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Abstract. Model checking based on the causal partial order semantics
of Petri nets is an approach widely applied to cope with the state space
explosion problem. One of the ways to exploit such a semantics is to con-
sider (finite prefixes of) net unfoldings — themselves a class of acyclic
Petri nets — which contain enough information, albeit implicit, to rea-
son about the reachable markings of the original Petri nets. In [15], a
verification technique for net unfoldings was proposed in which dead-
lock detection was reduced to a mixed integer linear programming prob-
lem. In this paper, we present a further development of this approach.
We adopt Contejean-Devie’s algorithm for solving systems of linear con-
straints over the natural numbers domain and refine it, by taking advan-
tage of the specific properties of systems of linear constraints to be solved.
The essence of the proposed modifications is to transfer the information
about causality and conflicts between the events involved in an unfold-
ing, into a relationship between the corresponding integer variables in
the system of linear constraints. Experimental results demonstrate that
the new technique achieves significant speedups.

1 Introduction

A distinctive characteristic of reactive concurrent systems is that their sets of
local states have descriptions which are both short and manageable, and the
complexity of their behaviour comes from highly complicated interactions with
the external environment rather than from complicated data structures and ma-
nipulations thereon. One way of coping with this complexity problem is to use
model checking [4]. The main drawback of model checking is that it suffers from
the state explosion problem. That is, even a relatively small system specification
can (and often does) yield a very large state space. To help in coping with this,
a number of techniques have been proposed which can roughly be classified as
aiming at an implicit compact representation of the full state space of a reactive
concurrent system, or at an explicit representation of a reduced (though suffi-
cient for a given verification task) state space of the system. Techniques aimed
at reduced representation of state spaces are typically based on the indepen-
dence (commutativity) of some actions, often relying on the partial order view
of concurrent computation. Such a view is the basis for algorithms employing



McMillan’s unfoldings ([10, 11, 14]), where the entire state space of a Petri Net
is represented implicitly using an acyclic net to represent a system’s actions and
local states. The net unfolding technique presented in [14, 15] reduces memory
requirement, but the deadlock checking algorithms proposed are quite slow, even
for medium-size unfoldings.

In [15], the problem of deadlock checking a Petri net was reduced to a mixed
integer linear programming problem. In this paper, we present a further devel-
opment of this approach. We adopt the Contejean-Devie’s algorithm ([1, 2, 5–7])
for efficiently solving systems of linear constraints over the domain of natural
numbers. We refine this algorithm by employing unfolding-specific properties
of the systems of linear constraints to be solved in model checking aimed at
deadlock detection. The essence of the proposed modifications is to transfer the
information about causality and conflicts between events involved in an unfold-
ing into a relationship between the corresponding integer variables in the system
of linear constraints. The results of initial experiments demonstrate that the new
technique achieves significant speedups.

The paper is organised as follows. In section 2 we provide basic definitions
concerning Petri nets and, in particular, net unfoldings. Section 3 briefly re-
calls the results presented in [15] where the deadlock checking problem has been
reduced to the feasibility test of a system of linear constraints. Section 4 is
based on the results developed in [1, 2, 5–7] and recalls the main aspects of the
Contejean-Devie’s Algorithm (CDA) for solving systems of linear constraints
over the natural numbers domain. The algorithm we propose in this paper is a
variation of CDA, developed specifically to exploit partial order dependencies
between events in the unfolding of a Petri net. Our algorithm is described in
section 5; we provide theoretical background, useful heuristics, as well as out-
lining ways of reducing the number of variables and constraints in the original
system presented in [15]. Section 6 contains results of experiments obtained for
a number of benchmark examples, while section 7 describes possible directions
for future research. The proofs of the results can be found in [12].

2 Basic definitions

In this section, we first present basic definitions concerning Petri nets, and then
recall (see [10]) notions related to net unfoldings.

Petri nets A net is a triple N = (S, T, F ) such that S and T are disjoint sets of
respectively places and transitions, and F ⊆ (S ×T )∪ (T ×S) is a flow relation.
A marking of N is a multiset M of places, i.e. M : S → N = {0, 1, 2, . . .}. As
usual, we will denote •z = {y | (y, z) ∈ F} and z• = {y | (z, y) ∈ F}, for all
z ∈ S ∪ T . We will assume that •t 6= ∅ 6= t•, for every t ∈ T .

A net system is a pair Σ = (N,M0) comprising a finite net N = (S, T, F ) and
an (initial) marking M0. A transition t ∈ T is enabled at a marking M , denoted
M [t〉, if for every s ∈ •t, M(s) ≥ 1. Such a transition can be executed, leading
to a marking M ′ defined by M ′ = M − •t + t•. We denote this by M [t〉M ′ or



M [〉M ′. The set of reachable markings of Σ is the smallest (w.r.t. set inclusion)
set [M0〉 containing M0 and such that if M ∈ [M0〉 and M [〉M ′ then M ′ ∈ [M0〉.
For a finite sequence of transitions, σ = t1 . . . tk, we denote M0[σ〉M if there are
markings M1, . . . ,Mk such that Mk = M and Mi−1[ti〉Mi, for i = 1, . . . , k.

A marking is deadlocked if it does not enable any transitions. The net sys-
tem Σ is deadlock-free if no reachable marking is deadlocked; safe if for every
reachable marking M , M(S) ⊆ {0, 1}; and bounded if there is k ∈ N such that
M(S) ⊆ {0, . . . , k}, for every reachable marking M .

Marking equation Let Σ = (N,M0) be a net system, and S = {s1, . . . , sm}
and T = {t1, . . . , tn} be sets of its places and transitions, respectively. We will
often identify a marking M of Σ with a vector M = (µ1, . . . , µm) such that
M(si) = µi, for all i ≤ m. The incidence matrix of Σ is an m × n matrix
N = (Nij) such that, for all i ≤ m and j ≤ n,

Nij =







1 if si ∈ t•j \
•tj

−1 if si ∈ •tj \ t•j
0 otherwise .

The Parikh vector of a finite sequence of transitions σ is a vector xσ=(x1, . . . , xn)
such that xi is the number of the occurrences of ti within σ, for every i ≤ n.
One can show that if σ is an execution sequence such that M0[σ〉M then M =
M0 + N · xσ. This provides a motivation for investigating the feasibility (or
solvability) of the following system of equations:

{
M = M0 + N · x
M ∈ N

m and x ∈ N
n

If we fix the marking M , then the feasibility of the above system is a necessary
condition for M to be reachable from M0.

Branching processes Two nodes of a net N = (S, T, F ), y and y′, are in
conflict, denoted by y#y′, if there are distinct transitions t, t′ ∈ T such that
•t∩ •t′ 6= ∅ and (t, y) and (t′, y′) are in the reflexive transitive closure of the flow
relation F , denoted by �. A node y is in self-conflict if y#y.

An occurrence net is a net ON = (B,E,G) where B is the set of conditions
(places) and E is the set of events (transitions). It is assumed that: ON is acyclic
(i.e. � is a partial order); for every b ∈ B, |•b| ≤ 1; for every y ∈ B ∪E, ¬(y#y)
and there are finitely many y′ such that y′ ≺ y, where ≺ denotes the irreflexive
transitive closure of G. Min(ON ) will denote the minimal elements of B∪E with
respect to �. The relation ≺ is the causality relation. Two nodes are co-related,
denoted by y co y′, if neither y#y′ nor y � y′ nor y′ � y.

A homomorphism from an occurrence net ON to a net system Σ is a mapping
h : B ∪ E → S ∪ T such that: h(B) ⊆ S and h(E) ⊆ T ; for all e ∈ E, the
restriction of h to •e is a bijection between •e and •h(e); the restriction of h

to e• is a bijection between e• and h(e)•; the restriction of h to Min(ON ) is



a bijection between Min(ON ) and M0; and for all e, f ∈ E, if •e = •f and
h(e) = h(f) then e = f .

A branching process of Σ [9] is a quadruple π = (B,E,G, h) such that
(B,E,G) is an occurrence net and h is a homomorphism from ON to Σ. A
branching process π′ = (B′, E′, G′, h′) of Σ is a prefix of a branching process
π = (B,E,G, h), denoted by π′ v π, if (B′, E′, G′) is a subnet of (B,E,G) such
that: if e ∈ E′ and (b, e) ∈ G or (e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G

then e ∈ E′; and h′ is the restriction of h to B′ ∪ E′. For each Σ there exists
a unique (up to isomorphism) maximal (w.r.t. v) branching process, called the
unfolding of Σ.

Configurations and cuts A configuration of an occurrence net ON is a set of
events C such that for all e, f ∈ C, ¬(e#f) and, for every e ∈ C, f ≺ e implies
f ∈ C. A cut is a maximal w.r.t. set inclusion set of conditions B ′ such that
b co b′, for all b, b′ ∈ B′. Every marking reachable from Min(ON ) is a cut.

Let C be a finite configuration of a branching process π. Then Cut(C) =
(Min(ON ) ∪ C•) \ •C is a cut; moreover, the multiset of places h(Cut(C)) is a
reachable marking of Σ, denoted Mark(C). A marking M of Σ is represented
in π if the latter contains a finite configuration C such that M = Mark(C).
Every marking represented in π is reachable, and every reachable marking is
represented in the unfolding of Σ.

A branching process π of Σ is complete if for every reachable marking M

of Σ, there is a configuration C in π such that Mark(C) = M , and for every
transition t enabled by M , there is a configuration C ∪ {e} such that e 6∈ C and
h(e) = t.

Although, in general, an unfolding is infinite, for every bounded net system Σ

one can construct a finite complete prefix UnfΣ of the unfolding of Σ. Moreover,
there are cut-off events1 in UnfΣ such that, for every reachable marking M of
Σ, there exists a configuration C in UnfΣ such that M = Mark(C) and no event
in C is a cut-off event.

3 Deadlock detection using linear programming

In the rest of this paper, we will assume that UnfΣ = (B,E,G, h) is a finite
complete prefix of the unfolding of a bounded net system Σ = (S, T, F,M0). We
will denote by Min the canonical initial marking of UnfΣ which places a single
token in each of the minimal conditions and no token elsewhere. Furthermore, we
will assume that b1, b2, . . . , bp and e1, e2, . . . , eq are respectively the conditions
and events of UnfΣ , and that C is the p × q incidence matrix of UnfΣ . The set
of cut-off events of UnfΣ will be denoted by Ecut .

We now recall the main results from [15]. A finite and complete prefix UnfΣ

may be treated as an acyclic safe net system with the initial marking Min . Each

1 Intuitively, cut-off events are nodes at which the potentially infinite unfolding may
be cut without losing any essential information about the behaviour of Σ; see [9–11,
14, 15] for details.



reachable deadlocked marking in Σ is represented by a deadlocked marking in
UnfΣ . However, some deadlocked markings of UnfΣ lie beyond the cut-off events
and may not correspond to deadlocks in Σ. Such deadlocks can be excluded by
prohibiting the cut-off events from occurring.

Since for an acyclic Petri net the feasibility of the marking equation is a suffi-
cient condition for a marking to be reachable, the problem of deadlock checking
can be reduced to the feasibility test of a system of linear constraints.

Theorem 1. ([15]) Σ is deadlock-free if and only if the following system has
no solution (in M and x):







M = Min + C · x

for all e ∈ E
∑

b∈•e

M(b) ≤ |•e| − 1

for all e ∈ Ecutx(e) = 0

M ∈ N
p and x ∈ N

q

(1)

where x(ei) = xi, for every i ≤ q.

In order to decrease the number of integer variables, M ≥ 0 can be treated
as a rational vector since x ∈ N

q and M = Min + C · x ≥ 0 always imply that
M ∈ N

p. Moreover, as an event can occur at most once in a given execution
sequence of UnfΣ from the initial marking Min , it is possible to require that x

be a binary vector, x ∈ {0, 1}q.
To solve the resulting mixed-integer LP-problem, [15] used the general-pur-

pose LP-solver CPLEX [8], and demonstrated that there are significant perfor-
mance gains if the number of cut-off events is relatively high since all variables
in x corresponding to cut-off events are set to 0.

4 Solving systems of linear constraints

In this paper, we will adapt the approach proposed in [1, 2, 5–7], in order to
solve Petri net problems which can be reformulated as LP-problems. We start
by recalling some basic results.

The original Contejean and Devie’s algorithm (CDA) [5–7] solves a system
of linear homogeneous equations with arbitrary integer coefficients







a11x1 + · · · + a1qxq = 0
a21x1 + · · · + a2qxq = 0

...
...

...
ap1x1 + · · · + apqxq = 0

(2)

or A · x = 0 where x ∈ N
q and A = (aij). For every 1 ≤ j ≤ q, let

εj = (0, . . . , 0
︸ ︷︷ ︸

j−1 times

, 1, 0, . . . , 0)



be the j-th vector in the canonical basis of N
q. Moreover, for every x ∈ N

q, let
a(x) ∈ N

p be a vector defined by

a(x) =








a11x1 + · · · + a1qxq

a21x1 + · · · + a2qxq

...
...

ap1x1 + · · · + apqxq








= x1 · a(ε1) + · · · + xq · a(εq) , (3)

where a(εj) — the j-th column vector of the matrix A — is called the j-th basic
default vector.

The set S of all solutions of (2) can be represented by a finite basis B which
is the minimal (w.r.t. set inclusion) subset of S such that every solution is a
linear combination with non-negative integer coefficients of the solutions in B.
It can be shown that B comprises all solutions in S different from the trivial
one, x = 0, which are minimal with respect to the ≤ ordering on N

q (x ≤ x′ if
xi ≤ x′

i, for all i ≤ q; moreover, x < x′ if x ≤ x′ and x 6= x′).
The representation (3) suggests that any solution of (2) can be seen as a

multiset of default vectors whose sum is 0. Choosing an arbitrary order among
these vectors amounts to constructing a sequence of default vectors starting from,
and returning to, the origin of Z

p. CDA constructs such a sequence step by step:
starting from the empty sequence, new default vectors are added until a solution
is found, or no minimal solution can be obtained. However, different sequences
of default vectors may correspond to the same solution (up to permutation of
vectors). To eliminate some of the redundant sequences, a restriction for choosing
the next default vector is used.

A vector x ∈ N
q (corresponding to a sequence of default vectors) such

that a(x) 6= 0 can be incremented by 1 on its j-th component provided
that a(x + εj) = a(x) + a(εj) lies in the half-space containing 0 and
delimited by the affine hyperplane perpendicular to the vector a(x) at
its extremity when originating from 0 (see figure 1).

0

a(x + εj)

a(x)

a(εj)

Fig. 1. Geometric interpretation of the branching condition in CDA



This reflects a view that a(x) should not become too large, hence adding a(εj)
to a(x) should yield a vector a(x + εj) = a(x) + a(εj) ‘returning to the origin’.
Formally, this restriction can be expressed by saying that given x = (x1, . . . , xq),

increment by 1 an xj satisfying a(x) � a(εj) < 0 , (4)

where � denotes the scalar product of two vectors. This reduces the search
space without losing any minimal solution, since every sequence of default vectors
which corresponds to a solution can be rearranged into a sequence satisfying (4).

Theorem 2. ([7]) The following hold for the CDA shown in figure 2:

1. Every minimal solution of the system (2) is computed. (completeness)
2. Every solution computed by CDA is minimal. (soundness)
3. The algorithm always terminates. (termination)

– search breadth-first a directed acyclic graph rooted at ε1, . . . , εq

– if a node y is equal to, or greater than, an already found solution of A · x = 0

then y is a terminal node
– otherwise construct the sons of y by computing y+εj for each j ≤ q satisfying

a(y)� a(εj) < 0

Fig. 2. CDA (breath-first version)

But this algorithm may perform redundant calculations as some vectors can
be computed more than once. This can be remedied by using frozen components,
defined thus. Assume that there is a total ordering ≺x on the sons of each node
x of the search graph constructed by CDA.

If x+ εi and x+ εj are two distinct sons of a node x such that x+ εi ≺x

x + εj , then the i-th component is frozen in the sub-graph rooted at
x + εj and cannot be incremented even if (4) is satisfied.

The modified algorithm is still complete ([7]), and builds a forest which is a
sub-graph of the original search graph.

The ordered version of CDA can be extended to handle bounds imposed on
variables and homogeneous systems of equations and inequalities (see [1, 2, 5–7]).
Moreover, it can be adapted to solve non-homogeneous systems of inequalities







a11x1 + · · · + a1qxq ≤ d1

a21x1 + · · · + a2qxq ≤ d2

...
...

...
ap1x1 + · · · + apqxq ≤ dp

(5)



5 An algorithm for deadlock detection

The MIP problem obtained in section 3 can be reduced to a pure integer one,
by substituting the expression for M given by the marking equation into other
constraints and, at the same time, reducing the total number of constraints.
Each equation in M = Min + C · x has the form

M(b) = Min(b) +
∑

f∈•b

x(f) −
∑

f∈b•

x(f) for b ∈ B. (6)

After substituting these into (1) we obtain the system







for all e ∈ E
∑

b∈•e




∑

f∈•b

x(f) −
∑

f∈b•

x(f)



 ≤ |•e| − 1 −
∑

b∈•e

Min(b)

for all b ∈ BMin(b) +
∑

f∈•b

x(f) −
∑

f∈b•

x(f) ≥ 0

x ∈ {0, 1}q and x(e) = 0 for all e ∈ Ecut

(7)

As (7) is a pure integer problem, CDA is directly applicable. However, since the
number of variables can be large, it needs further refinement.

In [15], a finite prefix of the unfolding is used only for building a system of
constraints, and the latter is then passed to the LP-solver without any additional
information. Yet, during the solving of the system, one may use dependencies
between variables implied by the causal order on events, which can be easily
derived from UnfΣ . For example, if we set x(e) = 1 then each x(f) such that f

is a predecessor (in causal order) of e must be equal to 1, and each x(g) such
that g is in conflict with e, must be equal to 0. Similarly, if we set x(e) = 0
then no event f for which e is a cause can be executed in the same run, and so
x(f) should be equal to 0. Our algorithm will use these observations to reduce
the search space, and the experimental results indicate that taking into account
causal dependencies, in combination with some heuristics, can lead to significant
speedups.

Definition 1. A vector x ∈ {0, 1}q is compatible with UnfΣ if for all distinct
events e, f ∈ E such that x(e) = 1, we have:

f ≺ e ⇒ x(f) = 1 and f#e ⇒ x(f) = 0 .

The motivation for considering compatible vectors follows from the next result.

Theorem 3. A vector x ∈ {0, 1}q is compatible with UnfΣ if and only if there
exists an execution sequence starting at Min whose Parikh vector is x.

Corollary 1. For each reachable marking M of Σ, there exists an execution
sequence in UnfΣ leading to a marking representing M , whose Parikh vector x

is compatible with UnfΣ and x(e) = 0, for every e ∈ Ecut .



In view of the last result, it is sufficient for a deadlock detection algorithm to
check only compatible vectors whose components corresponding to cut-off events
are equal to zero. This can be done by building minimal compatible closure of
a vector x (see the definition below) in each step of CDA and freezing all x(e)
such that e ∈ Ecut .

Definition 2. A vector x ∈ {0, 1}q is a compatible closure of x ∈ {0, 1}q if
x ≤ x and x is compatible with UnfΣ. Moreover, x is a minimal compatible
closure if it is minimal with respect to ≤ among all possible compatible closures
of x.

Let us consider the causal ordering e1 ≺ e2 ≺ e3, e2 ≺ e4 and e3 co e4

(see figure 3), and x = (1, 0, 1, 0). Then x′ = (1, 1, 1, 0) and x′′ = (1, 1, 1, 1) are
compatible closures of x, and x′ is the minimal one.

e1 e2

e3

e4

Fig. 3. An occurrence net

Theorem 4. A vector x ∈ {0, 1}q has a compatible closure if and only if for all
e, f ∈ E, x(e) = x(f) = 1 implies ¬(e#f). If x has a compatible closure then its
minimal compatible closure exists and is unique. Moreover, in such a case if x

has zero components for all cut-off events, then the same is true for its minimal
compatible closure.

Each step of CDA can be seen as moving from a point a(x) along a default
vector a(εj) such that a(x) � a(εj) < 0, which is interpreted as ‘returning to
the origin’ (see figure 1). However, for an algorithm checking compatible vectors
only, each step is moving along a vector which may be represented as a sum of
several default vectors, and such a geometric interpretation is no longer valid.
Indeed, let us consider the same ordering as in figure 3, and the equation

a(x) = x1 + 5x2 − 3x3 − 3x4 = 0

(which has a solution x = (1, 1, 1, 1)) with an initial constraint x1 = 1. Then
we start the algorithm from the vector x = (1, 0, 0, 0), and the sequence of steps
should begin from either ε2 or ε2 + ε3 or ε2 + ε4. But a(x) � a(ε2) = 5 6< 0,
a(x) � a(ε2 + ε3) = 2 6< 0, and a(x) � a(ε2 + ε4) = 2 6< 0, so we cannot choose
a vector to make the first step! A possible solution is to interpret each step
εi1 + · · · + εik

as a sequence of smaller steps εi1 , . . . , εik
where we choose only

the first element εi1 for which a(εi1) does return to the origin, and then add the
remaining ones in order for x+εi1 + · · ·+εik

to be compatible, without worrying



where they actually lead, as it shown in figure 4 (if there is no compatible closure
of x + εi1 then εi1 cannot be chosen). This means that we check the condition
a(x) � a(εi1) < 0 which coincides with the original CDA’s branching condition,
though we are moving along possibly different vector. As the following theorem
shows, this technique is still complete.

...

0
a(vi+1)

a(vi)
a(εi1)

a(εi2)
a(εik

)

a(εi1 + · · ·+ εik
)

Fig. 4. Geometric interpretation of the new branching condition (a(εi1) is ‘returning
to the origin’ although a(εi1 + · · · + εik

) may not posses this property; here vi+1 =
vi + εi1 + · · ·+ εik

is the minimal compatible closure of vi + εi1)

Theorem 5. Every non-trivial minimal compatible solution can be computed
using the above method.

One can prove that the inequalities in the middle of (7) are not essential for
an algorithm checking only compatible vectors. Indeed, they are just the result
of the substitution of M = Min + C · x into the constraints M ≥ 0 and hold
for any compatible vector x (see the proof of theorem 3 in [12]). Hence these
inequalities can be left out without adding any compatible solution. The reduced
system







for all e ∈ E
∑

b∈•e




∑

f∈•b

x(f) −
∑

f∈b•

x(f)



 ≤ |•e| − 1 −
∑

b∈•e

Min(b)

x ∈ {0, 1}q and x(e) = 0 for all e ∈ Ecut

(8)

can have minimal solutions which are not compatible with UnfΣ ; however, such
solutions are not computed by an algorithm checking only compatible vectors.

Sketch of the algorithm In the discussion below we refer to the parameters
appearing in the generic system (5), since (8) is of that format. The branching
condition for (5) can be formulated as

xj can be incremented by 1 if

p
∑

i=1

ri < 0 , (9)



where each ri is given by

ri =

{
0 if ai � x < di and ai � εj < 0
(ai � x − di)(ai � εj) otherwise ,

where ai=(ai1, . . . , aiq). The algorithm in figure 5 starts from the tuple (0, . . . , 0)
which is the root of the search tree and works in the way similar to the original
CDA, but only checks vectors compatible with UnfΣ .

In the general case, the maximal depth of the search tree is q, so CDA needs
to store q vectors of length q. In our algorithm, we use just two arrays, X and
FIXED , of length q:

– X : array[1..q] of {0, 1}
To construct a solution.

– FIXED : array[1..q] of integers

To keep an information about the levels of fixing the components of X.

The interpretation of these arrays is as follows:

– FIXED [i] = 0. Then X[i] must be 0 and this means that X[i] has not been
considered yet, and may later be set to 1 or frozen.

– FIXED [i] = k > 0 and X[i] = 0. Then X[i] has been frozen at some node
on level k whose subtree the algorithm is developing. It cannot be unfrozen
until the algorithm backtracks to the level k.

– FIXED [i] = k > 0 and X[i] = 1. Then X[i] has been set to 1 at some node
on level k whose subtree the algorithm is developing. This value is fixed for
the entire subtree.

Notice that storing the levels of fixing the elements of X allows one to undo
changes during backtracking, without keeping all the intermediate values of X.
We also use the following auxiliary variables and functions:

– depth : integer

The current depth in the search tree.
– freeze(i : integer)

Freezes all X[k] such that ei � ek. If there is X[k] = 1 to be frozen then
freeze fails. The corresponding elements of FIXED are set to the current
value of depth.

– set(i : integer)
Sets all X[j] such that ej � ei to 1 and uses freeze to freeze all X[k] such that
ei#ek. If there is a frozen X[j] to be set to 1, or X[k] = 1 to be frozen then
set fails. The current value of depth is written in the elements of FIXED ,
corresponding to the components being fixed.

Further optimisation Various heuristics used by general purpose MIP-solvers
can be implemented to prune the search tree. For example, if the algorithm has
fixed some variables and found out that some of the inequalities have become



Input

Cons — a system of constraints
UnfΣ — a finite complete prefix of the unfolding

Output

A solution of Cons compatible with UnfΣ if it exists

Initialisation

depth← 1
X ← (0, . . . , 0)

for i ∈ {1, . . . , q}: FIXED [i]←

{
1 if ei ∈ Ecut

0 otherwise

Main procedure

if X is a solution of Cons then return X

for all i ∈ {k | 1 ≤ k ≤ q ∧ FIXED [k] = 0 ∧ (9) holds}
depth← depth + 1
if set(i) has succeeded then

apply the procedure to X recursively
if solution is found then return X

undo changes in the elements X[j] such that FIXED [j] = depth

depth← depth− 1
freeze(i) /* never fails here as X is compatible */

return solution not found

Fig. 5. Deadlock checking algorithm

infeasible, then it may cut the current branch of the search graph. Moreover, we
sometimes can determine the values of variables which have not yet been fixed,
or find out that some inequalities have become redundant (see [12] for more
details).

After fixing the value of a variable, it is necessary to build a compatible
closure for the current vector; new variables can become fixed, so the process
can be applied iteratively while it takes effect. If such a closure cannot be built,
then the current subtree of the search tree does not contain a compatible solution
and may be pruned.

Shortest trail Finding a shortest path leading to a deadlock may facilitate
debugging. In such a case, we need to solve an optimisation problem with the
same system of constraints as before, and L(x) = x1 + · · · + xq as a function to
be minimised.

The algorithm can easily be adopted for this task. The only adjustment is not
to stop after the first solution has been found, but to keep the current optimal
solution together with the corresponding value of the function L (see [12] for
more details).



Problem Deadlock- Original net Unfolding Time [s]
free |S| |T | |B| |E| |Ecut | McM MIP PO

buf100
√

200 101 10101 5051 1 0.01 24577 0.02
mutual

√
49 41 887 479 79 4.42 70 0.02

ab gesc
√

58 56 3326 1200 511 33.93 260 0.17
sdl arg

√
163 96 644 199 10 0.04 20 <0.01

sdl arg ddlk 157 92 657 223 7 0.01 25 <0.01
RW(2)

√
54 60 498 147 53 0.02 1 <0.01

RW(3)
√

72 120 4668 1281 637 22.14 time 0.06
RW(4)

√
94 224 51040 13513 7841 mem — 14.55

SEM(2)
√

27 25 61 32 5 <0.01 <0.01 <0.01
SEM(3)

√
38 36 165 86 17 <0.01 1 <0.01

SEM(4)
√

49 47 417 216 49 0.09 5 <0.01
SEM(5)

√
60 58 1013 522 129 2.30 81 0.02

SEM(6)
√

71 69 2393 1228 321 37.33 time 0.16
SEM(7)

√
82 80 5533 2830 769 531.50 — 1.17

SEM(8)
√

93 91 12577 6416 1793 time — 8.75
SEM(9)

√
104 102 28197 14354 4097 — — 70.25

SEM(10)
√

115 113 62505 31764 9217 — — 585.13

ELEVATOR(1)
√

59 72 518 287 9 0.10 27 <0.01
ELEVATOR(2)

√
83 130 29413 15366 1796 mem time 38.50

STACK(3) 20 24 320 174 26 <0.01 3 <0.01
STACK(4) 24 30 968 525 80 0.08 79 <0.01
STACK(5) 28 36 2912 1578 242 4.28 2408 0.01
STACK(6) 32 42 8744 4737 728 145.01 time 0.05
STACK(7) 36 48 26240 14214 2186 mem — 0.16
STACK(8) 40 54 78728 42645 6560 — — 0.52
STACK(9) 44 60 236192 127938 19682 — — 7.36

buf100 — buffer with 2100 states
mutual — mutual exclusion algorithm
ab gesc — alternating bit protocol
sdl arg — automatic request protocol
sdl arg ddlk — automatic request protocol (with deadlock)
RW(n) — reader-writer with n readers
SEM(n) — semaphore example with n processes
ELEVATOR(n) — example with n elevators
STACK(n) — stack of the depth n with test for fullness

time — the test had not stopped after 15 hours
mem — the test terminated because of memory overflow

Table 1. Experimental results

Parallelisation aspects The linear programming approach to deadlock de-
tection described in this paper can easily be implemented on a set of parallel
processing nodes. For a shared-memory architecture, we just unfold one step of
the recursion and distribute the for all loop (see figure 5) between processors2,
freezing some elements according to the frozen components rule. Each processor
must have its own copy of the arrays X and FIXED .

The algorithm is also appropriate for a distributed memory architecture as
the amount of message passing required is relatively low. In this case, each
node must have its own copies of all arrays, the system of constraints, and the
unfolding.

2 For a balanced distribution of tasks, it is better to create a queue of unprocessed
recursive calls.



6 Experimental results

For the experiments, we used the PEP tool [3] to generate finite complete prefixes
for our partial order algorithm, and for deadlock checking based on McMillan’s
method ([14, 15]) and the MIP algorithm3 ([15]). The results in table 1 have
been measured on a PC with PentiumTM III/500MHz processor and 128M RAM
(building unfoldings for RW(5), SEM(11), ELEVATOR(3), and STACK(10) were
aborted after 20 hours).

Although our testing was limited in scope, it seems that the new algorithm
is fast, even for large unfoldings. In [15], it has been pointed out that the MIP -
approach is good for ‘wide’ unfoldings with a high number of cut-off events,
whereas for unfoldings with a small percentage of cut-off events, McMillan’s
approach is better. It appears that our approach works well both for ‘wide’
unfoldings with a high number of cut-off events and conflicts, and for ‘narrow’
ones with a high number of causal dependencies. The worst case is the absence
of both conflicts and partial order dependencies (i.e. when nearly all events are
in the co relation) combined with a small percentage of cut-off events. As the
general problem is NP-complete in the size of unfolding, such examples can be
artificially constructed, but we expect that the new algorithm should work well
for practical verification problems.

7 Conclusions

Experiments indicate that the algorithm we propose in this paper can solve
problems with thousands of variables. This overcomes the existing limitations,
as MIP -problems with even a few hundreds of integer variables are usually a hard
task for general purpose solvers. It is worth emphasising that the limitation was
not the size of computer memory, but rather the time to solve an NP-complete
problem. With our approach, the main limitation becomes the size of memory
to store the unfolding. Our future research will aim at developing an effective
parallel algorithm (especially, for a distributed memory architecture) for con-
structing large unfoldings which cannot fit in the memory of a single processing
node, and modifying our algorithm to handle such ‘distributed’ unfoldings. Our
experiments have indicated that the process of model checking a finite complete
prefix is often faster than the process of constructing such a prefix. We therefore
plan to investigate novel algorithms for fast generation of net unfoldings.

Another possible direction is to investigate an obvious generalisation of the
algorithm to systems of non-linear constraints. In this case we cannot use the
pruning condition described in this paper to reduce the search space, but still
need to check only compatible vectors.

Finally, [12] discusses how the approach presented here can be generalised to
deal with other relevant verification problems, such as mutual exclusion, cover-
ability and reachability analysis.

3 To solve the generated system of constraints, the lp solve general purpose LP-solver
by M.R.C.M. Berkelaar was used.
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