
IGR Report

A System for Parallel Model Checking

1 Background/Context

A distinctive characteristic of reactive concurrent systems is that their sets of local states have
descriptions which are both short and manageable, and the complexity of their behaviour comes
from highly complicated interactions with the external environment rather than from complicated
data structures and manipulations thereon [13]. One way of coping with this complexity problem
is to use formal methods and, especially, computer aided verification tools implementing model
checking (see, e.g., [4]) — a technique in which the verification of a system is carried out using a
finite representation of its state space.

Model checking and net unfoldings

The main drawback of model checking is that it suffers from the state space explosion problem.
That is, even a relatively small system specification can (and often does) yield a very large state
space. To alleviate this problem, a number of techniques have been proposed. They can roughly
be classified as aiming at an implicit compact representation (e.g., in the form of a binary decision
diagram, or BDD, see [2]) of the full state space of a reactive concurrent system, or at an explicit
generation of its reduced (though sufficient for a given verification task) representation (e.g., ab-
straction [3] and partial order reduction [9] techniques). Among them, a prominent technique is
McMillan’s (finite prefixes of) Petri net unfoldings (see, e.g., [8,11]). It relies on the partial order
view of concurrent computation, and represents system states implicitly, using an acyclic net.
More precisely, given a Petri net Σ, the unfolding technique aims at building a labelled acyclic net
Pref (a prefix ) satisfying two key properties:

• Completeness. Each reachable marking (global state) of Σ is represented by at least one
‘witness’, i.e., a marking of Pref reachable from its initial marking.

• Finiteness. The prefix is finite and thus can be used as an input to model checking algorithms,
e.g., those searching for deadlocks.

A prefix satisfying these two properties can be used for model checking as a condensed representa-
tion of the state space of a system (prefixes are often exponentially smaller than the corresponding
reachability graphs, especially if the system at hand exhibits a lot of concurrency). In particular,
it can be used to verify many relevant behavioural properties, such as deadlock-freeness [12], or
progress properties expressed in a variant of linear time temporal logic [6].

Parallelization of model checking algorithms

Typical state-of-the-art verification packages based on model checking result in sequential imple-
mentations with centralized representation of the state space. Therefore, the size of specification
which can be verified is limited by the amount of main memory available to hold the state space as
the cost of swapping pages to the hard disk leads to a rapid degradation in performance. Also, the
time taken to perform the verification is determined by the computational power of the unipro-
cessor on which the model checking algorithm runs. This can make it impractical, or impossible,
to verify a specification.

Therefore, the completed project set out to investigate an alternative: the parallelization of
model checking algorithms so that they can run efficiently on parallel computer systems. This
would take advantage of the potential for parallelization of algorithms for state space manipulation
that could lead to a significant performance speed-up and thus extend the applicability of model
checking.

1



2 Key Advances and Supporting Methodology

The original aims of the proposed research were as follows:

1. To investigate the theoretical principles of the design of parallel algorithms for model check-
ing.

2. To develop efficient parallel algorithms.

3. To implement (in a portable manner) and evaluate these algorithms

The work on the project started from a wide ranging investigation of the existing approaches
to model checking from the point of view of their parallelization. The results of this initial in-
vestigation were highly encouraging and it was concluded that there were two most promising
research directions: (i) parallel exploration of the state space on a network of workstations similar
to the APP [14]; and (ii) parallelization of the model checking based on McMillan’s unfoldings —
a partial order technique. Given the resources available within the project, a decision was made
to concentrate on the latter approach as there has already been a significant expertise available
on the partial order semantics of concurrency. There are two basic advantages of the unfolding
approach when compared with other model checking techniques. First, many instances of practi-
cally relevant problems can be solved much more efficiently than by using, for example, exhaustive
exploration of the state space or BDDs (see, e.g., [15]). Second, by explicitly representing causal-
ity, concurrency and choice, unfoldings support verification based on local states, and yield a
direct visual representation of complex concurrent behaviours. This is particularly useful for the
debugging and development process, especially at its early stages.

The following advancements have been made:

• integer programming based model checking algorithm employing complete prefixes of Petri
net unfoldings

• integer programming based algorithms for detection and resolution of encoding conflicts in
specifications of asynchronous circuits

• SAT based algorithms for detection and resolution of encoding conflicts in specifications of
asynchronous circuits

• algorithm for efficient generation of possible extensions of a prefix

• parallel unfolding algorithm

• theory of canonical prefixes

• unfolding algorithm for high-level Petri nets

It is also important to stress that all the theoretical developments made within the completed
project were backed up by prototype tool implementations and extensive experiments carried out
on the standard benchmarks. Finally, the project has ended with the submission and successful
defence of a PhD Thesis completed by the student supported by the grant [16]. The main advances
made within the project are described in more detail below.

Checking behavioural properties of prefixes

In the work carried out within the project, we first addressed the problem of an efficient model
checking of a given complete prefix, as at that time property verification was the bottleneck of the
entire method.

In [12], the problem of deadlock checking of a Petri net was reduced to a mixed integer linear
programming problem (MIP). In the papers [17, 25, 26, 33], we presented a further development
of this approach. The essence of the proposed modifications is to transfer the information about
causality and conflicts between events involved in an unfolding into a relationship between the
corresponding integer variables in the system of linear constraints. We adopt the Contejean and
Devie’s algorithm (CDA), developed in [5], for efficiently solving systems of linear constraints over
the domain of natural numbers, and refine it by employing specific properties of the systems of
linear constraints to be solved and exploiting partial order dependencies between events in the
unfolding of a Petri net. The conducted experiments demonstrated that the resulting algorithm
achieves significant speedups. We provided theoretical background and implementation details, as
well as outlining ways of reducing the number of variables and constraints in the original system

2



presented in [12]. This integer programming approach is applicable to deadlock detection, checking
mutual exclusion, and various kinds of coverability and reachability analysis. We presented some
additional heuristics, which can be incorporated into our algorithm. We also consider an on-the-fly
version of our algorithm, which allows one to verify deadlock-freeness in a very memory efficient
way, without explicitly generating the system of constraints.

The achieved speedups were so significant that model checking of a given complete prefix
ceased to be the bottleneck of this verification method, so there was no point in parallelizing the
algorithm. As a result, the main effort was then concentrated on the problem of efficient generation
of complete prefixes.

Generation of possible extensions of a prefix

Generation of possible extensions of a prefix is the most time consuming part of the unfolding
algorithm. Prior to our efforts, this problem was addressed in [7], where the original McMil-
lan’s technique [11] was considerably improved. In particular, to build possible extensions of the
branching process being constructed, [7] suggested to keep the concurrency relation and provides
a method of maintaining it. This approach is fast for simple systems, but soon deteriorates as the
amount of memory needed to store the concurrency relation is quadratic in the size of the already
built part of the prefix. In [18,27], we proposed another method of computing possible extensions.
It is fully compatible with the concurrency relation approach, but can also be used independently.
In contrast to the concurrency relation approach, it does not require much additional memory.
The essence of the method is to add new transition instances to the prefix being built not by
trying all the transitions one-by-one, but several at once, merging the common parts of the work.
Moreover, we provided some additional heuristics. Experimental results demonstrated that one
can achieve significant speedups if the transitions of the Petri net being unfolded have overlapping
parts.

Parallelization of prefix generation

In [20, 28], we proposed a parallel unfolding algorithm. It should be noted that the traditional
sequential unfolding algorithms [8,11] are not well suited for parallelization, and we had to develop
a new (significantly different) one. The experiments demonstrated that the degree of parallelism
is usually quite high and the resulting algorithms achieves significant speedups comparing with
the sequential case. It turns out that the new algorithm not only admits efficient parallelization,
but also is faster than the traditional ones even in a sequential implementation. In [20, 28], we
also propose some additional optimizations for generating possible extensions of a prefix.

Canonical prefixes

While proving the correctness of the parallel unfolding algorithm, it has been discovered that
generated prefixes enjoy a property akin to canonicity. We expounded this in [21,30,34], where a
general framework for truncating Petri net unfoldings has been developed. It provides a powerful
tool for dealing with different variants of the unfolding technique, in a flexible and uniform way.
In particular, by finely tuning the so-called cutting contexts, one can build prefixes which better
suit a particular model checking problem. A fundamental result is that, for an arbitrary Petri
net and a cutting context, there exists a ‘special’ canonical prefix of its unfolding, which can be
defined without resorting to any algorithmic argument. This should be contrasted with former
approaches, where a prefix was ‘defined’ as any of the results produced by a non-deterministic
unfolding algorithm, which resulted in a very ‘inconvenient’ theory.

We introduced a new, stronger notion of completeness of prefixes, which was implicitly assumed
by many existing model checking algorithms employing unfoldings. We have shown that the
canonical prefix is complete w.r.t. this notion.

It turns out that the canonical prefix is exactly the prefix generated by arbitrary runs of
the standard unfolding algorithm, as well as our parallel unfolding algorithm (note that both
algorithms are non-deterministic). This gives a new correctness proof for them, which is much
simpler in the case of the parallel algorithm. As a result, relevant model checking tools can now
make stronger assumptions about the properties of the prefixes they use. In particular, they can
safely assume that for each configuration containing no cut-off events, all firings are preserved.

Finally, we proposed conditions for the finiteness of the canonical prefix, and presented criteria
allowing placing bounds on its size, which should help in choosing problem-specific cutting con-
texts. It is worth noting that in order to deal with the finiteness problem we proved a version of
König’s Lemma [10] for branching processes of (possibly unbounded) Petri nets.

3



Prefixes of high level Petri nets

In [23, 31], we defined branching processes and unfoldings of high-level Petri nets and proposed
an algorithm which builds finite and complete prefixes of such nets. We established an important
relation between the branching processes of a high-level net and those of its low-level expansion, viz.
that the sets of their branching processes are the same, allowing us to import results proven for low-
level nets. Among such results are the canonicity of the prefix for different cutting contexts, and
the usability of the parallel unfolding algorithm proposed in [?,?]. Our approach is conservative
in the sense that all the verification tools employing the traditional unfoldings can be reused
with such prefixes. The conducted experiments demonstrated that it is, on one hand, superior
to the traditional approach on data-intensive application, and, on the other hand, has the same
performance on control-intensive ones.

Applications to asynchronous circuits design

Signal Transition Graphs (STGs) are a Petri nets based formalism widely used for describing
the behaviour of asynchronous control circuits. STGs are a form of interpreted Petri nets, in
which transitions are labelled with the names of rising and falling edges of circuit signals. One of
the stages of circuit synthesis based on STGs involves the detection of coding conflicts, and the
elimination of them. In [19, 29], we proposed a solution for the CSC analysis problem, consisting
in identifying conflicts which occur when semantically different reachable states have the same
binary encoding. We showed that the notion of a coding conflict can be characterized in terms of
a system of integer constraints, and developed an efficient technique for solving such a system. It
is also worth pointing out that the method allows one not only to find states which are in coding
conflict, but also to derive execution paths leading to them without performing a reachability
analysis. This algorithm provided a foundation for the unfolding-based framework for resolution
of coding conflicts described in [22], which used the set of pairs of configurations representing
coding conflicts produced by the algorithm as an input.

The integer programming based algorithm in many cases achieved significant speedups, but
on some of the benchmarks its performance was still not entirely satisfactory: on several large
instances the test did not terminate within the time limit. In [24, 32] we characterized the CSC
problem in terms of boolean satisfiability (SAT). Though being more complicated than the integer
programming translation, the SAT one allows more dependencies between the variables to be
exploited. State-of-the-art SAT solvers are quite efficient, and have been for long employed in
the model checking community. In our experiments, we achieved significant speedups using this
method. We show also how the proposed translation can be extended to the USC and normalcy
problems. Moreover, by explicitly representing causality, concurrency and conflicts, unfoldings
support verification based on local states, and yield a direct visual representation of complex
concurrent behaviours [22].

Prototype tools

The following two tools were developed within the project, and were extensively used to obtain
experimental result:

• CLP - Linear programming model checker. It uses a finite complete prefix of a Petri net
and can check deadlock freeness, reachability or coverability of a marking, or perform an
extended reachability analysis, i.e. check if there exists a reachable marking satisfying the
given predicate. CLP can be used both as a separate utility or as a part of the PEP tool [1].

• PUNF - Petri net unfolder. PUNF builds a finite and complete prefix of a safe Petri net. The
prefixes generated by PUNF can be passed as an input to the CLP model checker.

Both tools can be downloaded from

http://www.cs.ncl.ac.uk/people/victor.khomenko/home.formal/tools/tools.html

Research output

Overall, the project has resulted in one PhD Thesis [16] (which comprises and systematizes our
work described above), eight peer reviewed conference papers [17–24], eight technical reports [25–
32], two submitted journal articles [33, 34], and two tools.

4



3 Research Impact

The results of the project are relevant to potential users at three different levels:

• The use of unfolding-based model checking in designing new systems, where our ultimate
beneficiaries are the designers of reactive concurrent systems in a wide range of industrial
applications.

• The use of unfoldings in designing general purpose or application specific computer-aided
design, verification and model-checking tools, where our beneficiaries are designers of CAD
systems and research demonstrators, developers of industrial model-checkers and verifiers,
who can incorporate our unfolding engine or integer programming based parallelized model
checker as part of their systems.

• The use of the net unfolding approach as a way to represent concurrent behaviours, where it
can benefit both industry and academia in offering courses on concurrency and asynchronous
systems and providing efficient ways of semantic model structuring and visualization.

4 Further Research or Dissemination Activities

The dissemination of the results of the completed work has been done via publications in leading
international conferences, and through technical reports and the Internet.

References

[1] E.Best and B.Grahlmann: PEP — more than a Petri Net Tool. Proc. of TACAS’96, Margaria
T., Steffen B. (Eds.). Lecture Notes in Computer Science 1055 (1996)

[2] R.E.Bryant: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transac-
tions on Computers 35 (1986)

[3] E.M.Clarke, O.Grumberg, and D.E.Long: Model Checking and Abstraction. ACM Transac-
tions on Programming Languages and Systems 16 (1994)

[4] E.M.Clarke, O.Grumberg and D.Peled: Model Checking. MIT Press (1999)

[5] E.Contejean and H.Devie: An Efficient Incremental Algorithm for Solving Systems of Linear
Diophantine Equations. Information and Computation 113 (1994)

[6] J.Esparza and K.Heljanko: Implementing LTL Model Checking with Net Unfoldings. SPIN
workshop (2001)

[7] J.Esparza and S.Römer: An Unfolding Algorithm for Synchronous Products of Transition
Systems. Proc. of CONCUR’99, Baeten, J.C.M., Mauw, S. (Eds.). Lecture Notes in Computer
Science 1664 (1999)

[8] J.Esparza, S.Römer and W.Vogler: An Improvement of McMillan’s Unfolding Algorithm.
Formal Methods in System Design 20 (2002)

[9] P.Godefroid: Partial-Order Methods for the Verification of Concurrent Systems: an Approach
to the State-Explosion Problem. Lecture Notes in Computer Science 1032 (1996)

[10] D.König: Über eine Schlußweise aus dem Endlichen ins Unendliche. Acta Litt. ac. sci. Szeged
3 (1927)

[11] K.L.McMillan: Symbolic Model Checking: an Approach to the State Explosion Problem.
PhD thesis, CMU-CS-92-131 (1992)

[12] S.Melzer and S.Römer: Deadlock Checking Using Net Unfoldings. Proc. of CAV’1997, Grum-
berg O. (Ed.). Springer-Verlag, Lecture Notes in Computer Science 1254 (1997)

[13] A.Pnueli: Applications of Temporal Logic to the Specification and Verification of Reactive
Systems: A Survey of Current Trends. Advanced School on Current Trends in Concurrency
(1994)

5



[14] R.K.Ranjan, J.V.Sanghavi, R.K.Brayton and A.Sangiovanni-Vincentelli: Binary Decision Di-
agrams on Network of Workstation. ICCD (1996)

[15] http://wwwbrauer.informatik.tu-muenchen.de/gruppen/theorie/pom/

Project publications

PhD Thesis

[16] V.Khomenko: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD Thesis.
School of Computing Science, University of Newcastle upon Tyne (2003)

Conference papers

[17] V.Khomenko and M.Koutny: LP Deadlock Checking Using Partial Order Dependencies. Proc.
of CONCUR’2000, Palamidessi C. (Ed.). Springer-Verlag, Lecture Notes in Computer Science
1877 (2000)

[18] V.Khomenko and M.Koutny: Towards An Efficient Algorithm for Unfolding Petri Nets. Proc.
of CONCUR’2001, Larsen K.G., Nielsen M. (Eds.). Springer-Verlag, Lecture Notes in Com-
puter Science 2154 (2001)

[19] V.Khomenko, M.Koutny, and A.Yakovlev: Detecting State Coding Conflicts in STGs Using
Integer Programming. Proc. of DATE’2002, Kloos C.D., Franca J. (Eds.). IEEE Computing
Society (2002)

[20] K.Heljanko, V.Khomenko, and M.Koutny: Parallelisation of the Net Unfolding Algorithm.
Proc. of TACAS’2002, Katoen, J.-P., Stevens, P. (Eds.). Springer-Verlag, Lecture Notes in
Computer Science 2280 (2002)

[21] V. Khomenko, M. Koutny, and W. Vogler: Canonical Prefixes of Petri Net Unfoldings. Proc.
of CAV’2002, Brinksma E., Larsen K.G. (Eds.). Springer-Verlag, Lecture Notes in Computer
Science 2404 (2002)

[22] A. Madalinski, A. Bystrov, V. Khomenko, and A. Yakovlev: Visualization and Resolution of
Coding Conflicts in Asynchronous Circuit Design. Proc. of DATE’2003, Verkest, D., Wehn,
N. (Eds.). IEEE Computing Society (2003)

[23] V. Khomenko and M. Koutny: Branching Processes of High-Level Petri Nets. Proc. of
TACAS’2003, Garavel, H., Hatcliff, J. (Eds.). Springer-Verlag, Lecture Notes in Computer
Science 2619 (2003)

[24] V. Khomenko, M. Koutny, and A. Yakovlev: Detecting State Coding Conflicts in STG
Unfoldings SAT. Proc. of ICACSD’2003, Balarin, F., Lilius, J. (Eds.). IEEE Computing
Society (2003)

Technical reports

[25] V.Khomenko and M.Koutny: Deadlock Checking Using Linear Programming and Partial
Order Dependencies. Technical Report CS-TR-695, Department of Computing Science, Uni-
versity of Newcastle upon Tyne (2000)

[26] V.Khomenko and M.Koutny: Verification of Bounded Petri Nets Using Integer Programming.
Technical Report CS-TR-711, Department of Computing Science, University of Newcastle
upon Tyne (2000)

[27] V.Khomenko and M.Koutny: An Efficient Algorithm for Unfolding Petri Nets. Technical
Report CS-TR-726, Department of Computing Science, University of Newcastle upon Tyne
(2001)

[28] K.Heljanko, V.Khomenko, and M.Koutny: Parallelisation of the Petri Net Unfolding Algo-
rithm. Technical Report CS-TR-733, Department of Computing Science, University of New-
castle upon Tyne (2001)

6



[29] V.Khomenko, M.Koutny, and A.Yakovlev: Detecting State Coding Conflicts in STGs Us-
ing Integer Programming. Technical Report CS-TR-736, Department of Computing Science,
University of Newcastle upon Tyne (2001

[30] V.Khomenko, M.Koutny, and W.Vogler: Canonical Prefixes of Petri Net Unfoldings. Tech-
nical Report CS-TR-741, Department of Computing Science, University of Newcastle upon
Tyne (2001)

[31] V.Khomenko and M.Koutny: Branching Processes of High-Level Petri Nets. Technical Report
CS-TR-763, Department of Computing Science, University of Newcastle upon Tyne (2002)

[32] V.Khomenko, M.Koutny, and A.Yakovlev: Detecting State Coding Conflicts in STG
Unfoldings Using SAT. Technical Report CS-TR-778, Department of Computing Science,
University of Newcastle upon Tyne (2002)

Submitted journal articles

[33] V.Khomenko and M.Koutny: Verification of Bounded Petri Nets Using Integer Programming.
Formal Methods in System Design (submitted paper)

[34] V.Khomenko, M.Koutny and W.Vogler: Canonical Prefixes of Petri Net Unfoldings. Acta
Informatica (submitted paper)

7


