
Merged Proesses | a New CondensedRepresentation of Petri Net BehaviourVitor Khomenko1, Alex Kondratyev2, Maiej Koutny1, and Walter Vogler31 Shool of Computing Siene, University of Newastle, NE1 7RU, U.K.2 Cadene Berkeley Labs, Berkeley, CA 94704, USA3 Institut f�ur Informatik, Universit�at Augsburg, D-86135 GermanyAbstrat. Model heking based on Petri net unfoldings is an approahwidely applied to ope with the state spae explosion problem.In this paper we propose a new ondensed representation of a Petri net'sbehaviour alledmerged proesses, whih opes well not only with onur-reny, but also with other soures of state spae explosion, viz. sequenesof hoies and non-safeness. Moreover, this representation is suÆientlysimilar to the traditional unfoldings, so that a large body of results de-veloped for the latter an be re-used. Experimental results indiate thatthe proposed representation of a Petri net's behaviour alleviates the statespae explosion problem to a signi�ant degree and is suitable for modelheking.Keywords:Merged proesses, Petri net unravelling, Petri net unfolding,state spae explosion, model heking, formal veri�ation.1 IntrodutionA reative system is ommonly desribed by a set of onurrent proesses thatinterat with eah other. Proesses typially have desriptions whih are shortand manageable, and the omplexity of the behaviour of the system as a wholeomes from highly ompliated interations between them. One way of opingwith this omplexity problem is to use formal methods and, espeially, om-puter aided veri�ation tools implementing model heking (see, e.g., [1℄) |a tehnique in whih the veri�ation of a system is arried out using a �niterepresentation of its state spae.The main drawbak of model heking is that it su�ers from the state spaeexplosion problem [16℄. That is, even a relatively small system spei�ation an(and often does) yield a very large state spae. To ope with this, several teh-niques have been developed, whih usually aim either at a ompat represen-tation of the full state spae of the system, or at the generation of a reduedstate spae (that is still suÆient for a given veri�ation task). Among them, aprominent tehnique is MMillan's (�nite pre�xes of) Petri net unfoldings (see,e.g., [5, 7, 11℄). They rely on the partial order view of onurrent omputation,and represent system states impliitly, using an ayli unfolding pre�x.There are several ommon soures of state spae explosion. One of them isonurreny, and the unfolding tehniques were primarily designed for eÆient
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(a) mp1 mpnt(b) p1t1 pntn()Fig. 1. Examples of Petri nets.veri�ation of highly onurrent systems. Indeed, omplete pre�xes are oftenexponentially smaller than the orresponding reahability graphs, beause theyrepresent onurreny diretly rather than by multidimensional `diamonds' as itis done in reahability graphs. For example, if the original Petri net onsists of100 transitions whih an �re one in parallel, the reahability graph will be a100-dimensional hyperube with 2100 verties, whereas the omplete pre�x willbe isomorphi to the net itself. However, unfoldings do not ope well with someother important soures of state spae explosion, in partiular with sequenes ofhoies and non-safeness. Below we onsider examples illustrating this problem.First, onsider Figure 1(a) with the dashed part not taken into aount. Theut-o� ondition proposed in [5℄ opes well with this Petri net (sine the markingreahed after either hoie on eah stage is the same | in fat, the Petri nethas very few reahable markings), and the resulting pre�x is linear in the sizeof the original Petri net. However, if the dashed part of the �gure is taken intoaount, the smallest omplete pre�x is exponential in the size of the Petri net,sine no event an be delared a ut-o� (intuitively, eah reahable marking ofthe Petri net `remembers' its past). Thus Petri nets performing a sequene ofhoies leading to di�erent markings may yield exponential pre�xes.Another problem arises when one tries to unfold non-safe Petri nets. Considerthe Petri net in Figure 1(b). Its smallest omplete unfolding pre�x ontains mninstanes of t, sine the unfolding distinguishes between di�erent tokens on thesame plae. One way to ope with non-safe nets is to onvert them into safeones and unfold the latter, as was proposed in [5℄. However, suh an approahdestroys the onurreny and an lead to very large pre�xes; e.g., this approahapplied to the Petri net in Figure 1() would yield a pre�x exponential in thesize of the original Petri net, while the traditional unfolding tehnique wouldyield a pre�x whih is linear in its size [5℄.The desribed problems with Petri net unfoldings should be viewed in thelight of the fat that all the above examples have a very simple struture |viz. they are all ayli, and thus many model heking tehniques, in partiularthose based on the marking equation [7, 13, 15℄, ould be applied diretly to theoriginal Petri nets. And so it may happen that a pre�x exponential in the sizeof the Petri net is built for a relatively simple problem!In this paper we propose a new ondensed representation of a Petri net'sbehaviour alledmerged proesses, whih remedies the problems desribed above.



Merged Proesses of Petri Nets 3It opes well not only with onurreny, but also with other soures of state spaeexplosion we mentioned, viz. sequene of hoies and non-safeness. Moreover, thisrepresentation is suÆiently similar to the traditional unfoldings, so that a largebody of results developed for unfoldings an be re-used.The main idea behind this representation is to fuse some equally labellednodes in the omplete pre�x of the Petri net being veri�ed, and use the resultingnet as the basis for veri�ation. For example, the unfolding of the Petri shownin Figure 1(a) (even with the dashed part taken into aount) will ollapse bakto the original net after the fusion. In fat, this will happen in all the examplesonsidered above. Of ourse, suh a fusion an result in various problems, inpartiular yles an appear and the marking equation alone is not suÆient forveri�ation of suh nets. The rest of this paper is devoted to formally de�ningthis transformation and solving some of the arising problems. The experimentalresults indiate that the proposed representation of a Petri net's behaviour alle-viates the state spae explosion problem to a signi�ant degree and is suitablefor model heking.All the proofs and further examples an be found in the tehnial report [8℄(available on-line).2 Basi notionsIn this setion we introdue the basi notions onerning Petri nets and theirunfoldings (see also [5, 7, 9, 11, 13{15℄).Petri nets. A net is a triple N df= (P; T; F ) suh that P and T are disjoint sets ofrespetively plaes and transitions, and F � (P �T )[ (T �P ) is a ow relation.A marking of N is a multiset M of plaes, i.e., M : P ! N df= f0; 1; 2; : : :g.The standard rules about drawing nets are adopted in this paper, viz. plaesare represented as irles, transitions as boxes, the ow relation by ars, and themarking is shown by plaing tokens within irles. As usual, �z df= fy j (y; z) 2 Fgand z� df= fy j (z; y) 2 Fg denote the pre- and postset of z 2 P [T . In this paper,the presets of transitions are restrited to be non-empty, i.e., �t 6= ? for everyt 2 T . A net system (or Petri net) is a pair � df= (N;M0) omprising a �nitenet N and an initial marking M0. It is assumed that the reader is familiar withthe standard notions of Petri net theory, suh as the enabledness and �ring of atransition, reahability of a marking, the marking equation, safe Petri net anddeadlok (see, e.g., [15℄ for a brief introdution).Branhing proesses. A branhing proess [5, 7℄ � of a Petri net � is a �niteor in�nite ayli net whih an be obtained through unfolding �, by suessive�rings of transition, under the following assumptions: (i) for eah new �ring afresh transition (alled an event) is generated; and (ii) for eah newly produedtoken a fresh plae (alled a ondition) is generated. There exists a unique (up toisomorphism) maximal (w.r.t. the pre�x relation) branhing proess of � alled



4 V. Khomenko, A. Kondratyev, M. Koutny, W. Voglerthe unfolding of �. For example, the unfolding of the Petri net in Figure 2(a) isshown in part (b) of this �gure (with the dashed lines ignored).The unfolding is in�nite whenever � has an in�nite run; however, if � has�nitely many reahable states then the unfolding eventually starts to repeatitself and an be trunated (by identifying a set of ut-o� events) without lossof essential information. The sets of onditions, events, ars and ut-o� eventsof � will be denoted by B, E, G and Eut , respetively, (note that Eut � E),and the labelling funtion mapping the nodes of � to the orresponding nodesof � will be denoted by h.Sine � is ayli, the transitive losure of its ow relation is a partial order <on B [ E, alled the ausality relation. (The reexive order orresponding to <will be denoted by �.) Intuitively, all the events whih are smaller than anevent e 2 E w.r.t. < must preede e in any valid exeution of � ontaining e. Tomake this preise, onsider the impliit initial marking of �, obtained by puttinga single token in eah ondition whih does not have an inoming ar. Note thath is a homomorphism, i.e., it maps the onditions in the preset (postset resp.)of an event e bijetively to the preset (postset resp.) of h(e) and, intuitively, itmaps the (impliit) initial marking of � to the initial marking of �. Suh as anyhomomorphism, h maps runs of � to runs of �. It is known that in ayli netslike �, a marking is reahable if and only if the orresponding marking equationhas a solution [15℄, and hene branhing proesses an be used for eÆient modelheking [6, 7, 10{13℄.Two nodes x; y 2 B [ E are in onit, denoted x#y, if there are distintevents e; f 2 E suh that �e\ �f 6= ? and e � x and f � y. Intuitively, no validexeution of � an ontain two events in onit. Two nodes x; y 2 B [ E areonurrent, denoted x o y, if neither y#y0 nor y � y0 nor y0 � y. Intuitively, twoonurrent events an be enabled simultaneously, and exeuted in any order, oreven onurrently. For example, in the branhing proess shown in Figure 2(b)the following relationships hold: e1 < e5, e3#e4 and 1 o 4.Due to strutural properties of branhing proesses (suh as ayliity), thereahable markings of � an be represented using on�gurations of �. A on-�guration is a �nite set of events C � E suh that for all e; f 2 C, :(e#f)and, for every e 2 C, f < e implies f 2 C. For example, in the branhing pro-ess shown in Figure 2(b) fe1; e3; e5g is a on�guration whereas fe1; e2; e3g andfe1; e5g are not (the former inludes events in onit, e1#e2, while the latterdoes not inlude e3, a ausal predeessor of e5). Intuitively, a on�guration is apartial-order exeution, i.e., an exeution where the order of �ring of some of itsevents is not important.After starting � from the impliit initial marking and exeuting all the eventsin C, one reahes the marking denoted by Cut(C). Mark (C) denotes the orre-sponding marking of �, reahed by �ring a transition sequene orresponding tothe events in C. A branhing proess � is marking-omplete w.r.t. a set Eut � Eif for every reahable marking M of � there is a on�guration C of � suh thatC \ Eut = ? and Mark (C) = M ; moreover, � is omplete if it is marking-omplete and for eah on�guration C of � suh that C \ Eut = ? and eah



Merged Proesses of Petri Nets 5event e =2 C of the unfolding suh that C[feg is a on�guration of the unfolding,e is in � (e may be in Eut); this additional preservation of �rings is sometimesused for deadlok detetion. Complete branhing proesses are often alled om-plete (unfolding) pre�xes. One an build suh a omplete pre�x ensuring thatthe number of non-ut-o� events jE nEut j in it does not exeed the number ofreahable markings of � [5, 7℄.3 Merged proessesIn this setion we introdue the notion of a merged proess, whih is the mainonstrution investigated in this paper.De�nition 1 (ourrene-depth). Let � be a branhing proess of a Petri net�, and x be one of its nodes (ondition or event). The ourrene-depth of xis de�ned as the maximum number of h(x)-labelled nodes on any direted pathstarting at a minimal (w.r.t. <) ondition and terminating at x in the diretedgraph representing �.The above notion is well-de�ned sine there is always at least one direted pathstarting at a minimal (w.r.t. <) ondition and terminating at x, and the numberof all suh paths is �nite. In Figure 2(b) the ourrene-depths of onditions areshown in brakets.De�nition 2 (merged proess). Given a branhing proess �, the orrespond-ing merged proess � =Merge(�) is a Petri net whih is obtained in two steps,as follows:Step 1: the plaes of �, alled mp-onditions, are obtained by fusing togetherall the onditions of � whih have the same labels and ourrene-depths; eahmp-ondition inherits its label and ars from the fused onditions, and its initialmarking is the total number of minimal (w.r.t. <) onditions whih were fusedinto it.Step 2: the transitions of �, alled mp-events, are obtained by merging all theevents whih have the same labels, presets and postsets (after step 1 was per-formed); eah mp-event inherits its label from the merged events (and has ex-atly the same onnetivity as either of them), and it is delared ut-o� i� allthe events merged into it were ut-o� events in �.Figure 2(b,) illustrates this notion. In the sequel, ~ will denote the homomor-phism mapping the nodes of � to the orresponding nodes of �, and bE, bB, bG,M0, dEut and bh will denote the set of its mp-events, the set of its mp-onditions,its ow relation, its initial marking, the set of its ut-o� events and the homo-morphism mapping the nodes of � to the orresponding nodes of � (note thatbh Æ ~ = h). The merged proess orresponding to the (full) unfolding of � willbe alled the unravelling of �. A few simple properties of merged proesses arelisted below:
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Fig. 2. A Petri net (a), its unfolding with the ourrene-depths of onditions shownin brakets and the onditions to be fused onneted by dashed lines (b), and itsunravelling ().1. There is at most one mp-ondition pk resulting from the fusion of onditionslabelled by plae p of � ourring at depth k � 1.2. Two distint onditions in � having the same label and ourrene-depthare either onurrent or in onit. Hene, if the original Petri net was safethen all the onditions in � whih were fused into the same mp-ondition pkof � were in onit.3. For two mp-onditions, pk and pk+1, there is a direted path from the formerto latter. Moreover, if pk+1 is present and k � 1 then pk is also present.4. In general, � is not ayli (yles an arise due to riss-ross fusions of on-ditions, as illustrated in Figure 2(b,)). This, in turn, leads to ompliationsfor model heking, in partiular the marking equation an have spurioussolutions, i.e., solutions whih do not orrespond to any reahable marking.To simplify model heking, one ould stop fusing onditions in De�nition 2when this leads to yles, but this is not a satisfatory solution, sine � isnot uniquely de�ned in suh a ase; moreover, this would lead to lower om-pression. So we hose to allow yles, and strengthen the marking equationwith additional onstraints exluding spurious solutions (see Proposition 6).5. There an be events onsuming onditions in the postset of a ut-o� mp-event.



Merged Proesses of Petri Nets 76. There is a strong orrespondene between the runs of � and those of itsunravelling: � is a run of � i� � = bh(b�) for some run b� of the unravelling of�.A multiset bC of mp-events is an mp-on�guration of � if bC = ~(C) for someon�guration C of the unfolding of � (that we refer to the full unfolding ratherthan � here is a subtle point explained in [8℄). If bC is an mp-on�guration thenthe orresponding mp-ut Cut( bC) is de�ned as the marking of � reahed byexeuting all the events of bC starting from the initial marking M0. (Cut( bC) anbe eÆiently omputed using, e.g., the marking equation.) Moreover, Mark ( bC)is de�ned as bh(Cut( bC)). Note that if bC = ~(C) then Mark ( bC) = Mark (C).Canonial merged proesses Sine Merge is a deterministi transformation,one an easily de�ne the anonial merged proess as Merge(�), where � is theanonial unfolding pre�x [9℄. This allows for an easy import of the results of [7,9℄ related to the anoniity.The size of a merged proess One an see that in De�nition 2 the fusionof onditions an only derease the number of onditions without a�eting thenumber of events or ars; moreover, merging events an only derease the num-ber of events and ars, without a�eting the number of onditions. Hene, thefollowing result holds:Proposition 1 (size). If � is �nite then � is �nite and j bBj � jBj, j bEj � jEjand j bGj � jGj.This result allows to import all the upper bounds proved for unfolding pre-�xes [5, 7, 9℄; in partiular, sine for every safe Petri net � one an build amarking-omplete branhing proess with the number of events not exeedingthe number of reahable markings of �, the orresponding merged proess � hasthe same upper bound on the number of its events. However, the upper boundgiven by Proposition 1 is rather pessimisti; in pratie, merged proesses turnout to be muh more ompat than the unfolding pre�xes.Tables 1 and 2 show the results of our experiments. The popular set of benh-marks olleted by J.C. Corbett [2℄ has been attempted. The meaning of theolumns is as follows (from left to right): the name of the problem; the numberof plaes and transitions in the original Petri net; the number of onditions,events and ut-o� events in the unfolding pre�x; the time taken by deadlokheking based on unfoldings (disussed in the next setion); the number of mp-onditions and mp-events in the orresponding merged proess; the time takenby deadlok heking based on merged proesses (disussed in the next setion);and the ratios j bEj=jT j and jEj=j bEj giving measures of ompatness of the mergedproess relative to the original Petri net and its unfolding pre�x, respetively.The unfolding pre�xes in our experiments were built using the algorithm de-sribed in [5, 7, 9℄, and the orresponding merged proesses were obtained by



8 V. Khomenko, A. Kondratyev, M. Koutny, W. VoglerProblem Net Unfolding UnravellingjP j jT j jBj jEj jEut j MC [s℄ j bBj j bEj MC [s℄ j bEj=jT j jEj=jbEjQ 163 194 16123 8417 1188 <1 248 256 <1 1.32 32.88Speed 33 39 4929 2882 1219 <1 92 175 <1 4.49 16.47Da(6) 42 34 92 53 0 <1 42 35 <1 1.03 1.51Da(9) 63 52 167 95 0 <1 63 53 <1 1.02 1.79Da(12) 84 70 260 146 0 <1 84 71 <1 1.01 2.06Da(15) 105 88 371 206 0 <1 105 89 <1 1.01 2.31Dp(6) 36 24 204 96 30 <1 60 37 <1 1.54 2.59Dp(8) 48 32 368 176 56 <1 80 49 <1 1.53 3.59Dp(10) 60 40 580 280 90 <1 100 61 <1 1.53 4.59Dp(12) 72 48 840 408 132 <1 120 73 <1 1.52 5.59Elev(1) 63 99 296 157 59 <1 73 89 <1 0.90 1.76Elev(2) 146 299 1562 827 331 <1 150 241 <1 0.81 3.43Elev(3) 327 783 7398 3895 1629 <1 304 588 <1 0.75 6.62Elev(4) 736 1939 32354 16935 7337 <1 634 1387 <1 0.72 12.21Hart(25) 127 77 179 102 1 <1 153 102 <1 1.32 1.00Hart(50) 252 152 354 202 1 <1 303 202 <1 1.33 1.00Hart(75) 377 227 529 302 1 <1 453 302 <1 1.33 1.00Hart(100) 502 302 704 402 1 <1 603 402 <1 1.33 1.00Key(2) 94 92 1310 653 199 <1 147 402 <1 4.37 1.62Key(3) 129 133 13941 6968 2911 <1 201 1086 11 8.17 6.42Key(4) 164 174 135914 67954 32049 <1 255 2054 69 11.80 33.08Mmgt(1) 50 58 118 58 20 <1 61 58 <1 1.00 1.00Mmgt(2) 86 114 1280 645 260 <1 111 282 <1 2.47 2.29Mmgt(3) 122 172 11575 5841 2529 2 159 662 <1 3.85 8.82Mmgt(4) 158 232 92940 46902 20957 10 207 1206 <1 5.20 38.89Sent(25) 104 55 383 216 40 <1 120 81 <1 1.47 2.67Sent(50) 179 80 458 241 40 <1 195 106 <1 1.33 2.27Sent(75) 254 105 533 266 40 <1 270 131 <1 1.25 2.03Sent(100) 329 130 608 291 40 <1 345 156 <1 1.20 1.87Table 1. Experimental results for benhmarks with deadloks.appliation of the algorithm given by De�nition 2. (The time taken by this al-gorithm is not inluded in the tables beause it was negligible.) The algorithmfor building merged proesses diretly from Petri nets is a matter of future re-searh [8℄ (signi�ant progress has already been made).One an see that merged proesses an be by orders of magnitude smallerthan unfolding pre�xes, and, in many ases, are just slightly greater than theoriginal Petri nets. In fat, in some of the examples merged proesses are smallerthan the original Petri nets due to the elimination of dead transitions. However,merged proesses are muh more amenable to model heking than general safePetri nets | e.g., most of `interesting' behaviourial properties are known tobe PSPACE-omplete for safe Petri nets [4℄, whereas in Setion 4 we develop anon-deterministi polynomial-time algorithm for heking reahability-like prop-erties of merged proesses, i.e., many behaviourial properties of merged proessesare in NP . Sine many suh properties are known to be NP-omplete alreadyfor unfolding pre�xes, the omplexity lass is not worsened if one uses mergedproesses rather than unfolding pre�xes.Sine merged proesses are inherently more ompat than unfolding pre�xes,it would be natural to seek sharper upper bounds than the trivial ones given byProposition 1. In partiular, it would be interesting to identify sublasses of Petrinets whose unfolding pre�xes an be exponential in the size of the original Petri
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Problem Net Unfolding UnravellingjP j jT j jBj jEj jEut j MC [s℄ j bBj j bEj MC [s℄ j bEj=jT j jEj=jbEjAbp 43 95 337 167 56 <1 75 83 <1 0.87 2.01Bds 53 59 12310 6330 3701 <1 145 359 <1 6.08 17.63Ftp 176 529 178085 89046 35197 16 304 875 <1 1.65 101.77Cyli(3) 23 17 52 23 4 <1 39 21 <1 1.24 1.10Cyli(6) 47 35 112 50 7 <1 84 45 <1 1.29 1.11Cyli(9) 71 53 172 77 10 <1 129 69 <1 1.30 1.12Cyli(12) 95 71 232 104 13 <1 174 93 <1 1.31 1.12Dme(2) 135 98 487 122 4 <1 309 98 <1 1.00 1.24Dme(3) 202 147 1210 321 9 <1 463 148 <1 1.01 2.17Dme(4) 269 196 2381 652 16 <1 617 197 <1 1.01 3.31Dme(5) 336 245 4096 1145 25 <1 771 246 <1 1.00 4.65Dme(6) 403 294 6451 1830 36 <1 925 295 <1 1.00 6.20Dme(7) 470 343 9542 2737 49 <1 1079 344 <1 1.00 7.96Dme(8) 537 392 13465 3896 64 <1 1233 393 <1 1.00 9.91Dme(9) 604 441 18316 5337 81 <1 1387 442 <1 1.00 12.07Dme(10) 671 490 24191 7090 100 2 1541 491 <1 1.00 14.44Dme(11) 738 539 31186 9185 121 2 1695 540 <1 1.00 17.01Dpd(4) 36 36 594 296 81 <1 81 78 <1 2.17 3.79Dpd(5) 45 45 1582 790 211 <1 102 100 <1 2.22 7.90Dpd(6) 54 54 3786 1892 499 <1 123 122 <1 2.26 15.51Dpd(7) 63 63 8630 4314 1129 <1 144 144 <1 2.29 29.96Dpfm(2) 7 5 12 5 2 <1 10 5 <1 1.00 1.00Dpfm(5) 27 41 67 31 20 <1 31 31 <1 0.76 1.00Dpfm(8) 87 321 426 209 162 <1 89 209 <1 0.65 1.00Dpfm(11) 1047 5633 2433 1211 1012 <1 313 1211 <1 0.21 1.00Dph(4) 39 46 680 336 117 <1 87 108 <1 2.35 3.11Dph(5) 48 67 2712 1351 547 <1 129 293 <1 4.37 4.61Dph(6) 57 92 14590 7289 3407 <1 198 904 2313 9.83 8.06Dph(7) 66 121 74558 37272 19207 1 277 2773 >10 hrs 22.92 13.44Furn(1) 27 37 535 326 189 <1 70 98 <1 2.65 3.33Furn(2) 40 65 4573 2767 1750 <1 121 432 <1 6.65 6.41Furn(3) 53 99 30820 18563 12207 <1 180 1224 <1 12.36 15.17Gasnq(2) 71 85 338 169 46 <1 87 103 <1 1.21 1.64Gasnq(3) 143 223 2409 1205 401 <1 173 325 <1 1.46 3.71Gasnq(4) 258 465 15928 7965 2876 6 308 748 21 1.61 10.65Gasnq(5) 428 841 100527 50265 18751 321 505 1449 4455 1.72 34.69Gasq(1) 28 21 43 21 4 <1 35 21 <1 1.00 1.00Gasq(2) 78 97 346 173 54 <1 96 111 <1 1.14 1.56Gasq(3) 284 475 2593 1297 490 <1 316 509 <1 1.07 2.55Gasq(4) 1428 2705 19864 9933 4060 9 1540 3004 34 1.11 3.31Over(2) 33 32 83 41 10 <1 51 39 <1 1.22 1.05Over(3) 52 53 369 187 53 <1 89 97 <1 1.83 1.93Over(4) 71 74 1536 783 237 <1 138 217 <1 2.93 3.61Over(5) 90 95 7266 3697 1232 <1 186 375 <1 3.95 9.86Ring(3) 39 33 97 47 11 <1 58 40 <1 1.21 1.18Ring(5) 65 55 339 167 37 <1 110 97 <1 1.76 1.72Ring(7) 91 77 813 403 79 <1 160 146 <1 1.90 2.76Ring(9) 117 99 1599 795 137 <1 210 194 <1 1.96 4.10Rw(6) 33 85 806 397 327 <1 51 85 <1 1.00 4.67Rw(9) 48 181 9272 4627 4106 <1 75 181 <1 1.00 25.56Rw(12) 63 313 98378 49177 45069 <1 99 313 <1 1.00 157.12Table 2. Experimental results for deadlok-free benhmarks.
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Fig. 3. An LSFC2 Petri net whose unfolding pre�x is exponential in its size.net, but whose merged pre�xes are guaranteed to be only polynomial. Below, wepresent two suh results.Proposition 2 (unravelling of an ayli Petri net). If � is an ayliPetri net then its unravelling is isomorphi to the Petri net obtained from � byremoving all its dead transitions and unreahable plaes.This result easily follows from the fat that no token in an ayli Petri net an`visit' a plae more than one, and thus the ourrene-depth of every onditionin the unfolding of � is 1. On the other hand, unfolding pre�xes of even safeayli Petri nets an be exponential in the size of the original nets, e.g., this isthe ase for the ayli Petri net in Figure 1(a) with the dashed part taken intoaount.In the disussion below, LSFCk denotes the lass of live and safe free-hoiePetri nets [3℄ whose transitions' postsets have ardinality less than or equal tok 2 N [ f1g; hene, LSFC1 denotes the whole lass of live and safe free-hoie Petri nets. It turns out that if k 6=1 then the marking-omplete mergedproesses for the nets in LSFCk are polynomial in the size of the original nets,even though their unfolding pre�xes an be exponential; e.g., one an make thePetri net in Figure 1(a) (with the dashed part taken into aount) live by addinga subnet `gathering' tokens at the end of the exeution and returning a token tothe initial plae, as shown in Figure 3. This net is in LSFC2 and its ompletepre�x is exponential in its size.Proposition 3 (merged proesses of LSFCk-nets [8℄). For any k 2 N,there exist marking-omplete merged proesses of LSFCk-nets polynomial in thesizes of the original nets.This result is unlikely to be generalised to LSFC1 [8℄. However, one shouldnote that the expressive power of LSFCk for k � 2 is omparable with that ofLSFC1, sine every transition of an LSFC1-net with postset of ardinalitygreater than k an be replaed by a tree of transitions with postsets of ardinalitynot exeeding k, and the resulting Petri net will be in LSFCk.



Merged Proesses of Petri Nets 11Finiteness of a merged proess In view of Proposition 1, � is �nite if �is. However, it is not obvious that the reverse holds, sine, in general, in�nitelymany nodes of � an orrespond to a single node of � [8℄. However, by the analogof K�onig's lemma for branhing proesses [7, 9℄, if � is in�nite then there existsan in�nite path in �. Sine the number of plaes in � is �nite, some plae p 2 Pis repeated in�nitely many times along this path, and so the ourrene-depth ofits instanes grows unboundedly in �. Thus there are in�nitely many instanesof p after fusion, and the following result holds:Proposition 4. � is �nite i� � is �nite.Again, this result allows to import into the new framework all the �nitenessresults proved for unfolding pre�xes [5, 7, 9℄.Completeness of a merged proess The marking-ompleteness of a mergedproess is de�ned similarly to the marking-ompleteness of a branhing proess.A merged proess � is marking-omplete w.r.t. a set dEut � bE if for everyreahable marking M of � there exists an mp-on�guration bC of � suh thatbC \ dEut = ? and Mark ( bC) =M .Let C be a on�guration of � and bC = ~(C) be the orresponding on�g-uration in �. One an easily show that if C ontains no ut-o� event then bContains no ut-o� mp-events, and that Mark (C) = Mark ( bC). Hene:Proposition 5. If � is marking-omplete then � is marking-omplete.However, no suh result holds for full ompleteness [8℄; therefore, modelheking algorithms developed for unfolding pre�xes relying on the preservationof �rings (e.g., some of the deadlok heking algorithms in [6, 7, 11{13℄) an-not be easily transferred to merged proesses. However, marking-ompletenessis suÆient for most purposes, as the transitions enabled by the �nal state ofan mp-on�guration an be easily found using the original Petri net. The modelheking algorithm proposed in the next setion does not make use of ut-o�mp-events, and so they an be removed from the merged proess before modelheking.4 Model heking based on merged proessesModel heking algorithms [6, 7, 10{13℄ working on omplete pre�xes of Petri netunfoldings are usually based on the following non-deterministi algorithm:hoose a set of events C � E nEutif C is a on�guration violating the property (e.g., deadlok-freeness)then aept /* C is a erti�ate onvertible to a witness trae */else rejetVarious kinds of solvers have been employed to implement it, e.g., ones basedon mixed-integer programming [13℄, stable models of logi programs [6℄, integer



12 V. Khomenko, A. Kondratyev, M. Koutny, W. Voglerprogramming [7℄ and Boolean satis�ability (SAT) [10℄. More preisely, a systemof onstraints having for eah non-ut-o� event e of the pre�x a variable onfeis built (it might also ontain other variables), and for every satisfying assign-ment A, the set of events C df= fe j A(onfe) = 1g is a on�guration suh thatMark (C) violates the property being heked. This system of onstraints usuallyhas the form CONF&VIOL. The role of the on�guration onstraint, CONF ,is to ensure that C is a on�guration of the pre�x (not just an arbitrary set ofevents), and the role of the violation onstraint, VIOL, is to apture the propertyviolation ondition for a on�guration C, so that if a on�guration C satisfyingthis onstraint is found then the property (e.g., deadlok-freeness) does not hold,and any ordering of events in C onsistent with the ausal order on the eventsof the pre�x is a violation trae.It is natural to follow a similar approah for veri�ation based on mergedproesses. However, one should bear in mind the following ompliations:{ An mp-on�guration is generally a multiset (rather than a set) of mp-events.Though this is not a major problem, it does hamper veri�ation employingBoolean solvers, as assoiating a single Boolean variable with eah mp-eventis no longer suÆient for representing an mp-on�guration. But if the originalPetri net is safe, the mp-on�gurations of its merged proesses are sets.{ An easily testable haraterisation of an mp-on�guration is neessary (our`indiret' de�nition of an mp-on�guration as an ~-image of some on�g-uration of the unfolding is not of muh use for model heking). In whatfollows we develop suh a haraterisation for mp-on�gurations of mergedproesses of safe Petri nets. Some issues make it non-trivial to develop suha haraterisation:Spurious solutions of the marking equation Many model heking al-gorithms working on unfolding pre�xes [6, 7, 10, 13℄ are based on themarking equation (perhaps expressed not as integer linear onstraintsbut in some other form, e.g., as a Boolean formula) and the fat that forayli Petri nets it annot have spurious solutions [15℄. Sine mergedproesses are not generally ayli, the marking equation an have spu-rious solutions. For example, the assoiated marking equations for theunravelling shown in Figure 2() has a spurious solution: if one `bor-rows' a token in p14 then the t3- and t4-labelled mp-events forming ayle an be exeuted, returning the borrowed token to p14 and leadingto the spurious marking fp12g.Spurious runs The orrespondene between the runs and mp-on�gura-tions of � is not very straightforward: some of its runs (e.g., the runomprised of the instane of t1 followed by the left instane of t3 inFigure 2()) do not form mp-on�gurations.Below we solve these problems for merged proesses of safe Petri nets.The ase of safe Petri netsTo apture the notion of an mp-on�guration in the ase when the original Petrinet � is safe, we proeed as follows. Let C be a on�guration of �, and bC be a



Merged Proesses of Petri Nets 13set of mp-events of �. Below, G(C) and G( bC) will denote two graphs indued bythe events of C together with their adjaent onditions and the minimal (w.r.t.<) onditions of � and by the mp-events of bC together with their adjaentmp-onditions and the initially marked mp-onditions of �, respetively.We say that bC satis�es: (a) ME if it is a solution of the marking equationfor �; (b) ACYCLIC if G( bC) is ayli; and () NG (no-gap) if, for all k > 1and all plaes p of �, the following holds: if pk is a node in G( bC) then pk�1 isalso a node in G( bC). Note that if bC = ~(C) then G(C) is isomorphi to G( bC)(inluding the labelling in terms of plaes and transitions). The next result givesa diret haraterisation of mp-on�gurations and is ruial for model heking:Proposition 6 (mp-on�gurations in the safe ase [8℄). A set of mp-eventsbC is an mp-on�guration i� ME&ACYCLIC&NG holds for bC.Hene it is enough for model heking to take CONF df=ME&ACYCLIC&NGand apply an algorithm similar to that desribed in the beginning of this setionfor unfolding pre�xes.We implemented a deadlok heking algorithm based on merged proessesusing zChaff [14℄ as the underlying SAT solver. (Note that other reahability-like properties an also be implemented simply by adjusting the VIOL on-straint.) All the experiments were onduted on a PC with a PentiumTMIV/2.8GHz proessor and 512M RAM.The implementation of the ME and VIOL onstraints as Boolean formulaeis very similar to that for unfoldings and not disussed here. The NG onstrainthas been implemented as a onjuntion of impliations of the form onfpk !onfpk�1 , for all mp-onditions pk suh that k > 1. (Intuitively, onfpk = 1onveys that pk is in G( bC); similarly, onfbe = 1 onveys that be is in G( bC), foreah non-ut-o� mp-event be of �.)The implementation of ACYCLIC onstraint is di�erent from that in [8℄(and so we report better results for deadlok heking). The problem an bere-formulated as follows: given a digraph G = (V;E) (representing �) with aboolean variable onfv assoiated with eah vertex v 2 V , onstrut a booleanformula ACYCLIC (depending on the variables onf� and, perhaps, other vari-ables) suh that, given an assignment to variables onf�, the formula obtainedfrom ACYCLIC by substituting the variables onf� by their values is satis�ablei� the subgraph of G indued by the verties whose orresponding variableswere assigned to 1 is ayli. (Note that ME , NG and VIOL also ontain thevariables onf�.)Sine eah yle is ontained in some strongly onneted omponent of G,one an partition G into its strongly onneted omponents, generate suh aonstraint for eah of them separately and form ACYCLIC as their onjuntion.For eah strongly onneted omponentGk = (Vk ; Ek) ofG = (V;E), the vertiesare sorted to heuristially minimise the number of feedbak verties, i.e., vertiesv 2 Vk for whih there exists w 2 Vk suh that (w; v) 2 Ek and w > v (sine theverties of Gk are ordered, we identify eah vertex v 2 Vk with its position inthis order). Then for eah suh a feedbak vertex v 2 Vk the following formula



14 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogleris generated (reah� are auxiliary variables reated separately for eah suh v):(onfv!reahv) ^ ^(x;y)2Ekx�v^y>v�(reahx ^ onfy)!reahy� ^^(w;v)2Ekw>v:reahw :The idea behind this formula is to perform a reahability analysis in Gk startingfrom v and ignoring all the verties whih preede v in the hosen order or are notseleted. Note that if the values of the variables onf� are �xed then this formulais unsatis�able i� at least one of the soures of the feedbak ars ending at v isreahable from v (and hene there is a yle); moreover, the unsatis�ability anbe proven by unit resolution alone, i.e., one an setup the solver not to branhon the variables reah�.The experimental results in Tables 1 and 2 show that the developed modelheking algorithm is quite pratial and it even outperformed the one work-ing on unfolding pre�xes on some of the benhmarks. On the other hand, itsperformane deteriorated on the Dph and Gasnq series. We rekon that thisis due to our still ineÆient implementation of the ACYCLIC onstraint, andthat this an be signi�antly improved (major improvements over the resultsreported in [8℄ have already been ahieved due to a di�erent implementation ofACYCLIC).The point we are making with these results is: merged proesses are a moreompat behaviour representation than unfolding pre�xes, but still allow modelheking of reahability-like properties in at least omparable time. Sine spaeonsiderations are of utmost importane in model heking, we regard this asvery promising | although, to make merged proesses pratial, we still haveto develop an unravelling algorithm that builds them diretly from Petri netsinstead of deriving them from unfolding pre�xes (signi�ant progress has alreadybeen made).5 Conlusions and future workWe proposed the notion of a merged proess | a new ondensed representationof a Petri net's behaviour allowing one to ontain state spae explosion arisingnot only from onurreny, but also from a sequene of hoies and from non-safeness of the Petri net. Experimental results show that merged proesses anbe smaller by orders of magnitude than the orresponding unfolding pre�xes, andare in many ases not muh bigger than the original Petri nets. Many resultsdeveloped for Petri net unfoldings (related to anoniity, �niteness, ompletenessand size) have been transferred to the new framework. Moreover, we provedsharper upper bounds for some of the net sublasses and diretly haraterisedthe mp-on�gurations of merged proesses of safe Petri nets, whih allowed usto develop a model heking algorithm.We now identify possible diretions for future study (see also the disussionin [8℄): (i) diret haraterisation of merged proesses (f. the haraterisation ofbranhing proesses by ourrene nets); (ii) diret haraterisation of (general)
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