
Applying Petri Net Unfoldings for Verification

of Mobile Systems

Victor Khomenko, Maciej Koutny and Apostolos Niaouris

School of Computing Science, University of Newcastle
Newcastle upon Tyne, NE1 7RU, U.K.
{victor.khomenko,maciej.koutny,apostolos.niaouris} @ ncl.ac.uk

Summary. Mobility is a central feature of many distributed systems of ever growing
complexity. To make their formal analysis and verification feasible, process algebras
— notably the π-calculus — have been introduced and extensively studied.

A well-established method of verifying the correctness of general distributed
systems has been model-checking which is completely automatic and relatively fast
compared to other alternatives, and so particularly attractive in industrial context.
Mobile systems are highly concurrent causing state space explosion when applying
model-checking techniques. To cope with this problem, techniques based on partial
order semantics of concurrency seem to offer the desired level of efficiency. The aim
of this paper is to investigate how one of such techniques — based of unfoldings of
high-level Petri nets — could be used for verification of π-calculus terms.

Our starting point was an existing compositional translation from a finite frag-
ment of the π-calculus into a class of high-level Petri nets. We developed a prototype
tool based on this theoretical translation and an existing efficient unfolder and ver-
ifier. In this paper, we describe initial experimental results in support of specific
design choices. Crucially, developing the prototype was not a straightforward task
since the theoretical translation does not produce nets which conform to the in-
put format required by the verifier. The paper states how this mismatch has been
overcome and draws conclusions for future uses of unfoldings technique in the model-
checking of mobile systems.
Keywords: mobile systems, π-calculus, model-checking, Petri net unfoldings, high-
level Petri nets.

1 Introduction

Mobility has now become a central feature of many real life concurrent and
distributed computing systems. To model it and reason about its properties,
process algebras such as π-calculus [14, 15] have been introduced and studied.
It allows, in particular, to express a dynamic change in the process ability
to communicate with the external environment, by passing references (or a
channels) through interactions on previously known channels. It is widely ac-
cepted as a fundamental formal model within which mobility can be succinctly
expressed and reasoned about.

2 Victor Khomenko, Maciej Koutny and Apostolos Niaouris

The complexity of verification of concurrent and distributed systems is
widely recognised as a major stumbling block in this key area of computer
system design. One way of coping with the complexity problem is to use
formal methods supported by computer aided verification tools. Within this
approach, a well-established method is model-checking [6] which is completely
automatic and relatively fast compared to other alternatives. It is therefore
particularly attractive in industrial context as it can contribute successfully
to the reduction of product development costs [16].

Model-checking is a technique in which the verification of a system is car-
ried out using a finite representation of its state space. Basic properties, such
as the absence of a deadlock or satisfaction of a state invariant (e.g., mutual
exclusion), can be verified by inspecting individual states. An important prag-
matic feature of model-checking algorithms is that they produce counterexam-
ples which can be used for debugging [16]. Industrial strength model-checkers
are beginning to have an impact on practical designs and design method-
ologies. For example, in a “classical” reactive system application to the call
processing software of a telephone switch at Bell Labs, model extraction com-
bined with model-checking revealed ten times as many concurrency related
defects in the target code as the conventional system testing did [9]. Such
an approach is particularly effective in detecting inter-process communication
problems at an early stage of system design, helping to resolve the issue of
design productivity.

Model-checking of concurrent systems is intrinsically hard, and exhibits
a trade-off between the compactness of the representation of the system and
resources it takes to verify behavioural properties. For example, the classical
deadlock detection problem is PSPACE-complete for a compact (bounded)
Petri net or equivalent process algebra representation, but polynomial for
transition system representation. However, the latter is often exponentially
larger, and soon becomes too large to be stored in the main memory. That
is, even a relatively small system specification can (and often does) yield a
very large state space, and this phenomenon is called the state space explosion

problem [17].
The problem of model-checking mobile systems is that they are highly con-

current causing a state space explosion when applying model-checking tech-
niques. One should therefore use approach which alleviates this problem, in
our case, based on partial order semantics of concurrency and the correspond-
ing Petri net unfoldings [13]. A finite and complete unfolding prefix of a Petri
net is a finite acyclic net which implicitly represents all the reachable states
of the original net together with transitions enabled at those states. Efficient
algorithms exist for building such prefixes [10], and complete prefixes are of-
ten exponentially smaller than the corresponding state graphs, especially for
highly concurrent systems, because they represent concurrency directly rather
than by multidimensional “diamonds” as it is done in state graphs.

Applying Petri Net Unfoldings for Verification of Mobile Systems 3

1.1 About this paper

The aim of this paper is to investigate how the model-checking technique based
on Petri net unfoldings could be used in the verification of π-calculus terms.
Our starting point was a compositional translation from a finite fragment of
the π-calculus into p-nets — a class of high-level Petri nets — proposed in [7],
which is not directly susceptible to verification due to the presence of a place
with infinitely many tokens.

We developed prototype tools based on this ‘theoretical’ translation of [7],
and an existing efficient unfolder and verifier [10, 12]. It should be stressed
that developing the prototype was not a straightforward task. The first prob-
lem is that p-nets do not conform to the input format required by the unfolder
(though it accepts high-level nets with inscriptions used by p-nets, the latter
also use read arcs and non-safe places which are not supported). In particu-
lar, the so-called tag-places used by p-net for managing coloured tokens rep-
resenting π-calculus channels have infinite markings and so are not directly
implementable. Other problems concerned the infinite branching in the oper-
ational semantics of π-calculus expressions, and an efficient implementation of
read arcs used by the theoretical translation. We describe both the problems
and concrete solutions we adopted in order to deal with them, as well as give
initial experimental results in support of our specific design choices.

The model-checking approach outlined in this paper is suitable for the
task of model-checking of finite π-calculus terms. To lift it to the recursive
(or iterative) case requires further investigation as this cannot in general be
done (sice the full π-calculus is Turing powerful), and so one needs to identify
sufficiently rich yet still manageable fragment of the full process algebra. Note
that an alternative way of using the technique proposed here would be to unroll
a recursive π-calculus expression to a certain pre-determined depth, and then
apply the model-checking developed for the resulting finite π-calculus terms.

The paper is structured as follows. The next three sections recall the de-
tails of the used variant of π-calculus, p-nets, and the translation of [7]. The
main case study used in the experiments is also introduced. Sections 5 and 6
describes implementation issues encountered in our work and outlines various
decisions (together with experimental support) which were adopted to address
them. Finally, Section 7 presents some modifications of the main case study
together with the corresponding experimental results.

2 π-calculus

The concrete syntax of the (finite) π-calculus [14, 15] we use is given below,
assuming that C is a countably infinite set of channels ranged over by the
first few lower case Roman letters, and τ denotes the invisible action:

ℓ ::= āb p ac p τ (output / input / internal prefixes)
P ::= 0 p ℓ . P p P + P p P |P p (νc)P (agents)

4 Victor Khomenko, Maciej Koutny and Apostolos Niaouris

Agents are defined up to the alpha-conversion (i.e., bound variables can be
changed in a consistent way provided that name clashes are avoided); ac . P
(input) and (νc)P (restriction) bind the channel c in P ; and we denote by
fn(P) the free (i.e., not bound) channels of P . Moreover, {b/c}P denotes
the agent obtained from P by replacing all free occurrences of c by b, pos-
sibly after alpha-converting P in order to avoid name clashes; for instance,
{b/c}āc . cd . 0 = āb . bd . 0.

The translation of [7] worked with operational semantics of process expres-
sions presented in [3, 4] and reproduced with minor adjustments in Table 1.
It is based on transition steps of the form

A ⊢ P
ℓ

−−−−−→ B ⊢ Q ,

where ℓ is a prefix and A,B ⊂ C are finite sets of indexing channels. Its
intuitive meaning is that

“in a state where the channels A may be known by agent P and by its
environment, P can do ℓ to become agent Q and the channels B may
be known to Q and its environment” [4].

Note that Q may know more channels than P , e.g., an input ℓ = ab adds b
when b /∈ A (intuitively, b is a new channel received from the environment –
see the In rule in Table 1). An expression A ⊢ P is well-formed if: fn(P) ⊆ A;
no bound channel of P is present in A; and each bound channel only generates
a single binding, i.e., there are no name clashes (using alpha-conversion one
can always convert a given expression to a well-formed one).

The implemented prototype requires as input a well-formed π-calculus
expression of the form

A ⊢ (νc1) . . . (νcn) P

where P has no subexpression of the form (νc)P ′ (a given expression can
always be converted to this format).

2.1 An example

In our experiments we used simple ‘classroom’ specifications of the following
form (n ≥ 2):

Ness(n)
df

= {a, done} ⊢ (νh)(νh1) . . . (νhn) (T |S1| . . . |Sn)

where T represents a ‘teacher’ process, and each Si represents a ‘student’
process. Their respective definitions are as follows (since we use longer, more
meaningful, channel names to enhance the readability of the code, the input
prefixes are denoted as a?b and the output ones as a!b):

T
df

= a?ness . (h1!ness . h1?x1 . 0 | · · · | hn!ness . hn?xn . 0)

Si

df

= hi?addri . (h!hi . hi!done . 0

+ h?anotheri . addri!hi . addri!anotheri . hi!done . 0)

Applying Petri Net Unfoldings for Verification of Mobile Systems 5

Tau

A ⊢ τ . P
τ

−−−−−→ A ⊢ P A ⊢ ac . P
ab

−−−−−→ A ∪ {b} ⊢ {b/c}P

In

Out

A ⊢ āb . P
āb

−−−−−→ A ⊢ P

A, c ⊢ P
āc

−−−−−→ A, c ⊢ P ′ a 6= c

A ⊢ (νc)P
āc

−−−−−→ A ∪ {c} ⊢ P ′

Open

Par A ⊢ P
ℓ

−→ A′ ⊢ P ′

A ⊢ P |Q
ℓ

−→ A′ ⊢ P ′|Q

A, c ⊢ P
ℓ

−→ A′, c ⊢ P ′ c 6∈ ns(ℓ)

A ⊢ (νc)P
ℓ

−→ A′ ⊢ (νc)P ′

Res

Sum A ⊢ P
ℓ

−→ A′ ⊢ P ′

A ⊢P +Q
ℓ

−→ A′ ⊢P ′

A ⊢ P
āc
−→ A′ ⊢ P ′ A ⊢ Q

ac
−→ A′′ ⊢ Q′

A ⊢ P |Q
τ

−→ A ⊢ (νc \ A)(P ′|Q′)

Com

Table 1. Operational semantics of π-expressions, where: ns(τ)
df

= ∅; ns(ab) =

ns(āb)
df

= {a, b}; the notation A, c stands for the disjoint union A⊎{c}; and (νc\A)P
is P if c ∈ A and (νc)P otherwise. Symmetric versions of Sum, Par and Com are
omitted.

The idea is that the teacher first receives from the school electronic submission
system1 a channel ness using which the students are supposed to submit their
work for assessment. The teacher passes this channel to all the students (using
n parallel sub-processes), and (also in parallel) then waits for the confirmation
that the students have finished working on the assignment before terminating.
A student’s behaviour is somewhat more complicated. After receiving the ness
channel, students are supposed to organise themselves to work on the assign-
ment in pairs and, after finishing, exactly one of them sends to the support
system (using the previously acquired ness channel) two channels which give
access to their completed joint work. The students finally notify the teacher
about the completion of their work. The property of the system we attempted
to verify was that all the processes involved in the computation successfully
terminate by reaching the end of their individual code (as distinguished from
a deadlock where some processes could still be stuck in the middle of their
intended behaviour).

To illustrate the operational semantics describe above, we may observe
that the following move is possible for the initial expression:

{a, done} ⊢ (νh)(νh1) . . . (νhn) (T |S1| . . . |Sn)

ab
−→

{a, done, b} ⊢ (νh)(νh1) . . . (νhn) (T ′|S1| . . . |Sn)

1 Called Ness in Newcastle.

6 Victor Khomenko, Maciej Koutny and Apostolos Niaouris

where b is the channel on which links to the completed pieces of coursework
are to be submitted, and

T ′ df

= h1!b . h1?x1 . 0 | · · · | hn!b . hn?xn . 0

The above example allowed us both to have easily scalable specifications,
and also ones which should satisfy the correctness property (deadlock-freeness)
for all even n and failing to satisfy it for all odd values of n (as it is impossible
to organise all the students in pairs in such a case). For example, one of
the possible executions of Ness(3) is when the teacher acquires a channel
from the school submission system (the a?ness action), passes it on to the
three students (hi!ness actions of the teacher process synchronise with the
hi?addri actions of the student processes), then the first student student sends
his part of work to the second students (the actions h!h1 and h?another2

synchronise) and the confirmation to the teacher (the actions h1!done and
h1?x1 synchronise) and terminates, and the second student sends his part of
work (the addr2!h2 action) followed by the first student’s part of work (the
addr2!another2 action) via the channel from the school submission system
acquired via the teacher, and then sends the confirmation to the teacher (the
actions h2!done and h2?x2 synchronise) and terminates; the third student, on
the other hand, can execute neither h!h3 nor h?another3 since h is not known
to the environment and there is no pair for internal communication. Hence
the process has reached a deadlock, as the third student and the teacher have
not properly terminated.

Finally, the example is interesting since it exhibits two completely differ-

ent sources of state space explosion. The first is due to the way in which the
students can be paired and decide which of the two students will be communi-
cating with the coursework submission system. With n students, the number
of ways in which this can be done is exponential (e.g., for even n there are
n!/(n/2)! different final states the system can reach). The other potential
source of state space explosion is the high level of concurrency in communi-
cations with the external environment as well as between the processes. This
kind of explosion is typically avoided by the unfolding based model-checking
techniques, whereas techniques based on interleaving suffer from it.

2.2 Context-based expressions

The translation to nets starts with a more convenient, context-based, repre-
sentation of π-terms, which uses two fresh sets of restricted channels R ranged
over by the upper case Greek letters, and channel holders H ranged over by
the first few lower case Greek letters. A context itself is a partial mapping
ς : H → C ⊎ R with a finite domain. The basic idea is to represent an expres-
sion like {b, d} ⊢ (νc)ba . āc . c̄b . 0 as a context based expression P:ς, where

P
df

= βα . ᾱγ . γ̄β . 0

Applying Petri Net Unfoldings for Verification of Mobile Systems 7

is a restriction-free agent based solely on channel holders and

ς
df

= [β 7→ b, δ 7→ d, γ 7→ ∆]

is a context providing their interpretation. From such a context we can read
off that: α is a type-I channel holder corresponding to the binding channel in
an input prefix (since α is not in the domain of the context mapping though it
occurs in P); β and δ are type-K channel holders corresponding respectively
to the known channels b and d; and γ is a type-R channel holder corresponding
to the restricted channel ∆.

3 An algebra of nets

The high-level Petri net model of [7] which is the target of the translation,
called p-nets, was inspired by the box algebras developed in order to provide a
compositional Petri net semantics of concurrent programming languages (see,
e.g., [2, 1, 8]). Transitions in p-nets have three different kinds of labels:

• UV , Uv and ŪV for communication with the external environment. (Note
that U , V and v are variables, and when a transition is executed, concrete
values assigned to these variables generate actions of the form used by the
rules of the π-calculus operational semantics.)

• τ for internal actions.
• rcv and snd for inter-process communication.

Places used to model control flow (e.g., sequencing or choice between exe-
cuted actions) are labelled by their status symbols (internal places by i, and
interface places by e and x, for entry and exit, respectively); the tokens they
hold are the standard ‘black’ ones. Holder places, on the other hand, carry
coloured tokens representing channels; their borders are thicker and their la-
bels are simply the corresponding channel holders. Arcs adjacent to the former
are the standard directed arcs, while those adjacent to the latter are high-level
directed arcs and read arcs (see, e.g., [5, 18]) annotated with channel variables

u,U, v and V .2

Consider now a context-based expression P:ς for which the translation
to p-nets is designed. The basic idea behind the use of holder places is to
represent each channel holder α appearing within P by a unique α-labelled
holder place. Then we have two cases:

• If α is of type-K or type-R, then the initial marking inserts a single coloured
token ς(α) into it.

2 Note that a read arc tests (without consuming) for the presence of specific token(s)
in the place it is connected to. Moreover, multiple read arcs can concurrently test
for the presence of the same token.

8 Victor Khomenko, Maciej Koutny and Apostolos Niaouris

e

snd

i

a
α

b
β γ

τ

e

rcv

i

u

uu

v v vv

Fig. 1. A fragment of high-level Petri net.

• If α is of type-I, then it is initially empty and remains so until an internal
communication or an input from the environment inserts a channel into
it.

This idea is illustrated in Figure 1, which shows a fragment of the translation

of the expression (ᾱβ . . . |αγ . . .) : ς, where ς
df

= [α 7→ a, β 7→ b]. The net
fragment has also two black tokens in the entry places. One now can observe
that the rcv -labelled transition is enabled since the right entry place contains
a token and the α-labelled place contains the channel a. Similarly, the snd -
labelled transition is also enabled and results in a transfer of the token from
the left entry place to the left internal place. But what is really important
is that the fusion of these two transitions, which is the τ -labelled transition,
can also fire and the result is that the γ-labelled holder place acquires the
channel b. In this way, the internal interprocess communication in π-calculus
expressions can be implemented using net-theoretic devices.

The third and — from the point of view of our ultimate aim — the only
troublesome kind of place, is a special tag-place. It is T-labelled and indicated
by a double border. It stores coloured bookkeeping tokens, each token having

its special tag drawn from the set T
df

= {K,N,R}, as follows:

• K is for the known channels;
• N is for the new (yet unknown) channels;
• R is for the restricted channels.

The first case is rather complicated since a restricted channel, say ∆, may
become known, say as c, due to being sent to the environment. This will be
recorded by inserting a bookkeeping token c.∆.K into the tag-place, and then
consulting it whenever necessary. A bookkeeping token may be of one of the
following forms:

• a.N if a is a new (still unused) channel.
• ∆.R if ∆ is a restricted channel.

Applying Petri Net Unfoldings for Verification of Mobile Systems 9

• a.a.K if a is a known channel (either a has always been known or a was
initially new and then became known).

• a.∆.K if the restricted ∆ has become known as a.

Consider, for example, the p-net fragment in Figure 2(a). The marking in the
tag-place indicates that ∆ is a restricted channel; e is a new (yet unknown)
channel, and a is a known one. The transition is enabled and its firing pro-
duces the marking shown in Figure 2(b). This firing illustrates how a restricted
channel becomes known (which is represented by the insertion of the book-
keeping token e.∆.K in the tag-place), and corresponds to the Open rule in
Table 1.

ŪV

∆

β

a

α

e.N
a.a.K
∆.R
. . .

T

u

v

U.u.K

v.R

V.N

V.v.K

(a)

ŪV

∆

β

a

α

a.a.K
e.∆.K

. . .

T

u

v

U.u.K

v.R

V.N

V.v.K

(b)

Fig. 2. Example showing how the tag-place is used.

Our brief presentation of the p-net model is completed by mentioning the
composition operators which are defined for them. The concrete operations we
need are prefixing, choice, parallel composition and restriction, as illustrated
in Figure 3. Note that the restriction simply deletes the rcv - and snd -labelled
transitions, while other operators combine control flow and/or holder places
of the operand nets (note that the tag-places are always merged together into
a single one).

4 From π-calculus terms to p-nets

Let P0 : ς0 be a context-based expression. The first stage of translation yields
a compositionally derived p-net K(P0), in the following way. One first gives
the translation for the base process 0 and the three prefixes, as shown in
Figure 4. For example, each output prefix ᾱβ, when α 6= β, is translated into
the p-net K(ᾱβ) which may exhibit three kinds of behaviour, corresponding
to the firing of three specific transitions:

• tk: known output. A known channel matching V is sent through a channel
matching U .

• tn: new output. A new channel V is sent through a known channel U .

10 Victor Khomenko, Maciej Koutny and Apostolos Niaouris

α β

e xsnd

u v

N1 α γ

e xrcv

u v

N2

αβ γ

e

i

xsnd rcv

vuuv

N1 . N2

αβ γe x

snd

rcv

u

u
v

v

N1 + N2

α

β

γ

e x

e x

snd

rcv

τ

u

u

u

v

v

v

v

N1 | N2

α

β

γ

e x

e x

τ
u

v

v

rs(N1 | N2)

Fig. 3. Illustration of operators defined for p-nets: prefix, choice, parallel compo-
sition and restriction.

• tc: communicating output. It is intended to synchronise with a correspond-
ing communication input in order to provide the transfer of a channel v
through the channel u, be it known or restricted.

The output prefix ᾱα has a simpler translation, since α may not be both known
and restricted, so that tn is unnecessary. For compound sub-expressions, we

Applying Petri Net Unfoldings for Verification of Mobile Systems 11

e

x

K(0)

e

τ

x

K(τ)

e

ŪV

tk

snd

tc

x

α

T

u

v

u

v

U.u.K

V.v.K

K(ᾱα)

e

ŪV tnŪV

tk

snd

tc

x

α

β

T

u

u u

vv

v

U.u.KU.u.K

V.v.K

v.R

V.N

V.v.K

K(ᾱβ)

e

Uv tnUV

tk

rcv

tc

x

α

β

T

u

u u

vv

v

U.u.KU.u.K

V.v.K

v.N

v.v.K

K(αβ)

Fig. 4. The unmarked p-nets for 0 and π-calculus prefixes.

have:
K(p .P)

df

= K(p) . K(P)

K(P + P ′)
df

= K(P) + K(P ′)

K(P | P ′)
df

= K(P) | K(P ′) .

The target p-net PN(P0:ς0) is then obtained by first applying the restric-
tion operator, and then inserting one black token into each entry place, one
ς(α) token into each α-labelled type-K holder place, and the following coloured
tokens into the tag place:

• a.a.K for each initially known channel;
• n.N for each unknown channel (note that there are infinitely many tokens

of this type);
• ∆.R for each type-R channel holder ∆.

12 Victor Khomenko, Maciej Koutny and Apostolos Niaouris

The translation results in a p-net with a very close behavioural relation-
ship with the original process expression. More precisely, [7] showed that the
labelled transition system of A ⊢ P is strongly bisimular to the labelled tran-
sition system of the p-net PN(H), where H is any well-formed context based
expression corresponding to A ⊢ P .

5 Model-checking p-nets resulting from the translation

The theoretical translation described above is not directly implementable (due
to the infinite number of tokens on the tag place), and in our work we set out to
modify it in such a way that it can be model-checked by existing tools. More-
over, the specific model-checking technique we decided to use was right from
the beginning the unfolding-based verification of Petri nets, which already
proved to be efficient in dealing with, e.g., digital asynchronous systems and
distributed programs [10].

There are several variations of the unfolding-based model-checking tech-
nique, including unfolders and property verifiers. The way p-nets are defined
suggests that one should employ a variant which is capable to deal efficiently
with coloured tokens and high-level arc annotations. In particular, one should
avoid the expansion of the high-level Petri net to its low-level representation
and unfolding the latter, since such an approach may yield a huge intermedi-
ate low-level net, rendering the whole attempt practically useless (see [12] for
a thorough discussion of this issue). We therefore decided to use the Punf

model-checker (complemented by the MPSat property verifier based on a
SAT-solver), which directly applies unfolding to high-level nets without ex-
panding them to low-level nets, as described in [12]. Having decided on the
particular unfolding approach, we then had to address a number of implemen-
tation issues, as described in the rest of this paper.

5.1 Key implementation issues

A basic problem we faced right from the outset was that p-nets are not com-
patible with the input required by the unfolder, in that Punf requires as input
a high-level net which: (i) is strictly safe in the sense that no place can ever
hold more than one coloured token; and (ii) does not include any read-arcs.
Another, even more fundamental, issue is that the p-net resulting from the
translation will in all but the simplest cases have infinite state space. The rea-
son is that the set of potentially known (or new) channel names is countably
infinite, and so any input prefix which receives a name from the environment
will necessarily give rise to infinite branching. As a result, a naïve state space
exploration through exhaustive enumeration is bound to fail.
The way in which addressed these problems is described next.

Applying Petri Net Unfoldings for Verification of Mobile Systems 13

Infinity of new channels.

We are primarily interested in checking state properties of mobile systems
expressed using π-calculus expressions. For this reason, the main property of
channels we are interested in is whether a channel which has been received
from the environment is brand new (i.e., fresh) or the same as one of the
already known channels. As far as sending to the outside of channels previously
restricted is concerned, they are always brand new (fresh), i.e., different from
those already known. As the precise identity of a channels which has just
become known is irrelevant for our purposes, we proceed as follows: (i) if a
restricted ∆ is sent outside it becomes known simply as ∆; and (ii) if input
into a channel holder α happened and the inserted channel is a fresh channel,
its identity is set to α, otherwise it is one of the existing known channels.
In this way, the number of known channels other than those present initially
is bounded by the total number of type-I and type-R channel holders. The
resulting model can therefore be made bounded and then model-checked. It
is worth observing that this treatment of newly known channels is a kind of
symmetry reduction employed at the level of system modelling.

Read arcs.

We use the standard simulation of a read arc using two directed arcs pointing
in the opposite directions. Intuitively, this replaces a non-destructive read
operation by a destructive one, followed by a re-write. One can observe that
this transformation preserves the interleaving semantics of the net.

Non-safeness.

Holder places in p-nets resulting from translation are strictly safe,3 and so
conform to the input required by Punf. The tag-place, on the other hand,
is never safe (actually, in the theoretical translation its marking is always
infinite). However, with the decisions about the modelling of known channels
made above, we can simulate the working of the tag-place by introducing a
status place for each type-R and type-I channel holder α. The status place
holds always one token, 0 or 1, and its meaning is as follows. For a type-
R status place, 0 means that α is restricted and 1 means that is has become
known. For a type-I status place, 1 means that the α is non-empty and received
a fresh channel from the environment; otherwise it contains 0. Initially, all the
status places contain 0’s.

Partial transition expansion.

An immediate side-effect of replacing the tag-place by a finite set of status
places is that each of the transitions used in the original translation accessing

3 This is not true for an arbitrary p-net, and so our model-checking approach works
only for those nets which result from the translation.

14 Victor Khomenko, Maciej Koutny and Apostolos Niaouris

the tag-place needs to be replaced by a set of transition jointly simulating the
effect of a single transition in the original translation (note that transition
modelling internal communication do not need to be modified). The overall
effect was that the number of transition increased but their arc annotations
became simpler.

Reducing the number of holder places.

An important simplification that we applied right from the start was that
only holder places used for inputting new channels have been retained; other
holder places used in the theoretical translation have been hard-wired into
transition guards and arc annotations. The overall effect was that the number
of places decreased, some of arc annotations become simpler (constants in
C ⊎ R replaced some of the variables used previously), and some transition
guards changed from true to something like a = u, where a ∈ C ⊎ R and u is
a variable used in an adjacent arc annotation.

6 Experimental results

Our experimental results are presented in Table 2. The meaning of the table
entries is as follows. The first column identifies a specific instance being model-
checked. After that we give the size of the high-level Petri nets derived for the
input expression (|P | and |T | provide the numbers of places and transitions,
respectively), as well as the size of finite prefix of its unfolding (|B| and |E|
provide the numbers of conditions and events, respectively). The last two
columns show the times (in seconds) needed to generate the unfolding using
Punf, and to verify the chosen correctness criterion (i.e., deadlock-freeness)
using MPSat.

6.1 Implementation I

The first implementation of the theoretical translation followed in a straight-
forward all the key choices and modification described above. The results are
identified as the Ness(2):I and Ness(3):I entries in Table 2. However, when
we tried to unfold Ness(4):I, the whole process became time consuming and
we abandoned it after few hours, as it was clear that it is not reasonable to
use this implementation in practice.

6.2 Implementation II

The reason behind the disappointing performance of the first implementa-
tion attempt was that the simulation of read arcs by pairs of consuming arcs
degrade concurrency, quickly leading to an unacceptable growth of the result-
ing unfolding. Intuitively, this happens because concurrent non-destructive

Applying Petri Net Unfoldings for Verification of Mobile Systems 15

Problem Net Prefix Time, [s]
|P | |T | |B| |E| Punf MPSat

Ness(2):I 38 200 2883 881 <1 <1
Ness(3):I 55 415 14235 4369 2 <1

Ness(2):II 667 200 5553 127 <1 < 1
Ness(3):II 1375 415 22222 366 2 < 1
Ness(4):II 2335 724 101005 1299 25 < 1
Ness(5):II 3547 1139 388818 4078 165 1
Ness(6):II 5011 1672 1180609 10431 1564 258
Ness(7):II 6727 2335 2971198 22662 25273 11

Ness(2):III 157 200 1413 127 <1 < 1
Ness(3):III 319 415 5458 366 1 <1
Ness(4):III 537 724 24561 1299 6 < 1
Ness(5):III 811 1139 93546 4078 46 <1
Ness(6):III 1141 1672 281221 10431 411 311
Ness(7):III 1527 2335 701898 22662 2904 8

sNess(2):II 1037 349 3419 57 <1 < 1
sNess(3):II 2145 710 14244 183 5 < 1
sNess(4):II 3649 1213 41423 423 22 < 1
sNess(5):II 5549 1870 96620 813 83 <1
sNess(6):II 7845 2693 194667 1389 239 243
sNess(7):II 10537 3694 353564 2187 616 <1

sNess(2):III 201 349 721 57 <1 < 1
sNess(3):III 409 710 2932 183 3 < 1
sNess(4):III 689 1213 8345 423 12 < 1
sNess(5):III 1041 1870 19156 813 28 <1
sNess(6):III 1465 2693 38137 1389 71 202
sNess(7):III 1961 3694 68636 2187 170 <1

detNess(4):II 1433 511 10429 181 3 <1
detNess(6):II 3083 1257 28166 342 36 <1
detNess(8):II 5357 2475 58863 551 289 <1
detNess(10):II 8255 4273 105976 808 2102 <1

Table 2. Experimental results.

read operations accessing the same place become sequentialised (in all possi-
ble ways) when they are replaced by destructive read-and-re-write operations
(see [18] for a discussion of this phenomenon).

To allow a maximal level of concurrency in the resulting high-level net —
which can significantly reduce the size of the unfolding prefix — we decided to
replicate the status places described above as well as the type-I holder places.
The intuition behind this transformation is to provide each reader of a place
with its own replica of that place, which means that the read operations can
happen concurrently and no sequentialising happens. Note that the transitions
of the first implementations had to be suitably adjusted, but their overall
number stayed the same as before.

16 Victor Khomenko, Maciej Koutny and Apostolos Niaouris

The experimental results, identified by Ness(2):II–Ness(7):II in Table 2,
improved dramatically and, in particular, confirmed that indeed Ness(n) does
not have an illegal termination (deadlock) iff n is even, for n ≤ 7. Note that
the verification time for Ness(6) is much bigger that for Ness(7) since the
latter contains a deadlock which is relatively quickly detected.

6.3 Implementation III

In a way, the second implementation used the maximal level of replication
of status places and holder places one might wish to have. However, this
in general may not be necessary. For example, one may observe that two
transitions which can never be concurrently enabled can share the replicas of
status and holder places as they will never need to access them concurrently.
We therefore designed our third, and final, implementation which always uses
the number of place replicas bounded by the maximal level of concurrency
in π-calculus expressions modelling mobile system. A suitable bound can be
determined statically, and for Ness(n) is equal to 2n. The allocation of replicas
to individual transitions is straightforward, and can be done by inspecting the
parsing tree of the original π-calculus expression, i.e., statically.

The experimental results, identified by Ness(2):III–Ness(7):III in Table 2,
again confirmed what was expected, i.e., that the resulting unfolding process
is more efficient. Note that the number of events in the unfolding prefix is the
same as for the second implementation, but the number of conditions and the
prefix generation time have significantly decreased.

7 Further experiments

During the series of experiments we conducted, a closer analysis of firing se-
quences leading to deadlocks detected what might be considered as a ‘security
breach’. More precisely, the specification allows the whole protocol to termi-
nate successfully in such a way that the students inform the environment
(rather than the teacher), and the teacher receives the completion messages
from the environment (rather than from the students). Intuitively, this means
that the environment acts as an ‘intruder in the middle’. Moreover, on the
verification side, the possibility of ‘too many’ communications with the envi-
ronment should also increase the size of the resulting unfolding. One would
therefore expect that the situation becomes different if most of the communi-
cation is done within the system’s processes. To test this hypothesis, and to
address the security issue described above, we re-designed the original speci-
fication, in the following way:

sNess(n)
df

= {a, done} ⊢ (νh)(νh1) · · · (νhn)(νhres) (T ′′ | S′′

1
| · · · | S′′

n)

where:

Applying Petri Net Unfoldings for Verification of Mobile Systems 17

T ′′
df

= a?ness . (h1!ness . h1!hres.hres?x1 . 0

| · · · | hn!ness . hn!hres . hres?xn.0)

S′′

i

df

= hi?addri . hi?reporti .

(h!hi . reporti!done . 0

+ h?anotheri . addri!hi . addri!anotheri . reporti!done . 0)

Intuitively, sNess(n) uses a new secret channel hres to ensure that the
communication between the students and the teacher about the completion
of coursework does not leak outside the system. The results, identified by
sNess(2):II–sNess(7):II and sNess(2):III–sNess(7):III in Table 2, confirmed
our initial hypothesis.

Finally, we investigated the effect of reducing the state explosion due
the protocol for pairing the students present in the case study. We there-
fore model-checked the system assuming that the students know in advance
what the pairing is, and who is to communicate with the environment. This, of
course, was only possible if n is even. The results, identified by detNess(4):II–
detNess(10):II in Table 2, indicate that the unfolding copes very well with
the state space explosion which is due to concurrency present in the system
specification.

8 Conclusions

The results presented in this paper indicate that model-checking based on
Petri net unfoldings can be a successful technique to deal with distributed
systems with mobility. We can also identify at least three challenging areas of
future work leading to potentially significant improvements in efficiency and
applicability of the present approach:

• To develop an unfolding technique dealing with the read arc in a direct
way, rather than simulating them using pairs of directed arcs.

• To introduce a restricted form of π-calculus recursion (or iteration) still
allowing one to use model-checking.

• To deal with the state space explosion problem caused by aspects other
than a high level of concurrency; there are strong indications that the
recently proposed merged processes [11] could offer an effective solution.

Acknowledgement. This research was supported by the EC IST grant
511599 (Rodin) and RAEng/EPSRC research fellowship EP/C53400X/1
(Davac).

References

1. E. Best, R. Devillers, and M. Koutny. Petri Net Algebra. EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, 2001.

18 Victor Khomenko, Maciej Koutny and Apostolos Niaouris

2. E. Best, W. Fra̧czak, R. P. Hopkins, H. Klaudel, and E. Pelz. M-nets: an Algebra
of High Level Petri Nets, with an Application to the Semantics of Concurrent
Programming Languages. Acta Informatica, 35:813–857, 1998.

3. G. L. Cattani and P. Sewell. Models for Name-Passing Processes: Interleaving
and Causal. In LICS’2000, pages 322–333. IEEE Computer Society Press, 2000.

4. G. L. Cattani and P. Sewell. Models for Name-Passing Processes: Interleaving
and Causal. Technical Report TR-505, University of Cambridge, 2000.

5. S. Christensen and N. D. Hansen. Coloured Petri Nets Extended with Place
Capacities, Test Arcs and Inhibitor Arcs. In ICATPN’93, volume 691 of Lecture

Notes in Computer Science, pages 186–205. Springer-Verlag, 1993.
6. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
7. R. Devillers, H. Klaudel, and M. Koutny. Petri Net Semantics of the Finite

pi-calculus Terms. Fundamenta Informaticae, 70:203–226, 2006.
8. R. Devillers, H. Klaudel, M. Koutny, and F. Pommereau. Asynchronous Box

Calculus. Fundamenta Informaticae, 54:295–344, 2003.
9. G. Holzmann and M. Smith. Automating Software Feature Verification. Bell

Labs Technical Journal, 5:72–87, 2000.
10. V. Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD

thesis, School of Computing Science, University of Newcastle upon Tyne, 2003.
11. V. Khomenko, A. Kondratyev, M. Koutny, and V. Vogler. Merged Processes —

a New Condensed Representation of Petri Net Behaviour. In CONCUR 2005,
volume 3653 of Lecture Notes in Computer Science, pages 338–352, 2005.

12. V. Khomenko and M. Koutny. Branching Processes of High-Level Petri Nets.
In TACAS 2003, volume 2619 of Lecture Notes in Computer Science, pages
458–472, 2003.

13. K. L. McMillan. Using Unfoldings to Avoid State Explosion Problem in the
Verification of Asynchronous Circuits. In CAV 1992, volume 663 of Lecture

Notes in Computer Science, pages 164–174, 1992.
14. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes. Infor-

mation and Control, 100:1–77, 1992.
15. J. Parrow. An Introduction to the π-calculus. In Bergstra, Ponse, and Smolka,

editors, Handbook of Process Algebra, pages 479–543. Elsevier, 2001.
16. C. Pixley. Formal Verification in 2004. In DATE 2004, EDA Tools Forum, 2004.
17. A. Valmari. The State Explosion Problem. In W. Reisig and G. Rozenberg,

editors, Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes

in Computer Science, pages 429–528. Springer-Verlag, 1998.
18. W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and Finite Prefix for Nets

with Read Arcs. In CONCUR 1998, volume 1466 of Lecture Notes in Computer

Science, pages 501–516, 1998.

