Ĉ| = conf sz:

∃ f̂ ∈ Ĉ : ∃ mp-configuration Ĉ′ in µ : Mark([ f̂ ]
Ĉ

) = Mark(Ĉ′) ∧ [ f̂ ]
Ĉ
⊳ Ĉ′

Figure 5: An unravelling algorithm that avoids constructing a complete unfolding prefix. It assumes that the adequate

order ⊳ refines the size order.

One can compute the set of possible extensions of µ as follows. For each transition t of Σ,

one looks for an mp-configuration Ĉ of µ which can be extended by an instance ê of t that is

not in µ yet, such that Ĉ ∪ {̂e} is an mp-configuration of µΣ. This can be formulated as a model

checking problem and reduced to SAT as explained in Sect. 2.6. Once a possible extension

is computed, a constraint preventing its re-computation is added to the SAT instance, and the

problem is solved again, until it becomes unsatisfiable. The process terminates when all possible

extensions corresponding to every transition t are computed. Note that the SAT instances to be

solved are very similar, and incremental SAT can be used to optimise the whole process. Given

an MP µ and a set S of possible extensions of µ, we denote by µ ⊕ S the MP obtained by adding

the mp-events in S to µ, together with the mp-conditions in their postsets that are not in µ yet.

The cut-off check is implemented using the MaybeCutOff predicate. It naturally translates

to a 2QBF instance, and a 2QBF solver is used to check if it holds. Note that until the algorithm

terminates, it is not possible to designate an mp-event ê as a cut-off, as ê can have many local

mp-configurations not all of which are known yet (as adding other mp-events to µ can result in ê

acquiring new local mp-configurations). However, all the local mp-configurations of ê of size up

to conf sz are guaranteed to be in µ (except ones containing a cut-off), and if the adequate order2

2Since for a safe PN Σ configurations of βΣ are isomorphic to the corresponding mp-configurations of µΣ, the adequate

orders used for truncating the unfolding, see e.g. [2], can be re-used in the context of MPs.
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⊳ refines the size order, it is guaranteed that if MaybeCutOff does not hold for ê (and so ê is

added to µ), it will never hold for ê in future, i.e. an added mp-event will not suddenly become

cut-off after further mp-events are added to µ.

To summarise, the algorithm adds possible extensions to the MP being constructed in rounds,

where in round k a possible extension is considered for addition if it has at least one local con-

figuration of size k that contains no cut-offs. In this way, in k th round the algorithm can already

perform a one-sided check of the MaybeCutOff condition for local configurations of size k, and

if it does not hold then it definitely knows that the mp-event cannot be a cut-off3 and so can

be added to the MP. Hence the same mp-event can be considered for addition several times (in

different rounds), and each time more of its local configurations are taken into account. Even-

tually the termination criterion becomes satisfied, which ensures that all the possible extensions

remaining in pe can be declared cut-off, and the algorithm stops.

In general, if β is a complete branching prefix, Merge(β) can still be incomplete (only

marking-completeness is guaranteed). In contrast, the proposed algorithm can construct a com-

plete MP (i.e. preserve firings in addition to marking-completeness). This is achieved by adding

the possible extensions that are still in pe to µ and marking them as cut-offs in the optional op-

erator following the main loop. This incurs almost no overhead, but allows one to employ more

efficient model checking algorithms, in particular for deadlock detection.

3.1. Correctness of the algorithm

We make two important assumptions about the parameters of the unravelling algorithm, that

are essential for the correctness proofs below:

A1. the adequate order ⊳ refines the size order on mp-configurations, i.e. |Ĉ| < |Ĉ′| implies

Ĉ ⊳ Ĉ′;

A2. any configuration (not only a local one) can be used as a correspondent of a cut-off event.

We will denote by β⊳ the unfolding prefix obtained by removing the cut-off events from

the canonical unfolding prefix of Σ that was built using ⊳ as the adequate order, with all con-

figurations (not only the local ones, as often the case in unfoldings) being allowed as cut-off

correspondents. Furthermore, β⊳
⌈n⌉

will denote the prefix obtained from β⊳ by removing all the

events whose local configurations contain more than n events.

The Lemma below is needed to show that if an event f can be declared cut-off due to some

corresponding configuration in the full unfolding, then it has a corresponding configuration al-

ready in β⊳
⌈|[ f ]|⌉

; in particular, this means that β⊳
⌈n⌉

is a prefix of β⊳
⌈n+1⌉

, i.e. an event e cannot

disappear from the prefix due to some f ∈ [e] being a ‘delayed’ cut-off (i.e. suddenly becoming a

cut-off as n increases). This result relies on Assumption A1 above; moreover, though the lemma

itself does not depend on Assumption A2 (as it does not explicitly mention cut-off events at all),

this assumption is needed to be able to declare f a cut-off event of β⊳
⌈|[ f ]|⌉

due to the corresponding

configuration C′, which can be non-local even if f has a local cut-off correspondent C in a larger

prefix (here f , C and C′ are as in the statement of the lemma).

Lemma 3 (No delayed cut-offs). Let f be an event of βΣ and C be a configuration of βΣ such

that C ⊳ [ f ] and Mark(C) = Mark([ f ]), where ⊳ refines the size order. Then β⊳
⌈|[ f ]|⌉

contains a

configuration C′ such that C′ ⊳ [ f ] and Mark(C′) = Mark([ f ]).

3The opposite is not true, i.e. if MaybeCutOff predicate holds for some mp-event, it cannot be immediately declared

cut-off, as it might acquire new mp-configurations in future.
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Proof. Let C′ be a minimal w.r.t. ⊳ configuration satisfying C′⊳[ f ] and Mark(C′) = Mark([ f ]).

Such a configuration must exist, as the set of configurations satisfying this condition is non-

empty (as it contains C) and ⊳ is well-founded by definition of an adequate order. C′ cannot

contain a cut-off event, as otherwise there would be a smaller w.r.t. ⊳ configuration satisfying

this condition (cf. the completeness proof in [2]), contradicting the choice of C′. Moreover, as ⊳

refines the size order, |C′| ≤ |[ f ]|, and so C′ is a configuration of β⊳
⌈|[ f ]|⌉

. �

The result below proves the crucial invariant of the unravelling algorithm.

Lemma 4 (Invariant). After each execution of the body of the main loop the invariant µ =

Merge(β⊳
⌈conf sz⌉

) holds.

Proof. The invariant trivially holds before the loop is executed first time, so it remains to show

that it is preserved by executing the body of the loop.

First we show that every mp-event ê of Merge(β⊳
⌈conf sz⌉

) that has a local mp-configuration of

size conf sz will be in µ after the loop’s body is executed, i.e. for every event e of β⊳
⌈conf sz⌉

with

|[e]| = conf sz (after conf sz has been incremented), ê
df

= ~(e) will be in µ.

If ê
df

= ~(e) is in µ (e.g. because it has a local configuration of size smaller than conf sz) then

the desired conclusion vacuously holds by the induction hypothesis. Hence it only remains to

consider the case when ê is not in µ. By the induction hypothesis all the mp-events in ~([e] \ {e})

are in µ, and so ê ∈ pe. The configuration [e] of βΣ and Ĉ
df

= ~([e]) of µΣ are isomorphic due to

Σ being a safe PN, in particular Ĉ is a local configuration of ê in µΣ and |Ĉ| = conf sz. Hence,

ê ∈ cand holds.

Since e is in β⊳
⌈conf sz⌉

, [e] contains no cut-off events, and so the MaybeCutOff condition

cannot hold for ê. Indeed, in the opposite case one can find a configuration C that is a cut-

off correspondent of some f ∈ [e] in βΣ, and Lemma 3 guarantees the existence of a cut-off

correspondent C′ of f already in β⊳
⌈[ f ]⌉

; since |[ f ]| ≤ |[e]| = conf sz, C′ is a configuration of

β⊳
⌈conf sz⌉

, which contradicts e being in β⊳
⌈conf sz⌉

. Therefore, ê ∈ slice, and so ê is added to µ.

Now we show that if an mp-event ê is added to µ in the loop’s body then ê is also in

Merge(β⊳
⌈conf sz⌉

), i.e. there is an event e in β⊳
⌈conf sz⌉

such that ê = ~(e). Since ê is added in

the loops body, ê is a possible extension of µ that has a local mp-configuration Ĉ of size conf sz

(after conf sz has been updated in the loop’s body) that does not contain a cut-off mp-event in

µ ⊕ cand. There is a unique configuration C of size conf sz in βΣ such that Ĉ = ~(C) due to Σ

being a safe PN, which is local due to Ĉ being local, i.e. C = [e] for some event e. For the sake

of contradiction, suppose that e is not in β⊳
⌈conf sz⌉

. Then there is an event f ∈ [e] that is cut-off

due to some configuration C f of β⊳
⌈conf sz⌉

. Since ⊳ refines the size ordering and C f ⊳ [ f ] ⊆ [e],

|C f | ≤ |[ f ]| ≤ |[e]| = conf sz, i.e. |C f | ≤ conf sz. By the induction hypothesis, the ~-image of any

strict sub-configuration of C f is in µ, and so ~(C f ) is an mp-configuration of µ ⊕ cand. Hence,

~( f ) ∈ Ĉ would be a cut-off event due to ~(C f ), a contradiction. �

The soundness of the algorithm trivially follows from the invariant of Lemma 4, and so does

not require a separate proof.

Proposition 5 (Soundness). If the algorithm adds an mp-event ê to the merged process being

constructed then there is an event e in β⊳ such that ~(e) = ê.

Proof. Trivially follows from Lemma 4. �
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The following results state that the generated merged process is marking-complete (and even

complete if the optional part of the algorithm is performed), and that the algorithm terminates.

Proposition 6 (Completeness). Upon termination of the algorithm the resulting merged process

µ is marking-complete. Moreover, it is complete if the optional statement after the main loop is

executed.

Proof. First, we show that upon termination of the main loop, µ is marking-complete. Since

the invariant of Lemma 4 holds upon termination of the loop and due to marking-completeness

of Merge(β⊳) [5], it only remains to show that the main loop does not terminate prematurely,

i.e. its exit condition is not satisfied before µ becomes Merge(β⊳). For the latter to hold, β⊳

must contain an event e such that ê
df

= ~(e) is not in µ, and w.l.o.g., we can assume that e is a

causally minimal such event. Hence, due to the invariant of Lemma 4, e is a possible extension

of β⊳
⌈conf sz⌉

, and so, since ê is not in µ yet, ê is a possible extension of µ, i.e. ê ∈ pe. Moreover, as

|[e]| > conf sz due to e being a possible extension of β⊳
⌈conf sz⌉

, and all the mp-events in ~([e]\{e})

being in µ, ê has a local mp-configuration Ĉ in µ ⊕ pe satisfying |Ĉ| > conf sz, and so the loop’s

termination condition does not hold.

Therefore, upon termination of the algorithm µ is marking-complete, as the optional assign-

ment µ ← µ ⊕ pe, if present, will not eliminate any reachable markings from µ and thus will

not affect its marking-completeness. Moreover, this optional assignment will turn a marking-

complete MP µ into a complete process. Indeed, slice = ∅ upon termination of the loop, and so

no mp-events have been added to µ on the last iteration of the loop, which means that pe contains

exactly the possible extensions of µ, i.e. the firings are preserved. �

Proposition 7 (Termination). The algorithm terminates.

Proof. For the sake of contradiction, suppose the algorithm does not terminate, i.e. the loop’s exit

condition is never satisfied. Since β⊳ is a finite prefix, β⊳ = β⊳
⌈n⌉

for some n ∈ N. Since conf sz is

incremented every time the body of the loop is executed, µ =Merge(β⊳) when conf sz reaches

the value n due to the invariant of Lemma 4. Hence for all the iterations when conf sz > n,

slice = ∅ and µ and pe do not change. Since µ ⊕ pe is finite, it has only finitely many mp-

configurations (as the set of its mp-events has only finitely many subsets), and we define

n′
df

= max{|Ĉ| | ê ∈ pe and Ĉ is a local mp-configuration of ê}.

When conf sz reaches the value n′, the loop’s exit condition becomes satisfied, a contradiction.

�

3.2. Total adequate order

One of the important breakthroughs in the unfolding theory was the development of a total

adequate order [2]. Unfortunately, the order developed in [2] has a very inefficient Boolean

encoding, which is detrimental for the proposed unravelling algorithm, as it is based on SAT and

2QBF.

Fortunately, other adequate orders exist, in particular the order ≺d
sl

order [19] has a relatively

simple Boolean encoding. However, ≺d
sl

does not refine the size order, violating Assumption A1,

which is essential for the proof of correctness of the proposed unravelling algorithm to proceed.

Below we prove the result that allowed us to adapt the ≺d
sl

order. Besides our application, this

result is of independent interest for the unfolding theory. Essentially, it says that any adequate
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order can be turned into one refining the size order by prefixing it with the size comparison;

moreover, the totality of the order is preserved.

Proposition 8 (Turning any adequate order onto one refining the size order). Let ⊳ be an

adequate order. Then the relation ⊳′ defined by

C ⊳′ C′ ⇐⇒ |C| < |C′| ∨ (|C| = |C′| ∧C ⊳ C′)

is an adequate order refining the size order. Moreover, ⊳′ is total if ⊳ is total.

Proof. It is trivial to show that ⊳′ is a well-founded strict partial order refining the size order

(and hence the set inclusion), and that ⊳′ is total whenever ⊳ is total. Hence, it remains to show

that ⊳′ is preserved by finite extensions, i.e. the following condition holds:

If C⊳′C′ then C⊕ I(E)⊳′C′⊕E for any configurations C and C′ with the same final

marking and for any finite extension E of C′; recall that I(E) denotes an extension

of C that is isomorphic to E.

In what follows, we take any configurations C and C′ with the same final marking and satis-

fying C ⊳′ C′, and consider the two possible cases:

(i) Suppose |C| < |C′|. Then |C + I(E)| = |C|+ |I(E)| < |C′|+ |E| = |C′ + E|, as |I(E)| = |E|, and

so C ⊕ I(E) ⊳′ C′ ⊕ E.

(ii) Suppose |C| = |C′| and C ⊳ C′. Then |C + I(E)| = |C′ + E| due to |I(E)| = |E|, and

C + I(E) ⊳ C′ + E as ⊳ is preserved by finite extensions due to being an adequate order.

Hence C ⊕ I(E) ⊳′ C′ ⊕ E.

In either case C ⊕ I(E) ⊳′ C′ ⊕ E holds, and so ⊳′ is preserved by finite extensions, i.e. it is an

adequate order. �

3.3. Optimisations

The algorithm in Fig. 5 is formulated in such a way that it would be easier to prove its

correctness. In practice, however, a number of optimisations can be introduced to improve the

performance.

Computing possible extensions

The algorithm does not have to re-compute the set of possible extensions from scratch on

every iteration of the main loop. It is sufficient to update the set pe left from the previous iteration,

by removing the events in slice from it (as they have been added to µ) and adding only those

possible extensions that are not in µ or pe yet.

Cut-off check

If for a possible extension ê, there is an mp-condition ĉ ∈ ê• such that there is no mp-condition

labelled by ĥ(̂c) in µ⊕ (cand \ {̂e}), the predicate MaybeCutOff(µ⊕cand, ê, conf sz) cannot hold,

and so this check becomes unnecessary.

Counterexamples in the 2QBF solver

If the 2QBF solver is implemented by a pair of SAT solvers [11], one can reduce the number

of communication rounds by ensuring that the counterexamples generated by the auxiliary solver

are mp-configurations of size conf sz. This can be achieved by initialising the auxiliary solver

with the formula expressing this condition, rather than with an empty formula.
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Exploiting unate constraints

One can observe that the ACYCLIC predicate is negative unate; moreover, the adequate

order ⊳, due to being a refinement of the size order, is negative unate in its first parameter

and positive unate in its second parameter. This allows to optimise the corresponding Boolean

encodings, see [20, Sect. 5.1].

4. Experimental results

We have evaluated the developed unravelling algorithm on a popular set of benchmarks col-

lected mainly by J.C. Corbett [17]. The same benchmarks were used in [8, 9]; however, there are

some important differences in our setup, which resulted in different figures in the tables. More-

over, the runtime of the unravelling algorithm has been very significantly improved compared

to [8, 9].

The first major difference is that the new total adequate order (see Sect. 3.2) was used for

producing cut-offs. For consistency, the same order was used to produce the unfolding prefixes.

The second important difference is that the unfolding algorithm was re-implemented to use any

configuration in the built part of the prefix as a potential cut-off correspondent, unlike the standard

unfolding technique that uses only local ones. This was done to ensure the consistency with the

unravelling algorithm, which, due to a subtle point in its correctness proof, currently does not

allow one to restrict the cut-off check to local configurations; moreover, it is not clear that this

would result in efficiency gains anyway. However, this differs from the conventional unfolding

technique, where restricting the cut-off check to local configuration reduces its complexity (at

the price of generating larger prefixes). The issue of using local vs. all configurations as cut-off

correspondents in the context of unfoldings was investigated in [21]; the main conclusion was

that by using all rather than local configurations, smaller prefixes can be produced, but at the

expense of increase in runtime; hence, using all configurations usually does not pay off.

Due to the consistency between the unfolding and unravelling algorithms in the setup out-

lined above, it was possible to verify the correctness of the constructed MPs. Indeed, due to

Lemma 4, the built MP should be equal to the one obtained by applying the Merge operation to

the corresponding unfolding prefix, which is easy to check.

Table 1 shows the results of our experiments, which were conducted on a PC with an Intel i7

2.8GHz CPU, 4GB RAM and 64-bit Windows 7. Both the unfolder and the unraveller were com-

piled as 32-bit applications, and no parallelism was used, i.e. only one CPU core was utilised.

The unfolding prefixes in our experiments were built using the Punf unfolder [22], and the Min-

iSat [23] SAT solver was employed by the proposed unravelling algorithm (the 2QBF solver was

implemented using a pair of communicating SAT solvers [11]). The meaning of the columns is

as follows (from left to right): the name of the problem; the number of places and transitions

in the original PN; the number of conditions and events the unfolding prefix stripped of cut-off

events, together with the time to construct it; the number of mp-conditions and mp-events in the

corresponding MP, together with the time to construct it.

When interpreting the results, one should keep in mind the following. MPs are often more

compact than unfoldings, but producing an mp-event in an MP is much more computationally

expensive than producing an event in an unfolding prefix, as this usually involves solving one or

more 2QBF problems. Hence, if the benchmark is such that its unfolding is small, the unravelling

algorithm cannot improve the running time, i.e. the advantages of MPs can only be achieved on

complicated benchmarks where unfoldings do not perform well.
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Benchmark Net Unfolding prefix Merged process

|P| |T | |B| |E \ Ecut | t[s] |B̂| |Ê \ Êcut | t[s]

Abp 43 95 221 109 <1 63 56 <1

Bds 53 59 1907 956 <1 78 50 <1

Byz 504 409 40564 13972 24 650 312 14

Dartes-r 331 257 — — timeout 535 231 221

Ftp 176 529 78026 39011 258 259 478 166

Q 163 194 14043 7180 7 238 212 6

Speed 33 39 1830 1037 <1 86 118 1

Cyclic(6) 47 35 98 43 <1 83 38 <1

Cyclic(9) 71 53 152 67 <1 128 59 <1

Cyclic(12) 95 71 206 91 <1 173 80 <1

Dac(9) 63 52 79 51 <1 63 44 <1

Dac(12) 84 70 106 69 <1 84 59 <1

Dac(15) 105 88 133 87 <1 105 74 <1

Dp(8) 48 32 256 120 <1 64 32 <1

Dp(10) 60 40 400 190 <1 80 40 <1

Dp(12) 72 48 576 276 <1 96 48 <1

Dpd(5) 45 45 392 195 <1 59 38 <1

Dpd(6) 54 54 766 382 <1 71 46 <1

Dpd(7) 63 63 1484 741 <1 83 54 <1

Dpfm(5) 27 41 27 11 <1 22 11 <1

Dpfm(8) 87 321 102 47 <1 63 47 <1

Dpfm(11) 1047 5633 409 199 5 222 199 4

Dph(5) 48 67 790 390 <1 61 50 <1

Dph(6) 57 92 1862 925 <1 73 63 1

Dph(7) 66 121 4142 2064 1 85 77 4

Elev(2) 146 299 882 477 <1 126 135 1

Elev(3) 327 783 4185 2241 <1 264 346 9

Elev(4) 736 1939 18008 9567 7 557 841 133

Furn(1) 27 37 146 75 <1 47 34 <1

Furn(2) 40 65 662 344 <1 80 99 1

Furn(3) 53 99 2587 1345 1 113 226 12

Gasnq(3) 143 223 619 310 <1 147 151 1

Gasnq(4) 258 465 2440 1221 <1 262 301 3

Gasnq(5) 428 841 9301 4652 3 432 530 17

Gasq(2) 78 97 134 67 <1 84 63 <1

Gasq(3) 284 475 641 321 <1 292 301 1

Gasq(4) 1428 2705 3656 1829 <1 1438 1725 35

Hart(50) 252 152 352 201 <1 302 201 1

Hart(75) 377 227 527 301 <1 452 301 3

Hart(100) 502 302 702 401 <1 602 401 6

Key(2) 94 92 828 412 <1 137 262 4

Key(3) 129 133 7419 3707 4 183 768 1027

Key(4) 164 174 66020 33007 241 229 1526 timeout

Mmgt(2) 86 114 502 250 <1 99 155 1

Mmgt(3) 122 172 2849 1424 <1 141 355 6

Mmgt(4) 158 232 14900 7450 9 183 638 91

Over(3) 52 53 128 62 <1 64 48 <1

Over(4) 71 74 305 150 <1 89 80 <1

Over(5) 90 95 718 356 <1 114 118 1

Ring(5) 65 55 181 88 <1 81 55 <1

Ring(7) 91 77 437 215 <1 119 85 1

Ring(9) 117 99 869 430 <1 157 115 1

Rw(6) 33 85 152 70 <1 33 28 <1

Rw(9) 48 181 1060 521 <1 48 55 10

Rw(12) 63 313 8240 4108 <1 63 91 3107

Sent(50) 179 80 323 159 <1 188 86 <1

Sent(75) 254 105 398 184 <1 263 111 <1

Sent(100) 329 130 473 209 <1 338 136 <1

Table 1: Experimental results.
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As one can see, overall the unravelling algorithm still loses to the unfolder, though there are

some successes like Byz, Dartes-r and Ftp. These results should be considered in the light of

the fact that our implementation of the unravelling algorithm is still in its early days, and it is

compared with a fully-fledged unfolder employing some sophisticated techniques that took over

a decade to develop. If viewed that way, the results do look very promising: we are confident that

our implementation can be considerably improved — in fact, it has already been very consider-

ably improved compared to the one used in the conference version of this paper [8]. We believe

that the optimisations outlined in Sect. 5 have the potential to further increase the performance

of the proposed algorithm. In particular, currently there are some anomalies in its behaviour,

e.g. on the Rw(12) benchmark the algorithm has a rather high runtime, even though the resulting

MP is quite small, which indicates the low quality of our home-brewed 2QBF solver used by the

unravelling algorithm.

5. Conclusions and future work

In this paper we have proposed an algorithm for constructing complete MPs of safe PNs.

This algorithm avoids building an intermediate complete unfolding prefix, which is usually ex-

ponentially larger than the final result, overcoming thus the main disadvantage of the previous

approach [5]. In particular, the challenging problem of identifying cut-offs in MPs has been

solved.

The proposed unravelling algorithm has been evaluated on a number of benchmarks. Though

overall it performs worse than an unfolder algorithms, it was very successful on some bench-

marks, and generally quite competitive. We consider the results as encouraging, and believe they

can be significantly improved. In particular, the following obvious steps can be done:

• Our implementation of the 2QBF solver is very basic, and its performance occasionally

deteriorates even on very small benchmarks, e.g. Rw(12). Using a better solver (e.g. im-

plementing non-critical signal reasoning, which can increase the performance by an order

of magnitude according to experiments in [11]) is likely to improve the runtime dramati-

cally.

• The proposed algorithm can be easily parallelised, as typically there are several SAT or

2QBF instances that can be solved concurrently. This opportunity is very useful, as con-

temporary PCs are multi-core. Moreover, the computation can be easily distributed over a

network of PCs.

The above improvements seem fairly obvious and just require implementation effort. There

are also some research areas, progress in which would improve the proposed algorithm:

• The implemented encoding of the ACYCLIC constraint [5] seems very inefficient; im-

proving it will have a direct effect on both the unravelling algorithm and the subsequent

model checking.

• The proposed algorithm works by considering configurations of larger and larger sizes

(cf. the conf sz variable). Hence, each iteration of the main loop repeats much of the

work done in the previous ones, and so this might be not the best strategy — perhaps this

repeated work can be eliminated or at least reduced. Alternatively, the experience from

bounded model checking might be useful to alleviate this problem.
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• The last few iterations of the algorithm are often free-running, i.e. no mp-events are added

to the MP being built, as the termination criterion is not sharp. These iterations are quite

expensive (as the MP has already reached its full size), and so much time is wasted. Hence,

developing a sharper termination criterion is likely to significantly improve the runtime.

On a more general note, we believe that the 2QBF based strategy used by the unravelling

algorithm for identifying cut-offs is fairly general and can be employed elsewhere. Indeed, it

is quite common for an (mp-)event to have multiple local configurations, e.g. this is the case

for unfoldings of PNs with read arcs [24, 25], symbolic unfoldings [26] and unfoldings of time

nets [27].

Finally, the natural question about generalisation of the proposed algorithm from safe to

bounded PNs is more complicated then one might think, for the following reasons. First of all,

the mp-configurations become multisets, and so one would have to use Integer Linear Program-

ming (ILP) instead of SAT, and formulate (and develop an efficient algorithm for) an integer

analog of 2QBF. Moreover, the relationship between the configurations of the unfolding and mp-

configurations of the unravelling is somewhat more complicated, in particular the isomorphism

is lost. Furthermore, no easily checkable characterisation of mp-configurations of merged pro-

cesses of unsafe PNs has been developed yet, which is probably the most serious obstacle (see [5]

where this question is expounded, along with some ideas about developing such a characterisa-

tion).
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