
A Usable Reachability Analyser

Victor Khomenko⋆

School of Computing Science, Newcastle University,
Newcastle upon Tyne, United Kingdom
E-mail: Victor.Khomenko@ncl.ac.uk

Abstract. Reachability analysis consists in checking if a state satisfying some property
is reachable. In this paper a solution to the problem of generating formulae expressing
reachability properties for concrete models is suggested. The traditional methods either
require the user to input the formula manually, which can be very tedious and error-
prone, or automatically generate formulae for some fixed set of common properties,
which does not allow one to check custom properties. The proposed approach allows the
user to write a concise abstract specification of the property in a specially developed
language Reach, which is then automatically expanded into a formula for a concrete
model. The usefulness of this method is demonstrated on several case studies.
Keywords: Reachability analysis, model checking, Petri nets, STG.

1 Introduction

A reachability property is a property of some system that can be formulated as follows:

Check if there is a reachable state s satisfying some predicate R(s).

Typically R specifies some undesirable states which should never be reached in a correct system,
and the result of checking such a property is either a trace leading to a state satisfying this
predicate or a message that no reachable state satisfies it. Reachability properties play a crucial
role in formal verification; in particular, deadlock freeness, mutual exclusion and assertions are
examples of reachability properties.

In this paper we assume that the system is specified as a safe (i.e. 1-bounded) Petri net,
but the main ideas are still applicable to other formalisms, see Sec. 5. Hence one can assume
that R is a Boolean formula built upon the elementary predicates p1, . . . , pn that correspond
to the places of the Petri net. For example, the predicate

R
df
= (p1 ∧ p2) ∨ (p1 ∧ p3) ∨ (p2 ∧ p3) (1)

would specify a violation of the mutual exclusion of places p1, p2 and p3.
Traditionally, the predicate R is either provided by the user or is generated automatically

by the tool for some fixed set of common properties, like deadlocks or mutual exclusion. Un-
fortunately, both these approaches are of limited use in practice. Consider for example the
Petri net modelling two dining philosophers shown in Fig. 1. The specification of the deadlock
condition for it is as follows:

R
df
= p1 ∧ (p2 ∨ p7)∧ (p3 ∨ p8)∧ (p4 ∨ p5)∧ p6 ∧ p9 ∧ (p7 ∨ p10)∧ (p8 ∨ p9)∧ (p12 ∨ p13)∧ p14 (2)

From this rather small example one can see that manual specification of even the simplest
properties for more realistic nets can easily get extremely tedious and error-prone.

The other alternative is to generate such a property automatically, which most of reach-
ability analysers can do for deadlocks. However, this has a disadvantage: only a fixed set of

⋆ V. Khomenko is a Royal Academy of Engineering/Epsrc Post-Doctoral Research Fellow. This re-
search was supported by the Royal Academy of Engineering/Epsrc post-doctoral research fellowship
EP/C53400X/1 (Davac).

2 V. Khomenko

p1

p2

p3

p4

p5

p6t1

t2

t3

t4t5

p7

p8

p9

p10

p11

p12

p13

p14 t6

t7

t8

t9 t10

t11 t12

p15 p16

Fig. 1. A Petri net modelling two dining philosophers. The elements shown in dashed lines model a
proper termination of the system.

properties can be implemented in this way, and if the property the user wants to check is not
in this set, the tool becomes either useless, or the user has to resort to manually specifying the
property. This is especially disappointing when the user’s property is just a minor variation of
some standard one. For example, suppose the transitions and places shown in dashed lines in
Fig. 1, are added to the net in order to model the proper termination of the philosophers. The
state when both p15 and p16 are marked is considered a proper terminal state, and should be
distinguished from deadlocks. One can see that this is just a minor variation of the deadlock
property, in particular it would be enough to add the clause (p15 + p16) to the automatically
generated deadlock formula; however, this is usually impossible, since the formula generation
is hardwired into the tool.1

In practice, users are often forced to implement generators for their custom properties.
While simple in theory, such generators still require a considerable implementation effort, in
particular they have to have data structures and methods for representing and accessing Petri
nets, a parser for reading in a net from the file and, in all but simple cases, data structures
and routines for Boolean expressions manipulation. Obviously, few users would be prepared
(or even able) to undertake such an effort.

In this paper we describe an idea which solves the aforementioned problem. It allows the
user to specify complex custom properties of large nets with little effort. In fact, in most cases
it is no harder for the user than mathematically defining the property.

2 Property specification language

In this section we outline the main idea of how to cope with the problem described above.
Namely, we design a language Reach for specifying reachability properties. This approach has
the following advantages:

– custom properties can be easily and concisely specified;
– the user does not have to modify the model in any way, in particular the model does not

have to be translated into an input language of some model checker;2

1 In this particular example one can use a trick of adding yet another transition to the net, which takes
the tokens from p15 and p16 and immediately puts them back. This makes the state corresponding to
the proper termination non-deadlocked, and so one can use the usual deadlock checking. However,
such tricks do not always exist, and in general it is a bad idea to make the user modify the model
or invent tricks.

2 In many model checkers, e.g. in SPIN [Hol04], both the model and the property are specified in the
same language (cf. the never clause in Promela— the input language of SPIN). Hence, one would
have to translate a model into Promela to verify it. In contrast, the output of our tool is simply a
Boolean formula, which is essentially independent on the original format of the Petri net.

A Usable Reachability Analyser 3

Fig. 2. Reachability analysis flow.

– almost any reachability analyser can be used as the back-end.

For example, the deadlock property can be mathematically defined as follows:
∧

t∈T

∨

p∈•t

p,

where T is the set of transitions of the Petri net. The tool would take as an input the following
Reach description of this property:

forall t in TRANSITIONS {

exists p in pre t { ~$p }

}

The other input of the tool is the Petri net, and the tool is able to automatically expand this
abstract property specification into a concrete Boolean formula for this particular net, e.g.
the deadlock formula (2) is generated for the net in Fig. 1. Note that the forall and exists

operators expand into a conjunction and disjunction, respectively, TRANSITIONS is substituted
by the set of transitions of the net, the operator pre computes the preset •t of a transition,
~ is the Boolean negation, and the $ operator refers to the status of the place (i.e. whether it
has a token) in the marking to be reached. In fact, the above property can be re-written as

forall t in TRANSITIONS { ~@t }

where the operator @ refers to the enabledness status of a transition in the marking to be
reached.3

This property specification can be easily modified to take into account the proper termina-
tion:

forall t in TRANSITIONS { ~@t } & (~$P"p15" | ~$P"p16")

where & and | denote the Boolean conjunction and disjunction, respectively, and the operator P
indicates that the following string should be interpreted as a place name.4 The Reach language
contains a few more operators and constructs for accessing the net and iterating through it,
some of them are demonstrated in Sec. 4.

The proposed reachability analysis flow is illustrated in Fig. 2. The main novelty is the
expansion stage that precedes the analysis. Given a net and a Reach property, the tool auto-
matically expands this abstract specification into a concrete Boolean expression, which is then
optimised and fed to a reachability analyser. The developed MPSat tool implementing the
described idea uses an efficient technique based on unfolding prefixes and SAT as the back-end
reachability engine. However, many other reachability analysers would fit into the described
flow.

3 Net unfoldings

A finite and complete unfolding prefix of a bounded Petri net Υ is a finite acyclic net which
implicitly represents all the reachable states of Υ together with transitions enabled at those

3 Note that @t is simply ‘syntax sugar’ for forall p in pre t { $p }.
4 There are also the corresponding operators T for transitions and S for STG signals, see Sec. 4.

4 V. Khomenko

c1p1

c2p7

c3p8

c4p9

c5p2

c6p3

c7p10

c8p11

c9

p4

c10

p5

c11

p12

c12

p13

c13

p6

c14

p14

c15 p1

c16 p7

c17 p8

c18 p7

c19 p8

c20 p9

e1

t1

e2

t6

e3

t2

e4

t3

e5

t7

e6

t8

e7

t4

e8

t9

e9

t5

cut-off

e10

t10

cut-off

Fig. 3. A finite and complete prefix of the unfolding of the Petri net in Fig. 1.

states. Intuitively, it can be obtained through unfolding Υ , by successive firing of transitions,
under the following assumptions: (i) for each new firing a fresh transition (called an event) is
generated; (ii) for each newly produced token a fresh place (called a condition) is generated.
For example, a finite and complete prefix of the Petri net in Fig. 1 is shown in Fig. 3. Due
to its structural properties (such as acyclicity), the reachable states of Υ can be represented
using configurations of its unfolding. A configuration C is a causally closed set of events (being
causally closed means that if e ∈ C and f is a causal predecessor of e then f ∈ C) without
choices (i.e. for all distinct events e, f ∈ C, •e ∩ •f = ∅). For example, in the prefix shown in
Fig. 3, {e1, e3, e4} is a configuration, whereas {e1, e3, e7} and {e1, e2, e3, e5} are not (the former
does not include e4, which is a predecessor of e7, while the latter contains a choice between e3

and e5). Intuitively, a configuration is a partially ordered execution, i.e. an execution where the
order of firing of some of its events (viz. concurrent ones) is not important; e.g. the configuration
C = {e1, e3, e4} corresponds to two totally ordered executions, e1e3e4 and e1e4e3, reaching
the same marking Cut(C) = {c4, c9, c10}, called a cut. This cut corresponds to the marking
Mark(C) = {p4, p5, p9} of the original net. Since a configuration can correspond to multiple
executions, it is often much more efficient in model checking to explore configurations rather
than executions. We will denote by [e] the local configuration of an event e, i.e. the smallest
(w.r.t. ⊆) configuration containing e (it is comprised of e and its causal predecessors).

The unfolding is infinite whenever the original Υ has an infinite run; however, if Υ is bounded
and hence has only finitely many reachable states, the unfolding eventually starts to repeat
itself and can be truncated (by identifying a set of cut-off events) without loss of information,
yielding a finite and complete prefix. Intuitively, an event e can be declared cut-off if the already
built part of the prefix contains a configuration Ce (called the corresponding configuration of e)
such that Mark(Ce) = Mark([e]) and Ce is smaller than [e] w.r.t. some well-founded partial
order on the configurations of the unfolding, called an adequate order [ERV02].

Efficient algorithms exist for building such prefixes [ERV02,Kho03], which ensure that the
number of non-cut-off events in a complete prefix never exceeds the number of reachable states
of the original Petri net. Moreover, complete prefixes are often exponentially smaller than the
corresponding state graphs, especially for highly concurrent Petri nets, because they represent
concurrency directly rather than by multidimensional interleaving ‘diamonds’ as it is done
in state graphs. For example, if the original Petri net consists of 100 transitions which can
fire once in parallel, the state graph will be a 100-dimensional hypercube with 2100 vertices,
whereas the complete prefix will coincide with the net itself. Also, one can observe that if the
example in Fig. 3 is scaled up (by increasing the number of philosophers), the size of the prefix
is linear in the number of philosophers, even though the number of reachable states grows

A Usable Reachability Analyser 5

Fig. 4. Reachability analysis flow based on unfolding prefixes.

exponentially. Thus, unfolding prefixes significantly alleviate the state space explosion in many
practical cases.

A fundamental property of a finite and complete prefix is that each reachable marking of
Υ is a final marking of some configuration C (without cut-offs) of the prefix, and, conversely,
the final marking of each configuration C of the prefix is a reachable marking of Υ . Thus
a reachability property of Υ can be restated as a reachability property of the prefix (with
the corresponding formula obtained automatically from the original one), and then efficiently
checked.

Most of ‘interesting’ problems for safe Petri nets are PSpace-complete [Esp98], but the same
problems for prefixes are often in NP or even P. (Though the size of a finite and complete
unfolding prefix can be exponential in the size of the original Petri net, in practice it is often
relatively small, as explained above.) As was already mentioned, a reachability property of
Υ can easily be reformulated for a prefix, and then translated into some canonical problem,
e.g. Boolean satisfiability (SAT). Then an off-the-shelf solver can be used for efficiently solving
it. Such a combination ‘unfolder & solver’ turns out to be quite powerful in practice [KKY04].

3.1 Unfolding-Based Model Checking

The developed tool MPSat uses the following approach to model checking. First, a finite and
complete prefix of the Petri net unfolding is built. Then the expanded reachability formula
R is translated into the corresponding formulae R for the prefix using the method detailed
below. Finally, the resulting formulae is combined with the constraint CONF expressing that
a set of events is a configuration of the prefix that contains no cut-off events, and the resulting
formula CONF ∧ R is fed to a SAT solver. If the formula is not satisfiable then the marking
satisfying the original reachability property is not reachable in the original Petri net. Otherwise,
the variable assignment returned by the SAT solver allows one to retrieve a configuration of
the prefix, which can be translated into an execution of the original net leading to a marking
that satisfies the reachability property. This flow is depicted in Fig. 4; one can see that it is a
refinement of the flow in Fig. 2.

CONF∧R has for each non-cut-off event e of the prefix a variable confe. For every satisfying

assignment A, the set of events C
df
= {e | confe = 1} is a configuration such that Mark(C)

satisfies R. The role of the property-independent configuration constraint CONF is to ensure
that C is a configuration of the prefix (not just an arbitrary set of events). CONF can be
defined as the conjunction of the formulae5

∧

e∈E\Ecut

∧

f∈••e

(confe ∨ conff) and
∧

e∈E\Ecut

∧

f∈Che

(confe ∨ conff),

where E is the set of events of the prefix, Ecut ⊆ E is the set of cut-offs, and Che
df
= {((•e)• \

{e}) \ Ecut} is the set of non-cut-off events which are in the direct choice relation with e. The
former formula is basically a set of implications ensuring that if e ∈ C then each its immediate

5 The size of this constraint can be quadratic in the size of the prefix. A linear SAT encoding of CONF
is possible (by introducing auxiliary variables), but it is more complicated and not discussed here,
even though it was implemented in MPSat.

6 V. Khomenko

predecessor f is also in C, i.e. C is causally closed. The latter one ensures that C contains no
choices. CONF is given in conjunctive normal form (CNF) as required by most SAT solvers.

The role of the property-dependent violation constraint R is to express the property vi-
olation condition for a configuration C. If a configuration C satisfying this constraint is
found then the property does not hold, and C can be translated into a violation trace.
We now show how to build the R constraint given a Boolean reachability expression R
(see also [Hel99,Kho03,KKY04,MR97]). We introduce for each non-post-cut-off condition c
a Boolean variable cutc, conveying that c belongs to Cut(C). These variables are related to
conf∗ (i.e. the indexed conf-variables) by the following constraints:

cutc ⇐⇒

∧

e∈c•\Ecut

confe

 ∧

{

confe if •c = {e}
1 if •c = ∅.

Intuitively, a condition c belongs to Cut(C) iff it is either an initial condition or it has been
produced by some (non-cut-off) event in C, and it has not been consumed by any event of C.
Furthermore, we introduce for each place p of the Petri net a Boolean variable markp, conveying
that p belongs to Mark(C). These variables are related to cut∗ as follows:

markp ⇐⇒
∨

c∈B\E•
cut

h(c)=p

cutc,

where B is the set of conditions of the prefix. Intuitively, a place belongs to Mark(C) iff
some (non-post-cut-off) condition labelled by this place belongs to Cut(C). Now R can be
built simply by rewriting the constraint R using the variables mark∗. For example, the mutual
exclusion constraint (1) can be re-written as

R
df
=

(

(markp1
∧ markp2

) ∨ (markp1
∧ markp3

) ∨ (markp2
∧ markp3

)
)

∧ DEF ,

where DEF is the conjunction of the constraints defining the variables markp for p ∈ {p1, p2, p3}
and cutc for all non-post-cut-off conditions c labelled by p1, p2 or p3. Note that the length of
R is linear in the size of the branching process plus the length of R.

3.2 Prefix-based formula generation

In fact, an advanced user can specify the reachability property directly on the prefix, which
often can result in a smaller SAT instance. For example, the deadlock property can be specified
as

∧

e∈E

(

∨

f∈••e

conff ∨
∨

f∈(•e)•\Ecut

conff

)

,

which intuitively means that C cannot be extended by any event e as either some predecessor f
of e is not in C or some non-cut-off event g which is in direct choice relation with e is already in
C, and hence C is a deadlocked configuration. Note that in the prefix the cut-off events serve as
the border separating the fake deadlocks introduced by the truncation of the unfolding. Since
the CONF constraint ensures that C contains no cut-off events, it is guaranteed that C can
be extended by a (possibly cut-off) event e iff Mark(C) is not a deadlock. The corresponding
Reach specification is as follows:

forall e in EVENTS {

let pre_e = pre e {

exists f in pre pre_e { ~$f } |

exists g in post pre_e s.t. ~is_cutoff g { $g }

}

}

A Usable Reachability Analyser 7

where EVENTS refers to the set of events of the prefix, the operator $ applied to an event
refers to its status, i.e. whether the event is in C or not, the is cutoff predicate evaluates
to true iff its parameter is a cut-off event, the let operator introduces a name for a common
subexpression, and the s.t. clause in the exist operator allows one to restrict its variable’s
domain.6 Alternatively, the above specification can be re-written as

forall e in EVENTS { ~@e }

where the operator @ applied to an event refers to its enabledness status, i.e. it is true iff C
can be extended by this event.

These Reach specifications can be automatically translated into the R formula, combined
with CONF and fed to a SAT solver. Their advantage is that the mark∗ and cut∗ variables, as
well as the corresponding defining constraints, are not generated.

4 Case studies

In this section we present a number of case studies. They come mostly from the domain of
asynchronous circuits (ACs), which, intuitively, are circuits without clocks. ACs have been get-
ting more and more attention in the last few years, as they often have lower power consumption
and electro-magnetic emission, no problems with clock skew and related subtle issues, and are
fundamentally more tolerant of voltage, temperature and manufacturing process variations.
Though the listed advantages look rather attractive in the view of the current and antici-
pated microelectronics design challenges, correct and efficient ACs are notoriously difficult to
design (there are a few published asynchronous designs which subsequently turned out to be
incorrect).

We focus on an important subclass of ACs, called speed-independent (SI) circuits; this model
follows the classical Muller’s approach [MB59] and regards each gate as an atomic evaluator
of a Boolean function, with a delay element associated with its output. In the SI framework
this delay is unbounded, i.e. the circuit must work correctly regardless of its gates’ delays,
and the wires are assumed to have negligible delays (or, alternatively, wire forks are assumed
to be isochronic — in such a case the circuit is often referred to as quasi-delay-insensitive
(QDI) [Mar90]; for the purposes of this paper, these two models are indistinguishable).

We now briefly explain Signal Transition Graphs (STGs) [Chu87,CKK+02,RY85] — a Petri
net based formalism which is widely used for specifying asynchronous circuits. STGs are a
particular type of labelled Petri nets. They associate a set of Boolean variables, referred to as
signals, with a Petri net to represent the state of the actual digital signals (i.e. wires) within a
circuit. The Petri net’s transitions are then labelled to represent changes in the state of these
signals; a transition label has the form either a+ to indicate a signal a goes from 0 to 1, or a−
to indicate the signal goes from 1 to 0. In general, several transitions can have the same label,
e.g. a+; in such a case, these transitions are named a+, a+/1, a+/2, etc. Thus, the underlying
Petri net specifies the causal relationship between signal changes and is intended to capture
the behaviour of a circuit. Clearly, for an STG to correctly represent a circuit one has to ensure
that the labels a+ and a− are correctly alternated between for each signal.

An STG can be represented graphically simply as a labelled Petri net. However, a short-
hand notation is often used, in which transitions are simply represented by their labels, and
places with one incoming and one outgoing arc are contracted. Moreover, we will use a single
grey line without arrowheads to represent read arcs, i.e. pairs of arcs (p, t) and (t, p) with the
same end nodes and opposite directions. Such arcs are used to test for the presence of a token
in a place without consuming it.

6 Note that exists x in X s.t. Y { Z } is ‘syntax sugar’ for exists x in X { Y & Z }, and, sim-
ilarly, forall x in X s.t. Y { Z } can be replaced by forall x in X { Y -> Z }, where the ->

operator denotes Boolean implication.

8 V. Khomenko

– Each signal (i.e. wire) s is represented by two places, p1
s and p0

s, indicating whether the
corresponding voltage is high or low, respectively. Exactly one of these places is marked
at any time.

– Since we do not have any information about the environment’s behaviour at this stage,
it is taken to be the most general (i.e. it can always change the value of any input). This
is modelled for each input signal s by adding transitions s+ (consuming a token from
p0

s and depositing a token to p1
s) and s− (consuming a token from p1

s and depositing a
token to p0

s).
– For each local signal s the circuit computes the next-state value [s] of s using a logic gate

or a latch, which can be described by a Boolean equation [s] = Es. (In the case of a latch
s occurs in Es.) For each term (i.e. prime implicant) mi in the minimised disjunctive
normal form (DNF) of Es|s=0 (where Es|s=b denotes the Boolean expression resulting
from substituting s by b ∈ {0, 1} in Es), we add a transition s+/i which switches s on.
We add an arc from place p0

s to s+/i and an arc from s+/i to place p1
s. For each s′

(resp. s′) occurring in mi, we connect s+/i to the place p1
s′ (resp. p0

s′
) by a read arc.

We use a similar process to define the transitions s − /i which reset s based on Es|s=1.

Fig. 5. The circuit-STG construction.

The signals of an STG are partitioned into input, output and internal signals; the output
and internal signals are collectively referred to as local signals. The inputs are controlled by
the environment of the STG, and the outputs are controlled by the system itself and are
observable by the environment. Internal signals represent some auxiliary entities needed to
produce outputs; like outputs, they are controlled by the system, but are not observable by
the environment.

The behaviour of an STG is based on its underlying Petri net’s behaviour, in particular
the concepts of enabling and firing of transitions are the same. Intuitively, an STG represents
a contract between the system and its environment, and is interpreted in the following way. If
an input signal transition is enabled, then the environment is allowed (but is not obliged) to
send this input, and vice versa, the environment is not allowed to send inputs which are not
enabled. If a local transition is enabled, then the system is obliged eventually to produce this
signal (or it is eventually disabled by another transition, in which case the output-persistency
(discussed later) is violated), and vice versa, it is not allowed to produce outputs which are
not enabled. That is, an STG specifies the behaviour of a system in the sense that the system
must provide all and only the specified outputs, and that it must allow at least the specified
inputs (in fact, it could optionally allow more inputs, which means that it could work in a
more demanding environment).

STGs can be used for different purposes. One way of using them is to model and verify a
gate-level circuit. Any digital circuit can be converted into an STG using a variant of the well-
known translation based on complementary places [Rei85], see Fig. 5. Fig. 6(left) illustrates this
construction for the C-element circuit. Then, one has to separately model the environment’s
behaviour as an STG,7 as illustrated in Fig. 6(right), and then the parallel composition [VW02]
of these two STGs (which is also an STG) is computed. (Roughly speaking, parallel composition
simply puts two STGs side-by-side and fuses pairs of identically labelled transitions.) This
combined STG can then be used to verify the properties of the circuit, e.g. violations of SI can
be automatically detected by reachability analysis. Alternatively, an STG can be provided by
the designer as a specification of a circuit. In such a case a number of properties have to be
checked to ensure its implementability as an SI circuit.

7 It is important to note that one cannot speak about the speed-independence of a circuit per se, as the
gate-level description carries no information about the behaviour of the environment. In particular,
a circuit can be SI in one environment, and non-SI in another.

A Usable Reachability Analyser 9

Fig. 6. The circuit-STG for the C-element circuit [c] = ab + c(a + b) (left), and the STG describing
the behaviour of its environment (right).

We first explain how to check the basic properties required for an STG to be implementable
as an SI circuit, and then show how several custom properties of a flat arbiter circuit proposed
in [MKY09] have been verified.

4.1 Consistency

One of the basic well-formedness properties of STGs is the consistency, requiring that in each
possible execution, the transitions representing the rising and falling edges of each signal must
be correctly alternated between, always starting from the same edge (either rising or falling).
This ensures that the values of all the signals are always binary. Consistency is guaranteed to
hold for STGs obtained from circuits, but for manually constructed STG specifications it has
to be formally verified.

Consistency can be checked using the following Reach specification:

exists s in SIGNALS {

let Ts = tran s {

$s & exists t in Ts s.t. is_plus t { @t }

|

~$s & exists t in Ts s.t. is_minus t { @t }

}

}

Here the operator tran computes the set of all transitions labelled by a signal, the predicates
is plus and is minus check that the transition is labelled by a rising and falling, respectively,
signal edge, and the operator $ applied to a signal refers to its status, i.e. whether the signal is
high or not.8 Note that if the STG is not consistent and the value of a signal s is not binary at
some reachable state, the $ operator will simply return that value modulo 2.9 However, since
all the signal values are binary at the initial state, one can show that if consistency is violated

8 Similarly, an operator @ applied to a signal refers to its enabledness status, i.e. it is true iff some
transition labelled by this signal is enabled. One can see that @s is just ‘syntax sugar’ for exists t

in tran s { @t }.
9 The status of a signal s is computed from a configuration C by counting modulo 2 the number of

events labelled by s, i.e. $s is a ‘syntax sugar’ for is init s ^ xorsum e in ev s { $e }, where
is init is the operator returning the initial value of the signal, ^ is the binary ‘exclusive or’ operator,
xorsum is the iterated ‘exclusive or’ operator, and ev returns the set of events labelled by a signal.

10 V. Khomenko

at some state with some signal having a non-binary value, it is also violated at some earlier
state where all signals had binary values, and so the Reach specification above is correct. In
what follows, we assume that all the STGs are consistent.

4.2 Output persistency

The output persistency (OP) is a correctness condition requiring that if some local signal
becomes enabled, it cannot be disabled by firing some other transition, i.e. there should be no
choices involving local transitions. The rationale for this is that once a signal becomes enabled,
its voltage starts, e.g. to rise from 0 to 1. If the signal is disabled during this process, the voltage
is suddenly pulled down, resulting in a glitch. This glitch can be interpreted in different ways
by the logic gates listening to this signal, depending on whether the voltage has crossed the
threshold between 0 and 1 or not. Hence the behaviour of the circuit becomes non-deterministic
and non-digital.

Visually, if OP is violated then there are two transitions with different labels in the STG
with at least one of them marked by a local signal, which share some pre-places and can be
enabled simultaneously (unless both transitions are connected to these shared pre-places by
read arcs).

Note that a choice involving only inputs is not a violation of OP, and simply models a
choice in the environment. Since this choice does not have to be implemented by the system,
SI circuits can be synthesised for such STGs (provided that all the other conditions necessary
for SI are met).

A Reach specification for OP is as follows:

exists t1 in TRANSITIONS s.t. sig(t1) in LOCAL {

@t1 &

exists t2 in TRANSITIONS s.t. sig(t2)!=sig(t1) &

|pre(t1)*(pre(t2)\post(t2))|!=0 {

@t2 &

forall t3 in tran(sig(t1))\{t1} s.t. |pre(t3)*(pre(t2)\post(t2))|=0 {

exists p in pre(t3)\post(t2) { ~$p }

}

}

}

Here the operator sig returns the signal of a transition, the operators *, \ and |...| denote
the set intersection, difference and cardinality, respectively, the operator tran returns a set of
transitions labelled by a signal, and {...} (in {t1}) is a set constructor.

Intuitively, we are looking for a state enabling some transition t1 labelled by a local signal
(lines 1 and 2), which can be disabled by some transition t2 labelled by a different signal (lines
3–5). The disabling condition is that t2 is enabled and •t1∩ (•t2 \ t•2), i.e. t2 consumes (not just
reads!) some token from •t1. Lines 6 and 7 specify that after t2 fires, no other transition with
the same label as t1 is enabled, i.e. the signal of t1 has been disabled.

Note that in some cases (e.g. if the net has no structural choices) the expanded formula
simplifies to Boolean 0, and no reachability analysis is actually needed. In such cases MPSat

does not call a SAT solver and simply prints the result.

4.3 Complete State Coding (CSC) and Universal State Coding (USC)

If the STG has two reachable states in which the values of all the signals coincide, but the sets
of enabled local signals are different, then these two states are said to be in Complete State
Coding (CSC) conflict. The STG satisfies the CSC property if no two of its reachable states
are in CSC conflict.

A Usable Reachability Analyser 11

dtack− dsr+ lds+

d− lds− ldtack− ldtack+

dsr− dtack+ d+

01000
00000

10000

01010
00010

10010 10100

01110

00110 10110
M′′ 10110M′

01111 11111 10111

dtack− dsr+

ldtack− ldtack− ldtack− lds+

dtack− dsr+

lds− lds− lds−

dtack− dsr+

ldtack+

d−

dsr− dtack+

d+

Fig. 7. An STG modelling a simplified VME bus controller (left) and its state graph with a CSC
conflict between two states (right). The order of signals in the binary codes is: dsr , dtack , lds, ldtack , d .

An STG not satisfying the CSC property cannot be directly implemented as an SI circuit.
Intuitively, during its execution the circuit can ‘see’ only the values of its signals, but not the
marking of the STG. Hence, if two semantically different reachable states with the same values
of all the signals exist, the system cannot distinguish between them, and so cannot know what
to do next. An example of an STG for a data read operation in a simple VME bus controller
(a standard STG benchmark, see, e.g. [CKK+02]) is shown in Fig. 7(left). The picture on the
right of this figure illustrates a CSC conflict between two different states, M ′ and M ′′, that
have the same values of all signals, but M ′ enables only d and M ′′ enables only lds. This
means that, e.g. the gate producing lds does not have sufficient information: the states M ′ and
M ′′ are indistinguishable from its point of view, but the next-state value of lds should be 1
according to the state M ′ and 0 according to the state M ′′.10

Note that in fact the CSC property is not a reachability property of the STG as defined in
the beginning of this paper, as one has to look for two reachable states that are in a certain
relationship. A possible way around this is to put two copies of the STG side by side, and
formulate the CSC property in the original STG as a reachability property of this joint STG.
However, the approach implemented in MPSat is to generalise the reachability properties. A
generalised reachability property is a property that can be formulated as follows:

Check if there are reachable states s1, . . . , sk satisfying some predicate R(s1, . . . , sk).

It is now easy to see that the CSC property can be formulated as a generalised reachability
property for k = 2:

forall s in SIGNALS { $s <-> $$s } & exists s in LOCAL { @s^@@s }

Note that the operator <-> denotes Boolean equivalence,11 and operators $$ and @@ are anal-
ogous to $ and @, but refer to the second state.12

To check generalised reachability properties using unfoldings, one can generalise the ap-
proach describing in Sec. 3.1 by generating k sets of variables conf∗, cut∗ and mark∗, as well as

10 In practice, to resolve a CSC conflict, new internal signals helping to distinguish between the
conflicting states are inserted into the STG in such a way that its ‘external’ behaviour does not
change. Intuitively, insertion of a signal introduces additional memory into the circuit, helping it to
trace the current state. For example, the CSC conflict shown in Fig. 7 can be resolved with the help
of an additional internal signal csc, as shown in Fig. 8.

11 a <-> b is syntax sugar for ~(a^b).
12 The operators $$$ and @@@ refer to the third state, etc. However, the author is not aware of any

practical properties that would require k > 2.

12 V. Khomenko

k copies of the CONF and DEF constraints, one for each of the k sets of variables. (The R
formula is not replicated, but it now can refer to variables from several sets.)

Historically, the Universal State Coding (USC) property has been used as a sufficient con-
dition for CSC. Two different reachable states are said to be in a USC conflict if the values
of all the signals in these states coincide. The STG satisfies the USC property if no two of its
reachable states are in USC conflict. One can see that the USC property indeed implies the
CSC property (but not vice versa). It can be checked using the following Reach specification:

forall s in SIGNALS { $s <-> $$s } & exists p in PLACES { $p^$$p }

4.4 Normalcy

The property of normalcy [SBG+01] is a necessary condition for an STG to be implementable
using only logic gates without input inversions (‘bubbles’). This in turn guarantees that the
circuit is SI without the necessity to neglect the delays of input inverters.

To define normalcy formally, we need the following auxiliary definitions. For each reachable
state M of the STG, we denote by Code(M) the Boolean vector comprised of the values of all
signals at this state, and by Codes(M) we denote the component of Code(M) corresponding to
a signal s (note that Codes(M) can be computed by the Reach expression $s). Furthermore,
by Outs(M) we denote the enabledness status of a signal s at this state (note that Outs(M)
can be computed by the Reach expression @s). Now the next-state function Nxts for a local
signal s can be defined as

Nxts(M)
df
= Codes(M) ⊕ Outs(M),

where ⊕ is the ‘exclusive or’ operation. The CSC condition introduced above ensures that the
value of this function is determined without ambiguity by the encoding of each reachable state,
i.e. Nxts(M) is a function of Code(M) rather than of M : Nxts(M) = Fs(Code(M)) for some
Boolean function Fs. (Fs will eventually be implemented as a logic gate).

An STG satisfies the positive normalcy (or p-normalcy) condition w.r.t. a local signal s if
for every pair of reachable states M ′ and M ′′, Code(M ′) ≤ Code(M ′′) implies Nxts(M

′) ≤
Nxts(M

′′). Similarly, it satisfies the negative normalcy (or n-normalcy) condition w.r.t. a local
signal s if for every pair of reachable states M ′ and M ′′, Code(M ′) ≤ Code(M ′′) implies
Nxts(M

′) ≥ Nxts(M
′′). Finally, an STG is normal if w.r.t. each local signal it is either p-nor-

mal or n-normal. (It turns out that normalcy implies CSC [SBG+01].)
An example of normalcy violation is illustrated in Fig. 8. This STG is implementable —

the gates for all the local signals are determined by the following functions:

Flds = d ∨ csc Fdtack = d Fd = ldtack ∧ csc Fcsc = dsr ∧ (ldtack ∨ csc)

Nonetheless, normalcy is violated for signal csc. Indeed, because Code(M) < Code(M ′′) and
Nxtcsc(M) > Nxtcsc(M

′′), csc cannot be p-normal; on the other hand, Code(M ′) < Code(M)
and Nxtcsc(M

′) < Nxtcsc(M), so csc cannot be n-normal. This is reflected in the implementa-
tion of csc, which is positive w.r.t. dsr and negative w.r.t. ldtack (note that the corresponding
gate has an input inverter).

The following Reach specification allows one to verify the normalcy property:

exists s in LOCAL {

let pos = exists e in ev s, f in trig e { is_plus f <-> is_plus e },

neg = exists e in ev s, f in trig e { is_plus f ^ is_plus e } {

pos & neg | pos & s’ & ~s’’ | neg & ~s’ & s’’

}

}

&

forall ss in SIGNALS { $ss -> $$ss }

A Usable Reachability Analyser 13

dtack− dsr+ csc+ lds+

d− lds− ldtack− ldtack+

csc− dsr− dtack+ d+

010000
000000

M′

100000

M

100001

010100
000100

M′′

100100
101001

011100

001100 101100

101101

011110 011111 111111 101111

dtack− dsr+ csc+

ldtack− ldtack− ldtack− lds+

dtack− dsr+

lds− lds− lds−

dtack− dsr+

ldtack+

d−

csc− dsr− dtack+

d+

Fig. 8. An STG (left) and its state graph (right). The STG satisfies the CSC property but has a
normalcy violation for signal csc, as witnesses by the states M , M ′ and M ′′. The order of signals in
the binary codes is: dsr , dtack , lds, ldtack , d , csc.

Here, the ev operator computes the set of events labelled by a particular signal, the trig

operator computes the set of triggers of an event e, i.e., informally, the set of events whose
firing can enable e,13 and the postfix operator ’ computes the next-state function of a signal.14

Intuitively, in lines 2 and 3 we make hypotheses about the normalcy type of s based on its
triggers. Indeed, if an event e labelled by s has a trigger labelled by a signal transition with
the same edge (‘+’ or ‘−’) then the signal cannot be n-normal, and so a hypothesis that it is
p-normal is made. Similarly, if e has a trigger labelled by a signal transition with the opposite
edge then the signal cannot be p-normal, and so a hypothesis that it is n-normal is made.
The first part of the expression in Line 4 checks whether contradictory hypotheses have been
made about the normalcy type of s (in such a case the normalcy is trivially violated), and
the remaining two parts of this expression check the violation of the normalcy condition for s
depending on what hypothesis about its type (p- or n-normal) has been made. Line 8 simply
specifies that Code(M ′) ≤ Code(M ′′), as required in the definition of normalcy.

In practice, if normalcy is violated then this violation in most cases is due to contradictory
hypotheses made for some signal (e.g. this is the case for the STG in Fig. 8). That is, the
expression in lines 1–6 is simplified to 1 during the expansion phase, and so only the expression
in line 8 remains; though one can see that the resulting SAT instance will be trivially satisfiable,
it would be advantageous to simplify the whole specification to 1 in the case of contradictory
hypotheses, so that the call to SAT solver is completely avoided. This can be accomplished by
the following Reach specification:

exists s in LOCAL {

let pos = exists e in ev s, f in trig e { is_plus f <-> is_plus e },

neg = exists e in ev s, f in trig e { is_plus f ^ is_plus e } {

pos & neg

}

}

|

exists s in LOCAL {

let pos = exists e in ev s, f in trig e { is_plus f <-> is_plus e },

neg = exists e in ev s, f in trig e { is_plus f ^ is_plus e } {

// the pos and neg cannot hold together -

// checked by the trivial case above

13 The triggers of e are exactly the causally maximal events in ••e.
14 Note that s’ is ‘syntax sugar’ for $s^@s.

14 V. Khomenko

Fig. 9. A specification of an N -way arbiter: the traditional (left) and early (middle) protocols, together
with a model of a client (right).

pos & s’ & ~s’’ | neg & ~s’ & s’’

}

}

&

forall ss in SIGNALS { $ss -> $$ss }

Intuitively, the first part checks if one can make contradictory hypotheses for some signal;
if this is the case, then this part evaluates to 1 during expansion, causing the whole expression
to evaluate to 1. Otherwise this part evaluates to 0 and does not affect the SAT instance.15

4.5 Model checking of flat arbiters

Arbiters [Kin07] are basic blocks guarding access to shared resources, and as such, they play a
very important role in circuit design. The top-level specification of an N -way arbiter is shown
in Fig. 9(left). Suppose there are N clients using a shared resource in a mutually exclusive
way (Fig. 9(right) shows an STG modelling the behaviour of each client). Before accessing
the resource, ith client sends a request to the arbiter (by raising signal ri). Such requests can
be sent concurrently by different clients. In response, the arbiter issues a grant (by raising
signal gi). At most one of g1, . . . , gN can be high at any time, no matter how many concurrent
requests have been received by the arbiter. Upon receipt of the grant, a client can safely use
the resource, with the guarantee that no interference is possible from other clients. Having
finished using the resource, the client lowers its request ri, and in response the arbiter lowers
gi. At this point the arbiter can issue a grant to another client.

An alternative early protocol is shown in Fig. 9(middle); the difference here is that once
ith client lowers the request ri, the arbiter is allowed to immediately issue a grant gj (j 6= i) to
another client, in parallel with lowering the grant gi. Hence, gi and gj can be simultaneously
high, but this is harmless since ith client has already declared (by lowering ri) that it had
finished using the shared resource, and, according to this early protocol, it will not send another
request (i.e. raise ri again) until the arbiter lowers gi.

N -way arbiters are usually constructed using basic 2-way mutual exclusion (ME) elements.
(It is a well-known fact that one cannot construct even a 2-way arbiter using only digital
logic gates [Var90].) When the two requests arrive almost simultaneously, the ME element,
like Buridan’s ass, has to make an arbitrary choice between them. It enters a metastable state,
in which it can stay indefinitely. Though the time for resolving metastability is exponentially
distributed, and so most arbitrations are fast, the fact that there is no upper bound on this time
means that systems that require the arbitration decision within bounded time occasionally fail.
Hence, reducing the latency is one of the key objectives in arbiter design.

One of traditional ways of designing N -way arbiters is to combine the basic ME elements
in a balanced tree-like fashion. This design is simple and results in a small circuit; however,
its disadvantage is that several (log N) arbitrations happen sequentially. This can significantly

15 Generally, any Reach subexpression that does not contain occurrences of the ‘status’ operators $,
@ and ’ (either directly or indirectly, via a name defined by the let operator) will evaluate to a
constant during the expansion stage.

A Usable Reachability Analyser 15

Fig. 10. The top-level view of the flat arbiter.

increase the latency of the arbiter, especially in balanced systems where the requests usually
arrive almost simultaneously, and so several sequential ME elements, one after another, can
spend long time in their metastable states.

In [MKY09] an alternative way of constructing N -way arbiters was proposed. The main
idea was to perform concurrent arbitrations between all pairs of requests, and then make the
decision on what grant to issue based on their outcomes, see Fig. 10. Crucially, all the ME
elements in such an arbiter work in parallel (hence the name ‘flat arbiter’), and the subsequent
decision logic has bounded latency.

In [MKY09] a 3-way flat arbiter implementing the early protocol was designed as an STG
shown in Fig. 11. It can be converted into an STG of the traditional arbiter by augmenting it
with a new initially marked place lock, the arcs from it to all the transitions labelled ga+, gb+
and gc+, and the arcs from all the transitions labelled ga−, gb− and gc− to it, as illustrated
in the bottom-right corner of the picture (note that there are two transitions labelled ga+, and
two transitions labelled gb+ in the STG). Intuitively, this new place does not allow to issue
a grant until the previous grant has been lowered. In spite of being in the preset of several
output transitions, lock does not cause violations of output persistency, as the transitions
corresponding to the rising edges of the grant signals cannot be enabled simultaneously (i.e.
this is a controlled choice).

Both the original and augmented STGs can be automatically synthesised as SI circuits.
However, building such STGs for larger N and then synthesising them is impractical [MKY09],
so a generic way of constructing N -way flat arbiters was also developed in [MKY09]. For N = 3
this generic approach results in the flat arbiter circuit implementing the early protocol, which
is shown in Fig. 12. (This circuit is different from the one obtained by synthesising the STG in
Fig. 11.) As explained in the beginning of this section, a circuit can be converted into an STG
using the circuit-STG construction in Fig. 5 and composing it with the STG modelling the
environment, which in this case is simply three copies of the client STG shown in Fig. 9(right).

Deadlock checking of a flat arbiter The correct STGs modelling flat arbiters must ob-
viously be deadlock free. Unfortunately, the standard deadlock checking does not quite work,
as the definition of the deadlock in an arbiter is slightly different.16 Indeed, in the situation
when only some requests have arrived, the arbiter is obliged to eventually issue a grant, even
when the remaining requests never arrive. Hence, if some state (except the initial one) does
not enable any transitions besides the rising request transitions (ra+, rb+ and rc+ in Fig. 11)
then it is classified as a deadlock. Another way of putting it is that in the STG the rising

16 Like in the example with the proper termination described in the introduction, deadlock freeness of
an arbiter is yet another minor variation of a standard property, rendering the standard deadlock
checking engines virtually useless.

16 V. Khomenko

inputs: ra, rb, rc, ab, ba, bc, cb, ac, ca; outputs: ga, gb, gc

Fig. 11. STG specification of the decision logic of an early 3-way flat arbiter, and a way of inserting
a lock place into it to implement the traditional protocol.

request transitions are not weakly fair, i.e. they may remain enabled forever, without firing. To
summarise, the differences from the standard deadlock checking are:
– the rising request transitions are not weakly fair, i.e. any state (except the initial one)

enabling only such transitions is a deadlock;
– though the initial state enables only the rising request transitions, it is not a deadlock (i.e.

this state has to be treated in a special way).

A Reach specification of this property is as follows:

let requests = {T"ra+", T"rb+", T"rc+"} {

forall t in TRANSITIONS\requests { ~@t }

}

&

exists p in PLACES { $p ^ is_init p }

Intutitively, the let operator defines the set of transitions which are not weakly fair,17 the
subexpression starting with the forall ketword is similar to the standard deadlock specifi-
cation, except that the transitions that are not weakly fair are not required to be disabled,
and the exists operator eliminates the initial state from consideration by requiring that the
marking of some place is different from its initial marking (the latter is returned by the is init

operator).
The let statement in the above specification can be made more general by using a regular

expression to define the set of all requests:

17 Recall that the T operator interpretes the following string as a transition name.

A Usable Reachability Analyser 17

Fig. 12. A decomposed implementation of a 3-way flat arbiter.

let requests = TT "r[a-z]\\++\\(/[0-9]\\+\\)\\?" ...

Here the TT operator18 computes the set of all transitions whose name matches the regular ex-
pression given by the following string.19 Intuitively, this regular expression matches the strings
starting with ‘r’, followed by a non-empty sequence of letters, followed by a ‘+’, optionally
followed by a ‘/’ with a number appended.20 Note that using a regular expression allows one
to use the same Reach specification to check the deadlock freeness of an N -way flat arbiter
for any N , provided that the names of rising request transitions (and only such names) match
this pattern.

Mutual exclusion checking of a flat arbiter Another important property of flat arbiters
is the mutual exclusion of the grants. This is similar to the standard mutual exclusion property,
except that it is formulated for signals rather than places. Though such a property would not be
directly checkable using a standard mutual exclusion checker, there is a standard construction
allowing one to add for each signal of the STG a place which is marked iff the corresponding
signal is high. Hence, a standard mutual exclusion checker can be used if the user is willing to
modify the original STG. However, it is much easier to use the following Reach specification:

let a = $S"ga", b = $S"gb", c = $S"gc" { a & b | b & c | a & c }

Note that if the number of entities that have to be checked for mutual exclusion is large, such
a specification can become quite long, as its size is quadratic in the number of entities. Hence
Reach provides the threshold operator for writing such specifications concisely:

18 The Reach language has also the analogous operators PP and SS, computing the set of places and
signals, respectively, whose names match a given regular expression.

19 Currently the basic POSIX regular expressions are supported. Note that POSIX requires all the
regular operators and brackets for grouping to be escaped with a backslash; moreover, since the
usual C escape sequences are applied when parsing the string, double backslashes are needed in this
specification.

20 Recall that the rising transitions for a signal a are labelled a+, a+/1, a+/2, etc.

18 V. Khomenko

threshold[2]($S"ga", $S"gb", $S"gc")

Intuitively, the threshold operator evaluates to 1 iff the number of inputs evaluating to 1 is
not smaller than the threshold (given in [...]). Similarly to the deadlock specification for an
arbiter given above, one can use a regular expression to specify the set of signals:

let grants = SS "g[a-z]\\+" {

threshold[2] g in grants { $g }

}

Note that the iterative form of the threshold operator is used here.
The above specifications can be used to check the mutual exclusion property of arbiters

implementing the traditional protocol (i.e. the STG in Fig. 11 must be augmented with the
lock place). However, arbiters implementing the early protocol violate these properties; in fact,
increasing the value of the threshold to 3 in the above specifications allows one to establish
that the STG in Fig. 11 and the circuit in Fig. 12 have reachable states in which all three
grants are high (which is correct according to Fig. 9(middle)).

Hence the mutual exclusion specification for arbiters implementing the early protocol has to
be changed as follows. Instead of requiring that there is at most one client whose grant is high,
one should require that there is at most one client for which both the request and the grant
are high. Again, this is a minor variation of the standard mutual exclusion property which is
not easy to check with standard tools. However, it is easy to capture with the following Reach

specification:

let a = $S"ra" & $S"ga", b = $S"rb" & $S"gb", c = $S"rc" & $S"gc" {

a & b | b & c | a & c

}

Similarly to the above specifications for the traditional protocol, this specification can be
shortened using the threshold operator:

threshold[2]($S"ra" & $S"ga", $S"rb" & $S"gb", $S"rc" & $S"gc")

Furthermore, a regular expression can be used to specify the set of requests (together with the
iterative form of the threshold operator):

let req = SS "r[a-z]\\+" {

threshold[2] r in req {

$r & $S("g" + (name r)[1..])

}

}

Here, the name operator returns the name of the entity (place, transition or signal) it is applied
to, the + operator concatenates strings, and the [m..n] operator extracts a substring from
a string, from mth to nth character, inclusive. Optionally, one of the indices in this operator
can be dropped, e.g. in this example the [1..] operator returns the original string without
the head character.21 Intuitively, in this example we assume that the names of the request
and grant signals of a client differ only in the head character (it is ‘r’ for requests and ‘g’ for
grants). Hence, the name of a grant signal can obtained from the name of the corresponding
request signal by dropping the head character and then pre-pending the result with ‘g’.

5 Conclusions and future work

Existing reachability analysers either require the user to input the formula manually, which
can be very tedious and error-prone, or automatically generate formulae for some fixed set of

21 The numbering of characters in the string starts from 0.

A Usable Reachability Analyser 19

common properties, which rules out custom properties. In this paper a solution to the problem
of generating formulae expressing custom reachability properties is suggested. The proposed
approach allows the user to write a concise abstract specification of the property in a specially
developed language Reach, which is then automatically expanded into a formula for a concrete
model. The usefulness of this method is demonstrated on several case studies.

The presented idea can be extended to other formalisms in a straightforward way. For
example, to extend the Reach language to general Petri nets it is enough to change the
semantics of the ‘status’ operator $: it should return a non-negative integer (the number of
tokens in a place) rather than a Boolean value.22 Similarly, to extend Reach to coloured Petri
nets, the operator $ should return a multiset of token colours, which are elements of the algebra
of colours (whose operators should also be added to Reach), and the operator @ should take
into account the transition guards. Generally, most formalisms that have an explicit notion of
state can be adopted without much difficulty.

An orthogonal way of extending Reach is to use a different class of properties. As the
semantics of Reach is simply a Boolean expression, one can easily add various modalities to
the language, such as LTL or CTL temporal modalities. For example, the following specification
defines the property that whenever a client sends a request to an arbiter, it is eventually
granted:23

let req = SS "r[a-z]\\+" {

forall r in req {

[]($r -> <>$S("g" + (name r)[1..]))

}

}

Here the [] and <> operators correspond to the LTL modalities � and ♦, respectively.
On the practical side, the efficiency of Reach expander can be improved by enhancing it

with the capability to identify and share common subterms, i.e. the underlying data structure
would become a DAG rather than a tree. (Such common subterms are often created when
expanding the iterative operators such as forall and exists.) This change would be invisible
to the user, while increasing the efficiency and resulting in smaller SAT instances. At the user
level, Reach already provides a possibility to share common subexpression by means of the
let operator. However, this is quite rudimentary; one can add more powerful constructs, such
as recursive definitions and graph rewriting rules.

Other potential extensions include a more elaborated way of interfacing the SAT solver,
e.g. the ability to look up the returned satisfying assignment and formulate new reachability
queries depending on it. (Contemporary SAT solvers can be used in the incremental mode,
when the SAT instance is repeatedly modified by adding and/or removing a small number of
clauses, and the knowledge gathered while solving the previous instance can be partially re-
used for the new instance, improving the performance.) In particular, this would allow finding
all reachable states satisfying the property, or, alternatively, finding a solution optimising the
user-provided cost function.24

References

[Chu87] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications.
PhD thesis, Lab. for Comp. Sci., MIT, 1987.

22 Of course, one has to take care of decidability, as some reachability properties of general Petri nets
are undecidable. However, this is a separate issue from the property generation.

23 This property is violated unless suitable fairness constraints on the ME elements are added; they
can also be expressed in LTL.

24
MPSat already has a capability to compute all reachable states satisfying the property, as well as
finding a shortest path to a state satisfying the property. However, currently there is no way for the
user to specify a custom cost function.

20 V. Khomenko

[CKK+02] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic Syn-

thesis of Asynchronous Controllers and Interfaces. Springer-Verlag, 2002.
[ERV02] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding algorithm.

FMSD, 20(3):285–310, 2002.
[Esp98] J. Esparza. Decidability and complexity of Petri net problems — an introduction. In

W. Reisig and G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume 1491
of LNCS, pages 374–428. Springer-Verlag, 1998.

[Hel99] K. Heljanko. Using logic programs with stable model semantics to solve deadlock and
reachability problems for 1-safe Petri nets. Fund. Inf., 37(3):247–268, 1999.

[Hol04] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
2004.

[Kho03] V. Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD thesis,
School of Computing Science, Newcastle University, 2003.

[Kin07] D.J. Kinniment. Synchronization and Arbitration in Digital Systems. John Wiley & Sons
Ltd., 2007.

[KKY04] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting state coding conflicts in STG
unfoldings using SAT. Fund. Inf., 62(2):1–21, 2004.

[Mar90] A.J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In Proc. 6 th

MIT Conference on Advanced Research in VLSI, pages 263–278. MIT Press, 1990.
[MB59] D.E. Muller and W.S. Bartky. A theory of asynchronous circuits. In Proc. Int. Symp. of

the Theory of Switching, pages 204–243, 1959.
[MKY09] A. Mokhov, V. Khomenko, and A. Yakovlev. Flat arbiters. In Proc. ACSD’09. IEEE Comp.

Soc. Press, 2009. submitted paper.
[MR97] S. Melzer and S. Römer. Deadlock checking using net unfoldings. In Proc. CAV’97, volume

1254 of LNCS, pages 352–363. Springer-Verlag, 1997.
[Rei85] W. Reisig. Petri nets: an introduction, volume 4 of EATCS Monographs in Theoretical

Computer Science. Springer-Verlag, 1985.
[RY85] L. Rosenblum and A. Yakovlev. Signal graphs: from self-timed to timed ones. In Proc. Int.

Workshop on Timed Petri Nets, pages 199–206. IEEE Comp. Soc. Press, 1985.
[SBG+01] N. Starodoubtsev, S. Bystrov, M. Goncharov, I. Klotchkov, and A. Smirnov. Towards syn-

thesis of monotonic asynchronous circuits from signal transition graphs. In Proc. ACSD’01,
pages 179–188. IEEE Comp. Soc. Press, 2001.

[Var90] V.I. Varshavsky, editor. Self-Timed Control of Concurrent Processes: The Design of Ape-

riodic Logical Circuits in Computers and Discrete Systems. Kluwer Academic Publishers,
1990. Translated from Russian, published by Nauka, Moscow, 1986.

[VW02] W. Vogler and R. Wollowski. Decomposition in asynchronous circuit design. In J. Cor-
tadella, A. Yakovlev, and G. Rozenberg, editors, Concurrency and Hardware Design, volume
2549 of LNCS, pages 152–190. Springer-Verlag, 2002.

