
Derivation of Monotonic Covers for Standard-C
Implementation Using STG Unfoldings

Victor Khomenko∗

School of Computing Science, Newcastle University, UK
E-mail: Victor.Khomenko@ncl.ac.uk

Abstract
The behaviour of asynchronous circuits is often de-

scribed by Signal Transition Graphs (STGs), which are
Petri nets whose transitions are interpreted as rising and
falling edges of signals. One of the crucial problems in the
synthesis of such circuits is deriving the set and reset cov-
ers for the state-holding elements implementing each output
signal of the circuit. The derived covers must satisfy certain
correctness constraints, in particular the Monotonic Cover
condition must hold for the standard-C implementation.

The covers are usually derived using state graphs. In
this paper, we avoid constructing the state graph of an STG,
which can lead to state space explosion, and instead use a
finite and complete prefix of its unfolding. We propose an
efficient algorithm for deriving the set and reset covers for
the standard-C implementation based on the Incremental
Boolean Satisfiability (SAT) approach.

Experimental results show that this technique leads not
only to huge memory savings when compared with the meth-
ods based on state graphs, but also to significant speedups
in many cases, without affecting the quality of the solution.

1. Introduction

Asynchronous circuits are a promising type of digital
circuits. They have lower power consumption and electro-
magnetic emission, no problems with the clock skew and
related subtle issues, and are fundamentally more tolerant
of voltage, temperature and manufacturing process varia-
tions. The International Technology Roadmap for Semi-
conductors report on Design [1] predicts that 22% of the
designs will be driven by handshake clocking (i.e., asynch-
ronous) in 2013, and this percentage will raise up to 40% in
2020.

Various architectures are used to implement speed-in-
dependent circuits [6]. The following three are probably
the most well-known (see Fig. 2): (i) the complex-gate
(CG) implementation, where every output or internal sig-
nal in the circuit is implemented as a single (possibly very
complicated) atomic gate [4]; (ii) gC implementation [13],

∗This research was supported by Royal Academy of Engineering / EP-
SRC grant EP/C53400X/1 (DAVAC).

where each signal is implemented using a pseudo-static
latch called generalised C element (gC element); and (iii)
standard-C (stdC) implementation [2], where each signal
is implemented using a C-latch controlled by set and re-
set signals, which we assume are implemented as complex-
gates. The latter two architectures are superficially similar,
but one should bear in mind that a gC element is assumed
to be atomic, while in the stdC implementation the gates
controlling a C-latch have delays. Hence a naı̈ve transfor-
mation of a gC implementation into an stdC one can result
in a hazardous circuit (see below).

PETRIFY [5, 6] is one of the commonly used tools for
synthesis of asynchronous circuits. As a specification it ac-
cepts a Signal Transition Graph (STG) [4, 17] — a class of
interpreted Petri nets in which transitions are labelled with
the rising and falling edges of circuit signals. For synthesis,
PETRIFY employs the state space of the STG, and so it suf-
fers from the combinatorial state space explosion problem.
That is, even a relatively small system specification may
(and often does) yield a very large state space. This puts
practical bounds on the size of control circuits that can be
synthesised using such techniques, which are often restric-
tive, especially if the specification is not constructed man-
ually by a designer but rather generated automatically from
high-level hardware descriptions. (For example, designing
a circuit with more than 20–30 signals with PETRIFY is of-
ten impossible.) Hence, this approach does not scale.

In order to alleviate this problem, Petri net analysis
techniques based on causal partial order semantics, in the
form of Petri net unfoldings, were applied to circuit syn-
thesis. In [11] the unfolding technique was applied to de-
tection of encoding conflicts between reachable states of an
STG, and in [10] a technique for resolution of such con-
flicts was developed. Moreover, in [12] the problem of
complex-gate logic synthesis from an STG free from en-
coding conflicts was solved. The experiments in [10–12]
showed that unfolding-based approach has significant ad-
vantage both in memory consumption and in runtime com-
pared with the existing state space based methods; in partic-
ular it can handle much bigger STGs than PETRIFY, while
delivering circuits with comparable (and often better) area
and latency. These techniques essentially complete the de-
sign cycle for complex-gate synthesis of asynchronous cir-

cuits from STGs that does not involve building reachability
graphs at any stage and yet is a fully fledged logic synthesis.

This paper is an extension of the method of [12] to the
other mentioned target architectures, viz. gC and stdC im-
plementations. It turns out that gC synthesis is a relatively
straightforward generalisation of the approach of [12], and
hence this paper focuses mainly on stdC synthesis (gC syn-
thesis is described in the technical report [9]). Although the
techniques employed in this paper resemble those in [12],
there is a significant and technically difficult new contribu-
tion: the stdC synthesis turns out to be much more com-
plicated than CG or gC syntheses since the derived covers
must satisfy the Monotonic Cover condition [2, 6], which
ensures that the resulting circuit is not hazardous. To tackle
this problem, the method described in this paper has to de-
rive not only the truth table of the cover, but also a set of
entrance constraints (which are Boolean implications on
the values of the set and reset functions at different points).
These constraints, together with the truth table, are then
passed to a binate Boolean minimiser to obtain a monotonic
cover. Another (minor) contribution of this paper is a better
algorithm for computation of the supports (see Section 3.3).
The full version of this paper can be found in the technical
report [9] (available on-line).

2. Basic definitions

In this section, we present basic definitions concerning
Petri nets [16], STGs [5, 6, 17], net unfoldings [7, 14, 18]
and Boolean satisfiability [15].

Petri nets A net is a triple N
df= (P, T, F) such that P

and T are disjoint sets of respectively places and transi-
tions (collectively referred to as nodes), and F ⊆ (P ×
T) ∪ (T × P) is a flow relation. A marking of N is a mul-
tiset M of places, i.e., M : P → N

df= {0, 1, 2, . . .}. We
adopt the standard rules about representing nets as directed
graphs, viz. places are represented as circles, transitions
as rectangles, the flow relation by arcs, and markings are
shown by placing tokens within circles. In addition, the fol-
lowing short-hand notation is used: a transition can be con-
nected directly to another transition if the place ‘in the mid-
dle of the arc’ has exactly one incoming and one outgoing
arc (see, e.g., Fig. 1(a)). As usual, •u df= {v | (v, u) ∈ F}
and u• df= {v | (u, v) ∈ F} denote the pre- and postset of
u ∈ P ∪ T , and •U df=

⋃
u∈U

•u and U• df=
⋃

u∈U u•, for
all U ⊆ P ∪ T . We assume that •t �= ∅, for every t ∈ T .

A net system is a pair Σ df= (N,M0) comprising a finite
net N = (P, T, F) and an (initial) marking M0. We assume
the reader is familiar with the standard notions of the theory
of Petri nets (see, e.g., [16]), such as enabling and firing of a
transition, firing sequence, marking reachability, deadlock,
and net boundedness and safeness.
Signal Transition Graphs A Signal Transition Graph
(STG) is a triple Γ df= (Σ, Z, λ) such that Σ = (N,M0)

b+

c+

a−

c−

b−

d−

a+

b+

d+

c+

(a)

0100
0000

1000

0110 0010 1100

1110
1111 1101

b+ a+

c+ c− b+

b−

a− d+

d− c+ (b)

inputs: a, b; outputs: c, d

Figure 1. An STG from [2] (a) and its state
graph (b). The order of signals in the binary
encodings is: a, b, c, d.

is a net system, Z is a finite set of signals, generating the
finite alphabet Z± df= Z × {+,−} of signal transition la-
bels, and λ : T → Z± is a labelling function. The signal
transition labels are of the form z+ or z−, and denote a tran-
sition of a signal z ∈ Z from 0 to 1 (rising edge), or from 1
to 0 (falling edge), respectively. We use the notation z±

to denote a transition of signal z if we are not particularly
interested in its direction. Γ inherits the operational seman-
tics of its underlying net system Σ, including the notions of
transition enabling and firing, reachable markings and firing
sequences.

We associate with the initial marking of Γ a binary vec-
tor v0 df= (v0

1 , . . . , v0
|Z|) ∈ {0, 1}|Z|, where each v0

i is the
initial value of the signal zi ∈ Z. Moreover, with any fi-
nite sequence of transitions σ we associate an integer signal
change vector vσ df= (vσ

1 , vσ
2 , . . . , vσ

|Z|) ∈ Z
|Z|, so that each

vσ
i is the difference between the number of the occurrences

of z+
i –labelled and z−i –labelled transitions in σ.

Γ is consistent if, for every reachable marking M , all
firing sequences σ from M0 to M have the same encoding
vector Code(M) equal to v0 +vσ, and this vector is binary,
i.e., Code(M) ∈ {0, 1}|Z|. We denote by Codez(M) the
component of Code(M) corresponding to a signal z ∈ Z.

The state graph SGΓ of Γ is a tuple (S,A,M0,Code)
such that: S is the set of states, which are the reachable

markings of Γ; A
df= {M λ(t)−→ M ′ | M ∈ S ∧M

t−→ M ′}
is the set of state transitions; M0 is the initial state; and
Code : S → {0, 1}|Z| is the state assignment function, as
defined above for markings.

The signals in Z are partitioned into input signals, ZI ,
and output signals, ZO (the latter may also include internal
signals). Input signals are assumed to be generated by the
environment, while output signals are produced by the cir-
cuit. For each signal z ∈ ZO, the functions Outz+ , Outz−

and Outz are defined as follows: Outz+/z−/z(M) is 1 if
M enables z+/z−/z±, and 0 otherwise.

In what follows, we assume that the STG is safe, dead-
lock-free, deterministic (i.e., none of its reachable markings
enables two distinct transitions labelled with the same sig-

nal), consistent and semi-modular (i.e., if at some reachable
marking a firing of some transition t′ disables some other
transition t′′ then λ(t′) ∈ ZI and λ(t′′) ∈ ZI , i.e., a choice
is allowed only between inputs). All these properties can be
efficiently checked using Petri net unfoldings [18], without
building the state graph at any stage.

The Boolean next-state function Nxtz is defined for
every reachable state M of Γ and every z ∈ ZO as
Nxtz(M) df= Codez(M) ⊕ Outz(M), where ⊕ is the ‘ex-
clusive or’ operation. Similarly, the set and reset functions
Setz and Resetz are defined as follows:

Setz/Resetz(M) df=

1 if Outz+/z−(M) = 1
0 if Nxtz(M) = 0/1
− otherwise,

where ‘−’ denotes the ‘don’t care’ value (i.e., the value
of the function can be chosen arbitrarily, with the view
of simplifying the resulting implementation). For the cir-
cuit to be implementable, the values of Setz and Resetz

must be uniquely determined by the encoding of each reach-
able state, i.e., they should be functions of Code(M) rather
than M : Setz/Resetz(M) = Sz/Rz(Code(M)) for some
Boolean functions Sz, Rz : {0, 1}Z → {0, 1}.

Note that while any Boolean functions Sz and Rz sat-
isfying the above conditions can be directly used for gC
implementation, they must in addition satisfy the Monoto-
nic Cover condition [2, 6], in order to provide a hazard-free
stdC implementation. This condition states that a cover
must be entered only via the states enabling the output z.
To illustrate the importance of this condition, consider the
implementation shown in Fig. 2(d), which does not satisfy
it, since the state 0110 (which is covered by the set func-
tion āb∨d and does not enable c) can be reached from
the state 1110 (which is not covered by this set function
and does not enable c). Consider the sequence of states

1111 d−
−→ 1110 a−

−→ 0110 b−−→ 0010. The gate comput-
ing the set function is high at 1111. Firing of d− drives
its output low, but before it reaches 0, a− can fire, driving
its output high; similarly, before it reaches 1, b− can fire,
driving it low. Hence, this gate can exhibit runt non-digital
pulses, which may cause the circuit to malfunction.

To address this issue, we introduce the strict versions
of the set and reset functions as Sets

z(M)/Resets
z(M) df=

Outz+/z−(M), and the associated functions S s
z and Rs

z de-
pending only on Code(M). Note that though these func-
tions are guaranteed to satisfy the Monotonic Cover condi-
tion and thus yield a correct stdC implementation of z, it is
often not optimal due to the reduced number of ‘don’t cares’
in the truth table, which can be exploited by the Boolean
minimiser to simplify the resulting expression. Therefore,
the proposed method only uses S s

z and Rs
z to overapprox-

imate the supports of Sz and Rz satisfying the Monotonic
Cover condition, and derives an stdC implementation using
a different technique, often yielding better solutions.

āb∨cb∨d c
a
b
c
d

(a)

+āb∨da
b
d

–b̄b

C c

(b)

ābc̄∨d
a
b
c
d

b̄b

C c

(c)

āb∨da
b
d

b̄b

C c

(d)
Figure 2. Implementation of signal c of the
STG in Fig. 1 using the complex-gate (a),
gC (b) and stdC (c) architectures; the result of
a naı̈ve transformation of the gC implementa-
tion to stdC implementation (d).

Note that in general these functions are incompletely
specified because not all the possible encodings occur in
the state graph. An incompletely specified Boolean func-
tion can be characterised by its ON, OFF and DC (‘don’t
care’) sets of inputs on which it evaluates to 1, 0 and ‘−’
respectively. These sets must be pairwise disjoint, and their
union must contain every possible input.

It can happen that two semantically different states have
the same encoding, which means that the circuit is not im-
plementable. To capture this, we define a specific kind of
an encoding conflict, called a strict Complete State Code
(sCSC) conflict. (This notion will be essential for our
unfolding-based method of overapproximating the supports
of the monotonic covers for stdC implementation.) Sup-
pose X ⊆ Z, z ∈ ZO and M ′ and M ′′ are two distinct
states of SGΓ such that Codex(M ′) = Codex(M ′′) for all

x ∈ X . Then M ′ and M ′′ are in sCSC z+

X / sCSC z−
X con-

flict if Outz+/z−(M ′) �= Outz+/z−(M ′′). Γ satisfies the

sCSC z+
/ sCSC z−

property if no two states of SGΓ are in
sCSC z+

Z / sCSC z−
Z conflict. Intuitively, this means that the

strict set/reset function of z is implementable as a complex
gate. It turns out (see the technical report [9] for the proof)
that the (not necessarily strict) set and reset functions sat-
isfying the Monotonic Cover condition can be derived (i.e.,
z is stdC-implementable) iff both sCSC z+

and sCSC z−

properties hold. In fact, the notion of implementability of
a signal is invariant in the CG, gC and stdC architectures,
i.e., if a signal is implementable in one of them, it is imple-
mentable in the other two architectures as well. (In particu-
lar, Γ satisfies the traditional CSC property iff it satisfies the
sCSC z+

and sCSC z−
properties for each z ∈ ZO.) CSC

conflicts can be detected [11] and resolved [10] on unfold-

Code(M)
abcd

Sc(M) Rc(M) Sd(M) Rd(M)

0100 1 0 0 −
0000 0 − 0 −
1000 0 − 0 −
0110 − 0 0 −
0010 0 1 0 −
1100 0 − 1 0
1110 − 0 0 −
1111 − 0 0 1
1101 1 0 − 0

Expression āb∨d b̄ abc̄ c

Entrance
constraints

Sc(0110)⇒Sc(1110)
Sc(1110)⇒Sc(1111)

∅ ∅

Rd(0110)⇒Rd(1110)
Rd(0110)⇒Rd(0100)
Rd(0010)⇒Rd(0110)
Rd(0100)⇒Rd(0000)
Rd(0000)⇒Rd(0010)
Rd(1000)⇒Rd(0000)

Monotonic
cover ābc̄∨d b̄ abc̄ cd

Table 1. The truth table for the set and reset
functions of output signals of STG in Fig. 1
and the entrance constraints for the stdC im-
plementation.

ings, without building the state graph, and in what follows,
we assume that the STG satisfies the CSC property.

One can see that if no two states of Γ are in sCSC z+

X /

sCSC z−
X conflict then S s

z /Rs
z can be consistently defined at

each state M of SGΓ as a function of Code(M) restricted
to X , i.e., X is a support of S s

z /Rs
z . A support X is mini-

mal if no set Y ⊂ X is a support. (In general, incompletely
specified functions can have several distinct minimal sup-
ports.) A set X ⊆ Z which is not a support is called a
non-support. Note that X is a non-support of S s

z /Rs
z iff the

STG has a sCSC z+

X /sCSC z−
X conflict.

An example of an STG is shown in Fig. 1(a). It satis-
fies the CSC property and hence can be implemented using
either of the three target architectures considered in this pa-
per. The gC implementation can be obtained by applying
Boolean minimisation to the truth table shown in the upper
part of Table 1. The first column of this table lists the encod-
ings of all the states of SGΓ, while the other columns give
the corresponding values of the set and reset functions for
the output signals. Note that not all possible encodings are
present in the first column because the number of reachable
states (9) is smaller than the number of possible encodings
(24 = 16). This means that the missing encodings belong
to the DC sets of the functions being derived. The next row
of the table gives for each output signal of the circuit the
result of Boolean minimisation, viz. the set and reset func-
tions which are suitable for the gC implementation. How-
ever, as it was explained earlier, these covers do not satisfy
the Monotonic Cover condition and thus are not suitable for
the stdC implementation. For this circuit the Monotonic
Cover condition can be expressed by additional entrance
constraints shown in the lower part of Table 1, which the
produced covers must satisfy; the resulting expressions for
the set and reset functions suitable for the stdC implemen-

tation are shown in the last row of the table.1 These func-
tions were obtained as the result of conditional Boolean mi-
nimisation, taking into account the entrance constraints; it
is reducible to the binate covering problem [8].

This essentially completes the synthesis procedure based
on state graphs. However, it often leads to state space ex-
plosion, and in the proposed approach we follow another
way of representing the behaviour of STGs, viz. STG un-
foldings [7, 14, 18].

STG unfoldings A finite and complete unfolding prefix π
of an STG Γ is a finite acyclic net which implicitly rep-
resents all the reachable states of Γ together with transi-
tions enabled at those states. Intuitively, it can be obtained
through unfolding Γ, by successive firings of transitions, un-
der the following assumptions: (a) for each new firing a
fresh transition (called an event) is generated; (b) for each
newly produced token a fresh place (called a condition) is
generated. The full unfolding is infinite whenever Γ has
an infinite firing sequence; however, if Γ has finitely many
reachable states then the unfolding eventually starts to re-
peat itself and can be truncated (by identifying a set Ecut

of cut-off events beyond which the prefix is not generated)
without loss of information, yielding a finite and complete
prefix. We denote by E and B the sets of all events and con-
ditions of π, correspondingly, and by h : E ∪ B → T ∪ P
the mapping from the nodes of the prefix to the correspond-
ing nodes of the STG. The size |π| of π is defined as the
total number of its events, conditions and arcs.

Due to its structural properties (such as acyclicity), the
reachable markings of Γ can be represented using config-
urations of π. A configuration C is a causally closed set
of events (being causally closed means that if e ∈ C and
f ∈ ••e, then f ∈ C) without choices (i.e., for all distinct
events e, f ∈ C, •e ∩ •f = ∅). Intuitively, a configuration
is a partially ordered execution, i.e., an execution where the
order of firing of some of the events (viz. concurrent ones)
is not important.

After starting π from the implicit initial marking (with a
single token in each condition which does not have an in-
coming arc) and executing all the events in C, one reaches
the marking denoted by Cut(C), and called a cut. Then
Mark(C) df= h(Cut(C)) is the marking of Γ which cor-
responds to this cut. It is remarkable that each reach-
able marking of Γ is Mark(C) for some configuration C,
and, conversely, each configuration C generates a reach-
able marking Mark(C). This property is a primary reason
why various behavioural properties of Γ can be re-stated
as the corresponding properties of π, and then checked, of-

1Note that in this example the set function for d happens to coincide
with next-state function of d. In such a case stdC synthesis allows for a CG
implementation of a signal. The precise condition is that if Sz evaluates
to 1 in all states M such that Nxtz(M) = 1 (respectively, Rz evaluates
to 1 in all states M such that Nxtz(M) = 0) then Sz (respectively, Rz)
can be used as a CG implementation of z.

ten much more efficiently. We extend the functions Code,
Codez , Nxtz and Outz/z+/z− to configurations of π as fol-

lows: F (C) df= F (Mark(C)).
Efficient algorithms exist for building finite and com-

plete prefixes [7], which ensure that the number of non-cut-
off events in the resulting prefix never exceeds the num-
ber of reachable states of Γ. Moreover, complete prefixes
are often exponentially smaller than the corresponding state
graphs, especially for highly concurrent Petri nets, because
they represent concurrency directly rather than by multi-
dimensional ‘diamonds’ as it is done in state graphs. For
example, if the original Petri net consists of 100 transi-
tions which can fire once in parallel, the state graph will be
a 100-dimensional hypercube with 2100 vertices, whereas
the complete prefix will coincide with the net itself. Since
STGs usually exhibit a lot of concurrency, but have rather
few choice points, their unfolding prefixes are often expo-
nentially smaller than the corresponding state graphs; the
experimental results in Table 2 demonstrate that high levels
of compression can indeed be achieved in practice. Thus,
unfolding prefixes are well-suited for alleviating the state
space explosion.
Boolean satisfiability The Boolean satisfiability problem
(SAT) consists in finding a satisfying assignment, i.e., a
mapping A : Var → {0, 1} defined on the set of variables
Var occurring in a given Boolean expression ϕ such that ϕ
evaluates to 1. This expression is often assumed to be given
in the conjunctive normal form (CNF)

∧n
i=1

∨
l∈Li

l, i.e., it
is represented as a conjunction of clauses, which are dis-
junctions of literals, each literal l being either a variable or
the negation of a variable. It is assumed that no two literals
within the same clause correspond to the same variable.

Contemporary SAT solvers, e.g., ZCHAFF [15], can be
used in the incremental mode, i.e., after solving a particular
SAT instance the user can slightly modify it (e.g., by adding
and/or removing a small number of clauses) and execute the
solver again. This is often much more efficient than solving
these related instances as independent problems, because on
the subsequent runs the solver can use some of the useful in-
formation collected so far. In particular, such an approach
can be used to compute projections of assignments satisfy-
ing a given formula.

Let V ⊆ Var be a non-empty set of variables occurring
in a formula ϕ, and Projϕ

V be the set of all restricted as-
signments (or projections) A|V such that A is a satisfying
assignment of ϕ. Using the incremental SAT approach it is
possible to compute Projϕ

V as follows.
PROJ ← ∅

while ϕ is satisfiable do
A← a satisfying assignment of ϕ
PROJ ← PROJ ∪ {A|V }
Append to ϕ the clause

∨
v∈V

A(v)=1
¬v ∨∨

v∈V
A(v)=0

v

Suppose now that we are interested in finding only the max-
imal elements of Projϕ

V , assuming that A|V ≤ A′|V if

(A|V)(v) ≤ (A′|V)(v), for all v ∈ V . The above procedure
can then be modified by changing the appended clause to∨

v∈V
A(v)=0

v; moreover, before terminating, an additional pass

over the elements of PROJ is made in order to eliminate
any non-maximal projections.

3. Logic synthesis based on unfoldings

Although the process of logic synthesis described in Sec-
tion 2 is relatively straightforward, it suffers from the state
space explosion problem due to the necessity of construct-
ing the entire state graph of the STG. This section de-
scribes a synthesis procedure based on a finite and complete
STG unfolding prefix, completely avoiding generation of
the state graph. We assume a given consistent STG satis-
fying the CSC property, and consider in turn each output
signal z ∈ ZO. For the stdC synthesis one has to derive the
set and reset functions Sz and Rz satisfying the Monotonic
Cover condition. In what follows, we only describe how
to derive the set function, since the derivation of the reset
function is very similar.

3.1. Outline of the proposed method

The starting point of the proposed approach is to con-
sider the set NSUPP of all non-supports of S s

z . (Recall
that a set X ⊆ Z is a non-support of S s

z iff the STG has a

sCSC z+

X conflict.) Within the Boolean formula CSC which
we are going to construct, non-supports are represented by
variables nsupp

df= {nsuppx | x ∈ Z}. The key prop-
erty of CSC is that if one fixes the values of the variables
nsupp then the resulting formula is satisfiable iff there is a
sCSC z+

X conflict, where X
df= {x | nsuppx = 1}. That

is, if for a given satisfying assignment A of CSC the set of
signals {x | A(nsuppx) = 1} is identified with the pro-
jection A|nsupp (note that there are other variables besides
nsupp in CSC) then NSUPP = Proj CSC

nsupp. Hence one
can use the incremental SAT approach described in Sec-
tion 2 to compute NSUPP . In fact, it is sufficient for
the proposed approach to compute the set of maximal non-
supports NSUPPmax

df= max⊂NSUPP , which can then
be used for computing the set SUPPmin

df= min⊂{X⊆Z |
X �⊆X ′, for all X ′∈NSUPPmax} of all the minimal sup-
ports of S s

z .
SUPPmin captures the set of all possible supports of S s

z ,
in the sense that any support is an extension of some min-
imal support, and vice versa, any extension of any mini-
mal support is a support. However, the simplest equation
is usually obtained for some minimal support, and this ap-
proach was adopted. Yet, this is not a limitation of the
proposed method, as one can also explore some or all of
the non-minimal supports, which can be advantageous, e.g.,
for small circuits and/or when the synthesis time is not of
paramount importance (this would sometimes allow one to

find a simpler equation). And vice versa, not all mini-
mal supports have to be explored: if some minimal sup-
port has many more signals compared with another one,
the corresponding expression is likely to be more compli-
cated, and so too large supports can be safely discarded.
Thus, as usual, there is a trade-off between the execution
time and the degree of design space exploration, and the
proposed method allows one to reach an acceptable com-
promise. Typically, several ‘most promising’ supports are
selected and used for subsequent derivation of the cover,
and the simplest cover is chosen in the end.

Suppose now that X is one of the chosen supports of S s
z .

Note that instead of deriving the function S s
z , we derive the

function Sz subject to the entrance constraints. This often
results in a better implementation, since the corresponding
truth table has more ‘don’t-cares’. However, the support X
used in this case was computed for the function S s

z , and
hence can contain more signals than necessary. This does
not result in an inferior implementation, since the Boolean
minimisation will remove the redundant signals if this helps
to simplify the resulting expression. Note also that the bi-
nate covering problem in this case is guaranteed to have a
solution, since S s

z is always a possible solution (however,
better solutions can be found by Boolean minimisation).

In order to compute the truth table for Sz and a chosen
support X , we build a Boolean formula which has a vari-
able code′x for each signal x ∈ X and is satisfiable iff these
variables can be assigned values in such a way that there is
a configuration C ′ such that Codex(C ′) = code′x, for all
x ∈ X , and Sz(Code(C ′)) = 1 (for the ON set) or 0 (for
the OFF set). Then, using the incremental SAT approach,
one can compute the corresponding projections of the sets
of reachable encodings onto X , which gives the truth ta-
ble for Sz . In addition to the truth table, a set of entrance
constraints of the form Sz(v) ⇒ Sz(v′) is generated. The
computed truth table, together with this set of implications,
is then fed to a Boolean minimiser, which completes the
synthesis. The minimisation is performed under the sup-
plied constraints, and the problem is known as the binate
covering problem [8].

It should be noted that the size of the truth table for
Boolean minimisation and the number of times a SAT solver
is executed in the proposed method can be exponential in
the size of the support. Thus, it is crucial for the perfor-
mance of the proposed algorithm that the support of each
function is relatively small. However, in practice it is any-
way difficult to implement as an atomic logic gate a Boolean
expression depending on more than, say, eight variables.
(Atomic behaviour of logic gates is essential for the speed-
independence of the circuit, and a violation of this require-
ment can lead to hazards [4, 6].) This means that if some
function has only ‘large’ supports then the specification
must be changed (e.g., by adding new internal signals) to
introduce ‘smaller’ supports. Such transformations are re-

e1

a+

e2

b+

e3

b+

e4

c+

e5

d+

e6

b−

e7

c+

e8

c−

cut-off

e9

d−

e10

a−

cut-off

C ′ C ′′

nsupp = 1101
code′ = 1101 code′′ = 1111
out′

c+
= 1 out′′

c+
= 0

conf′ = 10101000 conf′′ = 10101010
en′ = 0000001000 en′′ = 0000000010

Figure 3. An unfolding prefix of the STG in
Fig. 1 illustrating a sCSC c+

{a,b,d} conflict bet-
ween two configurations. The order of sig-
nals in the binary encodings is: a, b, c, d.

lated to the logic decomposition and technology mapping
step in the design cycle for asynchronous circuits [6]; we
do not consider it in this paper.2

3.2. Computing maximal non-supports

At the level of a branching process, a sCSC z+

X conflict
can be represented as an unordered conflict pair of configu-
rations 〈C ′, C ′′〉 whose final states are in sCSC z+

X conflict.

Fig. 3 illustrates a sCSC c+

{a,b,d} conflict, which means that
{a, b, d} is a non-support of S s

z . Note that the set function
of the stdC implementation must have an additional sig-
nal c in its support, as shown in Fig. 2(c,d), whereas a gC
implementation with the support {a, b, d} is possible, see
Fig. 2(b).

We adopt the following naming conventions for the CSC
formula. The variable names are in the lower case and
names of formulae are in the upper case. Names with a sin-
gle prime (e.g., conf ′e and CONF ′) are related to C ′, and
ones with a double prime (e.g., conf′′e) are related to C ′′.
If there is no prime then the name is related to both C ′

and C ′′. If a formula name has a single prime then the for-
mula does not contain occurrences of variables with double
primes, and the counterpart double prime formula can be
obtained from it by adding another prime to every variable
with a single prime. The subscript of a variable points to
which element of the STG or the prefix the variable is re-
lated, e.g., conf′e and conf ′′e are both related to the event e of
the prefix. By a variable without a subscript we denote the
list of all variables for all possible values of the subscript,
e.g., conf′ denotes the list of variables conf ′e, where e runs
over the set E \ Ecut .

Below we describe the Boolean variables which are used
in the proposed translation. Some of them can be expressed
via others, and in such a case an appropriate defining ex-

2This problem is yet to be solved using unfoldings; however, it is an
independent problem, and significant progress in this direction has already
been made.

pression is provided, and it is assumed that whenever such
a variable is used in some formula, the corresponding defin-
ing expression is also added to this formula. (And if it, in
turn, depends on some other variables with defining expres-
sions, they are also added, and so on.)
• For each event e ∈ E \ Ecut , we create two Boolean
variables, conf′e and conf ′′e , tracing whether e ∈ C ′ and e ∈
C ′′, respectively.
• For each signal x ∈ Z, we create a variable nsuppx

indicating whether x belongs to a non-support.
• For each condition b ∈ B\E•

cut , we create two Boolean
variables, cut′b and cut′′b , tracing whether b ∈ Cut(C ′) and
b ∈ Cut(C ′′) respectively. The defining expression for
cut′b is cut′b ⇐⇒

∧
e∈•b conf ′e ∧

∧
e∈b•\Ecut

¬conf ′e, which
conveys that b ∈ Cut(C ′) iff the event ‘producing’ b has
fired, but no event ‘consuming’ b has fired. (Note that since
|•b| ≤ 1,

∧
e∈•b conf′e in this formula is either the constant 1

or a single variable.) The defining expression for cut′′b can
be built similarly.
• For each signal x ∈ Z, we create two Boolean vari-
ables, code′x and code′′x, tracing the values of Codex(C ′)
and Codex(C ′′) respectively.

The following well-known folklore construction allows
one to incorporate the current encoding of each signal into
the current marking. For each signal z ∈ Z, a pair of com-
plementary places, p0

z and p1
z , tracing the value of z is added

to the STG. Each z+–labelled transition has p0
z in its preset

and p1
z in its postset, and each z−–labelled transition has p1

z

in its preset and p0
z in its postset. Exactly one of these two

places is marked at the initial state, accordingly to the initial
value of signal z (these initial values can be computed using
the unfolding).

One can show that at any reachable state of an STG aug-
mented with such places, p0

z (respectively, p1
z) is marked iff

the value of z is 0 (respectively, 1). Thus, if a transition
labelled by z+ (respectively, z−) is enabled then the value
of z is 0 (respectively, 1), which in turn guarantees the con-
sistency. Such a transformation can be done completely au-
tomatically. For a consistent STG, it does not restrict the be-
haviour and yields an STG with an isomorphic state graph.
In what follows, we assume such tracing places in the STG.

We observe that Code ′
x(C ′) = 1 iff p1

x ∈ Mark(C ′),
i.e., iff b ∈ Cut(C ′) for some p1

x–labelled condition b (note
that the places in PZ cannot contain more than one token).
This is captured by the defining expression code′x ⇐⇒∨

b∈Bx
cut′b, where Bx

df= {B \ E•
cut | h(b) = p1

x}. (Note
that p1

x ∈ Mark(C ′) iff
∨

b∈Bx
cut′b is true.) The defining

expression for code′′x can be built similarly.
• For each event e ∈ E, we create two Boolean variables,
en′e and en′′e , tracing whether e is ‘enabled’ by C ′ and C ′′

respectively. Note that unlike conf ′ and conf ′′, such vari-
ables are also created for the cut-off events. The defining
expression for en′e is en′e ⇐⇒ ∧

b∈•e cut′b. Intuitively,
it states that e is ‘enabled’ by C ′ iff all the conditions in

•e are in Cut(C ′). The defining expression for en′′e can be
built similarly.

• For each signal x∈Z, we create two Boolean vari-
ables, out′x/x+/x− and out′′x/x+/x− , tracing the values
of Outx/x+/x−(C ′) and Outx/x+/x−(C ′′) respectively.
The defining expression for out′x/x+/x− is defined as
out′x/x+/x− ⇐⇒

∨
e∈E:λ(h(e))=x±/x+/x− en′e. Intuitively,

it conveys that x±/x+/x− is ‘enabled’ by C ′ iff some
x±/x+/x−-labelled event is enabled by C ′. The defining
expression for out′′x/x+/x− can be built similarly.

As already mentioned, the aim is to build a Boolean for-
mula CSC such that Proj CSC

nsupp = NSUPP , i.e., after as-
signing arbitrary values to the variables nsupp, the resulting
formula is satisfiable iff there is a sCSC z+

X conflict, where
X

df= {x | nsuppx = 1}. Fig. 3 shows a satisfying assign-
ment (except the variables cut′ and cut′′) corresponding to
the sCSC c+

{a,b,d} conflict depicted there. The target formula
CSC will be the conjunction of constraints described below.

Configuration constraints The role of first two con-
straints, CONF ′ and CONF ′′, is to ensure that C ′

and C ′′ are legal configurations (not just arbitrary sets
of events). CONF ′ is defined as the conjunction of
two formulae:

∧
e∈E\Ecut

∧
f∈••e(conf ′e ⇒ conf ′f) (en-

suring that C ′ is a causally closed set of events) and∧
e∈E\Ecut

∧
f∈((•e)•\{e})\Ecut

¬(conf ′e ∧ conf′f) (ensuring

that C ′ contains no choices). CONF ′′ is defined similarly.
One can see that the size of the configuration constraints

is O(|E\Ecut |2), but since STGs in practice usually contain
just a few choices, this upper bound is rather pessimistic.
Moreover, it is possible to reduce it down to O(|π|), at the
expense of introducing auxiliary variables. This linear in
the size of the prefix translation is not considered in this
paper as it is quite complicated, even though it was imple-
mented in the actual tool. Note that the configuration con-
straint does not depend on the output signal z being syn-
thesised, and thus it can be re-used many times during the
synthesis.

Encoding constraint The role of the encoding constraint
NSUPP is to ensure that Codex(C ′) = Codex(C ′′)
whenever nsuppx = 1. This is conveyed by the formula∧

x∈Z

(
nsuppx ⇒ (code′x ⇐⇒ code′′x)

)
, with the appro-

priate defining expressions.
One can show that under the plausible assumption that

for each signal x ∈ Z, x+- and x−-labelled events occur
in the prefix, the size of the encoding constraint is O(|π|).
Note that the encoding constraint does not depend on the
output signal z being synthesised, and thus it can be re-used
many times during the synthesis.

Separation constraint The role of the separation con-
straint SEP is to ensure that Outz+(C ′) �= Outz+(C ′).
Since all the other constraints are symmetric w.r.t. C ′ and
C ′′, one can rewrite it as Outz+(C ′) = 1∧Outz+(C ′) = 0,

which is conveyed by the formula out′z+ ∧¬out′′z+ , with the
appropriate defining expressions.

Unlike the configuration and encoding constraints, the
separation constraint does depend on the output signal z be-
ing synthesised. However, under the plausible assumption
that for each signal z ∈ ZO, z+- and z−-labelled events
occur in the prefix, one can ensure (by re-using parts of for-
mulae) that the total size of the generated formulae for all
z ∈ ZO is O(|π|).
Translation to SAT Now the problem of computing the
set NSUPPmax of maximal non-supports of S s

z can be
formulated as a problem of finding the maximal elements
of the projection Proj CSC

nsupp for the Boolean formula CSC df=
CONF ′ ∧ CONF ′′ ∧NSUPP ∧ SEP . This can be done
using the incremental SAT approach described in Section 2.
The size of this formula is O(|π|).

3.3. Computing minimal supports

In [12] the set SUPPmin of minimal supports was com-
puted using the incremental SAT approach. Below a better
approach is described.

The characteristic function of the set of all non-supports

can be built as
∨

X∈NSUPPmax

(∧
x∈Z\X¬nsuppx

)
. One

can see that this expression is in the disjunctive normal form
(DNF), i.e., it is represented as a disjunction of monoms,
which are conjunction of literals, each literal being either a
variable or the negation of a variable. Moreover, this func-
tion is negative unate in all its variables, i.e., every its literal
is the negation of a variable. Since the minimal DNF of a
unate function is uniquely defined as the disjunction of all
its prime implicants, and the sets in NSUPPmax are pair-
wise incomparable w.r.t. ⊂, the expression above is this
minimal DNF.

The characteristic function of the set SUPP of all sup-
ports can be obtained as the negation of the above expres-
sion; since the original function is negative unate in all its
variables, the result will be positive unate in all its variables,
i.e., in its minimal DNF no literal is the negation of a vari-
able. Each prime implicant of the characteristic function of
SUPP defines a minimal support, and so one can compute
the set SUPPmin of the minimal supports by building its
(uniquely defined) minimal DNF and considering the set of
its monoms.

For example, the function S s
c of the STG shown in

Fig. 1 has four maximal non-supports: {a, b, c}, {a, b, d},
{a, c, d} and {b, c, d}. The characteristic function of its set
of non-supports is d̄∨ c̄∨ b̄∨ ā, and the minimal DNF of the
negation of this expression is abcd. Hence S s

c has a single
minimal support {a, b, c, d}.

Note that in general the DNF of the negation of a
given DNF expression can be exponentially larger than
the original expression, even in the unate case. Neverthe-
less, in practice it is often much easier to complement a

unate function. In the actual implementation we used the
unate compl function provided by ESPRESSO [3].

3.4. Computing the truth table

Suppose that X is a (not necessarily minimal) support
of S s

z . For stdC synthesis, one has to compute the truth ta-
ble (i.e., the ON, OFF and DC sets) for Sz (not S s

z !) and
the support X , and derive the entrance constraints. Even
though Sz is being derived, the (potentially larger) support
computed for S s

z is used. This, on the one hand, guarantees
that it is possible to derive Sz satisfying the entrance con-
straints (i.e., the binate covering problem will always have
a solution), and, on the other hand, does not result in an in-
ferior implementation since Boolean minimisation will re-
move the ‘redundant’ signals from the resulting expression
when this leads to simplification.

Note that Sz is not completely specified even on the
reachable states of the STG. To reduce the number of in-
cremental calls to the SAT solver, we do not compute the
DC set explicitly (it is implicitly defined by the ON and
OFF sets), and compute the ON and OFF sets separately
as follows.

The ON set of Sz can be computed as the projection
of the formula defined as the conjunction of CONF ′, the
defining expressions for the variables code′x, x ∈ X , and
out′z+ (with the appropriate defining expressions) onto the
set of variables {code′x | x ∈ X}. Intuitively, this pro-
jection will contain the encodings of all reachable states
enabling z+, restricted to X . Similarly, the OFF set of
Sz is computed as the projection of the formula defined
as the conjunction of CONF ′, the defining expressions for
the variables code′x, x ∈ X , and code′z ⇐⇒ out′z (the
latter conveys that Nxtz(C ′) = 0; note that Nxtz(C) ≡
¬Codez(C) ⇐⇒ Outz(C)), with the appropriate defin-
ing expressions, onto the set of variables {code′x | x ∈ X}.
Intuitively, this projection will contain the encodings of all
reachable states at which Nxtz is 0, restricted to X .

3.5. Derivation of the entrance constraints

The Boolean minimisation procedure must now take into
account the Monotonic Cover condition, i.e., ensure that the
entrance constraints are satisfied by the solution. These are
a set of implications which can be computed as follows. We
construct a formula defined as the conjunction of CONF ′,
the defining expressions for the variables code′x, x ∈ X ,
and code′z∧¬out′z− ∧

∨
x∈X\{z} out′x, with the appropriate

defining expressions. One can show that under the plausible
assumption that for each signal x ∈ Z, x+- and x−-labelled
events occur in the prefix, the size of this formula is O(|π|).

Each satisfying assignment A of this formula defines a
configuration C ′ such that Codez(C ′)=1, Outz−(C ′)=0
and enabling some event e labelled by some signal x ∈
X \ {z}. Let v be the projection of A onto the set of vari-
ables {code′x | x ∈ X}. The entrance constraint for the

final state of C ′ conveys that if the final state of C ′ ∪ {e}
is in the cover than the final state of C ′ is also in the cover.
That is, for each signal x ∈ X \ {z} enabled by C ′, the
implication Sz(v′) ⇒ Sz(v) should be added to the set of
entrance constraints, where v′ is obtained from v by negat-
ing the bit corresponding to x. Then the clause∨

x∈X\{z}
vx=0

code′x ∨
∨

x∈X\{z}
vx=1

¬code′x ∨
∨

x∈X\{z}
Outx(C)=0

out′x,

which is not satisfied by A, is appended to the formula (note
that all the necessary defining expressions are already in the
formula), and the process is repeated until the instance be-
comes unsatisfiable. Intuitively, this clause eliminates all
the satisfying assignments with the corresponding configu-
ration having the same projection v of the encoding of its
final state onto the set of variables {code′x | x ∈ X} and
enabling the same or smaller set of signals from X \ {z}.

Eventually we end up with a set of implications of the
form Sz(v′) ⇒ Sz(v). It can happen that v or v′ is in the
OFF set of the function, and the following simplifications
are possible. If v′ is in the OFF set then the implication can
be deleted, as it is trivially satisfied. If v is in the OFF set
then the OFF set is extended to include v′ as well (this, in
turn, can trigger further simplifications), and the implication
can be deleted. The computed ON and OFF sets together
with the entrance constraints are fed to the binate Boolean
minimisation algorithm [8], which in this case is guaranteed
to have solutions.

3.6. Optimisations

In the full version [9] of this paper, we describe opti-
misations which can significantly reduce the computation
effort required by the proposed method. First, we suggest
a heuristic allowing to compute a part of a signal’s support
without running a SAT solver, based on the fact that any
support for an output z must include all the triggers of z,
i.e., those signals whose firing can enable z. Then we show
how to speed up the computation in the case of prefixes
without choices.

4. Experimental results and conclusions

The proposed method was implemented using ZCHAFF

SAT solver [15] and ESPRESSO Boolean minimiser [3], and
the benchmarks from [12] were attempted. All the ex-
periments were conducted on a PC with a PentiumTM

IV/2.8GHz processor and 512M RAM.
The experimental results are summarised in Table 2,

where the meaning of the columns is as follows (from left to
right): the name of the problem; the number of places, tran-
sitions, and input and output signals in the STG; the num-
ber of reachable states; the number of conditions, events
and cut-off events in the complete prefix; the total number
of next-state (for gC synthesis) or set and reset (for CG and

stdC syntheses) functions obtained by the proposed method
(it gives a rough idea of the explored design space); the time
spent by the PETRIFY tool [5] for each of the three types of
synthesis; and the time spent by the method proposed in this
paper for each of the three types of synthesis. We use ‘mem’
if there was a memory overflow and ‘time’ to indicate that
the test had not stopped after 15 hours. The time needed to
build complete prefixes is not included in the table, since it
did not exceed 0.1sec for any of the attempted STGs.

Note that in all cases the size of the complete prefix
was relatively small. This can be explained by the fact that
STGs usually contain a lot of concurrency but relatively few
choices, and thus the prefixes are in many cases not much
bigger then the STGs themselves. For the scalable bench-
marks, one can observe that the complete prefixes exhibited
polynomial growth, whereas the number of reachable states
grew exponentially. As a result, the proposed method had a
clear advantage over that based on state graphs. In all the
test cases it solved the problem relatively easily, even when
it was intractable for PETRIFY. In some cases, it was faster
by several orders of magnitude. The time spent on all these
benchmarks was quite satisfactory — the ‘hardest’ bench-
mark was CFASYMCSCA for all the three types of synthe-
sis, and it took just 56/69/171 seconds for the CG/gC/stdC
synthesis algorithm. Such ‘hard’ cases typically had many
alternative implementations which were enumerated by the
proposed method, and the rates at which the equations were
derived were quite high — e.g., for CFASYMCSCA bench-
mark in average approximately 8/7/3 equations per second
were derived by the CG/gC/stdC synthesis algorithm.

It is important to note that these improvements in memo-
ry and running time come without any reduction in quality
of the solutions. In fact, the proposed method is complete,
i.e., it can produce all the valid implementations in each of
the three target architectures (CG, gC and stdC). However,
in the developed tool we restricted the algorithm to only
minimal supports. Nevertheless, the explored design space
was quite satisfactory: as the ‘Derived expressions’ column
in Table 2 shows, in many cases the method proposed quite
a few alternative implementations. Overall, the proposed
approach turned out to be clearly superior, especially for
hard problem instances.

In most cases the gC synthesis took more time than CG
synthesis, because more formulae are generated and more
equations are usually produced; however, the difference in
time is not very significant. The stdC synthesis was 1.5–
3 times more expensive than gC synthesis, because the en-
trance constraints had to be built. However, it did not matter
much for timing that the binate covering problem had to be
solved, as in all cases it was very fast compared with the
other stages of the method.

According to the experimental results, the new method
can solve quite large problem instances relatively quickly.
It should also be emphasised that the unfolding approach

Problem STG Prefix Derived expressions (SAT) PFY Time, [s] SAT Time, [s]
|P | |T | |ZI |/|ZO| |S| |B| |E| |Ecut| CG gC stdC CG gC stdC CG gC stdC

Real-Life STGs
LAZYRING 42 37 5/7 187 88 71 5 14 9/12 9/12 1 3 3 <1 <1 <1
RING 185 172 11/18 16320 650 484 55 63 69/39 69/39 850 849 898 3 5 8
DUP4PHCSC 135 123 12/15 171 146 123 11 48 85/45 85/45 20 27 38 <1 <1 1
DUP4PHMTRCSC 114 105 10/16 149 122 105 8 46 75/29 75/29 13 19 34 <1 <1 1
DUPMTRMODCSC 152 115 10/17 321 228 149 13 165 85/33 85/33 125 141 148 1 1 2
CFSYMCSCA 85 60 8/14 6672 1341 720 56 60 48/80 48/80 163 183 253 22 25 82
CFSYMCSCB 55 32 8/8 690 160 71 6 34 20/12 20/12 10 12 20 <1 <1 <1
CFSYMCSCC 59 36 8/10 2416 286 137 10 18 14/16 14/16 13 15 22 <1 <1 <1
CFSYMCSCD 45 28 4/10 414 120 54 6 16 14/10 14/10 3 7 5 <1 <1 <1
CFASYMCSCA 128 112 8/26 147684 1808 1234 62 450 252/259 252/259 1448 1565 1569 56 69 171
CFASYMCSCB 128 112 8/24 147684 1816 1238 62 93 78/65 78/65 2323 2481 2508 19 24 42

Marked Graphs
PPWKCSC(2,3) 24 14 0/7 27 = 128 38 20 1 7 7/7 7/7 <1 2 2 <1 <1 <1
PPWKCSC(2,6) 48 26 0/13 213 = 8192 110 56 1 13 13/13 13/13 4 6 6 <1 <1 <1
PPWKCSC(2,9) 72 38 0/19 219 > 5 · 105 218 110 1 19 19/19 19/19 44 44 44 <1 <1 <1
PPWKCSC(2,12) 96 50 0/25 225 > 3 · 107 362 182 1 25 25/25 25/25 2082 2055 2056 <1 <1 1
PPWKCSC(3,3) 36 20 0/10 210 = 1024 57 29 1 10 10/10 10/10 1 3 3 <1 <1 <1
PPWKCSC(3,6) 72 38 0/19 219 > 5 · 105 165 83 1 19 19/19 19/19 43 46 46 <1 <1 <1
PPWKCSC(3,9) 108 56 0/28 228 > 2 · 108 327 164 1 28 28/28 28/28 7380 7085 7080 <1 <1 1
PPWKCSC(3,12) 144 74 0/37 237 > 1011 543 272 1 37 37/37 37/37 time time time 1 1 2

STGs with Arbitration
PPARBCSC(2,3) 48 32 2/13 207 · 24 = 3312 110 66 2 18 13/18 13/18 4 6 6 <1 <1 <1
PPARBCSC(2,6) 72 44 2/19 207 · 210 > 2 · 105 218 120 2 24 19/24 19/24 42 43 44 <1 <1 <1
PPARBCSC(2,9) 96 56 2/25 207 · 216 > 107 362 192 2 30 25/30 25/30 315 316 317 <1 <1 1
PPARBCSC(2,12) 120 68 2/31 207 · 222 > 8 · 108 542 282 2 36 31/36 31/36 3840 3959 3976 1 1 2
PPARBCSC(3,3) 71 48 3/19 297 · 28 = 76032 118 114 3 29 19/29 19/29 45 47 47 <1 <1 <1
PPARBCSC(3,6) 107 66 3/28 297 · 217 > 3 · 107 368 204 3 38 28/38 28/38 1001 1176 1175 <1 <1 1
PPARBCSC(3,9) 143 84 3/37 297 · 226 > 1010 602 321 3 47 37/47 37/47 24941 25544 25753 1 2 3
PPARBCSC(3,12) 179 102 3/46 297 · 235 > 1013 890 465 3 56 46/56 46/56 mem mem mem 2 3 5

Table 2. Experimental results.

is particularly well-suited for STGs, because STG unfold-
ing prefixes are much smaller than state graphs for practi-
cal STGs. Therefore, in contrast to state-space based ap-
proaches, the proposed method is not memory demanding.

We view these results as encouraging. Together with
those of [10, 11, 18] they form complete design flows for
CG, gC and stdC syntheses of asynchronous circuits based
on STG unfolding prefixes rather than state graphs. In fu-
ture work we intend to include also the logic decomposition
and technology mapping step into this framework.

References
[1] International Technology Roadmap for Semiconductors:

Design, 2005. URL: www.itrs.net/Links/2005ITRS/
Design2005.pdf.

[2] P. Beerel, C. Myers, and T.-Y. Meng. Covering Conditions and Al-
gorithms for the Synthesis of Speed-Independent Circuits. IEEE
Trans. on CAD, 1998.

[3] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni Vin-
centelli. Logic Minimisation Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, 1984.

[4] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-The-
oretic Specifications. PhD thesis, Lab. for Comp. Sci., MIT, 1987.

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. PETRIFY: a Tool for Manipulating Concurrent Speci-
fications and Synthesis of Asynchronous Controllers. IEICE Trans.
on Inf. and Syst., E80-D(3):315–325, 1997.

[6] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Logic Synthesis of Asynchronous Controllers and In-
terfaces. Springer-Verlag, 2002.

[7] J. Esparza, S. Römer, and W. Vogler. An Improvement of McMil-
lan’s Unfolding Algorithm. FMSD, 20(3):285–310, 2002.

[8] A. Grasselli and F. Luccio. Some Covering Problems in Switching
Theory. In Network and Switching Theory, pages 536–557, 1968.

[9] V. Khomenko. Derivation of Set and Reset Covers for gC Elements
and Standard C Implementation Using STG Unfoldings. Techni-
cal Report CS-TR-930, School of Comp. Sci., Newcastle Univ.,
2005. URL: http://homepages.cs.ncl.ac.uk/vic-
tor.khomenko/papers/papers.html.

[10] V. Khomenko. Efficient Automatic Resolution of Encoding Con-
flicts Using STG Unfoldings. In Proc. ACSD, pages 147–156, 2007.

[11] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting State Coding
Conflicts in STG Unfoldings Using SAT. Fund. Inf., 62(2):1–21,
2004.

[12] V. Khomenko, M. Koutny, and A. Yakovlev. Logic Synthesis for
Asynchronous Circuits Based on Petri Net Unfoldings and Incre-
mental SAT. Fund. Inf., 70(1–2):49–73, 2006.

[13] A. Martin. Programming in VLSI: From Communicating Processes
to Delay-Insensitive Circuits. In Developments in Concurrency and
Communication, UT Year of Prog. Series, pages 1–64, 1990.

[14] K. McMillan. Using Unfoldings to Avoid State Explosion Prob-
lem in the Verification of Asynchronous Circuits. In Proc. CAV,
LNCS 663, pages 164–174, 1992.

[15] S. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
CHAFF: Engineering an Efficient SAT Solver. In Proc. DAC, pages
530–535, 2001.

[16] T. Murata. Petri Nets: Properties, Analysis and Applications. Proc.
of the IEEE, 77(4):541–580, 1989.

[17] L. Rosenblum and A. Yakovlev. Signal Graphs: from Self-Timed
to Timed Ones. In Proc. Int. Workshop on Timed Petri Nets, pages
199–207, 1985.

[18] A. Semenov. Verification and Synthesis of Asynchronous Control
Circuits Using Petri Net Unfolding. PhD thesis, School of Comp.
Sci., Newcastle Univ., 1997.

