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Abstract 
 
The ‘weasel words’ example by Richard Dawkins is based on a simple genetic algorithm and is 
aimed at demonstrating the likelihood of evolution due to natural selection and mutations.  The 
algorithm rewards fine changes in single letters of a random sequence towards the desired phrase.  
Many traits in living things, however, exhibit irreducible complexities, which make fine changes 
such as substitutions of single amino-acids in protein chains unlikely to be rewarded by improved 
fitness.  Improved fitness is often achievable only via coarse changes in the overall structure, and in 
many cases such changes will require moving through inferior individuals.  A more realistic genetic 
algorithm demonstrates that the impact of coarse acknowledgments on the convergence speed is so 
significant that the process does not converge even within a million generations. 
 
Keywords: weasel, evolutionary computation, genetic algorithms, irreducible complexities, 
multiextremal problems. 
 

Introduction and previous work 
 

In “The Blind Watchmaker”i Richard Dawkins, a well-known proponent of the theory of 
evolution, proposes the following computer simulation allegedly proving the possibility of 
evolution.  (Though Dawkins does not make such a strong assertion himself and even acknowledges 
some of the flaws in this simulation, other evolutionists do.)  He takes the phrase ‘methinks it 
is like a weasel’ from Shakespeare’s ‘Hamlet’ and shows that it can be obtained by 
applying a sequence of mutations (random little changes) and selections (choosing the strings which 
better resemble the target phrase) to randomly generated strings of letters.  An example of such a 
process is given in the second column of Table 1 in the context of genetic algorithms described in 
the next section.  Note that for simplicity any special symbols (such as spaces between the words) 
are disallowed and only strings of lower-case English letters of fixed length 23 are considered; thus 
the mentioned phrase, called in sequel the target, becomes ‘methinksitislikeaweasel’. 

 
GENERATION FITTEST INDIVIDUALS FITNESS INDIVIDUAL’S № 

0 

dpqzikfobucdhthxdjgkjel 
ootgpknfpfycgfieowqrwww 
zlodsrkeutgtnkntarjkpxi 
tauqgndmphwzyiayabjrqge 

3

21
27
48
53

3 zlodsokeutgtnknjarjksxi 4 719

5 mathdkwupfycgraeowqrgww 5 1033

7 nxrpyxkgicbnnzkbaxxaqer 6 1337

11 
nxrpyxkgicbclzkwarxaqer 
tathgnhnivqzyilyawzmqgc 7 2101

2160
14 mfthdnkupfyelrawowqygew 8 2641

15 mfthdnkspfyelrswowqygew 9 2819

20 mfthdnkuptyelrawoweyuez 10 3633
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25 
mfthinknifxeliswowqygew 
mpthdnkrxfyslikwowtygew 11 4497

4647
28 mzthdnksptsslravowqysez 12 5170

33 mzthdnksptzslrkgowprsej 13 6010

35 mhthdnksdtzslrkgowtrsel 14 6487

43 mwthdnkrxfislikeewtlsel 15 7826

50 muthdnkaxfislikexwelsel 16 9143

55 mithinksitiklrkbawmrsel 17 10143

66 mithinksitillrkbawersel 18 12206

73 mithinksitiklckeawlasel 19 13670

81 muthinkaitislikexweasel 20 15217

87 muthinkaitislikeaweasel 21 16426

114 methicksitislikeaweasel 22 21729

135 methinksitislikeaweasel 23 25843

Table 1.  Experimental results: the original ‘weasel words’ model (the correct letters are shown in 
bold).  The size of the population is 100. 

 
There have been a number of creationist publications addressing Dawkins' example.  They 

note the duping potential of such computer ‘demonstrations’: 
 

At the time (1986) it was fairly showy to have a computer program to 
demonstrate something and many readers were duped into thinking that the 
program had proved something, not realizing that a program will do whatever its 
programmer designs it to do.ii

 
The reader with a mathematical background can smell the rat in this alleged demonstration of 

evolution ‘at work’; yet, it turns out to be not that trivial to pinpoint exactly where the flaw is!  The 
following suggestions, among others, have been put forward in previous creationist 
publications:ii, ,iii iv

The answer is ‘hardwired’ into the program. The target is predetermined, so no novel 
information arises during the simulation. Dawkins himself acknowledges that this is 
“misleading in important ways”.i However, this is a plausible way to simulate the environment 
in a program.  Note that the program uses the target in a ‘black-box’ manner, i.e., the only 
way for it to access the target is by making queries of a certain type, using a fixed interface 
(i.e., the format of queries), as shown in Figure 1.  In this particular case, the program 
repeatedly passes the generated strings to the environment and gets back their ‘fitness values’ 
represented by natural numbers.  All the models presented in this paper also fit into this 
framework; thus the main line of argument in this paper is not to criticize the top-level set-up 
of Dawkins’ computer simulation, but to modify some of its low-level details (to make it 
better reflect the process of natural selection) and show that the problem becomes much 
harder indeed. 
 
Accelerated mutation rate and perfect selection. Real-world mutation rates are many orders 
of magnitude less than the one used in Dawkins' model, and the selection coefficient is 1.0 in 
every generation (i.e., the string closest to the target always survives), whereas in the real 
world a generous selection coefficient would be 0.01, i.e., its chance to survive would be just 
slightly better than those of other strings.  These arguments, though completely valid, are not 
strong enough by themselves.  Indeed, the evolutionist can claim almost arbitrary mutation 
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rates (though mutation rates that are higher than the inverse of the length of the string would 
cause an error catastrophe, destroying useful information too quickly), motivating this by 
imperfection of replication mechanisms of primeval organisms, high radiation levels due to a 
different composition of the Earth's atmosphere and/or the Earth moving through a zone of 
space with high radiation, etc.  Moreover, the mutation rate, as well as the ‘perfectness’ of 
selection, has only linear impact on the length of the evolution process (unless the error 
catastrophe happens); in other words, if the mutation rate (or the selection coefficient) is 
reduced by the factor of 1000, the process of evolution would take about 1000 times longer—
the evolutionist operating in billions of years can cope with that.  Nevertheless, these two 
arguments have an important advantage: they are essentially independent from the other 
mentioned arguments, and can push up any time estimate derived from such arguments by a 
few orders of magnitude. 
 
Self-reproduction, a pre-requisite. The model does not explain the origin of the first self-
replicating entity, without which the whole process of evolution is a non-starter.  Natural 
selection can operate on populations of such organisms but cannot aid in their formation, i.e., 
they could not have come into existence by means of gradual improvements of some simpler 
entity.  In other words, extreme luck (which cannot be divided on a sequence of independent 
smaller “lucks”) must have been involved for it to appear by blind chance unless such an 
entity was very trivial.  However, no simple self-replicating entity has been demonstrated so 
far, and the theories about what it could look like are at the stage of wild speculations.  Strong 
suspicion arises that no trivial self-replicating entities can exist, and thus the ‘molecule-to-
man’ evolution has a major problem already at the ‘molecule’ stage.  Dawkins’ simulation 
does not attempt to deal with this argument.  Rather, its purpose is to show that once self-
replicating entities have somehow appeared, the process of evolution is easy and smooth. 
 
No irreducible complexities. Only individual letters rather than combinations thereof are 
taken into account.  This does not reflect the process of natural selection adequately, because 
many useful traits in living organisms are irreducibly complex, i.e., they fail completely if 
even one of their components is missing, which makes them resistant to any stepwise 
explanation of their origin.v Though evolutionists deny that irreducible complexities exist in 
living organisms, simulations that a priori exclude the possibility thereof simply beg the 
question. 
 
No fitness valleys In Dawkins’ simulation, an arbitrary string can be transformed into the 
target by stepwise improvement.  This nice property can hardly be expected from the real-
world natural selection: very often any such stepwise transformation must go via individuals 
with lesser fitness than that from which it has started.  (The following analogy might be 
helpful: if a man stands on top of a small hill and wants to get any higher, he has first to come 
down into a valley and then climb a higher hill.) Yet, individuals with such lower fitness are 
eliminated by natural selection, which makes crossing such ‘valleys’ highly problematic. 
 
Of course, this is only a brief summary of the arguments that have been put forward; the 

adduced selection is just an attempt to collect and systematize the main points, with no pretence of 
completeness. 

The rest of the paper revolves around the latter two arguments.  Essentially, the ‘irreducible 
complexities’ are related to the idea of coarse acknowledgements by the environment, and the time 
taken for a certain trait to evolve is exponential in the ‘coarseness’ of the corresponding 
acknowledgement.  Moreover, ‘fitness valleys’ manifest themselves as an additional problem of 
multiextremity.  Thus this paper offers no profoundly new concepts and arguments—its purpose is 
to expound and experimentally confirm the already existing ones and give new insights on them. 
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The software used in the experiments is available for download from 
http://homepages.cs.ncl.ac.uk/victor.khomenko/home.formal/tools/weaseloid. 

 

Genetic algorithms 
 
Dawkins' computer simulation can be seen as a process of solving a particular optimisation 

problem, namely finding a string resembling the target as much as possible (ultimately, with the 
target itself being the best solution), by a genetic algorithm (GA).  There is a lot of literature 
devoted to GAs, the interested reader is referred to the overview by Thomas Bäckvi and further 
references therein; here, only a brief description is given. 

Figure 1.  The GA framework. 
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A GA attempts to find an individual (in this paper, individuals are strings) that is adapted to 

the environment (represented by a fitness function mapping individuals to their fitness values) as 
well as possible.  A GA works by making a series of queries, passing an individual to the 
environment and receiving back its fitness value (a number), as shown in Figure 1.  This fitness 
value characterizes how well the individual is adapted to the environment, and a GA attempts to 
maximize it.  In the case of Dawkins' example, the fitness is calculated as the number of letters in 
the given string which are ‘on their places’, i.e., coincide with the letters in the corresponding 
positions of the target; thus the fitness of the target itself is 23 whereas the fitness of the string 
‘xxtxxxxxitxxlikxxxxxxxx’ is 6.  Table 1 illustrates a typical run of a GA with the 
environment working in this manner. 

Note that the environment is quite independent from the GA itself, and one can easily replace 
it by a completely different environment, provided that the latter has the same interface, i.e., the 
same format of queries.  Thus a particular environment represents a particular optimisation 
problem, and vice versa, by choosing an appropriate environment one can apply the GA to the 
optimisation problem at hand.  This important property will be used further in this paper, viz. the 
same GA will be applied to three different environments (including the one corresponding to 
Dawkins’ model). 

A GA starts off by generating a population of fixed size of random individuals, and the 
environment evaluates them.  Once the fitness of each individual is computed, the daughter 
population of individuals is created in the following way.  The individuals from the current 
generation are replicated (perhaps, several times, according to their fitness, e.g., the ones with the 
fitness above the average can leave more descendants than the others).  Then the mutation operator 
is applied to each generated individual; it changes (mutates) a small number of letters by replacing 
them by randomly generated ones.  In this paper, the mutation rate (i.e., the probability of replacing 
a particular letter of an individual by a random letter) is taken to be 1/23 (the inverse of the 
sequence length is an often used value in GAsv i); such a strategy allows the mutation operator to 
change either none or one or more letters (though it is exponentially unlikely to change many 
letters).  The environment evaluates the individuals generated in this manner, and the fittest ones are 
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retained to form the daughter population (i.e., the population is trimmed back to its initial size by 
discarding the inferior individuals).  The whole process is repeated with this newly generated 
population, then with its daughter population, etc., until some termination criterion is met (in this 
paper, the process is terminated after the target fitness is reached or after a million generations), and 
the fittest (among all the generations) individual is printed as the result. 

Obviously, due to the randomness involved, a particular run of a GA is not guaranteed to find 
the best possible solution to the problem (i.e., one million iterations might be not enough for a GA 
to converge).  In particular, experiments in this paper indicate that when the acknowledgments 
provided by the environment are coarse and the optimisation problem is multiextremal, the 
performance of GAs is severely crippled. 

 

Fine and coarse acknowledgements 
 
Suppose the target phrase is the key to the combination lock protecting a safe with a large 

amount of money.  A burglar is attempting to open it by trying combinations at random.  Somehow 
he has managed to get 90% of the combination right.  Does that mean that he will take home 90% 
of the whole amount?  Obviously not.  Either he guesses the whole combination and gets the whole 
amount, or he gets nothing, no matter how close he is to the target.  The expected number of 
combinations the burglar has to try to get access to the safe is 2623, which is more than 3.5⋅1032, so 
his chances of finishing by the time he dies of old age (or even within a trillion years) are pretty 
slim indeed.  The combination lock illustrates the notion of irreducible complexity,v i.e., the task of 
finding the correct combination cannot be subdivided into independent simple tasks in such a way 
that solving one or several (but not all) such tasks yields some benefit. 

In contrast, consider the variant of this problem where the safe is subdivided into 23 smaller 
safes, each protected by a one-letter combination lock (with the money equally distributed between 
the safes).  The burglar’s problem is much easier in this case.  Indeed, there are only 26 possible 
combinations for each such lock, which can be checked quite quickly, so the burglar can break open 
all the safes within half an hour, and even if for some reason he has not managed to open all of 
them, he takes home some money.  In this case, though the same combination of letters is used and 
the same amount of money is at stake, the problem is reducibly complex, i.e., can be subdivided into 
a series of independent simpler problems. 

So, why exactly is the former problem irreducibly complex whereas the latter one not?  What 
is the essential difference between these two problems?  It does not take a rocket scientist to figure 
out that the main difference is that in the latter case each lucky guess is acknowledged (by 
rewarding the burglar with a certain amount) whereas in the former case only a series of 23 lucky 
guesses is acknowledged (and if even one guess is not correct the whole series is not acknowledged 
and not rewarded). 

By subdividing the safe in different ways into smaller safes with simple locks one can build a 
series of problems ranging from trivial ones (as in the case of 23 one-letter locks) to intractable ones 
(e.g., a single 23-letters lock).  For example, the lock can be split into 11 two-letter locks plus a 
single-letter one.  Each two-letter lock has 262=676 possible combinations, so the burglar can solve 
the problem in slightly more than two hours (assuming that it takes him a second to try one 
combination).  The problem with 7 three-letters locks plus a two-letters one is even more 
complicated.  Each three-letters lock has 263=17576 combinations, so the burglar will have to spend 
the whole weekend working more than 17 hours a day.  The problem with 5 four-letters locks plus a 
three-letters one will take more than a month of hard labour, and so on.  As the number of letters in 
individual locks grows, the problem very quickly becomes intractable.  Note that when the number 
of letters in each individual lock is small, short sequences of lucky guesses are acknowledged and 
so the corresponding problem is simple.  Such acknowledgements will be called fine.  As the 
number of letters in individual locks grows, longer sequences of lucky guesses are acknowledged, 
i.e., the acknowledgements become coarser. 
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Behev adduces several examples of irreducibly complex systems in living organisms, such as 
the biochemistry of human vision and blood clotting, bacterial flagellum (a motor allowing bacteria 
to swim), a cell ‘delivery system’ transporting synthesised proteins to their proper place and a few 
other systems.  These systems comprise several (often dozens or more) of proteins working together 
to accomplish a certain function; moreover, the absence of even one of them renders the whole 
system useless (or even harmful).  That is, such a system could not have come into existence by 
gradual improvement of a simpler one, much like the opening combination of a lock cannot be 
obtained by gradual improvement of a random combination: all the systems’ parts (all the correct 
letters in the combination) must be in place, and only then is there a sudden leap in functionality 
(the safe is opened).  Therefore, the acknowledgements provided by the environment for irreducibly 
complex systems are coarse.  That is, the realistic environment cannot acknowledge (by increasing 
the returned fitness value – see Figure 1) the potentially positive changes until they show up, i.e., 
lead to an improvement in functionality.  However, in Dawkins’ model every correct letter is 
acknowledged, i.e., all the acknowledgements are as fine as possible.  To make the model more 
realistic, coarse acknowledgements should also be added. 

First, let us investigate the model where the acknowledgement is given only for the target 
sequence (this corresponds to a single 23-letters lock).  The information content of a string of length 
23 roughly corresponds to that of a protein chain of length 25 (note that a protein chain can be 
represented by a ‘string’ in the ‘alphabet’ of 20 amino-acid residues, and 2623≈2025), which is rather 
short compared with real proteins in organisms (which typically contain from about fifty to about 
three thousand amino-acid residuesv).  To accomplish this, the environment should assign to the 
target string the fitness value 1 (or any other positive value) and to all the other strings the value 0.  
The corresponding optimisation problem is hopeless for the GA,v i as one can do no better than to 
explore strings at random.  As there are 2623>3.5⋅1032 such strings, the expected time needed to hit 
the target is 740,000 times greater than the age of the universe generally accepted by evolutionists 
(15 billion years), even if the computer generates and checks a billion strings per second.  Clearly, 
one should not waste computer time experimenting with this model! 

This shows that irreducibly complex proteins of realistic length could not have arisen by 
chance.  Let us now solve an inverse problem and investigate what is the maximum length of an 
irreducibly complex substring that one can realistically expect to appear during a run of a GA.  This 
is the purpose of the next proposed model, where acknowledgements range from the finest possible 
to coarser ones.  This is accomplished by acknowledging every whole word occurring in the target 
phrase by adding the length of this word to the fitness value (this reflects the intuition that longer 
substrings carry more information).  If several instances of the same word occur in the string, only 
one of them is acknowledged (intuitively, the other instances do not carry any new information; this 
also prevents the string from degrading to, e.g., ‘a’ repeated 23 times).  Furthermore, in order to 
add also some reducible complexities and ‘guide’ the algorithm towards the target string, every 
substring (including the target phrase itself) composed of whole words is also acknowledged, by 
adding the length of this substring to the fitness value (this can be interpreted as synergy, i.e., the 
total contribution of several substrings towards the fitness might be greater than the sum of 
individual contributions; e.g., many traits in living organisms require a few proteins to work 
together).  For example, the string ‘xxxxitititislikexweasxx’ has the fitness value 27 
due to the words ‘a’, ‘it’ (occurs thrice, but counted only once), ‘is’, ‘like’, and the 
substrings ‘itis’, ‘islike’ and ‘itislike’.  One can easily show that the target (and only 
it) has the maximum possible fitness value 186. 

It should be noted that most of the acknowledgements in this model are quite fine, as most of 
the words are very short.  On the other hand, the acknowledgement for the word ‘methinks’ is 
quite coarse.  This allows for an experimental investigation of the impact of ‘coarseness’ on the 
speed of evolution, by counting how many generations are needed for a given word to ‘evolve’.  
Notice also that the word ‘weasel’ can potentially evolve ‘around’ the word ‘a’, so it is not, 
strictly speaking, irreducibly complex and can evolve in two stages which are separately 
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acknowledged by the environment; however, the second stages would have quite a coarse 
acknowledgement. 

 
GENERATION FITTEST INDIVIDUAL FITNESS INDIVIDUAL’S № 

0 
pnpsanzwxiaffitthnuchyb
uinpvzbakzlhwfisnuxkgfo
ujpgghpezycaisvdjmjnhnh

3
17
56
63

4 pnpxayiwxisbfitshnuchyb 5 813

17 
duzvqqzzktlpacxxitisabe
puzkqxzvitlpacxwitisole 9 3868

3886
1394 likenfiyhpawilblitisqzy 13 416039

1401 likeafiyfpawilblitisqzy 18 417524

135450 likeaoiujnkxfyitislikev 32 40543304

135457 likeocmdjzkxfsitislikea 48 40545001

369318 ddxzyfhweaselyitislikea 54 110549050

369321 ddjzyfaweaselyitislikea 61 110550277

397283 tslikeaweaselgitislikea 72 118910326

397290 islikeaweaselgitislikea 85 118912517

1000000 (no improvement) 85 298648624

Table 2.  Experimental results for the model with acknowledgements of different ‘coarseness’ 
where only whole words and strings thereof have selective advantage (whole words occurring in the 
target are shown in bold).  The size of the population is 100. 

 
The experimental results for a typical run of the GA with an environment implementing the 

described fitness function are shown in Table 2.  The initial population happened to contain the 
words ‘a’, ‘is’ and ‘it’, albeit in different individuals, and in generation 4 an individual 
containing all these words has emerged.  In generation 17 the combination ‘itis’ emerged in two 
individuals simultaneously.  These individuals are very similar due to a recent common 
predecessor, which however is not related to the best individual in generation 4 (it is not shown in 
the table as it was less fit).  It turns out that this common predecessor contained the word ‘is’, and 
a new instance of the word ‘it’ appeared in front it, so the process took advantage of reducible 
complexity of this word combination.  Then the process did not show any improvement until 
generation 1,394, when the word ‘like’ appeared.  Note that by that time 416,039 strings have 
been tried out, which is more than the expected number 264/(23-4+1)≈22,849 of strings needed for 
this word to appear if they were generated at random.  Such a delay is due to the attempt of the GA 
to preserve the substring ‘itis’ and an instance of the word ‘a’ by discriminating against any 
mutations damaging them and thus preventing other words from evolving on their places.  
Moreover, strings generated by the GA are not independent, as there is a strong correlation between 
pairs of successive generations.  Soon afterwards ‘a’ was appended to ‘like’, producing the 
(reducibly complex) combination ‘likea’. 

The substring ‘itis’, being composed of short words, is quite mobile: if another instance of 
the substring ‘it’ appears in front of it, forming ‘ititis’, and then the ‘t’ in the former 
‘it’ is replaced by ‘s’, forming ‘itisis’, the net effect is to move ‘itis’ two positions to 
the left.  Similarly, it can move two positions to the right.  However, such movements are not 
acknowledged because they do not increase the fitness (though they do not decrease it either).  The 
only way to acknowledge such a movement is to adjoin the word ‘methinks’ to the left of 
‘itis’ or the word ‘like’ to the right of it.  However, ‘methinks’ is too long to wait for, 
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and ‘likea’ has appeared on the wrong place, so new instances of ‘like’ are not 
acknowledged (and are more likely to be destroyed by mutations than ‘likea’ because their 
destruction would not reduce the fitness whereas the destruction of ‘likea’ would).  That is why 
it took so long (further 134,049 generations) for the group ‘itislike’ to form.  Soon afterwards 
‘a’ was appended to it, producing the (reducibly complex) combination ‘itislikea’.  At this 
point, the former instance of ‘likea’ is no longer beneficial and quickly deteriorates due to 
mutations. 

All the shorter words have now appeared in the correct combination, and there is no further 
progress for a very long time (233,861 generations), until the word ‘weasel’ emerges.  By this 
time, 110,549,050 strings have been tried out, which is more than expected number 266/(23-
6+1)≈17,161,988 if completely random strings were generated.  The reasons for this delay are 
similar to those described for the first instance of the word ‘like’. 

Once the word ‘weasel’ has appeared, reducibly complex combinations involving this 
word start to emerge: in 3 generations ‘a’ is adjoined to its left, followed by ‘like’ in further 
27,962 generations, and by ‘is’ in further 7 generations.  Then the process fails to make any 
further improvement for the last 602,710 generations, in spite of the huge number of generated 
strings. 

Several observations concerning this experiment are summarised below. 
• Neither the target string nor even the word ‘methinks’ has ‘evolved’ within a 

million generations, in spite of the fact that almost three hundred million strings have 
been tried out.  This is quite a pathetic performance, given that the latter is only 8 
letters long – almost nothing compared to irreducible complexities encountered even 
in the simplest living organisms. 

• Although relatively long reducibly complex substrings have evolved, the number of 
generations needed to produce an irreducibly complex substring exhibits an 
exponential in the substring’s length trend (see the table below).  This essentially rules 
out the possibility of evolution of even relatively short irreducibly complex substrings.  
In particular, in the performed experiments a word of length 6 has evolved (albeit it 
took large number of generations), and a word of length 8 has not emerged within a 
million generations.  This is hardly surprising as the expected number of randomly 
generated strings needed for such a word to appear is 268/(23-8+1)>1.3⋅1010, which is 
more than an order of magnitude greater than the total number of generated 
individuals.  Moreover, as already mentioned, the attempt of the GA to preserve other 
useful substrings and the strong correlation between the successive generations has a 
detrimental effect on the emergence of new irreducibly complex substrings. 

 
WORD LENGTH 1 2 4 6 8 
GENERATION 0 0 1394 369318 — 
INDIVIDUAL’S № 1 17 416039 110549050 — 

 
• Some of the useful substrings (both reducibly and irreducibly complex) had to evolve 

several times in different places, which further reduced the speed of evolution. 
• The best individual generated by the GA has two copies of the substring ‘islikea’, 

and the future generations have to preserve them both, as destroying any of them 
significantly reduces the fitness.  Moreover, many of the words have evolved in wrong 
places.  These two factors virtually bury any hope for further improvement (indeed, no 
improvement has been shown for the last 602,710 generations). 

In the performed experiments, the GA was run 100 times with different seed values of the 
random number generator, producing alternative versions of evolution, but no substantially different 
results have been achieved.  In particular, neither the target string nor the word ‘methinks’ has 
ever emerged. 
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Due to the accelerated mutation rate and the perfect selection assumed in the proposed model, 
it must be a few orders of magnitude faster than what can be expected from nature; that is, the 
simulated million generations amount to many billions real-life generations.  As the information 
content of a string of English letters is just slightly greater than that of a protein of comparable 
length, evolution is too slow to account for the existence of even relatively simple proteins 
employed in living organisms, not to mention living organisms themselves. 

 

The problem of multiextremity for genetic algorithms 
 
As was explained earlier, GAs are intended for solving optimisation problems, i.e., problems 

of finding the maximum values of functions.  They do this by making a series of small random 
mutations (‘steps’) followed by selection, i.e., removal of the unfit. 

The traditional visualization of such iterative optimisation strategies is hill climbing: the 
fitness value corresponds to the geographic altitude, and mutations to steps made by the climber.  
Suppose the climber makes a step in a random direction.  If this step leads uphill (it is assumed that 
the climber can always determine his altitude), he continues climbing from the higher position.  
Otherwise, he simply discards this step and tries another direction.  The hill climbing is being done 
in the night-time, so the climber does not have the global view of surroundings and has to move 
blindly; e.g., he cannot choose to cross a valley because he sees a better slope on its opposite end. 

Of course, this analogy is quite crude; nevertheless, in spite of all its shortcomings, it is very 
popular and has proved to be helpful in practice, because it allows explaining optimisation 
strategies (as well as problems faced by them!) in vivid and intuitive terms. Dawkins also uses a 
similar analogy in one of his books, likening the process of evolution to climbing a high Mount 
Improbable: 

 
Mount Improbable rears up from the plain, lofting its peaks dizzily to the 

rarefied sky.  The towering, vertical cliffs of Mount Improbable can never, it seems, 
be climbed.  Dwarfed like insects, thwarted mountaineers crawl and scrabble along 
the foot, gazing hopelessly at the sheer, unattainable heights.  They shake their tiny, 
baffled heads and declare the brooding summit forever unscalable.   

Our mountaineers are too ambitious.  So intent are they on the perpendicular 
drama of the cliffs, they do not think to look round the other side of the mountain.  
There they would find not vertical cliffs and echoing canyons but gently inclined 
grassy meadows, graded steadily and easily towards the distant uplands.  
Occasionally the gradual ascent is punctuated by a small, rocky crag, but you can 
usually find a detour that is not too steep for a fit hill-walker in stout shoes and with 
time to spare.  The sheer height of the peak doesn't matter, so long as you don't try 
to scale it in a single bound.  Locate the mildly sloping path and, if you have 
unlimited time, the ascent is only as formidable as the next step.  The story of Mount 
Improbable is, of course, a parable.  We shall explore its meaning in this and the 
next chapters.vii

 
It should be noted, however, that this analogy is somewhat different from the one used in this 

paper, where neither vertical cliffs nor rocky crags pose any problem: it is feasible for a GA to 
make a sudden leap, significantly increasing the fitness in a single step.  For example, the substring 
‘wexsel’ is useless, yet a single mutation can change it into ‘weasel’, significantly increasing 
the fitness.  (Thus the hill-climbing analogy should be amended: the climber walks upon a flat 
topographic map showing the altitudes as shades of colour, and by making a single step he is 
capable of ‘scaling’ a high vertical cliff.) The real problem is large tablelands (corresponding to 
coarse acknowledgements): the climber can go in circles for a long time not being able to 
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discriminate between possible directions: whatever step he makes, he ends up at the same altitude, 
rendering natural selection useless. 

The topography corresponding to the original Dawkins’ model is a single mountain with 
gentle slopes covering the whole map; at each point (distinct from the top) it is possible to make a 
step increasing the altitude.  This is obviously the easiest possible topography for the climber to 
cope with.  On the contrary, the topography corresponding to the example with a combination lock 
is a single pole standing somewhere in a huge plateau (with the area exceeding that of the Earth’s 
surface by the factor of 200,000,000,000,000,000): the climber would have to roam about blindly 
until he bumps into it.  He is extremely lucky if he finds it within a trillion years! 

The hill climbing analogy helps to illustrate a formidable problem of multiextremity with 
stepwise optimisation strategies.  Suppose the climber happens to be in the vicinity of some small 
hill.  Not having a global view of the surroundings, he does not know that this hill is too small to be 
worthy of pursuing and scales it.  Once at the top, he discovers that the only possible way is 
downhill and thus he gets confined there, with no hope of further progress!  In other words, it is 
very difficult for a GA to cross a valley, because doing that means decreasing fitness at the initial 
stage of the process.  Yet, individuals with such lower fitness are eliminated by natural selection.  
(Some GAs use crossovers and/or mutations considerably changing the string, which potentially 
allow them to escape from the top of a hill; however, such big changes can be considered as huge 
random steps in the dark: it gets vanishingly unlikely to jump to a higher hill if the number of high 
hills is small compared to the size of the search space.)  Note that in the original Dawkins’ model 
the problem of multiextremity does not show up because the corresponding topography has no hills 
except the target.  However, in slightly less artificial settings it clearly manifests itself: this is 
exactly what happened with the example in Table 2: the process has reached a point from which it is 
impossible to progress without first substantially decreasing the fitness. 

Thus, in order to climb Mount Improbable one has to be lucky enough to start in its vicinity 
rather than in the vicinity of some small hill.  But how to do this if it is surrounded by Dwarf Hills, 
Pigmy Knolls, Midget Hillocks and Mole Mounds?  The climber risks scaling one of those, burying 
the hope of further progress due to the need to cross a valley.  Again, a lot of luck is required! 

However, it should be noted that this argument is less strong than that about coarse 
acknowledgements, because it heavily depends on the ‘topography’ of the optimisation problem, 
which is extremely hard to describe for realistic environments and living organisms.  Though in the 
performed experiments the problem of multiextremity did have a significant impact on the final 
results, it still remains to be shown that this is the case for the processes in nature.  That is, one has 
to show (quantitatively!) that there are a lot of low-quality maximums and very few with the quality 
comparable to that of existing living organisms, and so the probability of reaching one of such high-
quality maximums is negligible. 

 

Conclusions 
 
GAs are sometimes adduced as an argument supporting evolution: they ‘work’ in some 

practical applications, so the theory of evolution which had inspired them must be correct.  
However, the experiments in this paper show that GAs are no silver bullet: they perform 
satisfactorily only if the acknowledgements are fine and there is no need to cross valleys.  This is 
indeed the case for the original Dawkins’ model: it converges within a few hundred generations.  As 
soon as the acknowledgements are even slightly coarser, the performance deteriorates dramatically; 
in particular, the word ‘methinks’ of length 8 has not ‘evolved’ within a million generations.  
While relatively long reducibly complex substrings can indeed emerge, the number of generations 
required for a given irreducibly complex one to appear grows exponentially with the ‘coarseness’ of 
the corresponding acknowledgement.  Many features encountered in living organisms are 
irreducibly complexv and thus the corresponding acknowledgements are coarse; this makes the 
probability of their emerging as a result of evolution vanishingly small. 
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Another problem with GAs is that they have difficulties with crossing fitness valleys.  This 
problem does not exist in the original Dawkins’ model but clearly manifests itself in less artificial 
settings. 

Of course, both Dawkins’ model and the ones proposed in this paper are simple rather than 
precise.  (Any computer model attempting to describe multiple generations of organisms is bound to 
be crude!)  However, the model with coarse acknowledgements is more realistic as it better reflects 
the process of natural selection.  It demonstrates that the process of evolution is much slower than 
Dawkins’ model suggests.  And, in addition to all this complexity, there is still the major problem 
how the first self-replicating entity came about. 

It seems appropriate to finish with the following quote from Behe’s book: 
 

The knowledge we now have of life at the molecular level has been stitched 
together from innumerable experiments in which proteins were purified, genes 
cloned, electron micrographs taken, cells cultured, structures determined, sequences 
compared, parameters varied, and controls done.  Papers were published, results 
checked, reviews written, blind alleys searched, and new leads fleshed out. 

The result of these cumulative efforts to investigate a cell—to investigate life at 
the molecular level—is a loud, clear, piercing cry of “design!” The result is so 
unambiguous and so significant that it must be ranked as one of the greatest 
achievements in the history of science.v 
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