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Abstract

Parallel composition of labelled Petri nets is a fun-

damental operation in modular design. It is often used

to combine models of subsystems into a model of the

whole system. Unfortunately, the standard definition

of parallel composition almost always yields a ‘messy’

Petri net, with many implicit places, causing perfor-

mance deterioration in tools that are based on struc-

tural methods. In this paper we propose an optimised

algorithm for computing the parallel composition. It of-

ten produces nets with fewer implicit places, which are

thus better suited for subsequent application of struc-

tural methods.

Keywords: parallel composition, re-synthesis, STG,

asynchronous circuits.

1. Introduction

Parallel composition (a.k.a. synchronous product)

of labelled Petri nets is a fundamental operation in mod-

ular design. It is often used to combine models of sub-

systems into a model of the whole system. In particular,

there is a nice correspondence between parallel com-

position of Signal Transition Graphs (STGs), a class of

labelled Petri nets used for modelling asynchronous cir-

cuits, and connecting circuits by wires. Hence perform-

ing this operation efficiently is important in practice.

Unfortunately, the standard definition of parallel

composition almost always yields a ‘messy’ Petri net,

with many implicit places (even if the component Petri

nets did not have them). Some of these places are easy

to remove (e.g. duplicate places, which have the same

pre- and postsets), but in general for removing others

one needs full-blown model checking, which is infeasi-

ble if the resulting composition is large. Although im-

plicit places do not have noticeable effect on tools based

on state space exploration, such as PETRIFY [2], the

performance of tools that are based on structural meth-

ods, such as DESIJ [12], often deteriorates.

Consider an example shown in Fig. 1, which shows

the STG specifications of two components (a,b) and the

specification of the environment (c). (The used short-

hand drawing notation for STGs is explained in Sect. 2.)

The model of the behaviour of the entire system can

be obtained by constructing the parallel composition of

these three STGs, which is shown in part (d) of this fig-

ure. One can see that it contains a few implicit places

(which are not duplicate places); intuitively, they appear

due to repeated causality specifications for every signal:

the one coming from the component where this signal

is an output, and others — from the components where

it is an input. Removing these places yields a much

‘cleaner’ STG, coinciding with that shown in Fig. 2(d).

One operation where implicit places matter is tran-

sition contraction, [15] which is a crucial part of the re-

synthesis approach [1, 8, 11]. The idea is to hide the

internal communication between the components (by

labelling the corresponding transitions as ‘dummy’ —

they correspond to signals a and b in our example),

contract as many of these dummy transitions as pos-

sible (whereby reducing the size of the STG), and re-

synthesise the obtained STG as a circuit (which is often

smaller than the original circuit due to removal of some

signals). Transition contraction has to be performed on

very large STGs (corresponding to the whole control

path of the circuit), and so, for efficiency, it has to be

a structural operation. Unfortunately, such structural

contractions are not always possible (see Sect. 2), and

implicit places in the preset and/or postset of a transi-

tion can prevent contracting it, even if a contraction is

possible after removing these implicit places. In our ex-

ample, DESIJ cannot contract any of the dummy tran-

sitions in the STG in Fig. 1(d), even though it performs

some structural tests for place redundancy; however, it

is able to contract all the dummy transitions if the im-

plicit places are removed, i.e. when applied to the STG

in Fig. 2(d).



(a) Toggle

(b) Call

(c) Environment (d) Composition

Figure 1. Example of standard STG composi-
tion.

The main contribution of this paper is a new me-

thod for computing the parallel composition of labelled

Petri nets, that generates fewer implicit places. It uses

the freeness from computation interference (FCI) as-

sumption, stating that the situation when one compo-

nent wants to produce an output, but is prevented from

doing so by another component which is not ready to

receive it, is impossible. Violation of FCI means that

the behaviour of the composition does not correspond

to that of the physical system. For example, an output

of a circuit component cannot be physically disabled by

another component that is not ready to receive this sig-

nal, and so producing this output will lead to malfunc-

tion; however, the composition will be oblivious to it,

and behave as if such an output could not be produced.

Hence FCI is a basic correctness requirement — if it is

violated, there is no point in computing parallel com-

position, as its behaviour will not describe that of the

physical system. In practice, FCI is often guaranteed by

construction, e.g. it is always guaranteed for the con-

trol path of a BALSA [4] or HASTE/TANGRAM [10, 14]

specification of an asynchronous circuit. The idea of

using the FCI condition is reminiscent of the method

of input/output exposure in the synthesis by direct map-

ping described in [13], and of the correct by construc-

(a) Toggle

(b) Call

(c) Environment (d) Composition

Figure 2. Example of improved STG com-
position: the components are obtained from

the corresponding ones in Fig. 1 by removing
some places, and then the standard parallel
composition is applied to these modified com-

ponents.

tion composition of Petri nets for circuit components

and the environment used in the DI2PN tool [5].

The main idea of the method propose here is illus-

trated by the example in Fig. 2. Before doing the par-

allel composition, one can remove some of the places

in the components as shown in parts (a–c) of the figure

and then compose the modified STGs. The precise con-

ditions that allow to remove a particular place will be

stated in Sect. 3; at this point it is only important that

they are structural and thus can be efficiently checked.

This guarantees that the number of places in the result-

ing Petri net is smaller (as the number of places in the

composition is the total number of places in all the com-

ponents), and, under the FCI assumption, the resulting

behaviour will be the same (in the sense of isomorphism

of the reachability graphs). In particular, in our ex-

ample, composing the modified components yields the

STG in Fig. 2(d), which in this case contains no implicit

places. Observe that the modified components on their

own can have rather bad behaviour and in particular can

be non-implementable; however, it does not matter, as

they are never used on their own, but only in composi-



tion with other components, and the resulting behaviour

of the composition is guaranteed to correspond to that

of the standard composition.

Re-synthesis of asynchronous circuits is the in-

tended application of the proposed method. However,

we envisage that it has a much wider applicability, as

composition of labelled Petri nets is a fundamental op-

eration, and the FCI assumption often holds in practice.

2. Basic Definitions

A Petri net is a 4-tuple N = (P,T,W,MN) where P

is a finite set of places and T is a finite set of transitions

with P∩T = /0, W : P×T ∪T ×P → N0 is the weight

function, and MN is the initial marking, where a mark-

ing is a multiset of places, i.e. a function P →N0 which

assigns a number of tokens to each place. A Petri net

can be considered as a bipartite graph with weighted

arcs between places and transitions. If necessary, we

write PN etc. for the components of N or P′ (Pi) etc. for

the net N′ (Ni) etc.

The preset of a place or transition x is denoted as
•x and defined by •x

df
= {y ∈ P∪ T | W (y,x) > 0}, the

postset of x is denoted as x• and defined by x•
df
= {y ∈

P∪T |W (x,y)> 0}. These notions are extended to sets

as usual. We say that there is an arc from each y ∈ •x

to x.

A transition t is enabled under a marking M if

∀p ∈ •t : M(p) ≥ W (p, t), which is denoted by M[t〉.
An enabled transition t can fire yielding a new mark-

ing M′, written as M[t〉M′, where M′(p) = M(p)−
W (p, t)+W (t, p), for all p ∈ P. A transition sequence

σ = t1 . . . tn is enabled under a marking M (yielding M′)

if M[t1〉M1[t2〉 . . .Mn−1[tn〉Mn =M′, and we write M[σ〉,
M[σ〉M′ resp.; σ is called execution of N if MN [σ〉.
The empty transition sequence λ is enabled under every

marking. M is called reachable if a transition sequence

σ with MN [σ〉M exists.

N is called bounded if, for every reachable marking

M and every place p, M(p)≤ k for some constant k ∈N;

if k = 1, N is called safe. N is bounded if and only if the

set [MN〉 of reachable markings is finite. In this paper,

we are mostly concerned with bounded Petri nets.

A place p is implicit if it can be deleted from the

net without changing the set of executions, and so an

implicit place can be removed from the net without af-

fecting its behaviour.1 Unfortunately, detecting implicit

places is expensive: the problem is PSPACE-complete

for safe and EXPSPACE-complete for general Petri nets.

A place p is duplicate if there is another place p′ with

1Note that an implicit place can cease to be implicit if another

implicit place is removed first.

the same pre- and postsets whose initial marking does

not exceed that of p. Duplicate places are implicit, and

are cheap to detect.

An STG is a tuple N = (P,T,W,MN , In,Out, ℓ)
where (P,T,W,MN) is a Petri net and In and Out are dis-

joint sets of input and output signals. For Sig = In∪Out

being the set of all signals, ℓ : T → Sig×{+,−}∪{λ}
is the labelling function. Sig×{+,−} or short Sig± is

the set of signal transitions; its elements are denoted

as s+, s− resp. instead of (s,+), (s,−) resp. A plus

sign denotes that a signal value changes from logical

low (written as 0) to logical high (written as 1), and a

minus sign denotes the opposite direction. We write s±

if it is not important or unknown which direction takes

place.

An STG can contain transitions labelled with λ ,

called dummy transitions, which do not correspond to

any signal change. Hiding a signal s means to change

the label of all transitions labelled with s± to λ . (The

idea of re-synthesis approach is to hide the signals used

for communication between components, which results

in an STG with fewer signals that often has a simpler

implementation as a circuit.) The labelling of an STG

is called injective if for each pair of distinct non-dummy

transitions t and t ′, ℓ(t) 6= ℓ(t ′).

Examples of STGs are shown in Figs. 1 and 2.

Places are drawn as circles containing a number of to-

kens corresponding to the initial marking. Unmarked

places which have only one transition in their presets

and postsets are not drawn if the corresponding arcs

have the weight 1; they are implicitly given by an arc be-

tween these two transitions (and if such a place contains

tokens, they are drawn on the arc itself). Transitions are

drawn simply as their labels, and the weight function is

drawn as directed arcs (x,y) whenever W (x,y) 6= 0 (and

labelled with W (x,y) if W (x,y)> 1).

We lift the notion of enabledness to transition la-

bels: we write M[ℓ(t)〉〉M′ if M[t〉M′. This is extended

to sequences as usual – deleting λ -labels automatically

since λ is the empty word; i.e. M[s±〉〉M′ means that a

sequence of transitions fires, where one of them is la-

belled s± while the others (if any) are λ -labelled. A

sequence ν ∈ (Sig±)∗ is called a trace of a marking M

if M[ν〉〉, and a trace of N if M = MN . The language

L(N) of N is the set of all traces of N.

The reachability graph RG(N) of an STG N is an

arc-labelled directed graph on the reachable markings

of N with MN as the root; there is an arc from M to

M′ labelled ℓ(t) whenever M[t〉M′. For bounded Petri

nets and STGs, RG(N) can be seen as a finite automa-

ton (where all states are accepting), and L(N) is the lan-

guage of this automaton. Observe that automata with



accepting states only can be regarded as STGs (with the

states as places, the initial state being the only marked

place, etc.); hence, all definitions for STGs also apply

to automata.

N is deterministic if RG(N) is a deterministic au-

tomaton: it contains no λ -labelled transitions and there

are no dynamic auto-conflicts, i.e. for each reachable

marking M and each signal transition s± there is at most

one M′ with M[s±〉〉M′. (Note that a deterministic STG

can have choices between different outputs, e.g. an STG

modelling the standard arbiter is deterministic).

For deterministic STGs, language equivalence and

bisimulation coincide, and the language can be taken

as the semantics of such a specification. Unfortunately,

the class of deterministic STGs is too restrictive in prac-

tice [6], e.g.:

• using dummy transitions is often convenient in

manual design;

• modelling OR-causality [16] as a safe STG re-

quires non-determinism;

• hiding internal communication (and thus introduc-

ing dummy transitions) is a crucial step in re-

synthesis.

Hence, one has to deal with non-deterministic STGs as

well.

One might think that if RG(N) is non-deterministic,

it can be determinised (using well-known automata-the-

oretic methods), i.e. turned into a language-equivalent

deterministic automaton with accepting states only; in

particular, the resulting automaton will have no λ -arcs.

Unfortunately, this is a bad idea, as shown in [6], where

the semantics of non-deterministic STGs was devel-

oped. It is based on the concept of output-determinacy,

which is a relaxation of determinism: An STG N is

output-determinate (OD) if MN [ν〉〉M1 and MN [ν〉〉M2

implies for every x ∈ OutN that M1[x
±〉〉 iff M2[x

±〉〉.
It turns out that OD STGs are exactly the STGs which

have correct implementations according to the imple-

mentation relation introduced in [6]. Hence, non-OD

STGs are ill-formed, and in particular cannot be cor-

rectly implemented as circuits. This shows that in gen-

eral, the language is not a satisfactory semantics of non-

deterministic STGs; in particular, synthesising the de-

terminised reachability graph of a non-OD STG will ei-

ther fail or result in an incorrect circuit. On the other

hand, for the class of OD STGs [6] shows that their

language is an adequate semantics, and implementation

relation can be formulated purely in terms of the lan-

guage. An important property of OD STGs is that in

them the enabledness of an output signal is a function

of the trace, i.e. given a trace ν , the set of outputs by

which ν can be extended is uniquely determined, even

though there could be multiple executions correspond-

ing to ν .

In the following definition of parallel composi-

tion ‖, see e.g. [15], we will have to consider the dis-

tinction between input and output signals. The idea of

parallel composition is that the composed systems run

in parallel and synchronise on common actions – cor-

responding to circuits that are connected on the wires

corresponding to the signals. Since a system controls

its outputs, we cannot allow a signal to be an output of

more than one component; input signals, on the other

hand, can be shared. An output signal of a component

may be an input of other components, and in any case it

is an output of the composition.

The parallel composition of STGs N1 and N2 is de-

fined if Out1 ∩Out2 = /0. If we drop this requirement,

the definition gives the synchronous product N1 ×N2,

which is often useful. The place set of the composition

is the disjoint union of the place sets of the components;

therefore, we can consider markings of the composition

(regarded as multisets) as the disjoint union of markings

of the components, and we will also write such a mark-

ing M1∪̇M2 of the composition as (M1,M2). To define

the transitions, let A= (In1∪Out1)∩(In2∪Out2) be the

set of common signals. If e.g. s is an output of N1 and

an input of N2, then firing of s± in N1 is ‘seen’ by N2,

i.e. it must be accompanied by firing of s± in N2. Since

we do not know a priori which s±-labelled transition

of N2 will fire together with some s±-labelled transi-

tion of N1, we have to allow for each possible pairing.

Thus, the parallel composition N = N1 ‖ N2 is obtained

from the disjoint union of N1 and N2 by fusing each s±-

labelled transition t1 of N1 with each s±-labelled transi-

tion t2 from N2 if s ∈ A. Such transitions are pairs and

the firing (M1,M2)[(t1, t2)〉(M
′
1,M

′
2) of N corresponds

to the firings Mi[ti〉M
′
i in Ni, i = 1,2; for an exam-

ple of a parallel composition, see Fig. 3. More gener-

ally, we have (M1,M2)[ν〉〉(M
′
1,M

′
2) iff Mi[ν |Ni

〉〉M′
i for

i ∈ {1,2}, where ν |Ni
denotes the projection of the trace

ν onto the signals of the STG Ni. Hence, all reachable

markings of N have the form (M1,M2), where Mi is a

reachable marking of Ni, i = 1,2.

Obviously, one can extend the notion of the paral-

lel composition to a finite family (or collection) (Ci)i∈I

of STGs as ‖i∈I Ci, provided that no signal is an output

signal of more than one of the Ci. We will also denote

the markings of such a composition by (M1, . . . ,Mn) if

Mi is a marking of Ci for i ∈ I = {1, ...,n}. As above,

(M1,M2, . . . ,Mn)[ν〉〉(M
′
1,M

′
2, . . . ,M

′
n) iff Mi[ν |Ci

〉〉M′
i

for all i ∈ {1, . . . ,n}. It is easy to see that C is deter-

ministic if all Ci are. However, this is not true for a

composition of OD STGs, as the result, in general, can



be non-OD in such a case.

A composition can also be ill-defined due to com-

putation interference, see e.g. [3]. Let C
df
=‖i∈I Ci be a

composition of STGs. It is free from computation in-

terference (FCI) if for every trace ν of C the following

holds: if ν |C j
x± is a trace of C j for some output x of C j,

then ν |Cx± is a trace of C.

Transition contraction [15] is an important opera-

tion in circuit re-synthesis. It removes a dummy transi-

tion from an STG and combines each place of its pre-

set with each place of its postset to ‘simulate’ the fir-

ing of the deleted transition, see Fig. 4. Unfortunately,

transition contractions are sometimes undefined (e.g. in

case the transition has a self-loop, i.e. some place occurs

in both its preset and postset); moreover, even when a

contraction is defined, it might change the semantics of

the STG. Hence, [15] uses the notion of secure contrac-

tions, that preserve the semantics.

Transition contractions preserve boundedness, but

in general, can turn a safe net into a non-safe one, as

well as introduce weighted arcs. In practice, it is often

convenient to work with safe nets, and for this [7] intro-

duced safeness-preserving contractions, i.e. ones which

guarantee that the transformed STG is safe if the initial

one was. (Note that the transitions with weighted arcs

must be dead in a safe Petri net, and so we can assume

that the initial and all the intermediate STGs contain no

such arcs.) Also, [7] developed a sufficient structural

condition for a contraction to be safeness-preserving.

From the point of view of this paper, it is impor-

tant to remark that implicit places can adversely affect

the (secure) contractibility of a transition, i.e. it is pos-

sible to have a situation when a transition is not con-

tractible (or not securely contractible), but becomes se-

curely contractible after some implicit place is removed

from the STG. As detecting implicit places is expen-

sive, it is very desirable to reduce their number by some

other means, in particular the approach proposed in this

paper reduces the number of such places in STGs ob-

tained by parallel composition. This has a direct effect

on re-synthesis: if the composed STG has fewer im-

plicit places, more dummy transitions in it can be con-

tracted, and so it will be easier to synthesise the result.

3. Improved parallel composition

The improved parallel composition algorithm ex-

tends the conventional one by adding a pre-processing

step, where some places are removed from the compo-

nents, as they are guaranteed to be implicit in the re-

sult. To identify these places, one can note that a place

is required in the final composition only if under some

reachable marking it can be the only place that disables

some transition in its postset.

For simplicity, consider the parallel composition

C = C1 ‖ C2, whose components synchronise on a sin-

gle signal s which is an output of C1 and an input of C2.

Let (M1,M2) be a reachable marking of C, where M1

and M2 are some reachable markings of C1 and C2, re-

spectively. Furthermore, suppose that M1 enables, say,

s+ in C1, where s is an output. Now, if M2 does not

enable s+ in C2, where s is an input, then there is com-

putation interference. Therefore, if the FCI assumption

holds, M2 has to enable s+ in C2, i.e. whenever s+ is

enabled in C1, it is also enabled in C2. In other words,

the firing of s+ in C is fully controlled by C1, and so

the constraints on firing of s that are present in C2 can

be ignored. This means that the places in the preset of

an s+-labelled transition in C2 will be implicit in the

composition (subject to some technical conditions for-

mulated below), and so can be removed before the com-

position is performed.

The above is true for the simple case of STGs

with injective labelling and no dummies. However, the

general picture is more complicated. In case of non-

injective labelling, there can be multiple transitions cor-

responding to the same input signal transition, and the

FCI assumption only guarantees the enabledness of one

of them. Hence, some ‘memory’ (in the form of places)

is required to trace which of these transitions has to be

fired, which prohibits the removal of places from their

presets. Furthermore, if the STG contains dummies, re-

moving places from their postsets introduces some un-

desirable effects explained later. These considerations

lead to the following conditions of applicability of the

proposed optimisation.

Proposition 1. Let C
df
=‖i∈I Ci be a composition of STGs

that satisfies the FCI property and yields an output-

determinate STG, and, for each i ∈ I, C′
i be the STG

obtained from Ci by deleting all places p such that:

1. each transition t ∈ p• is labelled with a signal, say

s, and:

a) s is an input;

b) there is an STG C j for which s is an output;

c) there are at most one s+- and at most one s−-la-

belled transition in Ci;

2. •p does not contain dummy transitions.

Then C′ df
=‖i∈I C′

i and C have isomorphic reachability

graphs.

Proof. First of all, observe that C′ can be obtained from

C by deleting some places. Hence, RG(C) is a subgraph
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Figure 3. Parallel composition example. In the net fragment on the left hand side, signal a is an
output, and in the fragment in the middle it is an input. Hence, in their parallel composition (right)

it is an output. In this example, there is computation interference: the left component activates a+

but the middle one is not ready to receive it.
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Figure 4. An example of a transition contraction.

of RG(C′), with the same initial state. Therefore it only

remains to show that there are no additional states or

arcs in the latter. For this, it is enough to show that

for every state x of RG(C), the outgoing arcs of x are

the same in both graphs. For the sake of contradiction,

suppose there is a state x of RG(C) that has an outgoing

arc a that is in RG(C′) but not in RG(C).

The absence of a in RG(C) means that some of the

deleted places p was in •t for some transition t corre-

sponding to the arc a in some of the component STGs

Ci, and the number of tokens in this place at state x is

smaller than the weight of the arc (p, t) in Ci (*). Since

by condition 1a p• can contain only input transitions, t

must be labelled by s±, where s is an input signal of Ci;

wlog., we assume that the label is s+. By condition 1b

there is also a component STG C j where s is an output

signal.

Let σ be an execution of C terminating at state x,

and ν be the trace corresponding to σ (note that such

a σ always exists as the reachability graphs contain

only reachable states). We proceed by showing that (i)

ν |C j
s+ is a trace of C j and (ii) ν s+ is not a trace of C;

these would mean that there is a violation of FCI in the

original composition, leading to a contradiction.

(i) Since the arc a is present in RG(C′), the marking

of C′
j corresponding to the global state x enables some

s+-labelled transition t j in it. Since s is an output in C j,

no places were removed from •t j when building C′
j due

to condition 1a, which means that t j is also enabled by

the marking of C j corresponding to the global state x,

and so ν |C j
s+ is a trace of C j.

(ii) For the sake of contradiction, suppose ν s+ is a

trace of C. Due to the output-determinacy of C, the set

of outputs by which ν can be extended is uniquely de-

termined, and so s+ must be enabled by x (perhaps, after

firing several dummy transitions). By condition 1c there

is only one s+-labelled transition in Ci (viz. t), and so

each s+-labelled transition in C has p in its preset with

the arc from p to this transition having the same weight

as the arc (p, t) in Ci. Consequently, each s+-transition



in C is blocked at state x because by (*) the number of

tokens in p is smaller than the weight of the correspond-

ing arc. Moreover, firing only dummy transitions can-

not increase the number of tokens in p and thus enable

an s+-labelled transition, as by condition 2 •p contains

no dummy transitions, a contradiction. Hence ν s+ is

not a trace of C.

As explained above, (i) and (ii) imply a violation

of FCI and so lead to a contradiction, which means that

RG(C) and RG(C′) must be isomorphic.

We now discuss the conditions of Prop. 1 in more

detail. The conditions 1a and 1b are intrinsic to the pro-

posed method, and essentially state that due to the FCI

assumption, firing of an input signal in a component

can be controlled from the outside (viz. by the com-

ponent controlling the corresponding output — whose

existence is ensured by 1b), and so the component itself

can get rid of the places controlling it.

The conditions 1c and 2 are technical restrictions

on application of our method. If condition 1c is vio-

lated, there are several transitions that have the same

label, say s+ (where s is an input) in the component.

When the corresponding output s+ is produced by some

other component, only one of these transitions should

fire to match it — but to know which one, the compo-

nent needs to control their firing, and so the places in

their presets cannot be removed.

The necessity of condition 2 is illustrated by Fig. 5.

Intuitively, the original STG on the left either receives

a+ followed by b+ without outputting anything, or re-

ceives b+ and produces x+ in response. However, if the

places in front of a+ and b+ are removed (which would

be possible without condition 2), as shown on the right,

then it might produce the unexpected x+ after the trace

a+ b+. Intuitively, in the initial STG firing of a+ acts

as an evidence that the dummy transition in the right

branch has fired, while in the modified one the postset

of this dummy transition has been removed, and so it is

not possible anymore to guarantee that it has fired when

a+ fires.

In practice, when performing the parallel composi-

tion, one would like as few implicit places as possible

in the result, and so it would be desirable to weaken the

conditions in Prop. 1, so that as many places as possible

are removed. As the conditions 1a and 1b are intrin-

sic, it is unlikely that they can be relaxed. However, the

technical conditions 1c and 2 can be dealt with — by en-

suring that the components always satisfy them. Indeed,

as mentioned in Sect. 2, for output-determinate STGs

the language is the semantics, and so one often can re-

move dummy transitions and enforce injective labelling

without changing the language, e.g. using the PETRIFY

tool [2]; this will ensure that conditions 1c and 2 hold.

λ λ

⇒

λ λ

Figure 5. Example of an STG where removal

of places in the postset of dummy transitions
results in a wrong behaviour.

⇒

Figure 6. Example of enforcing injective la-
belling in an STG.

An example of such a transformation for the BALSA

standard component Call is shown in Fig. 6. This opera-

tion is performed on (small) components rather than the

(large) composition, and so is usually cheap. Moreover,

in some applications, in particular circuit re-synthesis,

the components are taken from a fixed library of compo-

nent types, and so the transformation can be performed

only once for each component type, and subsequently

incur no runtime penalty at all.

4. Experiments

The proposed parallel composition algorithm has

been evaluated on three series of scalable benchmarks

(available from [9]), see Fig. 7. They are built of

a subset of standard BALSA components [4]: Paral-
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Figure 7. Scalable Balsa controllers used in experiments.

leliser (‖), Sequencer (;), Call (|), Synchroniser (·) and

Arbiter (Arb). These controllers are considered to be

of size 1; a controller of size k > 1 is constructed by re-

placing the dotted lines with the controllers of size k−1.

Each basic component is described by an individual

STG; then these STGs are composed using four differ-

ent techniques:

std the standard parallel composition;

opt the optimised parallel composition presented in

this paper;

inj the standard parallel composition of the compo-

nents with enforced injective labelling;

opt+inj the optimised parallel composition of the com-

ponents with enforced injective labelling.

Note that all the used BALSA components except Call

initially had injective labelling, so only the STG for Call

was changed in the inj and opt+inj series. Both the

standard and optimised parallel composition algorithms

have been implemented in PCOMP tool [9]. The tool

automatically deletes duplicate places in all composi-

tions, so all the experimental results are subject to this

simplification. The runtimes of PCOMP were negligible

and so not reported.

For each composed STG, the internal signals of the

composition were hidden (i.e. turned into dummies),

and the DESIJ tool [12] was used to structurally elimi-

nate as many dummies as possible, using either secure

or safeness-preserving secure contractions.

The results of our experiments are summarised by

the charts in Fig. 8. There are six charts altogether, for

each of the three benchmark series and each of the con-

traction modes (secure or safeness-preserving secure).

Each chart reports, for each benchmark size within the

corresponding series, the numbers of non-contractible

dummy transitions (normalised w.r.t. the worst result)

remaining in the STG for each of the four composition

methods described above.

The experiments demonstrate that the optimised

parallel composition is never worse than the standard

one in terms of the STG structure that is used for re-

moving dummies (the opt bars are never longer than the

std bars, and the opt+inj bars are never longer than the

inj bars), and is significantly better in some cases (e.g.

for the SEQCALLPARSYNC (4) benchmark there is a

factor of five improvement). Moreover, using the opti-

mised technique in conjunction with injective labelling

is usually advantageous (the fourth bar is the shortest in

almost all cases).

5. Conclusion

We have presented an improved algorithm for com-

puting the parallel composition of STGs or labelled

Petri nets. Under the FCI assumptions, it allows to pro-

duce nets with fewer implicit places, which aids the sub-

sequent structural algorithms like dummy contraction.

It uses only simple structural checks and thus is very ef-

ficient even for large compositions, so the improvement

comes at negligible cost.
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Figure 8. Experimental results.



The algorithm was implemented in the PCOMP tool

and evaluated on a set of scalable benchmarks. The ex-

periments proved its efficiency, which increases even

more when the components are pre-processed to remove

dummies and ensure injective labelling (this is usually

cheap, as the components are small; moreover, if the

components come from a standard library of component

types, this step can be completely eliminated).

Another important advantage is that the improved

algorithm places almost no additional effort on the user:

the only requirement is to pass an additional command-

line option to PCOMP so that it can assume the FCI

property and apply the proposed optimisation.
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