
Design and Verification of Speed-Independent
Multiphase Buck Controller

Danil Sokolov†, Victor Khomenko†, Andrey Mokhov†, Alex Yakovlev†, David Lloyd‡

{danil.sokolov, victor.khomenko, andrey.mokhov, alex.yakovlev}@ncl.ac.uk; david.lloyd@diasemi.com
†Newcastle University, UK; ‡Dialog Semiconductor, UK

Abstract—Power regulators and converters impose high re-
quirements on the latency and resilience of their control circuitry.
In this paper we design a speed-independent multiphase buck
controller based on a novel lazy token ring architecture, that al-
lows overlapping the charging cycles of multiple phases as well as
simultaneous activation of all phases to handle the sudden power
demand. The advantages over traditional synchronous designs
include reliable handling of asynchronous inputs from sensors,
low-latency reaction to the changes in power demand (under-
voltage, over-current, zero-crossing and high-load conditions),
and more balanced utilisation of charging phases. The essential
correctness properties of the developed controller have been
formally verified, and the whole buck has been validated in the
industrial settings using exhaustive simulation.

I. INTRODUCTION AND BASIC NOTIONS

A. Motivation

The market of consumer gadgets is dominated by digital
electronics that processes discrete data. However, a small por-
tion of components remain analogue to operate on continuous
values, such as the energy flows. As energy is becoming the
most valuable resource in modern electronics, the efficient
implementation of such analogue components as power con-
verters [1] is paramount for a wide range of applications,
from extending the battery life of mobile gadgets to reducing
the energy bill of large data centres. Responsiveness and
robustness of power converters heavily depends on the imple-
mentation of their digital control circuitry – millions of control
decisions need to be made each second and a single incorrect
decision may cause a malfunction of the whole system or
even permanently damage the circuit. For example, a 3MHz
switching regulator is clocked around 473,364,000,000,000
times in 5 years of its operation [2].

The practical design problem associated with power con-
verters [3] is partially related to the state-of-the-art synthesis
methods which produce suboptimal solutions. Currently the
same design methods and CAD tools are used for building
both the data processing components and the power control
circuits. Historically these methods and tools are optimised
for synchronous circuits whose bursts of activity are driven
by the frequency of a global clock signal. The clocked mode
of operation is natural for the data processing; however, when
applied to power control, it leads to either low responsiveness
or power consumption overheads. On one hand the clocking
frequency must be sufficiently high to promptly react to
changes in the analogue power converter (sensor readings). On
the other hand this causes waste of energy (useless switching
of the global clock circuitry) when the sensors’ readings

change slowly. Furthermore, with the increasing number of
asynchronous signals coming from power regulator sensors
the probability of failure in synchronisers quickly grows and
may become significant.

The power control could significantly benefit from the use
of asynchronous logic [4] that does not rely on the global clock
signal and operates at the pace determined by the current con-
ditions. Thus such circuits are adaptable to the rate of changes
in the controlled system and can react to the asynchronous
signals from the sensors without the need for synchronisers.
These benefits are already realised by the analogue engineers
who are keen to use asynchronous circuits – at present they
typically perform an ad hoc design of clock-less power control
circuits and rely on exhaustive simulation to validate their
correctness. This assemble-and-validate approach, however, is
unproductive and prone to errors. To bridge this gap one needs
to start from an unambiguous representation of the design
intents that can be subsequently used for synthesis of the
power control circuits in a correct-by-construction manner and
for verifiable integration of the obtained control circuit into a
power regulator system.

In this paper we explore a compositional approach to the
design of the power control logic and formal verification for
correctness of the obtained solutions. On this pathway we try
to maximally reuse the existing synthesis tools, and apply
them to a novel domain of interfacing the analogue elec-
tronics with digital asynchronous controllers. The importance
of the compositional approach is paramount. The complexity
of individual components is kept relatively low (up to 6-7
signals) in order to enable non-expert designers to understand
the behaviour of the system in partial views as well as
allow more effective interaction between the designer and the
synthesis tools. The other aspect is enabling component reuse
which is the key to productivity. An experienced designer can
potentially come up with a more efficient solution at the level
of larger components, but at cost of maintainability and clarity,
which are important for designing highly reliable electronics.
This design approach is applied to the development of a
multiphase buck converter.

B. Basic buck converter

A basic power regulator comprises an analogue buck and
a digital controller, as shown in Figure 1a. The controller
operates the power regulating PMOS and NMOS transistors1

1In the textbook buck a diode is used instead of the NMOS transistor.



control

Th_nmos

Th_pmos

buck

V_ref

V_0

R
_l

o
a
d

PMOS

NMOS

I_max

gp_ack

oc

uv

zc

gn_ack

gp

gn

over-current (oc)

under-voltage (uv)

zero-crossing (zc)

(a) Schematic.

UV UV OC

I_max

current

no ZC late ZC

OC

PMIN

early ZC

PMOS OFF

ZC

PM
O
S O

FF

N
M

O
S O

N

NMOS OFF

PMIN

ZC

NM
OS 

OFF

PM
O
S 

O
N

NM
O
S 

O
FF

NM
OS ON

PM
OS OFF

NM
O
S O

N

PM
O
S O

FF

PM
OS 

ON

UV OC

timeNM
OS 

OFF

PM
OS 

ON

NMINNMIN PMIN

(b) Informal specification.

Figure 1: Basic buck converter.

of the buck (using gp and gn outputs) as a reaction to under-
voltage (UV), over-current (OC) and zero-crossing (ZC) con-
ditions (uv, oc and zc inputs respectively). These conditions
are detected and signalled by a set of specialised sensors
implemented as comparators of measured current and voltage
levels against some reference values (V_ref, I_max, V_0).
Note that the gp and gn signals are buffered to drive the very
large power regulating transistors (occupy more than 50% of
the buck area) and their effect on the buck can be significantly
delayed. Therefore, the controller is explicitly notified (by
the gp_ack and gn_ack signals) when the power transistor
threshold levels (Th_pmos and Th_nmos) are crossed.

The operation of a power regulator is usually specified in
an intuitive, but rather informal way, e.g. by enumerating the
possible sequences of detected conditions and describing the
intended reaction to these events, as shown in Figure 1b. The
diagram shows that UV should be handled by switching the
NMOS transistor OFF and PMOS transistor ON, while OC
should revert their state – PMOS OFF and NMOS ON (no ZC
scenario). Detection of the ZC after UV does not change
this behaviour (late ZC scenario). However, if ZC is detected
before UV then both the PMOS and NMOS transistors remain
OFF until the UV condition (early ZC scenario). Furthermore,
for efficiency reasons the PMOS and NMOS transistors should
be ON for at least PMIN and NMIN time respectively.

Note that ZC and UV are independent conditions that indi-
cate separate physical effects and therefore the corresponding
signals can happen in any order. UV indicates that the voltage
supplied to the load has decreased below the reference value.
ZC occurs when the coil current reduces to 0 and causes the
NMOS transistor to switch OFF, so that the NMOS acts like
a diode and only conducts in one direction.

C. Multiphase buck converter

A multiphase buck converter combines several pairs of
PMOS and NMOS transistors (called phases) to power the
same load, see Figure 2. The main advantages of this dis-
tributed design compared to a basic buck are faster reaction
to the power demand, heat dissipation from a larger area, and
decreased ripple of the output voltage [1].

The control circuit of a multiphase buck with N phases mon-
itors the OC and ZC conditions of individual phases (inputs
oc1,...,ocN and zc1,...,zcN respectively) and the voltage level
at the load (uv and hl inputs). When UV is detected (the load
voltage drops below V_ref value) the controller performs a
charging cycle (switching the PMOS and NMOS transistors
the same way as in a basic buck) at the currently active
phase. The active phase is traditionally selected in a round-
robin pattern by a generator of non-overlapping pulses that are
derived from a relatively slow (in MHz range) master clock.
If by the time the next phase is activated the UV condition
still persists, a charging cycle is exercised on that phase too,
thus helping the previous phase(s). This process is repeated
until the power demand is met and the UV condition is reset,
and is resumed upon detection of the next UV. Note that the
UV condition is sampled on the activation of a phase only and
thus a response to power demand may be delayed by a whole
clock cycle of the master clock.

A special mode of operation is used to handle the high-
load (HL) condition that indicates a sudden increase in power
demand (the voltage drops below V_min value). In this mode
the controller activates all the phases simultaneously and, as
HL implies UV (V_min < V_ref), a charging cycle starts in all
the phases. As a prompt reaction to a sudden power demand
is crucial, sampling of the HL condition has to be made at
a higher frequency than the master clock, which significantly
complicates the design in the synchronous case.

D. Main contribution

The clock signals in a traditional design of multiphase buck
are somewhat artificial – they are introduced for the sake
of standard synchronous EDA tools. However, as explained
above, the clocks limit the reaction time to power demand, in-
troduce synchronisation overheads when sampling the sensors,
and burn power when sensor readings change slowly. In this
paper we present a design of a speed-independent controller
for a multiphase buck. The clock-based phase generator is
replaced with a token ring architecture, and the inputs from
the voltage and current sensors are handled asynchronously
eliminating thus the possibility of a synchroniser failure. The
main contributions of this paper are:

• Compositional approach to the design of asynchronous
power management circuits.

• Novel lazy token ring architecture for activation of charg-
ing phases.

• Formal specification of speed-independent multiphase
buck control.

• Design of a component for sanitising input signals from
the sensors (WAIT element).



R
_l

o
a
d

Th_nmos

Th_pmos

Th_nmos

Th_pmos

buck

PMOS[1]

NMOS[1]

PMOS[N]

NMOS[N]

control

oc1

zc1

ocN

uv

zcN

gn_ackN

gn_ack1

gp1

nrst

gp_ack1

gn1

gp_ackN

gpN

gnN

hl

over-current (oc)

V_0

I_max

I_max

V_0

V_ref

zero-crossing (zc)

under-voltage (uv)

V_minhigh-load (hl)

Figure 2: Schematic of a multiphase buck converter.

• Novel technique for eliminating redundant cycles of
charging based on opportunistic merging.

• Rigorous verification of the synthesised circuit against the
specification.

Previous work tackled the subject of deriving a formal speci-
fication from phase diagrams [5] and the reuse of SYNOPSYS
tools to automate place-and-route and off-line testing of asyn-
chronous power management controllers [6]. In conjunction
with the work in this paper, the entire flow – from specification
to layout and production testing – can be automated.

II. DESIGN OF MULTIPHASE BUCK CONTROLLER

In this section we explain the general structure of our asyn-
chronous multiphase buck controller and justify the high-level
architectural decisions. Note that some details and features
have been omitted in this paper for the sake of presentation and
due to commercial sensitivity. In order to simplify the process
of specification and reduce the synthesis and verification
effort we partitioned the design into reusable simple modules.
The modules communicate with each other in traditional
asynchronous style by means of request-acknowledgement
handshakes.2 The naming convention for the handshake sig-
nals is as follows. A request signal starts with ‘r’ and an
acknowledgement with ‘a’. If a module has more than one
channel then the second letter refines their semantics – ‘i’ for
input channels, ‘o’ for output channels, ‘d’ for delay/timer

2The controller implementation can be optimised by combining several
modules using parallel composition of their specifications and hiding the
intermediate handshake signals. This resynthesis technique is well known [7].

Figure 3: Ring architecture for the multiphase buck control.

interfaces, and ‘p’/‘n’ for switching PMOS and NMOS power
transistors respectively. Channels with the same semantics are
distinguished by a numerical suffix. For visualisation purposes,
the names of the signals are colour-coded: red for inputs and
blue for outputs.

A. Lazy token ring architecture

A natural asynchronous replacement for the clock-driven
round-robin activation of phases in an N-phase buck is a
token ring with N identical stages, as shown in Figure 3.
Each stage delays the token for at least a predefined duration
of time (corresponds to the period of the master clock in
synchronous design) before propagating it to the next stage. As
the token enters the stage, it becomes active and may perform
a cycle of charging at the corresponding buck phase.

The stages are composed in a ring with an inversion before
the first stage (init gate that also handles the initialisation).
Abstractly, a stage can be viewed as a delay, and thus an
oscillator is formed: the useful work is done on the set phase
of the oscillator that may be quite long, and the reset phase
of the ring is fast.

We distinguish two kinds of token ring architectures: busy
and lazy. A busy ring always propagates the token to the
next stage after a predefined delay, even if the charging
cycle has not been activated (similar to phase activation by
non-overlapping pulses in synchronous design). This design,
however, requires extra arbitrations (between the end of delay
and UV), produces unnecessary switching activity (the token
keeps moving around even if sensor readings do not change),
and may result in uneven utilisation of buck phases. These
drawbacks are addressed in a lazy token ring where the token
is passed to the next stage only after both a cycle of charging
has started and a predefined delay has elapsed. If there is
no power demand then the lazy token stays in the currently
active stage and there is no switching activity in the controller.
Hence the arbitration between the end of delay and UV is not
required, and the buck phases are utilised evenly. We focus on
the lazy ring architecture in the rest of the paper.



Figure 4: Single stage of the multiphase buck control.

B. Activation and charging functions

The architecture of a single token ring stage is shown in
Figure 4. There are two distinctive functions for a token ring
stage to perform: handling its activation and charging the
buck. The stage may become active either when it receives
a token from the previous stage or when the HL condition is
detected. Upon activation, the stage listens for UV, ZC and
OC conditions to perform a charging cycle on the buck. Note
that the charging must not block the token propagation to the
next stage, and thus the phase charging has to be decoupled
from the stage activation.

The stage activation is partitioned into a high-load han-
dler (HLH) and a token control (TC). The HLH module waits
for the HL condition (whl/hl handshake interfacing a WAIT
element that waits for the hl signal, see Section III-B for
details) and activates the stage when it is detected. (Recall
that all stages are activated by the HL condition.) The TC
module waits for the token on its get input to issue the stage
activation request. When the token is received, the token timer
is started (rd/ra handshake) to delay passing the token to the
next stage via pass output. The activation requests from HLH
and TC modules are processed by the MERGE element [8] that
combines two request-acknowledgement channels into one.

A naïve implementation of the MERGE element would per-
form arbitration between the two input requests and generate
a separate output request for each of them. There are two
drawbacks of this basic design:

• The arbitration in the critical path that may slow down
reaction to a critical HL condition. This can be addressed
by moving arbitration, with its potentially slow metasta-
bility resolution, from the critical requests path to the
non-critical acknowledgements path, and propagating the
rising phases of the requests on the input channels to the
output channel in the OR-causal way [9].

• Two cycles of charging, one for each of the activa-

tion requests, may be executed even if these requests
arrive simultaneously. A better implementation would
opportunistically bundle requests from different channels
whenever they arrive sufficiently close to each other. The
details of such a design can be found in [10].

Charging of the buck phase follows the same pattern as in the
basic buck – the UV, ZC and OC conditions are monitored to
make decisions about the state of PMOS and NMOS transis-
tors in the buck. We implemented the handler of each condition
in its own module – UVH, ZCH and OCH respectively. The
UVH module also decouples token propagation from charging
by giving an early acknowledgement to the MERGE element
immediately after the UV condition is detected (the uv signal
sanitised using a WAIT element). Note that the HL condition
implies the UV condition, as they both are the results of
comparisons of the same voltage with different thresholds. We
exploit this in our design: when a stage is activated by the HL
condition, the charging is still initiated by UV as in the regular
case. However, in some anomalous situations when both HL
and UV are asserted and immediately withdrawn, there may
be insufficient time to latch uv in UV_WAIT, in which case
a charging cycle is not initiated. This is unproblematic, as
charging is not necessary in this situation, and the stage will
not stall as the next UV condition will trigger a charging cycle.

In order to enforce the requirement for the minimum ON
time for PMOS and NMOS transistors of the buck, two
instances (PMIN_DC and NMIN_DC respectively) of a special
Delay Control (DC) module are used. DC module interfaces
a timer (PMIN_TIMER or NMIN_TIMER) to delay the ac-
knowledgement that a transistor has crossed its threshold.

Implementing delays may be expensive, and it would be
advantageous to reduce their number. Our design allows the
following optimisations:

• Since the PMOS and NMOS transistors are never ON at
the same time, the PMIN_TIMER and NMIN_TIMER
can be merged (provided their delays are the same).



(a) Specification.

(b) ME-based solution.

can be removed

(c) Gate-level implementation.

Figure 5: WAIT element.

• The TOKEN_TIMER can be shared between the stages of
the token ring as only one of them holds the token (note
that the HL mode does not affect token propagation).

III. FORMAL SPECIFICATION AND IMPLEMENTATION

In this section we focus on the formal specification and
logic synthesis of a few most interesting components of the
multiphase buck controller.

A. Signal transition graphs

An important subclass of asynchronous circuits, called
Speed-Independent (SI) circuits, follows the classical Muller’s
approach [11] and regards each gate as an atomic evaluator of
a Boolean function, with a delay element associated with its
output. In the SI framework this delay is unbounded, i.e. the
circuit must work correctly regardless of its gates’ delays, and
the wires are assumed to have negligible delays. Alternatively,
one can regard wire forks as isochronic and add wire delays to
the corresponding gate delays (Quasi-Delay Insensitive (QDI)
circuit class [12]).

Signal Transition Graphs (STGs) [13] are a formalism for
specifying such circuits. They are Petri nets [14] in which
transitions are labelled with the rising and falling edges of
circuit signals. The details of logic synthesis from STGs based
on state graphs can be found in [15].

Graphically, the places are represented as circles, transitions
as textual labels, consuming and producing arcs are shown
by arrows, and tokens are depicted by dots. For simplicity,
the places with one incoming and one outgoing arc are
often hidden, allowing arcs (with implicit places) between
pairs of transitions. We use thick arcs to denote concurrency
reduction – such arcs are not necessary, but simplify the
implementation.

B. Sanitising sensor readings
UV and HL conditions are handled by all stages of the token

ring and thus signals uv and hl are not persistent – they may be
reset by a competing stage. Therefore these inputs should be
sanitised before passing them to the HLH and UVH modules.
This is done by the WAIT element whose specification and
gate-level implementation are shown in Figure 5. The WAIT
element’s interface comprises:

• Input sig, which may be non-persistent. As can be seen
from the STG in Figure 5a, sig may go high and low
without any restrictions.

• Input ctrl, whose rising transition brings the WAIT ele-
ment into the waiting mode and falling transition returns
it back to the dormant mode.

• Output san, which is insensitive to sig in the dormant
mode, and goes high as soon as sig+ is detected in the
waiting mode, and is latched: unlike input sig, output
san is persistent – it is not reset until ctrl- indicates the
receipt of san+. Pair (ctrl, san) thus forms a ‘clean’
asynchronous handshake driven by the ‘dirty’ sig input.

Note that there is a read-consume conflict between transitions
sig- and san+. We resolve this conflict using a mutual exclu-
sion (ME) element [16] with one inverted input, see Figure 5b.
The intuition is that when ctrl+ arrives, it cannot propagate
to the output san until the ME element is released by sig+.
Once san+ is asserted, the ME element becomes insensitive
to changes of sig until ctrl is released. There is a hazard on
output g1 as sig- may disable it before the metastability inside
the ME element is resolved. However, this output is unused
and can be removed together with the corresponding part of
the metastability filter [16], see Figure 5c.

C. Charging the buck

The control of the charging is done by three modules:
UVH, ZCH and OCH. Their STGs are shown in Fig-
ures 6a, 7a, and 8a.

UVH module waits for an activation request ri+ from
the MERGE element and then, by means of wuv+, triggers
UV_WAIT into monitoring the UV condition. When uv+
arrives, an early acknowledgement ai+ to the MERGE element
and a request ro+ to the ZCH module are sent concurrently,
thus decoupling token propagation from buck charging.

ZCH module handles three scenarios, which were infor-
mally specified by the phase diagram in Figure 1b: (i) ZC
does not happen during a cycle of charging, (ii) ZC arrives
after UV and is ignored, and (iii) ZC is detected before UV
and initiates the charging. The former two scenarios are similar
and are combined into one branch of a choice. In the later
scenario, upon arrival of zc+ a request ro+ is sent to OCH
to switch the NMOS transistor OFF; however, switching the
PMOS transistor ON is delayed until arrival of a request ri+
from UVH. Note that dummy transitions no_zc and join are
used for convenience. A dummy does not model any signal of
the circuit – the states before and after its firing correspond
to the same circuit state.

OCH module controls the PMOS and NMOS transistors (via
PMIN_DC and NMIN_DC modules) and handles the OC con-
dition. Both phases of the input handshake from ZCH module
do useful work: ri+ initiates switching NMOS transistor OFF,
while ri- triggers PMOS transistor ON. The opposite switching
of transistors (PMOS OFF and NMOS ON) is triggered by
the OC condition. Acknowledgements an and ap are used to
monitor the state of buck transistors and interleave their ON



(a) Specification.

(b) Implementation.

Figure 6: UVH module.

states. Note that initially both NMOS and PMOS are OFF,
therefore the first instance of ri+ is immediately acknowledged.

Results of logic synthesis and technology mapping by
PETRIFY [15] (into a library of available gates based on
petrify.lib) are shown in Figures 6b, 7b, and 8b.

IV. VERIFICATION

STG specifications of all controller modules were devel-
oped and verified using WORKCRAFT framework [17], [18].
We verified that all STGs are consistent, deadlock-free, and
output-persistent. For checking specific buck converter prop-
erties, such as the absence of a short circuit in PMOS/NMOS
transistors and possibility for sharing a timer for both PMIN
and NMIN delays (provided they are the same), an STG
specification of the whole stage was needed. This STG was
obtained by parallel composition [7] of the STGs for individual
modules. Note that signals shared between the modules (con-
nected output and input pins) had to share a common name.
We used the drivers’ names – name of the controller ports
or output pins in MODULE_signal format. These names are
shown as grey labels next to the wires in Figure 4. The
obtained STG is quite large for illustration or logic synthesis,
but still serves the purposes of verification. Using this STG
we successfully verified that:

(a) Specification.

(b) Implementation.

Figure 7: ZCH module.

• There is no short circuit in the buck, as no state is
reachable where PMOS and NMOS transistors are both
ON, i.e. the following state predicate is never satisfied:
(gp=1 ∨ gp_ack=1) ∧ (gn=1 ∨ gn_ack=1).

• The same timer can be used for PMIN and NMIN
delays, as there is no state where PMIN_TIMER and
NMIN_TIMER are both in use, i.e. the following state
predicate is never satisfied:
(PDC_rd=1 ∨ PT_a=1) ∧ (NDC_rd=1 ∨ NT_a=1).

We also checked the possibility of sharing the same instance of
timer for token delay in all the stages of a lazy token ring. For
this we built an STG model of a buck controller with 2 stages.
The internal signals of Stage 1 and Stage 2 were prefixed with
S1 and S2 respectively while the interface signals were named
according to the wire labels in Figure 3. The obtained STG
was used to verify the following property:

• The same timer can be shared between the stages as no
state is reachable where token timers of both stages are in
use, i.e. the following state predicate cannot be satisfied:
(S1_TC_rd =1 ∨ S1_TT_a=1) ∧ (S2_TC_rd=1 ∨
S2_TT_a=1).

Similar checks were made for 3-phase and 4-phase controllers,
showing that no more that one token timer is in use. Fur-
thermore, the following argument can be used to generalise
this result to arbitrary number of stages, as a special case
of parametrised verification approach [19], [20]. Consider
Figure 3: ignoring all the interface signals except get and
pass, each stage of the ring can be abstractly represented
by a buffer. The composition of two sequential buffers is just



(a) Specification.

(b) Implementation.

Figure 8: OCH module.

a buffer, and so two stages behave like a single stage from
the point of view of the ring. Consider the STG in Figure 9
obtained as follows:

• Two stages of the ring are composed.
• The result is composed with their environment: the init

module (an inverter, as the reset can be ignored) and
the other ring stages represented by single buffer, as
explained above; this buffer can be further merged into
the inverter corresponding to the init module.

• In the resulting STG all the signals except the handshakes
with the token timers are hidden.

• The STG is resynthesised with PETRIFY.

The final STG is simply two sequential timer handshakes. Each
of these handshakes can be compressed into a single “timer in
use” transition. If two stages share a timer, their two “timer in
use” transitions can be further compressed into a single such
transition in a conservative way. Hence, the usage of a shared

Figure 9: Timer interface of two ring stages.

timer by two stages can be conservatively approximated by
that of a single stage, and the argument holds for N stages by
induction.

All the gate-level implementations were also verified to
be deadlock-free, hazard-free and conformant to their STG
specification. We used WORKCRAFT [17], [18] and cross-
checked the verification results with VERSIFY tool [21]. One
inconsistency was discovered when VERSIFY claimed there
is a circuit-environment synchronisation error in the ZCH
module. However, this was due to incorrect interpretation
of dummy transitions (and non-determinism in general) by
VERSIFY. (This was confirmed by a simple testcase of an
inverter and its STG specification where a dummy was inserted
before one of the output transitions.)

V. SIMULATION AND ANALYSIS

A. Simulation setup

The focus of this work is on replacing the manual ad hoc
design of asynchronous power management controllers with
logic synthesis from formal specifications. While this approach
enables formal verification of the obtained circuits, one still
needs to ensure that all the power management scenarios were
captured and correctly interpreted by the formal specification.

A traditional approach to checking the functional correct-
ness of a power regulator is by exhaustive simulation that
is split in two stages. In the first stage a coverage-driven
constrained-random digital regression is used to ensure that
the circuit has been stimulated for all possible scenarios and
all its responses are as expected. A gate-level VERILOG netlist
is used for the digital controller while the analogue part of the
system is modelled behaviourally with SYSTEM VERILOG (to
speed-up the simulation and simplify the exploration of corner
cases). A typical digital regression would perform tens of
millions of charging cycles for each of its runs targeting
a 100% functional and 100% code coverage. In order to com-
plete overnight, such a regression needs to run on a compute
farm; the regression would be run every night for many weeks
before tapeout. During the second stage the performance and
functionality of the whole system are validated. This is based
on SPICE and mixed-signal simulation techniques that require
many man-months of effort and extensive use of a compute
farm to complete.

We reused an existing industry-standard test environment of
Dialog Semiconductor, a leading power electronics company.
The correct operation of the presented multiphase buck con-
troller was checked by a digital regression that was previously
employed in one of the company’s commercial products.
System integration and its validation is a work in progress.



Modules Circuit size Latency (gates)
(µm², ME) Worst Critical

HLH 80 2 1
TC 240 6 6
basic 352 3+ME 3+MEMERGE
opportunistic 256 2+ME 2+ME(no metastability)MERGE
UVH 272 3 1
ZCH 184 3 2
OCH 352 5 2
PMIN_DC, 144 3 1NMIN_DC
OCH_and_DCs 584 5 2
HL_WAIT, 72 1+ME 1+ME(no metastability)UV_WAIT
Stage size 1760

Table I: Implementation statistics.

B. Analysis of the results

Some statistics related to multiphase buck controller mod-
ules are summarised in Table I. The size of gate-level im-
plementation is reported for each module. The circuit worst
case latency is measured in the total number of gates and ME
elements in a longest path from an input stimuli to an output
reaction. As these delays are often outside the critical path,
the latency in circuit reaction to critical signals is reported
separately. The circuit size of the modules that are selected
for implementation of a single token ring stage (from several
alternatives) are emphasised. Note that there are ME elements
in the critical path, but metastability never arises there in
the chosen implementation (it can occur in non-critical paths
though). The computation time for synthesis and verification
was negligible (<1sec in all cases).

Note that if a combined latency of several modules in the
critical path is too high, then it can sometimes be reduced by
joint resynthesis of several modules. For example, a reaction
to oc+ is 3 gates (critical path of OCH and PMIN_DC
modules). If OCH is jointly resynthesised with the delay
control modules PMIN_DC and NMIN_DC, the latency is
reduced to 2 gates (OCH_and_DSs line in the table). We will
explore this in our future research.

VI. CONCLUSION

This work addresses a challenging task of interfacing
asynchronous digital circuits with analogue electronics. We
designed, implemented and verified a speed-independent mul-
tiphase buck controller. It uses a lazy token ring architecture
to overlap the charging cycles of multiple phases and balance
utilisation of the phases. The controller also handles high-load
mode by activating all phases simultaneous. The characteristic
features of the controller are reliable handling of sensor read-
ings and low-latency reaction to the changes in power demand.
We formally verified the essential correctness properties of the
controller, and validated its operation in conventional industry
environment. The use of STG specifications, synthesis and
verification has been beneficial both in providing a formal
framework and guidance during the development process as
well as increasing the confidence in the final design. The role

of compositional approach in this design exercise is important
for many reasons, such as maintainability and clarity.

Future work includes extending the proposed controller
with design-for-test features, its post-layout mixed-signal sim-
ulation in combination with SPICE models of the analogue
part, and fabrication of a first power regulator with a speed-
independent controller.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviewers for
all the constructive feedback and inspiring comments. This
research was supported by EPSRC grants EP/L025507/1
A4A: Asynchronous design for Analogue electronics and
EP/K001698/1 UNCOVER: UNderstanding COmplex system
eVolution through structurEd behaviouRs.

REFERENCES

[1] A. Pressman, K. Billings, T. Morey: “Switching power supply design”,
3rd edition, McGraw-Hill, 2009.

[2] J. Audy: “Navigating the path to a successful IC switching regulator
design”, Tutorial at IEEE International Solid-State Circuits Confer-
ence (ISSCC), 2008.

[3] T. Towers: “Practical design problems in transistor DC/DC converters
and DC/AC inverters”, Proc. IEE, vol. 106(18), pp. 1373–1383 1959.

[4] S. Unger: “Asynchronous Sequential Switching Circuit”, Wiley-
Interscience, 1969.

[5] D.Sokolov, A.Mokhov, A.Yakovlev, D.Lloyd: “Towards asynchronous
power management”, Proc. Faible Tension Faible Consomma-
tion (FTFC), 2014.

[6] D. Lloyd, R. Illman: “Scan insertion and ATPG for C-gate based
asynchronous designs”, Synopsys User Group (SNUG), 2014.

[7] W. Vogler, R. Wollowski; “Decomposition in asynchronous circuit
design”, In J. Cortadella et al. (editors), “Concurrency and Hardware
Design”, Lecture Notes in Computer Science 2549, pp. 152–190, 2002.

[8] M. Greenstreet: "Real-time merging", Proc. IEEE International Sympo-
sium on Asynchronous Circuits and Systems (ASYNC), pp. 186–198,
1999.

[9] R. Janicki, M. Koutny: "On causality semantics of nets with priorities",
Fundamenta Informaticae, v. 38(3), pp. 223–255, 1999

[10] A. Mokhov, V. Khomenko, D. Sokolov, A. Yakovlev: “Opportunistic
merge element”, Proc. IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), 2015.

[11] D. Muller, W. Bartky: “A theory of asynchronous circuits”, Proc.
International Symposium of the Theory of Switching, pp. 204–243,
1959.

[12] A. Martin: “Compiling communicating processes into delay-insensitive
VLSI circuits”, Distributed Computing, vol. 1(4), pp. 226–234, 1986.

[13] T.-A. Chu: “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications”, PhD thesis, Massachusetts Institute of Technology, 1987.

[14] C. Petri: “Kommunikation mit automaten (Communicating with au-
tomata)”, PhD Thesis, University of Bonn, 1962.

[15] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Yakovlev:
“Petrify: a tool for manipulating concurrent specifications and synthesis
of asynchronous controllers”, IEICE Transactions on Information and
Systems, vol. E80-D(3), pp. 315–325, 1997.

[16] D. Kinniment: “Synchronization and Arbitration in Digital Systems”,
Wiley Publishing, 2008.

[17] I. Poliakov, A. Mokhov, A. Rafiev, D. Sokolov, A. Yakovlev: “Auto-
mated verification of asynchronous circuits using circuit Petri nets”,
Proc. IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC), pp. 161–170, 2008.

[18] WORKCRAFT homepage: http://workcraft.org/.
[19] K. McMillan: “Verification of infinite state systems by compositional

model checking”, Proc. Correct Hardware Design and Verification
Methods (CHARME), pp. 219–234, 1999.

[20] C.-T. Chou , P. K. Mannava , S. Park: “A simple method for parameter-
ized verification of cache coherence protocols”, Proc. Formal Methods
in Computer Aided Design (FMCAD), pp. 382–398, 2004.

[21] O. Roig: "Formal verification and testing of asynchronous circuits", PhD
Thesis, Universitat Politècnica de Catalunya, 1997.


