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Abstract

A technique for logic decomposition of asynchronous cir-

cuits which works on STG unfolding prefixes rather than

state graphs is proposed. It retains all the advantages of the

state space based approach, such as the possibility of mul-

tiway acknowledgement, latch utilisation and highly opti-

mised circuits. Moreover, it significantly alleviates the state

space explosion, and thus has superior memory consump-

tion and runtime.

Keywords: Logic decomposition, unfolding, asynchronous

circuits, SAT, STG.

1. Introduction

Asynchronous circuits (ACs) are circuits without clocks.

This is a promising type of digital circuits, as they often

have lower power consumption and electro-magnetic emis-

sion, no problems with clock skew and related subtle is-

sues, and are fundamentally more tolerant of voltage, tem-

perature and manufacturing process variations. The Interna-

tional Technology Roadmap for Semiconductors report on

Design [10, Table DESN4] predicts that 22% of the designs

will be driven by handshake clocking (i.e. asynchronous) in

2013, and this percentage will raise up to 40% in 2020.

Though the listed advantages look rather attractive in

the view of the current and anticipated microelectronics de-

sign challenges, correct and efficient ACs are notoriously

difficult to synthesise. This paper tackles the problem of

logic decomposition of ACs, i.e. the problem of decompos-

ing large logic gates into smaller ones without introducing

hazards. This is arguably one of the most complicated prob-

lems in the synthesis flow for an important subclass of ACs,

called speed-independent (SI) circuits. This model follows

the classical Muller’s approach [22] and regards each gate

as an atomic evaluator of a Boolean function, with a de-

lay element associated with its output. In the SI frame-

work this delay is unbounded, i.e. the circuit must work cor-

∗V. Khomenko is a Royal Academy of Engineering/EPSRC Post-Doc-

toral Research Fellow. This research was supported by the RAENG/

EPSRC research fellowship EP/C53400X/1 (DAVAC) and EPSRC grant

EP/G037809/1 (VERDAD).

rectly regardless of its gates’ delays, and the wires are as-

sumed to have negligible delays. Signal Transition Graphs

(STGs) [5, 25] are a formalism for the specification of such

circuits. They are Petri nets in which transitions are labelled

with the rising and falling edges of circuit signals, see the

example in Fig. 1(a–c).

It should be noted that logic decomposition of SI circuits

is considerably more complicated than the corresponding

problem in synchronous flows. In the traditional synchro-

nous case the problem can be formulated on a multi-level

combinational Boolean network, which should be mapped

to a given gate library by applying the conventional Boo-

lean methods (in particular, algebraic or Boolean division).

During this process, the existing algorithms try to minimise

some cost function that takes into account the estimated area

and/or delay (sometimes other metrics such as power con-

sumption are also used).

When moving to ACs, several levels of complexity are

added to the described setup. First of all, the problem can

no longer be formulated as a combinational optimisation,

and one has to deal with a sequential circuit. Second, it is

no longer possible to break up a complex-gate into several

smaller ones, together computing the same function, as haz-

ards can easily be introduced in this way. (Note that in syn-

chronous circuits such hazards also occur, but are filtered

out by the clock.) Finally, gate libraries commonly contain

latches, and the best ACs can often be obtained only by util-

ising them.

The described issues are illustrated by means of an often

used example of a simplified VME bus controller shown in

Fig. 1 (see also [8, Chap. 2]). Assuming that the encoding

conflicts have already been resolved by inserting an internal

signal csc (this task should have been accomplished in the

preceding stages of the synthesis flow), one can start with

the STG shown in Fig. 1(c). The complex-gate implemen-

tation shown in Fig. 1(d) can be synthesised from this STG.

Assuming that the gate library contains only one- and two-

input gates and latches, there is a problem of decomposing

the complex-gate implementing csc into smaller gates.

Unfortunately, it turns out that the naı̈ve logic decom-

position shown in Fig. 1(e) is not SI and even violates the
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Figure 1. VME bus controller (read cycle): interface (a), the timing diagram (b), the STG with an addi-
tional internal signal csc resolving the encoding conflicts (c), a complex-gate implementation (d), a naı̈ve
logic decomposition exhibiting hazards (e), an STG with a new signal map and the corresponding logic
decomposition with multiway acknowledgement (f, g), and an implementation utilising a C-element (h).

original specification (though it would be acceptable in the

synchronous framework). Indeed, consider the following

sequence of events:

0© dsr+ csc+ lds+ ldtack+ d+ dtack+ dsr−

csc− 1© d− dtack− dsr+ 2© csc+ d+

At the initial state marked 0©, x = 1 and all the other sig-

nals are 0. At the state marked 1©, x− becomes enabled.

Since an SI circuit should work regardless of the gate de-

lays, one has to allow that the gates implementing x and

lds may be relatively slow, and so the rest of the shown se-

quence is feasible. When the state marked 2© is reached,

csc+ becomes enabled — something not expected in the

STG in Fig. 1(c). Though csc is an internal signal which

is not observable by the environment, this malfunction can

propagate to an observable output by producing an unex-

pected d+. Note that the difference between the complex-

gate implementation in Fig. 1(d) and this naı̈ve implemen-

tation is that in the latter the gate implementing x is allowed

to have an arbitrary delay, while in the former it is ‘inside’ a

complex-gate which is assumed to be atomic (and thus has

no internal delays).

A correct decomposition into two-input gates is shown in

Fig. 1(g). Note that in contrast to the described hazardous

solution, the new internal signal map is acknowledged by

two gates (see [20, 28] for the concept of acknowledge-

ment). This illustrates the concept of multiway acknowl-

edgement, when different transitions of a signal can be ac-

knowledged by different gates; e.g. in this example map+

is acknowledged by csc+ and map− by d− (as opposed to

the simple case of local acknowledgement, where the newly

inserted signal is acknowledged only by the gate being de-

composed; unlike the synchronous case, where the local

acknowledgement is sufficient for decomposition, and the

multiway one is used only for optimisation purposes, in the

asynchronous case it is quite common that a complex-gate is

not decomposable using local acknowledgements only, but

is decomposable using multiway ones). The transformation

of the circuit in Fig. 1(d) to that in Fig. 1(g) is rather not

obvious at the circuit level; the corresponding STG trans-

formation, see Fig. 1(c,f), is much easier to understand.

An implementation utilising a latch is shown in Fig. 1(h),

where Muller’s C-element [22] with the next-state function

[c] = ab∨ c(a∨ b) is used. If this latch is present in the

library, this implementation is likely to be superior in terms

of area and performance to the one in Fig. 1(g). However,

this transformation is also non-trivial, and is only possible

due to the fact that there is no globally reachable state at

which dsr = ldtack = 0 and csc = 1 (this is the condition

when the complex-gate in Fig. 1(d) and the C-element in

Fig. 1(h) would behave differently); i.e. global analysis of

the state space is required, which also takes into account the

environment’s behaviour.

PETRIFY [7, 8] is one of the commonly used tools for

synthesis of ACs from STGs (see also [1, 3] for related ap-

proaches). It addresses the issues mentioned above, in par-

ticular it allows for multiway acknowledgements and can

utilise latches. For synthesis, PETRIFY employs the state

space of the STG (in the form of BDDs [2]), and so it suffers

from the combinatorial state space explosion problem [27]



— even a relatively small system specification can (and of-

ten does) yield a very large state space. This puts practical

bounds on the size of control circuits that can be synthe-

sised using such techniques, which are often restrictive, es-

pecially if the specification is not constructed manually by a

designer but rather generated automatically from high-level

hardware descriptions. For example, synthesising circuits

with more than 20–30 signals with PETRIFY is often im-

possible.

In this paper, a different data structure for representing

the state space, viz. STG unfolding prefix, is employed. The

experiments in [13, 16, 17], as well as in this paper, show

that for the application domain of ACs, they are much more

compact than the explicit representation or BDDs, and thus

significantly alleviate the state space explosion. The reason

is that practical STGs have a lot of concurrency but rather

few choices, in which case unfolding prefixes perform par-

ticularly well and are likely to be exponentially smaller than

the state graphs. An unfolding-based technique for logic de-

composition of ACs is presented, which has all the nice fea-

tures of PETRIFY’s algorithm, but can handle much larger

STGs than PETRIFY, while delivering high-quality circuits.

Together with [13, 16, 17], it essentially completes the syn-

thesis flow for asynchronous circuits from STGs that does

not involve building reachability graphs at any stage and yet

is a fully fledged logic synthesis.

The full version of this paper can be found in the techni-

cal report [14] available on-line.

2. Unfolding prefixes

A finite and complete prefix Pref Γ of the unfolding Unf Γ

of an STG Γ is a finite acyclic net which implicitly rep-

resents the reachable states of Γ together with transitions

enabled at those states. Intuitively, Unf Γ can be obtained

by successive firing of transitions starting from the initial

marking of Γ, as follows: (i) for each new firing a fresh

transition (an event) is generated; (ii) for each newly pro-

duced token a fresh place (a condition) is generated.

Due to its structural properties (such as acyclicity), the

reachable states of Γ can be represented using configura-

tions of Unf Γ. A configuration C is a downward-closed set

of events (being downward-closed means that if e∈C and f

is a causal predecessor of e then f ∈C) without choices (i.e.

for all distinct events e, f ∈ C, there is no condition c in

Unf Γ such that the arcs (c,e) and (c, f ) are in Unf Γ). Intu-

itively, a configuration is a partially ordered execution, i.e.

an execution where the order of firing of some of its events

(viz. concurrent ones) is not important. Moreover, [e] de-

notes the local configuration of an event e, i.e. the smallest

(w.r.t. ⊂) configuration containing e (it is comprised of e

and its causal predecessors).

Unf Γ is infinite whenever Γ has an infinite run; however,

if Γ has finitely many reachable states then Unf Γ eventually

starts to repeat itself and can be truncated (by identifying

a set of cut-off events beyond which no further events are

generated) without loss of information, yielding a finite and

complete prefix Pref Γ. Intuitively, an event e can be de-

clared cut-off if the already built part of the prefix contains

a configuration Ce (called the corresponding configuration

of e) such that its final marking and encoding (i.e. signal val-

ues) coincide with those of [e] [26] and Ce is smaller than [e]
w.r.t. some well-founded partial order on the configurations

of Unf Γ, called an adequate order [9]. The picture below

shows a finite and complete unfolding prefix of the STG

shown in Fig. 1(c); the only cut-off event is depicted as a

double box, and its corresponding configuration is {e1,e2}.
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Efficient algorithms exist for constructing unfolding pre-

fixes [9, 11], which ensure that the number of non-cut-off

events in Pref Γ can never exceed the number of reachable

states of Γ. Moreover, complete prefixes are often expo-

nentially smaller than the corresponding state graphs, espe-

cially for highly concurrent STGs, because they represent

concurrency directly rather than by multidimensional ‘di-

amonds’ as it is done in state graphs. For example, if Γ

consists of 100 transitions which can fire once in parallel,

the state graph is a 100-dimensional hypercube with 2100

vertices, whereas Pref Γ coincides with the net itself. Since

practical STGs usually exhibit a lot of concurrency, but have

rather few choice points, they are an ideal case for applying

unfolding-based techniques; in fact, in many of the experi-

ments conducted in [13, 16, 17] unfolding prefixes are just

slightly bigger than the original STGs themselves. Thus,

unfolding prefixes are well-suited for alleviating the state

space explosion in STG based synthesis.

In [16] the unfolding technique was applied to detection

of encoding conflicts between reachable states of an STG.

In [12,15] a method for checking validity of transition inser-

tions on unfolding prefixes was developed, which was suc-

cessfully applied to resolution of encoding conflicts in [13].

In [17] the problem of complex-gate logic synthesis from an

STG free from encoding conflicts was solved. The experi-

ments in [13,16,17] showed that unfolding-based approach

can handle much bigger STGs then PETRIFY, without re-

ducing the quality of produced circuits. This paper proposes

a method for logic decomposition of SI circuits eliminat-

ing the necessity of using atomic complex-gates, which are

not very realistic in practice. This completes the unfold-

ing-based logic synthesis flow [13, 16, 17] for SI circuits

that does not build the state graph at any stage. Combined

with the STG decomposition approach of [18], it can be

applied, e.g. for control re-synthesis of BALSA or TANG-

RAM/HASTE specifications as described in [13].



3. The SI logic decomposition algorithm

In [6], a logic decomposition algorithm based on Boo-

lean relations was proposed. This algorithm is outlined be-

low (with minor changes).

forever do

for all non-input signals y do

S[y]← /0

for all G ∈ {latches,gates} do

S[y]← S[y]∪decompositions(y,G)
best H[y]← best SI candidate in S[y]

if for each y, best H[y] is implementable

Library matching

stop

if for each y, best H[y] is empty

fail

H← the most complex best H

Insert a new signal z implementing H into the STG

First, the algorithm computes the complex-gate imple-

mentation for each non-input signal y. Then it decomposes

this implementation top-down, using a latch or a gate G

from the library, so that the output of G produces the de-

sired signal, and its inputs are produced by some complex-

gates His, which are computed using a Boolean relation

solver (see the picture below). For example, signal csc

in Fig. 1(d) is implemented by the complex-gate [csc] =
dsr ∧ (csc∨ ldtack), and when decomposed with G being

a two-input AND gate, [H1] = dsr and [H2] = csc∨ ldtack

form a possible decomposition.

y
GF

H1..
.

Hn..
.

..
.

..
.

y

Then the algorithm checks which of the computed de-

compositions are SI, by trying to insert in a SI way new

signals implementing the non-trivial His. In the chosen ex-

ample, as [H1] = dsr is a trivial function, there is no point

in implementing it as a new signal; hence a signal map

implementing [H2] = csc∨ ldtack is inserted as shown in

Fig. 1(f). In this STG map triggers not only the signal being

decomposed (csc), but also d; this is the reason why map

appears in the fan-in of the gates implementing csc and d

in Fig. 1(g), resulting in a multiway acknowledgement for

map. (As it is impossible to insert in a SI way a new signal

implementing [H2] = csc∨ ldtack and triggering only csc,

the incorrect decomposition in Fig. 1(e) is not considered

by the algorithm.)

If all the non-input signals are directly implementable,

the algorithm performs the library matching step to recover

some area and delay before stopping. At this stage, small

gates can be combined into a larger one, if the latter is in the

library; this is guaranteed to preserve the SI property, pro-

vided that the matched gate is atomic. On the other hand, if

no SI decompositions have been found, the algorithm stops

and reports a failure. Otherwise, some SI decomposition is

heuristically chosen, a new signal implementing one of its

complex-gates Hi is inserted into the STG, and the loop con-

tinues. On the next iteration, the implementation of y will

depend on the newly inserted signal, and hence will be sim-

pler, and various heuristics are used to prevent a significant

increase in the implementations of the other signals and to

ensure progress.

The top-level structure of the algorithm proposed in this

paper is essentially the same; the main difference is that the

insertion of a signal implementing a given Boolean func-

tion is performed using the STG unfolding prefix rather than

BDDs. (The algebraic division based logic decomposition

of [19] can also be handled using the techniques described

in this paper.) Hence one can distill the task of inserting

a new signal, whose implementation is the given Boolean

function F(X), into the STG, and the rest of the paper fo-

cuses on how to solve it using unfolding prefixes.

4. Transformations

This paper primarily focuses on SB-preserving transfor-

mations, i.e. ones preserving safeness and behaviour (in the

sense that the original and the transformed STGs are weakly

bisimilar, provided that the newly inserted transitions are

considered silent) of the STG. Below several kinds of tran-

sition insertions that will be used for SI logic decomposition

are described, and the algorithms presented in [12,15] allow

one to check their validity.

Building an unfolding prefix of an STG can be a time-

consuming operation. However, the approach described in

[12, 15] allows one to avoid a potentially expensive re-un-

folding after each transition insertion, by introducing local

modifications to the existing prefix instead. Moreover, it

yields a prefix similar to the original one, which is advan-

tageous for visualisation and allows one to transfer some

information from the original prefix to the modified one.

Sequential pre-insertion. A sequential pre-insertion is es-

sentially a generalised transition splitting, and is defined as

follows. Given a transition t and a set of places S ⊆ •t, the

sequential pre-insertion S ≀ t is the transformation inserting

a new transition u (with an additional place) ‘splitting off’

the places in S from t. The picture below illustrates the se-

quential pre-insertion {p1, p2} ≀ t. We write ≀t instead of S ≀ t
if S = •t.
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Sequential post-insertion. Similarly to sequential pre-in-

sertion, sequential post-insertion is also a generalisation of

transition splitting, and is defined as follows. Given a transi-

tion t and a set of places S⊆ t•, the sequential post-insertion

t ≀ S is the transformation inserting a new transition u (with

an additional place) ‘splitting off’ the places in S from t.

The picture below illustrates the sequential post-insertion

t ≀ {q1,q2}. We write t≀ instead of t ≀S if S = t•.
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Concurrent insertion. Concurrent transition insertion can

be advantageous for performance, since the inserted transi-

tion can fire in parallel with the existing ones. It is defined

as follows. Given two distinct transitions, t ′ and t ′′, and an

n ∈ {0,1}, the concurrent insertion t ′n|−→t ′′ is the transfor-

mation inserting a new transition u (with a couple of ad-

ditional places) between t ′ and t ′′, and putting n tokens in

the place in its preset. We write t ′ |−→t ′′ instead of t ′0|−→t ′′

and t ′•|−→t ′′ instead of t ′1|−→t ′′. The picture below illustrates

the concurrent insertion t1
•|−→t3 (note that the token in p is

needed to prevent a deadlock).

t1 t2 t3 ⇒ t1 t2 t3

p u q

Generalised insertion. Generalised transition insertion is

a generalisation of concurrent insertion. It is defined as fol-

lows [15]. Given two non-empty disjoint sets of transitions

S and D, called respectively sources and destinations, the

generalised insertion S|։D is the transformation insert-

ing a new transition u with |S| new places in its preset and

|D| new places in its postset and connecting these places to

the transitions in S and D, respectively, as shown in the pic-

ture below. In addition, some of the new places in the preset

of u can be initially marked.

S u D

As the number of all possible generalised insertions usu-

ally grows exponentially with the STG size, their straight-

forward enumeration would be impractical. Hence, [15] de-

veloped a method for computing only potentially useful (in

the context of logic decomposition) generalised insertions.

Commutative transformations. A pair of transformations

commute if the result of their application does not depend

on the order they are applied. (Note that a transformation

can become ill-defined after applying another transforma-

tion, e.g. t ≀{p,q} becomes ill-defined after applying t ≀{p}.)
A composite transition insertion is a transformation de-

fined as the composition of several pairwise commutative

transition insertions. Clearly, if a composite transition in-

sertion consists of SB-preserving transition insertions then

it is SB-preserving, i.e. one can freely combine SB-preserv-

ing transition insertions, as long as they are pairwise com-

mutative. This property is useful for logic decomposition:

typically, several transitions of a new internal signal map

have to be inserted in each iteration of the algorithm, in or-

der to preserve the consistency of the STG. For example, in

Fig. 1(f) a composite transformation comprising two com-

muting SB-preserving insertions (adding the new transi-

tions map+ and map−) has been applied to insert a new sig-

nal map with the given implementation [map] = ldtack∨csc

while preserving the consistency of the STG.

5. Function-guided signal insertion

As described above, logic decomposition boils down to

inserting into an STG Γ a new internal signal map with a

given implementation [map] = F(X). That is, one has to

compute a consistency-preserving and SB-preserving com-

posite insertion Î such that, once the corresponding transi-

tions are added to Γ, it is possible to label each of them

map+ or map− so that the modified STG can be synthe-

sised as an SI circuit, and F(X) is an implementation of the

newly inserted signal map. In [13], a related problem of in-

serting a new signal to resolve encoding conflicts has been

solved by reducing it to Boolean satisfiability (SAT). Below

we outline the main idea of that approach.

Given Pref Γ, one can compute a set I of valid (i.e. SB-

preserving, SI-preserving, not delaying an input, etc.) in-

sertions as described in Sect. 4. Note that the number of

transformations in I is relatively small:

• the number of valid sequential pre- and post-insertions

is linear in the number of STG transitions, assuming

that |•t| ≤ c and |t•| ≤ c for every transition t and some

constant c that is independent of the STG;

• the number of valid concurrent insertions is at most

quadratic in the number of STG transitions;

• though the number of valid generalised insertions can

be exponential in the worst case, only ‘potentially use-

ful’ [15] for inserting a signal implementing F gen-

eralised insertions are computed by the proposed ap-

proach, and their number is usually small.

Now one can formulate a SAT problem as follows. For each

insertion I ∈ I we create a Boolean variable, also denoted

by I, indicating whether I ∈ Î. The SAT formula below en-

sures that for any satisfying assignment of a SAT instance to



be built, the corresponding composite insertion Î (obtained

by taking the insertions whose corresponding variables are

assigned 1) is valid (i.e. it preserves the consistency of the

STG, the chosen individual insertions commute and intro-

duce no auto-conflicts or self-triggering):

MUT EX ∧SA∧CUT OFF ,

where the MUT EX constraint ensures that no two signal

insertions I, I′ ∈ Î are non-commuting, concurrent, in auto-

conflict or one of them can trigger the other; the sign alter-

nation constraint SA ensures that a consistent assignment

of signs to the newly inserted transitions is possible, and the

CUT OFF constraint is needed to ensure that the proper-

ties achieved by MUT EX and SA hold not only for the

configurations of the complete prefix, but also beyond its

cut-off events, i.e. for the full unfolding.

Some further constraints can be appended to this formula

to ensure additional properties. For example, [13] added a

constraint CORE ensuring that some of the encoding con-

flicts are resolved (i.e. some progress is made); in this pa-

per we add a constraint FUN instead, ensuring that the

newly inserted signal map is implemented by a given Boo-

lean function F(X):

MUT EX ∧SA∧CUT OFF ∧FUN . (1)

Generation of MUT EX , SA and CUT OFF con-

straints is described in [13]; hence we concentrate on gen-

erating the FUN constraint, which is the main contribution

of this paper; it should be noted that though the used tech-

niques resemble those in [13], this contribution is non-triv-

ial and technically difficult.

The FUN constraint is generated in two steps: (i) the

subset IF ⊆ I of insertions compatible with F is selected;

(ii) incremental SAT is used to compute a set of clauses

expressing FUN and depending only on variables I ∈ IF .

In the rest of this sections, the following notation is

used. The final encoding of a configuration C is denoted

by Code(C); this is a Boolean vector whose elements cor-

respond to the signals of the STG. Moreover, Codex(C)
denotes the element of Code(C) corresponding to a sig-

nal x, and CodeX (C) is the projection of Code(C) onto a

set of signals X . The Boolean function Outx(C) is true iff

C enables an x±-labelled event, and the next-state function

Nxtx(C)
df

= Codex(C)⊕Outx(C). Intuitively, the result com-

puted by the complex-gate implementing an output or in-

ternal signal x at the final state of C should be Nxtx(C).

F ′x
df
= F |x=0⊕F|x=1 denotes the partial derivative of F w.r.t.

x. Intuitively, F ′x(X) = 1 iff F essentially depends on x when

its inputs are a vector X , i.e. its value changes if the compo-

nent corresponding to x in X is flipped. (Note that F ′x itself

does not essentially depend on x, and the notation F ′x(X) is

used only for convenience.) We also write F(C) instead of

F(CodeX (C)), and similarly for F ′x .

5.1. Selecting compatible insertions

We now introduce a notion of a compatible insertion, and

then show how to check the compatibility on Pref Γ.

The theory developed in [12, 15] states that if some SB-

preserving insertion I is applied to Γ, yielding the STG ΓI ,

then for each configuration C of Unf Γ there is a unique min-

imal w.r.t. ⊂ configuration ϕ I(C) of Unf ΓI such that C can

be obtained from ϕ I(C) by removing the events correspond-

ing to the newly inserted transition tI , i.e. C = ψ I(ϕ I(C)),

where ψ I is the function projecting configurations of Unf ΓI

to ones of Unf Γ.

Let x be a signal of Γ and C be a configuration of Unf Γ.

The predicate Trig is defined as follows: Trig(C,x, I) holds

if there is an x±-labelled event ex in Unf ΓI such that ϕ I(C)
does not enable an instance of the newly inserted transition

tI and ϕ I(C)∪{ex} is a configuration of Unf ΓI enabling tI .

Intuitively, Trig(C,x, I) holds if at the state given by ϕ I(C),

x± can fire and trigger tI .

An insertion I ∈ I is called compatible with a Boolean

function F(X) defined over the set X of signals of Γ if

for each configuration C of Unf Γ and each x ∈ X such that

Trig(C,x, I) holds, F ′x(ϕ
I(C)) = 1. The intuition behind this

definition is as follows. Suppose tI is a transition of the

newly inserted signal map implementing F . At the final

state of ϕ I(C), tI can be triggered by ex, i.e. firing x changes

the value of F . The final encodings of the configurations

ϕ I(C) and ϕ I(C)∪{ex} differ only for x, i.e. F must essen-

tially depend on x at these states, i.e. F ′x(ϕ
I(C)) = 1.

One can observe that only compatible insertions can be

used to implement F , as incompatible ones change the value

of map when F ′x(ϕ
I(C)) = 0, i.e. when F must be stable.

Using the correspondence between the configurations of

Unf Γ and Unf ΓI , one can re-formulate the compatibility of

an I ∈ I as a simple reachability-like property of Γ, which

can efficiently be checked on Pref Γ ([11] outlines an ap-

proach for checking reachability-like properties on unfold-

ing prefixes). Hence, one can compute IF by simply check-

ing this property for each insertion in I. For example, the

valid insertions compatible with the function ldtack∨csc in

the VME bus controller example are listed below:

I7 : csc−≀
I8 : csc− |−→dtack−

I1 : ldtack−≀ I9 : csc−•|−→d+

I2 : ldtack−•|−→d+ I10 : csc−•|−→csc+

I3 : ldtack−•|−→d− I11 : csc−•|−→lds+

I4 : ldtack−•|−→csc− I12 : csc− |−→lds−

I5 : ldtack−•|−→lds+ I13 : csc−•|−→dtack+

I6 : ldtack−•|−→dtack+ I14 : {csc−}|։{dtack−, lds−}

5.2. Generating the FUN clauses

The set of clauses comprising FUN can now be com-

puted as follows. For each configurations C of Unf Γ enab-



ling an instance ex of any x ∈ X such that F ′x(C) = 1, let

IC
df

= {I ∈ IF | Trig(C,x, I)}.
If map is the newly inserted signal implementing F then

its transition must be enabled at the state corresponding to

ϕ I(C∪{ex}) in ΓI , i.e. some insertion in IC must be used to

implement map. This can be expressed by ensuring that the

clause
∨

I∈IC
I is in FUN for each such a C. (Note that if

IC = /0 then an empty clause is in FUN , which means that

(1) is unsatisfiable and so one cannot insert a signal).

An inefficient way of building FUN would be to enu-

merate for each x ∈ X the satisfying assignments of the fol-

lowing Boolean formula:

CONFC ∧CODEC,X ∧DER
x
X ∧OUT

x
C ∧

∧
I∈IF

(
I ⇐⇒ T RIGx, I

C

)
.

(2)

Here, CONFC, which depends only on variables confe

corresponding to non-cut-off events of Pref Γ, ensures that

C
df

= {e | confe = 1} is a configuration (and not just an ar-

bitrary set of events); CODEC,X computes CodeX (C) by re-

lating the variables codex, x ∈ X , to the variables confe in

such a way that if the values of all confe are fixed and sat-

isfy CONFC then Codex(C) = codex for all x ∈ X ; DERx
X

depends only on the variables codex, x∈ X , and ensures that

F ′x(C) = 1; OUT x
C ensures that Outx(C) = 1; and T RIGx, I

C

depends on the variables confe and computes the value of

Trig(C,x, I) for the given x and I. Note that the last part of

the formula relates the variables I corresponding to the in-

sertions in IF to the variables confe in such a way that if

the values of all confe are fixed, I = 1 iff Trig(C,x, I) holds;

that is, I occurs in the clause being generated only if the

computed satisfying assignment assigns it the value of 1.

However, the number of configurations is usually very

large, and it is infeasible to enumerate them using a naı̈ve

brute-force search. A more efficient approach outlined be-

low exploits the following two observations:

• The same clause can be generated by many different

configurations, and hence once one such configuration

is found, the others can be excluded from the search.

• If the set of literals of one clause is a subset of the set

of literals of another clause, then the latter clause is re-

dundant and can be dropped; we say that the former

clause subsumes the latter one. (Note that a clause al-

ways subsumes itself.)

Technically, this can be implemented using incremental

SAT, as follows. Whenever some satisfying assignment of

(2) is computed, the corresponding clause (I1 ∨ . . .∨ Ik) is

obtained from it and added to FUN . Then, before continu-

ing the search, the clause (¬I1 ∨ . . .∨¬Ik), which excludes

all the solutions resulting in the clause subsumed by the cur-

rent one, is added to (2), and the process is iterated until the

formula becomes unsatisfiable. In effect, the minimal ele-

ments of the projection of the set of satisfying assignments

of (2) onto the set of variables IF are computed.

Preliminary experiments show that this technique is quite

efficient; in fact, the number of iterations is usually quite

small in practice — FUN often contains less than five

clauses. Moreover, technical report [14] describes some fur-

ther optimisations.

For example, the FUN constraint for ldtack∨ csc in the

VME bus controller example is

(I1∨I2∨I3∨I4∨I5∨I6) (I7∨I8∨I9∨I10∨I11∨I12∨I13∨I14) .

Feeding (1) to a SAT solver now yields three possible com-

posite transition insertions for the new signal implementing

ldtack∨ csc, viz. {I1, I7}, {I1, I12} and {I1, I14}. However,

{I1, I12} yields

[csc] = dsr∧ (map∧ ldtack∨ csc) or

[csc] = dsr∧ (map∧ lds∨ csc)
as the possible implementations of csc (i.e. the signal being

decomposed), instead of the expected [csc] = dsr∧map, and

so is heuristically rejected. (One can re-formulate the prob-

lem of checking whether a given composite insertion yields

the expected implementation for the signal being decom-

posed as a separate reachability-like property of Γ, which

can be efficiently checked on Pref Γ [11].) The insertion

{I1, I14}, though it yields the expected implementation for

csc, is heuristically rejected because it triggers more sig-

nals (and thus upsets their implementations) than {I1, I7}
(in fact, {I1, I14} yields a very bad circuit with four-input

complex-gates for lds and dtack), and so {I1, I7} is chosen

by the decomposition algorithm, cf. Fig. 1(f).

5.3. Cost function

Once the FUN constraint has been generated, the SAT

problem (1) has to be solved. Typically this problem has

several solutions, and a heuristic cost function is used to

guide the search towards ‘good’ ones, resulting in small

area and/or performance overhead. The constructed SAT in-

stance is solved several times, with constraints on the value

of the cost function appended to the formula, so that a solu-

tion minimising the value of the cost function is eventually

computed. (The process resembles a binary search on the

value of the cost function.) See technical report [14] for

more detail.

5.4. Correctness and encoding conflicts

Below we state that the proposed method is sound (note

that the method is incomplete due to the greedy nature of

the search performed by the decomposition algorithm, and

because only ‘structural’ insertions are used). The proof can

be found in technical report [14].

Proposition 1 (Soundness). Let ΓÎ be the result of applying

to an STG Γ a composite insertion Î obtained from some sat-

isfying assignment of (1). Then [map] = F(X) is a possible

implementation for the newly inserted signal map in ΓÎ .

Two distinct reachable states of an STG are in the Uni-

versal State Coding (USC) conflict if they have the same



encoding, and are in the Complete State Coding (CSC) con-

flict if they have the same encoding and enable different sets

of non-input signals. Obviously, a CSC conflict is always a

USC one, but, in general, not vice versa. An STG satisfies

the USC/CSC property if it is free from USC/CSC conflicts.

It is well-known that the CSC property is one of the nec-

essary conditions required for implementability of an STG

as an SI circuit [8]. Note that an STG with USC conflicts

still can be synthesised, as long as it does not contain CSC

conflicts. However, USC conflicts indicate redundancy in

the specification (at the state graph level, the states in USC

conflict can be fused without affecting the correctness), and

so STGs with USC conflicts but without CSC ones are rare

in practice. The result below states that the USC property is

preserved by a function-guided signal insertion. The proof

can be found in [14].

Proposition 2 (USC). Let ΓÎ be the STG obtained from an

STG Γ by applying a composite insertion Î implementing the

function-guided signal insertion [map] =F(X) as described

in Prop. 1, and Γ had the USC property. Then ΓÎ also has

the USC property.

In [19] it was claimed that a function-guided signal in-

sertion always preserves the CSC property. This is actually

not the case, as the counterexample in [14] shows: in fact,

a USC conflict can be ‘promoted’ to a CSC one by such

an insertion. Hence, in certain rare cases, ΓÎ will not sat-

isfy the CSC property and thus one will not be able to syn-

thesise some of its output or internal signals (although the

newly inserted signal map will always be synthesisable due

to Prop. 1). A possible strategy to cope with this problem is

outlined in [14].

6. Experimental results

The unfolding-based logic decomposition algorithm de-

scribed in this paper has been implemented in the MPSAT

tool. In this section we present the results of running it on a

number of benchmarks. To solve the arising SAT instances,

the ZCHAFF solver [21] was used. The results are compared

with those produced by PETRIFY v4.2, which uses BDDs

to represent and manipulate the state graph of the STG.

The gate library petrify.lib that comes with PETRIFY

was used as the target library; it has combinational gates

and latches with up to four inputs, and the derived libraries

petrify2.lib and petrify3.lib were produced by

selecting from it only the gates and latches with up to two

and three inputs, respectively. All the experiments were

conducted on a PC with a PentiumT M IV/3.2GHz proces-

sor and 1Gb RAM.

6.1. Assorted small benchmarks

Table 1 presents the experimental results for a number

of assorted small benchmarks from [4], with CSC conflicts

resolved using the method described in [13]. The logic

petrify2.lib petrify3.lib petrify.lib

Benchmark PFY MPSAT PFY MPSAT PFY MPSAT

ADFAST F F F 656 416 F

DUPLICATOR 184 184 184 184 184 184

ALLOC-OUTBOUND 296 288 256 248 256 248

NAK-PA 304 384 328 328 328 344

NOWICK 240 256 280 264 280 264

RAM-READ-SBUF 320 368 312 360 304 312

SBUF-RAM-WRITE B 760 496 536 496 608

SBUF-READ-CTL 256 264 248 248 264 264

IRCV-BM T T B T B 632

MMU 712 F 712 712 712 696

MMU0 600 F 616 672 624 664

MMU1 496 552 B 544 B 576

MOD4 COUNTER T 536 528 520 528 472

MR0 504 552 480 520 488 504

MR1 B 504 464 560 440 528

PAR(4) 568 584 504 520 504 560

SEQ MIX 344 320 328 304 328 304

SEQ(8) 744 632 688 632 688 632

MASTER 1882 552 672 528 640 528 640

SPEC SEQ(4) 328 280 304 280 304 280

TRCV-BM T T B F B F

TSEND-BM F T B F B 720

Total 5136 5336 7256 7528 7256 7504

+3.89% +3.75% +3.42%

Table 1. Assorted small STGs.

decomposition has been performed using the three gate li-

braries mentioned above, and the areas of the resulting cir-

cuits are reported. We use ‘F’ to indicate that the tool has

terminated failing to decompose a circuit and ‘T’ to indicate

that the tool has not terminated within 10min (this happens

when the tool keeps inserting new signals without mak-

ing progress).1 Furthermore, it turned out that occasionally

PETRIFY produced incorrect circuits2 — apparently, there

is a bug in its implementation of the logic decomposition

algorithm; these cases are indicated in the table by ‘B’. The

totals in the table are taken over the benchmarks for which

both PETRIFY and MPSAT succeeded and produced correct

solutions.

From this table one can observe that PETRIFY and MP-

SAT are quite comparable: they have succeeded more or

less on the same benchmarks, and the areas of the resulting

circuits are quite similar (the overall difference is less than

4% for each of the three gate libraries). It should be noted

that the ‘Library matching’3 step of the logic decomposi-

tion algorithm in Sect. 3 has not been implemented in MP-

SAT yet, so non-optimised numbers are given in the MPSAT

columns; it seems reasonable to expect that this optimisa-

1Note that these two kinds of failures are pertinent to the decomposition

algorithm in Sect. 3 due to its ‘greedy’ selection of the decomposition on

each step (without the possibility of backtracking) and the fact that there

is no theoretical guarantee that every circuit can be decomposed using a

given finite gate library.
2The VERSIFY tool [24] was used to check correctness.
3Recall that library matching tries to combine small gates into larger

ones (this does not violate the SI property) and to re-shuffle inverters at

gates’ inputs and outputs (‘bubbles’) so that the total number of inverters

is minimised and as many gates as possible have an inverted output (as the

‘negative’ logic gates are usually smaller and faster). To ensure that such

re-shuffling preserves the SI property both PETRIFY and MPSAT use the

pragmatic assumption that inverters at gates’ inputs have negligible delays.
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Figure 2. The PPWKCSC(3,4) STG modelling three
weakly synchronised pipelines.

tion could recover 10–15% of the area. It is also worth not-

ing that MPSAT’s failures for TRCV-BM benchmark are due

to the effect described in Sect. 5.4, namely due to promoting

a USC conflict to a CSC one (the current implementation

does not try to recover in such a case and simply fails).

One should treat the provided results with caution, as the

parameters like the success rate and the quality of the re-

sulting circuits reflect the quality of the heuristics used for

selecting a decomposition on each step of the logic decom-

position algorithm, rather than the quality of the function-

guided signal insertion sub-routine, which is the main point

of this paper. However, the following important conclusion

seems justified. When performing a signal insertion at the

level of the state graph, PETRIFY can completely restruc-

ture the STG, whereas unfolding-based insertion performed

by MPSAT is currently limited to structural insertions con-

sidered in Sect. 4. Nevertheless, these experiments seem

to indicate that for logic decomposition such structural in-

sertions are not too restrictive in practice compared to the

signal insertion at the state graph level, i.e. STG restruc-

turing is useful only in rare cases. On the other hand, un-

folding-based insertions scale better (see below), which is

in practice a much more desirable quality than the ability to

do restructuring.

6.2. Scalable benchmarks

We also compared the described method with PETRIFY

on the PPWKCSC(3,n) series of scalable benchmarks mod-

elling three weakly synchronised pipelines. They are the

benchmarks from the corresponding series used in [16].

Fig. 2 shows the PPWKCSC(3,4) STG.

The purpose of this series is to distill as much as possi-

ble the complexity of the core sub-routine in SI logic de-

composition, viz. function-guided signal insertion, which is

the focus of this paper. As mentioned earlier, the perfor-

mance and success rate of the decomposition algorithm and

the quality of the resulting circuit are so much affected by

the multitude of heuristics for choosing the decomposition

STG Reachable Prefix Time, [s]

Benchmark |P|/|T | Sig states |B|/|E| PFY MPSAT

PPWKCSC(3,3) 34 / 20 10 1024 63 / 36 2 1

PPWKCSC(3,6) 70 / 38 19 524288 183 / 96 52 2

PPWKCSC(3,9) 106 / 56 28 268435456 357 / 183 8475 5

PPWKCSC(3,12) 142 / 74 37 137438953472 585 / 297 >15hrs 11

Table 2. Scalable pipelines.

on each step that it is difficult to compare the two imple-

mentations of this core sub-routine in PETRIFY and MP-

SAT. The advantage of the PPWKCSC(3,n) series is that

the impact of the decomposition selection heuristics is very

restricted: each signal except z in these benchmarks can be

implemented either by an inverter or by a two-input C-el-

ement (with one input inverted), and z itself can be imple-

mented by a three-input C-element, which can be decom-

posed in two two-input C-elements. Hence, when decom-

posing using the petrify2.lib gate library (which con-

tains, among other gates and latches, an inverter and two-in-

put C-elements with all possible input inversions), the im-

pact of the heuristics is minimised, and PETRIFY and MP-

SAT compute very similar solutions by inserting a single

signal.

The experimental results for these benchmarks are sum-

marised in Table 2. For each benchmark, this table gives

the STG size (numbers of places/transitions and signals),

the number of reachable states, the size of the unfolding

prefix (numbers of conditions/events), and the runtime (in

seconds) to perform logic decomposition by PETRIFY and

MPSAT. The unfolding prefixes were built using the PUNF

tool [23]; the corresponding runtime is not reported because

it was negligible in all cases (≪1sec).

From this table one can see that the number of reach-

able states grows exponentially with the size of the STG,

whereas the size of the prefix grows only quadratically.

Though using BDDs helps PETRIFY to alleviate the state

space explosion, its performance stills suffers consider-

ably, as it struggled to decompose a circuit with 37 sig-

nals. Overall, MPSAT was clearly superior in terms of run-

time and memory consumption. This confirms the observa-

tion [13,16,17] that unfolding prefixes provide an excellent

data structure for representing STG state spaces, as the prac-

tical STGs usually have high concurrency but rather few

choices — the ideal case for unfolding-based techniques.

7. Conclusions

In this paper, we proposed an unfolding-based technique

for solving the logic decomposition problem for SI circuits.

It has all the attractive features of the state space based

technique of [6] (highly optimised circuits, the possibil-

ity of multiway acknowledgement, latch utilisation), and

significantly alleviates the state space explosion. Together

with [13, 16, 17], this essentially completes the unfolding-

based synthesis flow for SI circuits which does not generate

state graphs at any stage and yet is a fully fledged logic syn-



thesis. Combined with the STG decomposition approach

of [18], this synthesis flow can be applied for control re-

synthesis of BALSA or TANGRAM/HASTE specifications.

This technique has been implemented in the MPSAT

tool. The experimental results show that PETRIFY and MP-

SAT have similar success rates and similar quality of the

produced circuits, which suggests that structural insertions

considered in Sect. 4 are usually sufficient for logic decom-

position, and complex transformations like STG restructur-

ing are rarely useful in practice. Furthermore, unfolding-

based logic decomposition scales much better.

As future work, it is planned to implement the library

matching algorithm in MPSAT to recover some area and

performance in the produced circuits. Furthermore, improv-

ing the heuristics for selecting the best decomposition on

each step of the logic decomposition algorithm is an impor-

tant direction of research, as these heuristics significantly

affect the success rate of the algorithm as well as the qual-

ity of the produced circuits.
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