
Acta Informatica manuscript No.
(will be inserted by the editor)

Merged Processes — a New Condensed

Representation of Petri Net Behaviour

Victor Khomenko1⋆, Alex Kondratyev2, Maciej Koutny1⋆⋆,
Walter Vogler3⋆⋆⋆

1 School of Computing Science, University of Newcastle, NE1 7RU, U.K.
e-mail: {Victor.Khomenko, Maciej.Koutny}@ncl.ac.uk

2 Cadence Berkeley Labs, Berkeley, CA 94704, USA
e-mail: kalex@cadence.com

3 Institut für Informatik, Universität Augsburg, D-86135 Germany
e-mail: Walter.Vogler@informatik.uni-augsburg.de

The date of receipt and acceptance will be inserted by the editor

Abstract. Model checking based on Petri net unfoldings is an ap-
proach widely applied to cope with the state space explosion prob-
lem. In this paper, we propose a new condensed representation of a
Petri net’s behaviour called merged processes, which copes well not
only with concurrency, but also with other sources of state space ex-
plosion, viz. sequences of choices and non-safeness. Moreover, this
representation is sufficiently similar to the traditional unfoldings, so
that a large body of results developed for the latter can be re-used.
Experimental results indicate that the proposed representation of a
Petri net’s behaviour alleviates the state space explosion problem to
a significant degree and is suitable for model checking.
Keywords: Merged processes, Petri net unravelling, Petri net un-
folding, state space explosion, model checking, formal verification.

1 Introduction

A reactive system is commonly described by a set of concurrent pro-
cesses that interact with each other [8,10]. Processes typically have

⋆ V. Khomenko is a Royal Academy of Engineering/Epsrc Research Fellow
supported by the RAEng/Epsrc grant EP/C53400X/1 (Davac).
⋆⋆ M. Koutny is supported by the EC IST grant 511599 (Rodin).

⋆⋆⋆ W. Vogler is supported by the DFG-project STG-Dekomposition VO 615/7-1.

2 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

(a)

m

p1

m

pn

t

(b)

p1

t1

pn

tn

(c)

Fig. 1 Examples of Petri nets.

descriptions which are short and manageable, and the complexity of
the behaviour of the system as a whole comes from highly complicated
interactions between them. One way of coping with this complexity
problem is to use formal methods and, especially, computer aided
verification tools implementing model checking [1] — a technique in
which the verification of a system is carried out using a finite repre-
sentation of its state space.

The main drawback of model checking is that it suffers from the
state space explosion problem [20]. That is, even a relatively small
system specification can (and often does) yield a very large state
space. To cope with this, several techniques have been developed,
which usually aim either at a compact representation of the full state
space of the system, or at the generation of a reduced state space
(that is still sufficient for a given verification task). Among them,
a prominent technique is McMillan’s (finite prefixes of) Petri net
unfoldings (see, e.g., [7,11,15]). They rely on the partial order view
of concurrent computation, and represent system states implicitly,
using an acyclic unfolding prefix.

There are several common sources of state space explosion. One
of them is concurrency, and the unfolding techniques were primarily
designed for efficient verification of highly concurrent systems. In-
deed, complete prefixes are often exponentially smaller than the cor-
responding reachability graphs, because they represent concurrency
directly rather than by multidimensional ‘diamonds’ as it is done in
reachability graphs. For example, if the original Petri net consists of
100 transitions which can fire once in parallel, the reachability graph
will be a 100-dimensional hypercube with 2100 vertices, whereas the
complete prefix will be isomorphic to the net itself. However, unfold-
ings do not cope well with some other important sources of state space
explosion, in particular with sequences of choices and non-safeness.
Below we consider examples illustrating this problem.

First, consider Figure 1(a) with the dashed part not taken into
account. The cut-off condition proposed in [7] copes well with this

Merged Processes of Petri Nets 3

Petri net (since the marking reached after either choice on each stage
is the same — in fact, the Petri net has very few reachable markings),
and the resulting prefix is linear in the size of the original Petri net.
However, if the dashed part of the figure is taken into account, the
smallest complete prefix is exponential in the size of the Petri net,
since no event can be declared a cut-off (intuitively, each reachable
marking of the Petri net ‘remembers’ its past). Thus Petri nets per-
forming a sequence of choices leading to different markings may yield
exponential prefixes.

Another problem arises when one tries to unfold non-safe Petri
nets. Consider the Petri net in Figure 1(b). Its smallest complete un-
folding prefix contains mn instances of t, since the standard unfolding
distinguishes between different tokens on the same place. One way to
cope with non-safe nets is to convert them into safe ones and unfold
the latter, as was proposed in [7]. However, such an approach de-
stroys concurrency among executed transitions and can lead to very
large prefixes; e.g., when applied to the Petri net in Figure 1(c) this
approach would yield a prefix exponential in the size of the origi-
nal Petri net, while the traditional unfolding technique would yield a
prefix which is linear in its size [7].

The problems with unfolding prefixes described above should be
viewed in the light of the fact that all the examples had a very simple
structure — viz. they are all acyclic, and thus many model checking
techniques, in particular those based on the marking equation [11,
17,19], could be applied directly to the original Petri nets. And so it
may happen that a prefix exponential in the size of the Petri net is
built for a relatively simple problem!

In this paper, we propose a new condensed representation of a
Petri net’s behaviour called merged processes, which remedies the
problems outlined above. It copes well not only with concurrency, but
also with other sources of state space explosion we mentioned, viz.
sequence of choices and non-safeness. Moreover, this representation is
sufficiently similar to the traditional unfoldings, so that a large body
of results developed for unfoldings can be re-used.

The main idea behind the new representation is to fuse some nodes
in the complete prefix of the Petri net being verified, and use the
resulting net as the basis for verification. For example, the unfolding
of the net shown in Figure 1(a) (even with the dashed part taken
into account) will collapse back to the original net after the fusion.
In fact, this will happen in all the examples considered above.

The main body of the paper is devoted to formally defining the
transformation based on the fusion of nodes in net unfoldings, and

4 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

solving some of the arising problems; in particular, fusing of nodes
can create cycles and the marking equation alone is not sufficient
for verification of such nets. The experimental results indicate that
the new representation of a Petri net’s behaviour alleviates the state
space explosion problem to a significant degree and is suitable for
model checking.

This paper is the full version of the conference paper [12].

2 Basic notions

A multiset over a set X is a function m : X → N
df

= {0, 1, 2, . . .}, and
a subset of X may be viewed through its characteristic function as
a multiset over X. We denote x ∈ m if m(x) ≥ 1, and m is finite if
there are finitely many x ∈ m. A finite multiset may be represented
by explicitly listing its elements between the {| . . . |} brackets.

The sum, intersection and difference of two multisets over X, m

and m
′, are the multisets given by (m + m

′)(x)
df

= m(x) + m
′(x),

(m∩m
′)(x)

df

= min{m(x),m′(x)} and (m−m
′)(x)

df

= m(x)−m
′(x), for

all x ∈ X, respectively. (The difference is defined only if m(x) ≥ m
′(x)

for all x ∈ X.) Moreover, if h : X → Y then, for every multiset

m = {|x1, . . . , xn|} over X, h〈m〉 is a multiset over Y given by h〈m〉
df

=
{|h(x1)|} + · · · + {|h(xn)|}. For example, if h(x) = x2 + 1 and m =
{| − 1, 0, 0, 1|} then h〈m〉 = {|1, 1, 2, 2|}.

In the rest of this section, we introduce the basic notions concern-
ing Petri nets and their unfoldings (see also [5,7,11,13,15,17–19]).

Petri nets

A net is a triple N
df

= (P, T, F) such that P and T are disjoint sets of
respectively places and transitions, and F ⊆ (P×T)∪(T×P) is a flow
relation, which we also regard as function (P ×T)∪(T ×P) → {0, 1}.
The net is finite is both P and T are finite sets.

A marking of N is a multiset M of places, i.e., M : P → N.
We adopt the standard rules about drawing nets, viz. places are rep-
resented as circles, transitions as boxes, the flow relation by arcs,
and the marking is shown by placing tokens within circles. As usual,
•z

df

= {y | (y, z) ∈ F} and z•
df

= {y | (z, y) ∈ F} denote the pre- and
postset of z ∈ P ∪ T . In this paper, the presets of transitions are
restricted to be non-empty, i.e., •t 6= ∅ for every t ∈ T . For a finite
net N , we define the size of N as |N |

df

= |P | + |T | + |F |.

A net system (or Petri net) is a pair Σ
df

= (N,MΣ) comprising a
finite net N = (P, T, F) and an (initial) marking MΣ . A transition

Merged Processes of Petri Nets 5

p

t1 t2 t3

t4 t5 t6

M(p) = 2+
#t1σ + #t2σ−
#t4σ − #t5σ − #t6σ

(a)

p1

t1 p2

p3

(b)

p1

t1 p2

p3

(c)

Fig. 2 Marking equation (only one place with its environment and initial marking
is shown) (a); and two net systems which have distinct sets of reachable markings
but are indistinguishable by the marking equation (b,c). (Note that these net
systems have the same incidence matrix and the same initial marking, and so the
same set of solutions of the marking equation.)

t ∈ T is enabled at a marking M , denoted M [t〉, if for every p ∈ •t,
M(p) ≥ 1. Such a transition can be executed or fired, leading to a

marking M ′ given by M ′ df

= M − •t + t•. We denote this by M [t〉M ′.
The set of reachable markings of Σ is the smallest (w.r.t. ⊂) set [MΣ〉
containing MΣ and such that if M ∈ [MΣ〉 and M [t〉M ′ for some t ∈
T then M ′ ∈ [MΣ〉. For a finite sequence of transitions σ = t1 . . . tk
(k ≥ 0), we write M [σ〉M ′ if there are markings M1, . . . ,Mk+1 such
that M1 = M , Mk+1 = M ′ and Mi[ti〉Mi+1, for i = 1, . . . , k. If
M = MΣ , we call σ an execution or run of Σ.

A marking is deadlocked if it does not enable any transitions.
A net system Σ is deadlock-free if none of its reachable marking
is deadlocked. A net system Σ is k-bounded if, for every reachable
marking M and every place p ∈ P , M(p) ≤ k, and safe if it is 1-
bounded. Moreover, Σ is bounded if it is k-bounded for some k ∈ N.
One can show that [MΣ〉 is finite iff Σ is bounded.

Marking equation

Let Σ = (N,MΣ) be a net system, p be one of its places, and σ be a
run of Σ such that MΣ[σ〉M . By counting the tokens brought to and
taken from p by the transitions in σ it is possible to calculate M(p)
as follows:

M(p) = MΣ(p) +
∑

t∈T

F (t, p) · #tσ −
∑

t∈T

F (p, t) · #tσ ,

where #tσ denotes the number of times a transition t occurs in σ (see
Figure 2(a)). This linear equation holds for every place of Σ, and can
be written in the matrix form as follows.

6 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

Let p1, . . . , pm and t1, . . . , tn be respectively the places and tran-
sitions of the net system Σ. The Parikh vector of a finite sequence σ
of transitions of Σ is the vector xσ

df

= (#t1σ, . . . ,#tnσ)T, and one can
identify any marking M of Σ with the vector (M(p1), . . . ,M(pm))T.
Moreover, the incidence matrix of Σ is an m × n matrix I = (Iij)
such that, for all i ≤ m and j ≤ n,

Iij
df

= F (tj , pi) − F (pi, tj) .

One can then show that if σ is a run of Σ such that MΣ [σ〉M then
M = MΣ + I · xσ.

This provides a motivation for investigating the feasibility (or solv-
ability) of the following marking equation1 (see [11,14,17,19]):

{
M = MΣ + I · x
M ∈ N

m and x ∈ N
n .

(1)

If M is fixed then the feasibility of the above system is a neces-
sary (but, in general, not sufficient) condition for M to be reachable
from MΣ . This is so because the Parikh vector of every sequence σ
such that MΣ [σ〉M is a solution of (1), but, in general, (1) can have
spurious solutions which do not correspond to any run of Σ (see
Figure 2(b,c)).2

Therefore, the set of markings M for which (1) is feasible is an
over-approximation of the set of reachable markings of Σ. However,
for the class of acyclic nets (in particular, branching processes defined
below), this equation provides an exact characterisation of the set of
reachable markings [19, Theorem 16] — the fact which is crucial for
the model checking based on unfoldings (see Section 4).

In some situations one is interested whether a vector x ∈ N
n is a

Parikh vector for some marking M , i.e., the constraint

∃M ∈ N
m : M = MΣ + I · x

is investigated. It is clear that it is equivalent to

{
MΣ + I · x ≥ 0
x ∈ N

n .
(2)

This form of marking equation will be used in Section 4.

1 Also called the token conservation equation.
2 Note that, in general, the presence of self-loops, i.e., pairs of arcs (p, t) and

(t, p), is not the sole cause of spuriousness.

Merged Processes of Petri Nets 7

Branching processes

We will not recall all the technical details relating to branching pro-
cesses and net unfoldings, which can be found in, e.g., [7,11,13]. In-
stead, we will introduce the main ideas behind them and quote few
relevant results.

A branching process β of a Petri net Σ is a finite or infinite labelled
acyclic net which can be obtained through unfolding Σ, by successive
firings of transitions, under the following assumptions: (i) one starts
from a set of places (called conditions), one for each token of the
initial marking; (ii) for each new firing a fresh transition (called an
event) is generated; and (iii) for each newly produced token a fresh
place (also called a condition) is generated. Each event (resp. condi-
tion) is labelled by the corresponding transition (resp. place on which
the corresponding token was present).

There exists a unique (up to isomorphism) maximal (w.r.t. the
prefix relation) branching process of Σ called the unfolding of Σ [5,
7], and denoted here by βΣ . For example, the unfolding of the Petri
net in Figure 3(a) is shown in part (b) of this figure.

The unfolding βΣ is infinite whenever Σ can execute an infinite
sequence of transitions; however, if Σ has finitely many reachable
states then the unfolding eventually starts to repeat itself and can
be truncated (by identifying a set of cut-off events beyond which
the unfolding procedure is not continued) without loss of essential
information. For a branching process β obtained in this way, the sets
of conditions, events, arcs and cut-off events of β will be denoted by B,
E, G and Ecut , respectively, (note that Ecut ⊆ E), and the labelling
function by h. Such an h is a net homomorphism, i.e., it maps the
conditions in the preset (resp. postset) of an event e bijectively to
the preset (resp. postset) of h(e) and, intuitively, it maps the implicit
initial marking of β, denoted here by Mβ , obtained by putting a single
token in each condition which does not have an incoming arc, to the
initial marking of Σ (i.e., h〈Mβ〉 = MΣ). Note that when talking
about a run of the branching process β, we will mean any run from
its implicit marking Mβ .

Being a net homomorphism, h maps runs of β to runs of Σ;
more precisely, if Mβ [e1 . . . en〉M then MΣ [h(e1) . . . h(en)〉h〈M〉. As
already explained, in acyclic nets like β, a marking is reachable iff the
corresponding marking equation has a solution, and hence branching
processes can be used for efficient model checking [9,11,14–17].

Since β is acyclic, the transitive closure of its flow relation is a
partial order < on B ∪E, called the causality relation. (The reflexive
order corresponding to < will be denoted by ≤.) Intuitively, all the

8 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

p1

p2

p3

t1 t2

p4

t3

p5

t4

(a)

p1
1

p1
2

p1
3

t1 t2

p1
4 p1

5

t3 t4 t4t3

p2
4p2

5

(d)

c1

p1

c2 p2

c3

p3

e1t1 e2 t2

c4

p4

c5

p5

e3t3 e4 t4

c6p5 c7 p4

e5t4 e6 t3

c8

p4

c9

p5

(b)

c1

p1(1)

c2 p2(1)

c3

p3(1)

e1t1 e2 t2

c4

p4(1)

c5

p5(1)

e3t3 e4 t4

c6p5(1) c7 p4(1)

e5t4 e6 t3

c8

p4(2)

c9

p5(2)

(c)

Fig. 3 A Petri net (a); its unfolding (b); its unfolding with the occurrence-
depths of conditions shown in brackets and the conditions to be fused connected
by dashed lines (c); and its unravelling (d).

events which are smaller than an event e ∈ E w.r.t. < must precede e
in any run of β containing e.

Two nodes x, y ∈ B ∪E are in conflict, denoted x#y, if there are
distinct events e, f ∈ E such that •e ∩ •f 6= ∅ and e ≤ x and f ≤ y.
Intuitively, no run of β can contain two events in conflict. Two nodes
x, y ∈ B ∪ E are concurrent, denoted x‖y, if neither x#y nor x ≤ y
nor y ≤ x. Intuitively, two concurrent events can be enabled simul-
taneously, and executed in any order, or even concurrently, and two
concurrent conditions can be simultaneously marked. For example,

Merged Processes of Petri Nets 9

in the branching process shown in Figure 3(b) the following relation-
ships hold: e1 < e5, e3#e4 and c1‖c4.

Due to structural properties of branching processes (such as acyc-
licity), the reachable markings of Σ can be represented using config-
urations of β. A configuration is a finite set of events C ⊆ E such
that for all e, f ∈ C, ¬(e#f) and, for every e ∈ C, f < e implies
f ∈ C. For example, in the branching process shown in Figure 3(b)
{e1, e3, e5} is a configuration whereas {e1, e2, e3} and {e1, e5} are not
(the former includes events in conflict, e1#e2, while the latter does
not include e3, a causal predecessor of e5). Intuitively, a configura-
tion is a partial-order execution, i.e., an execution where the order of
firing of some of its events (viz. concurrent ones) is not important.

After starting β from the implicit initial marking Mβ and ex-
ecuting all the events3 in C, one reaches the marking denoted by
Cut(C). Mark(C) = h〈Cut(C)〉 denotes the corresponding marking
of Σ, reached by firing a transition sequence corresponding to the
events in C. Then β is marking-complete w.r.t. Ecut if, for every
reachable marking M of Σ, there is a configuration C of β such that
C ∩ Ecut = ∅ and Mark(C) = M . Moreover, β is complete if it
is marking-complete and, for each configuration C of β such that
C ∩ Ecut = ∅ and each event e /∈ C of βΣ such that C ∪ {e} is a
configuration of βΣ , e is in E. This preservation of firings property
is sometimes used for deadlock detection.

Complete branching processes are often called complete (unfold-
ing) prefixes. One can build such a complete prefix in such a way
that the number of non-cut-off events |E \Ecut | does not exceed the
number of reachable markings of Σ [7,11].

3 Merged processes

In this section, we introduce the notion of a merged process, which is
the main construction investigated in this paper.

Definition 1 (occurrence-depth). Let β be a branching process of
a Petri net Σ, and x be one of its nodes (condition or event). The
occurrence-depth of x is defined as the maximum number of h(x)-
labelled nodes on any directed path starting at a minimal (w.r.t. <)
condition and terminating at x in the directed graph representing β.

The above notion is well-defined since there is always at least one
directed path starting at a minimal (w.r.t. <) condition and termi-

3 I.e., each event in C is executed once, and no other event is executed — this
is always possible.

10 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

nating at x, and the number of all such paths is finite. In Figure 3(c)
the occurrence-depths of conditions are shown in brackets.

Definition 2 (merged process). Given a branching process β, the
corresponding merged process µ = Merge(β) is a Petri net which is
obtained in two steps, as follows:
Step 1: the places of µ, called mp-conditions, are obtained by fus-
ing together all the conditions of β which have the same labels and
occurrence-depths; each mp-condition inherits its label and arcs from
the fused conditions, and its initial marking is the total number of
minimal (w.r.t. <) conditions which were fused into it.
Step 2: the transitions of µ, called mp-events, are obtained by merg-
ing all the events which have the same labels, presets and postsets
(after step 1 was performed); each mp-event inherits its label from
the merged events (and has exactly the same connectivity as either of
them), and it is a cut-off mp-event iff all the events merged into it
were cut-off events in β.

Moreover, µΣ
df

= Merge(βΣ) is the merged process corresponding
to the unfolding of Σ, called the unravelling of Σ.

Figure 3(c,d) illustrates this notion. In the sequel, ~ will denote the
net homomorphism mapping the nodes of β to the corresponding

nodes of µ, and Ê, B̂, Ĝ, M̂µ, Êcut and ĥ will denote the set of its
mp-events, the set of its mp-conditions, its flow relation, its initial
marking, the set of its cut-off mp-events and the net homomorphism
mapping the nodes of µ to the corresponding nodes of Σ (note that

ĥ ◦ ~ = h and ĥ〈M̂µ〉 = MΣ).

Remark 1. A few properties of merged processes are listed below:

1. There is at most one mp-condition pk resulting from the fusion of
conditions labelled by place p of Σ occurring at depth k ≥ 1.

2. Two distinct conditions in β having the same label and occurrence-
depth are either concurrent or in conflict. Hence, if the original
Petri net was safe then all the conditions in β which were fused
into the same mp-condition pk of µ were in conflict.

3. For two mp-conditions, pk and pk+1, there is a directed path from
the former to latter. Moreover, if pk+1 is present and k ≥ 1 then
pk is also present.

4. In general, µ is not acyclic (cycles can arise due to criss-cross fu-
sions of conditions, as illustrated in Figure 3(c,d)). This, in turn,
leads to complications for model checking; in particular, the mark-
ing equation can have spurious solutions not corresponding to any
reachable marking.

Merged Processes of Petri Nets 11

t1

t2

t3

(a)
e1

t1

e2

t2

e3

t3

e4

t3

(b)

e1

t1

e2

t2

e3

t3
(c)

be1

t1

be2

t2 be3

t3
(d)

Fig. 4 A Petri net (a); its unfolding (b); one of its complete prefixes (c); and the
merged process corresponding to both the unfolding and the depicted prefix (d).
Cut-off events and cut-off mp-events are depicted as boxes with double borders.

To simplify model checking, one could refrain from fusing some
conditions in Step 1 of Definition 2 if such a fusion would lead to
a cycle. However, this would not be a satisfactory solution, since
µ would not be uniquely defined, and it would result in a lower
compression factor. So we decided to allow cycles, and strengthen
the marking equation with additional constraints excluding spu-
rious solutions of the marking equation (see Proposition 6 in the
next section).

5. There can be events consuming conditions in the postset of a cut-
off mp-event. Consider e.g., the Petri net in Figure 4(a) and its
complete branching process shown in part (c) of this figure, where
the event e2 is a cut-off. In the corresponding merged process
shown in Figure 4(d), the mp-event ê2 is a cut-off as well.

6. There is a strong correspondence between the runs of Σ and those
of its unravelling: σ is a run of Σ iff σ = ĥ(σ̂) for some run σ̂ of µΣ .
To show this, we first note that σ is a run of Σ iff σ = h(σ̃) for
some run σ̃ of βΣ , and then observe the following:
– For the (=⇒) implication, note that if a Petri net Σ′′ is ob-

tained from another Petri net Σ′ by fusing places (and their
tokens), then each run of Σ′ is still a run of Σ′′. Therefore, the
Petri net obtained from βΣ by performing just Step 1 of Defin-
ition 2 also satisfies the (=⇒) implication. Now, Step 2 simply
removes duplicate events with the same label which does not
affect the (images of) possible runs.

– For the (⇐=) implication, recall that the labelling of nodes in
βΣ is a net homomorphism. Since no event has two equally
labelled conditions in its preset (postset) respectively, the la-

12 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

belling after fusing conditions is still a net homomorphism, and
so is the labelling after removing duplicate events. Hence, the
implication follows from the general property that net homo-
morphisms map runs to runs.

A multiset Ĉ of mp-events is an mp-configuration of µ if Ĉ = ~〈C〉
for some configuration C of βΣ . Note that there is a subtlety in this
definition: we have to use the unfolding βΣ of Σ rather than an ar-
bitrary branching process β satisfying µ = Merge(β), since µ may
contain mp-configurations which are not ~-images of any configura-
tions in such a β, i.e., the mp-configurations of µ might be ill-defined
if µ can arise from several different branching processes. E.g., for the
Petri net in Figure 4(a), consider the unfolding βΣ shown in part (b)
and the branching process β shown in part (c) of this figure: both
give rise to the same (up to isomorphism) merged process µ shown
in part (d) of the figure, and the mp-configuration {ê2, ê3} of µ is
not an image of any configuration of β, but it is the image of the
configuration {e2, e4} of βΣ .

If Ĉ is an mp-configuration then the corresponding mp-cut Cut(Ĉ)
is defined as the marking of µ reached by executing all4 the events

of Ĉ starting from the initial marking M̂µ. Moreover, Mark(Ĉ)
df

=

ĥ〈Cut(Ĉ)〉. Note that if Ĉ = ~〈C〉 then Mark(Ĉ) = Mark(C).

Canonical merged processes

Since Merge is a deterministic transformation, one can easily define
the canonical merged process as Merge(β), where β is the canonical
unfolding prefix of [13]. This allows for an easy import of the results
of [11,13] related to the canonicity.

Completeness of a merged process

Marking-completeness of merged processes is defined similarly to that
of branching processes. A merged process µ is marking-complete w.r.t.

Êcut if, for every reachable marking M of Σ, there exists an mp-

configuration Ĉ of µ such that Ĉ ∩ Êcut = ∅ and Mark(Ĉ) = M .

Let C be a configuration of β and Ĉ = ~〈C〉 be the corresponding
configuration in µ. One can easily show that if C contains no cut-off

4 I.e., each event in bC is executed as many times as it occurs in bC, and no other
event is executed — this is always possible. Cut(bC) can be efficiently computed
using, e.g., the marking equation (1).

Merged Processes of Petri Nets 13

p1 p2

t1 t2 t3

p3 p4 p5 p6

t4 t5 t6

(a) p1
1 p1

2be1t1 be2t2 be3t3

p1
3 p1

4 p1
5 p1

6be4 t4 be5t5 be6 t6

p2
3 p2

5 p2
6

(c)

c1

p1(1)

c2

p2(1)

e1t2 e2 t3e3t1

c3

p4(1)

c4

p5(1)

c5

p6(1)

c6

p5(1)

c7 p6(1)c8

p3(1)

c9

p4(1)

c10

p5(1)

e4 t5e5 t4 e6 t6e7t6 e8t5

c11

p5(2)

c12

p3(2)

c13

p5(2)

c14

p6(2)

c15

p5(2)

c16

p6(2)

c17

p5(2)

(b)

Fig. 5 A deadlock-free Petri net (a); its unfolding with the occurrence-depths
of conditions shown in brackets and the nodes to be fused connected by dashed
lines (b); and the corresponding merged process (c). Cut-off events and cut-off
mp-events are depicted as boxes with double borders.

event then Ĉ contains no cut-off mp-events, and that Mark(C) =

Mark(Ĉ). Hence the following holds:

Proposition 1. If β is marking-complete branching process then µ
is a marking-complete merged process.

However, no such result holds for full completeness. Figure 5 shows
a Petri net, its complete unfolding prefix, and the corresponding mer-
ged process. In the merged process, {ê2, ê5} is an mp-configuration
containing no cut-off mp-events and such that the corresponding mp-
cut does not enable any mp-events. On the other hand, the Petri net

14 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

is deadlock-free, and so firings are obviously not preserved. Note that
in the corresponding configuration {e1, e8} of the unfolding, e8 is a
cut-off event, and so completeness is satisfied. However, e8 is mapped
to the same mp-event ê5 as a non-cut-off event e4, and so ê5 is not a
cut-off mp-event.

Since the completeness does not generally hold for merged pro-
cesses, model checking algorithms developed for unfolding prefixes
relying on the preservation of firings (e.g., some of the deadlock check-
ing algorithms in [9,11,15–17]) cannot be easily transferred to mer-
ged processes. However, marking-completeness is sufficient for most
purposes, as the transitions enabled by the final state of an mp-
configuration can be easily found using the original Petri net.

The model checking algorithm proposed in Section 4 does not
make use of cut-off mp-events, and so they can be removed from the
merged process before model checking starts. Whether preservation
of firings could be recovered and whether cut-off mp-events could be
useful at all is a matter for further research.

The size of a merged process

The fusion of conditions in Definition 2 can only decrease the number
of conditions without affecting the number of events or arcs; more-
over, merging events can only decrease the number of events and
arcs, without affecting the number of conditions. Hence, the follow-
ing holds:

Proposition 2 (size). If β is finite then µ is finite and |B̂| ≤ |B|,

|Ê| ≤ |E| and |Ĝ| ≤ |G|.

This result allows to import all the upper bounds proved for un-
folding prefixes [7,11,13]. In particular, since for every safe Petri net
Σ one can build a marking-complete branching process with the num-
ber of events not exceeding the number of reachable markings of Σ,
the corresponding merged process µ has the same upper bound on
the number of its events.

The upper bound given by Proposition 2 is rather pessimistic; in
practice, merged processes turn out to be much more compact than
the corresponding unfolding prefixes. Tables 1 and 2 show the re-
sults of our experiments. The popular set of benchmarks collected by
J.C. Corbett [2] has been attempted. The meaning of the columns
is as follows (from left to right): the name of the problem; the num-
ber of places and transitions in the original Petri net; the number
of conditions, events and cut-off events in the unfolding prefix; the

Merged Processes of Petri Nets 15

Problem Net Unfolding Unravelling

|P | |T | |B| |E| |Ecut | MC[s] | bB| | bE| MC[s] | bE|/|T | |E|/|bE|
Q 163 194 16123 8417 1188 <1 248 256 <1 1.32 32.88
Speed 33 39 4929 2882 1219 <1 92 175 <1 4.49 16.47
Dac(6) 42 34 92 53 0 <1 42 35 <1 1.03 1.51
Dac(9) 63 52 167 95 0 <1 63 53 <1 1.02 1.79
Dac(12) 84 70 260 146 0 <1 84 71 <1 1.01 2.06
Dac(15) 105 88 371 206 0 <1 105 89 <1 1.01 2.31
Dp(6) 36 24 204 96 30 <1 60 37 <1 1.54 2.59
Dp(8) 48 32 368 176 56 <1 80 49 <1 1.53 3.59
Dp(10) 60 40 580 280 90 <1 100 61 <1 1.53 4.59
Dp(12) 72 48 840 408 132 <1 120 73 <1 1.52 5.59
Elev(1) 63 99 296 157 59 <1 73 89 <1 0.90 1.76
Elev(2) 146 299 1562 827 331 <1 150 241 <1 0.81 3.43
Elev(3) 327 783 7398 3895 1629 <1 304 588 <1 0.75 6.62
Elev(4) 736 1939 32354 16935 7337 <1 634 1387 <1 0.72 12.21
Hart(25) 127 77 179 102 1 <1 153 102 <1 1.32 1.00
Hart(50) 252 152 354 202 1 <1 303 202 <1 1.33 1.00
Hart(75) 377 227 529 302 1 <1 453 302 <1 1.33 1.00
Hart(100) 502 302 704 402 1 <1 603 402 <1 1.33 1.00
Key(2) 94 92 1310 653 199 <1 147 402 <1 4.37 1.62
Key(3) 129 133 13941 6968 2911 <1 201 1086 3 8.17 6.42
Key(4) 164 174 135914 67954 32049 <1 255 2054 25 11.80 33.08
Mmgt(1) 50 58 118 58 20 <1 61 58 <1 1.00 1.00
Mmgt(2) 86 114 1280 645 260 <1 111 282 <1 2.47 2.29
Mmgt(3) 122 172 11575 5841 2529 <1 159 662 <1 3.85 8.82
Mmgt(4) 158 232 92940 46902 20957 8 207 1206 67 5.20 38.89
Sent(25) 104 55 383 216 40 <1 120 81 <1 1.47 2.67
Sent(50) 179 80 458 241 40 <1 195 106 <1 1.33 2.27
Sent(75) 254 105 533 266 40 <1 270 131 <1 1.25 2.03
Sent(100) 329 130 608 291 40 <1 345 156 <1 1.20 1.87

Table 1 Experimental results for benchmarks with deadlocks.

time taken by deadlock checking based on unfoldings (discussed in
the next section); the number of mp-conditions and mp-events in the
corresponding merged process; the time taken by deadlock checking
based on merged processes (discussed in the next section); and the

ratios |Ê|/|T | and |E|/|Ê| giving measures of compactness of the mer-
ged process relative to the original Petri net and its unfolding prefix,
respectively. The unfolding prefixes in our experiments were built
using the algorithm described in [7,11,13], and the corresponding
merged processes were obtained by applying the algorithm given in
Definition 2. The time taken by this algorithm is not included in the
tables because it was negligible (it did not exceed 0.1sec in all cases).
The algorithm for building merged processes directly from Petri nets
is a matter for future research — see the discussion in Section 5.

The last two columns in the tables show that merged processes
can be by orders of magnitude smaller than unfolding prefixes, and,
in many cases, are just slightly greater than the original Petri nets.
In fact, in some of the examples merged processes are smaller than
the original Petri nets due to the elimination of dead transitions and
unreachable places.

Merged processes are much more amenable to model checking than
general safe Petri nets — e.g., most of ‘interesting’ behaviourial prop-

16 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

Problem Net Unfolding Unravelling

|P | |T | |B| |E| |Ecut | MC[s] | bB| | bE| MC[s] | bE|/|T | |E|/| bE|
Abp 43 95 337 167 56 <1 75 83 <1 0.87 2.01
Bds 53 59 12310 6330 3701 <1 145 359 <1 6.08 17.63
Ftp 176 529 178085 89046 35197 3 304 875 3 1.65 101.77
Cyclic(3) 23 17 52 23 4 <1 39 21 <1 1.24 1.10
Cyclic(6) 47 35 112 50 7 <1 84 45 <1 1.29 1.11
Cyclic(9) 71 53 172 77 10 <1 129 69 <1 1.30 1.12
Cyclic(12) 95 71 232 104 13 <1 174 93 <1 1.31 1.12
Dme(2) 135 98 487 122 4 <1 309 98 <1 1.00 1.24
Dme(3) 202 147 1210 321 9 <1 463 148 <1 1.01 2.17
Dme(4) 269 196 2381 652 16 <1 617 197 <1 1.01 3.31
Dme(5) 336 245 4096 1145 25 <1 771 246 <1 1.00 4.65
Dme(6) 403 294 6451 1830 36 <1 925 295 <1 1.00 6.20
Dme(7) 470 343 9542 2737 49 <1 1079 344 <1 1.00 7.96
Dme(8) 537 392 13465 3896 64 <1 1233 393 <1 1.00 9.91
Dme(9) 604 441 18316 5337 81 <1 1387 442 <1 1.00 12.07
Dme(10) 671 490 24191 7090 100 <1 1541 491 <1 1.00 14.44
Dme(11) 738 539 31186 9185 121 1 1695 540 <1 1.00 17.01
Dpd(4) 36 36 594 296 81 <1 81 78 <1 2.17 3.79
Dpd(5) 45 45 1582 790 211 <1 102 100 <1 2.22 7.90
Dpd(6) 54 54 3786 1892 499 <1 123 122 <1 2.26 15.51
Dpd(7) 63 63 8630 4314 1129 <1 144 144 <1 2.29 29.96
Dpfm(2) 7 5 12 5 2 <1 10 5 <1 1.00 1.00
Dpfm(5) 27 41 67 31 20 <1 31 31 <1 0.76 1.00
Dpfm(8) 87 321 426 209 162 <1 89 209 <1 0.65 1.00
Dpfm(11) 1047 5633 2433 1211 1012 <1 313 1211 <1 0.21 1.00
Dph(4) 39 46 680 336 117 <1 87 108 <1 2.35 3.11
Dph(5) 48 67 2712 1351 547 <1 129 293 <1 4.37 4.61
Dph(6) 57 92 14590 7289 3407 <1 198 904 28 9.83 8.06
Dph(7) 66 121 74558 37272 19207 <1 277 2773 >10hrs 22.92 13.44
Furn(1) 27 37 535 326 189 <1 70 98 <1 2.65 3.33
Furn(2) 40 65 4573 2767 1750 <1 121 432 <1 6.65 6.41
Furn(3) 53 99 30820 18563 12207 <1 180 1224 <1 12.36 15.17
Gasnq(2) 71 85 338 169 46 <1 87 103 <1 1.21 1.64
Gasnq(3) 143 223 2409 1205 401 <1 173 325 <1 1.46 3.71
Gasnq(4) 258 465 15928 7965 2876 3 308 748 14 1.61 10.65
Gasnq(5) 428 841 100527 50265 18751 188 505 1449 1673 1.72 34.69
Gasq(1) 28 21 43 21 4 <1 35 21 <1 1.00 1.00
Gasq(2) 78 97 346 173 54 <1 96 111 <1 1.14 1.56
Gasq(3) 284 475 2593 1297 490 <1 316 509 <1 1.07 2.55
Gasq(4) 1428 2705 19864 9933 4060 4 1540 3004 20 1.11 3.31
Over(2) 33 32 83 41 10 <1 51 39 <1 1.22 1.05
Over(3) 52 53 369 187 53 <1 89 97 <1 1.83 1.93
Over(4) 71 74 1536 783 237 <1 138 217 <1 2.93 3.61
Over(5) 90 95 7266 3697 1232 <1 186 375 <1 3.95 9.86
Ring(3) 39 33 97 47 11 <1 58 40 <1 1.21 1.18
Ring(5) 65 55 339 167 37 <1 110 97 <1 1.76 1.72
Ring(7) 91 77 813 403 79 <1 160 146 <1 1.90 2.76
Ring(9) 117 99 1599 795 137 <1 210 194 <1 1.96 4.10
Rw(6) 33 85 806 397 327 <1 51 85 <1 1.00 4.67
Rw(9) 48 181 9272 4627 4106 <1 75 181 <1 1.00 25.56
Rw(12) 63 313 98378 49177 45069 <1 99 313 <1 1.00 157.12

Table 2 Experimental results for deadlock-free benchmarks.

erties are known to be PSPACE-complete for safe Petri nets [6],
whereas in Section 4 we develop a non-deterministic polynomial-time
algorithm for checking reachability-like properties of merged proces-
ses, i.e., many behaviourial properties of merged processes are in NP .
Since many such properties are known to be NP-complete already
for unfolding prefixes, the complexity class is not worsened if one uses
merged processes rather than unfolding prefixes.

Merged Processes of Petri Nets 17

Fig. 6 An LSFC 2 Petri net whose unfolding prefix is exponential in its size.

Since merged processes are inherently more compact than unfold-
ing prefixes, it would be natural to seek sharper upper bounds than
the trivial ones given by Proposition 2. In particular, it would be in-
teresting to identify subclasses of Petri nets whose unfolding prefixes
can be exponential in the size of the original Petri net, but whose
merged prefixes are guaranteed to be only polynomial. Below, we
present two such results.

Proposition 3 (unravelling of acyclic Petri nets). If Σ is an
acyclic Petri net then its unravelling is isomorphic to the Petri net
obtained from Σ by removing all its dead transitions and unreachable
places.

The above result easily follows from the fact that no token in an
acyclic Petri net can ‘visit’ a place more than once, and thus the
occurrence-depth of every condition in the unfolding of Σ is 1. On
the other hand, unfolding prefixes of even safe acyclic Petri nets can
be exponential in the size of the original nets, e.g., this is the case for
the acyclic Petri net in Figure 1(a) with the dashed part taken into
account.

Let us denote by LSFC k the class of live and safe free-choice
Petri nets [3] whose transitions’ postsets have cardinality at most
k ∈ N ∪ {∞} (hence LSFC∞ denotes the whole class of live and safe
free-choice Petri nets). It turns out that if k 6= ∞ then the marking-
complete merged processes for the nets in LSFC k are polynomial
in the size of the original nets, even though their unfolding prefixes
can be exponential; e.g., one can make the Petri net in Figure 1(a)
(with the dashed part taken into account) live by adding a subnet
‘gathering’ tokens at the end of the execution and returning a token

18 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

to the initial place, as shown in Figure 6. This net is in LSFC 2 and
all its complete prefixes are exponential in its size.

Proposition 4 (merged processes of LSFC k nets). For every
k ∈ N, there exists a polynomial Pk such that for every Petri net Σ =
(N,MΣ) in LSFC k there exists a marking-complete merged process
of Σ whose size is bounded by Pk(|N |).

Proof. Every marking of a safe free-choice Petri net can be reached
in a number of steps that is polynomial in the net size [3]; let this
number be m for a given LSFC k net Σ. Consider the branching
process β obtained by truncating βΣ in such a way that it contains
exactly those events e which have at most m− 1 causal predecessors
(i.e., events preceding e in the partial order induced by <). Then,
β is marking-complete, and the occurrence-depth of every condition
in β is polynomial, and so there are only polynomially many mp-
conditions in the corresponding merged process µ.

In the unfolding of a safe free-choice Petri net, the conditions
in the preset of any event have the same occurrence-depth, since
the token coming to such a condition cannot be consumed until the
other conditions in this preset became marked. Hence there are only
polynomially many presets of mp-events in µ.

Moreover, since the postsets of all the mp-events have the cardi-
nality bounded by k ∈ N and there are only polynomially many mp-
conditions, there are only polynomially many postsets of mp-events
in µ. Hence, by Definition 2, there are only polynomially many mp-
events in µ. ⊓⊔

Note that the above proposition does not apply to LSFC∞ nets.
It is still an open question whether one can always build marking-
complete merged processes of polynomial size for such nets (the au-
thors believe this is not always possible).

However, one should note that the expressive power of LSFC k for
k ≥ 2 is comparable with that of LSFC∞, since every transition of
an LSFC∞ net with the postset of cardinality greater than k can
be replaced by a tree of transitions with postsets of cardinality not
exceeding k, and the resulting Petri net will be in LSFC k.

Note that the above results are given for the sake of showing that
merged processes are inherently more compact than unfolding pre-
fixes rather than for practical model checking based on merged pro-
cesses, since both acyclic Petri nets and LSFC nets can be efficiently
model checked by specialised algorithms [3,19].

Merged Processes of Petri Nets 19

Finiteness of a merged process

In view of Proposition 2, µ is finite if β is. However, it is not obvious
that the reverse holds, since, in general, infinitely many nodes of β
can correspond to a single node of µ; for example, this is the case for
the p-labelled conditions and t-labelled events of the full unfolding of
the net below:

p t

However, the analog of König’s lemma for branching processes [11,
13] states that if β is infinite then there exists an infinite path in β.
Since the number of places in Σ is finite, some place p ∈ P is repeated
infinitely many times along this path, and so the occurrence-depth of
its instances grows unboundedly in β. Thus there are infinitely many
instances of p after fusion, and the following holds:

Proposition 5 (finiteness). µ is finite iff β is finite.

Again, this result allows one to import into the new framework all
the finiteness results proved for unfolding prefixes [7,11,13].

4 Model checking based on merged processes

In this section, we first describe a model checking approach based on
unfolding prefixes. Then it is generalised to merged processes.

Model checking based on unfolding prefixes

Model checking algorithms [9,11,14–17] working on complete pre-
fixes of Petri net unfoldings are usually based on the following non-
deterministic algorithm:

choose a configuration C ⊆ E \ Ecut

if C violates the property /* e.g., deadlock-freeness */
then accept /* C is a certificate convertible to a witness trace */
else reject

Various kinds of solvers have been employed to implement it,
e.g., ones based on mixed-integer programming [17], stable models of
logic programs [9], integer programming [11], and Boolean satisfiabil-
ity (SAT) [14]. For the last one, a system of simultaneous constraints
having for each non-cut-off event e of the prefix a variable confe is

20 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

built (it might also contain other variables), and for every satisfying

assignment A, the set of events C
df

= {e | A(confe) = 1} is a configu-
ration such that Mark(C) violates the property being checked. This
system of constraints usually has the form CONFβ ∧ VIOL. The
role of the configuration constraint, CONFβ, is to ensure that C is a
configuration of the prefix β (not just an arbitrary set of events), and
the role of the violation constraint, VIOL, is to capture the property
violation condition for a configuration C, so that if a configuration C
satisfying this constraint is found then the property (e.g., deadlock-
freeness) does not hold, and any ordering of events in C consistent
with the causal order on the events of the prefix is a violation trace.

Given a set of events C, let G(C) denote the graph induced by the
events of C together with their adjacent conditions and the causally
minimal conditions of β. In order to encode CONFβ as a Boolean
constraint, in addition to the variables confe, we introduce for each
non-post-cut-off condition c a Boolean variable confc, conveying that
c is a vertex of G(C). The variables confe and confc are related by
the following constraints:

confe =⇒
∧

c∈•e confc , for all e ∈ E \ Ecut ,

confc ⇐⇒

{
1 if •c = ∅∨

e∈•c confe otherwise
, for all c ∈ B \ E•

cut .

Intuitively, the former formula ensures that if an event is in G(C) then
all the conditions in its preset are also in G(C), and the latter one
conveys that a condition is in G(C) iff either it is causally minimal or
it has been ‘produced’ by some event in G(C). The size of both these
formulae is linear in the size of the branching process. Note that since
•c is either an empty set or a singleton, the latter formula equates
confc to either a constant or some confe, and so the variables confc

can be completely eliminated. However, this form of the constraints
is chosen for ‘compatibility’ with model checking based on merged
processes, developed later in this section.

In order to ensure that C is a configuration of a branching process,
in addition to the constraints above one has to require that no two
events in C are in structural conflict, which can be achieved by the
following pseudo-Boolean constraint:

∑

e∈c•\Ecut

confe ≤ 1 , for all c ∈ B \ E•
cut such that |c• \ Ecut | > 1.

Merged Processes of Petri Nets 21

The size of this constraint is linear in the size of the branching process;
however, an equivalent Boolean constraint

∧

e,f∈c•\Ecut

e6=f

¬(confe ∧ conff)

is, in general, quadratic. A linear translation is possible (by introduc-
ing auxiliary variables), but it is more complicated and not discussed
here, even though it was implemented in our tool.

Note that the built constraint CONFβ is essentially the marking
equation (2) for β expressed as a Boolean formula rather than integer
linear constraints.

We already mentioned that the role of the violation constraint,
VIOL, is to express the property violation condition for a configura-
tion C. Suppose that the model checking problem at hand is to check
if there is a reachable marking M such that the property P(M) holds.
For example, for deadlock detection P(M) states that M does not
enable any transition of the Petri net. Below we show how to build
the VIOL constraint given P(M) (see also [9,11,14,17]).

We introduce for each non-post-cut-off condition c a Boolean vari-
able cutc, conveying that c belongs to Cut(C). These variables are
related to conf∗ (i.e., the indexed conf-variables) by the following
constraints:

cutc ⇐⇒ confc ∧
∧

e∈c•\Ecut

¬confe , for all c ∈ B \ E•
cut .

Intuitively, a condition c belongs to Cut(C) iff it has been produced
by some event in C (i.e., if c is a vertex of G(C)) and it has not been
consumed by any event of C. Furthermore, we introduce for each
place p of the Petri net a Boolean variable markp, conveying that p
belongs to Mark(C). These variables are related to cut∗ as follows:

markp ⇐⇒
∨

c∈B\E•
cut

h(c)=p

cutc , for all p ∈ P .

Intuitively, a place belongs to Mark(C) iff some condition labelled by
this place belongs to Cut(C).

Now VIOL can be built simply by rewriting the constraint P(M)
using the variables mark∗. For example, VIOL for deadlock checking
has the form ∨

p∈•t

¬markp , for all t ∈ T .

22 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

Intuitively, this formula requires that no transition t is enabled by
Mark(C), i.e., at least one place in the preset of any transition t is not
in Mark(C). Marking reachability and coverability, mutual exclusion
of places and many other properties can also be checked by modifying
the latter formula.

Note that the size of all these formulae is linear in the size of the
branching process. Moreover, neither cut-off events nor post-cut-off
conditions are used in these formulae, and so the described approach
can be used for any marking-complete branching process (i.e., the
preservation of firings is not required, and if there are cut-off events
in the branching process, they can be safely removed together with
the conditions in their postsets before model checking starts).

Model checking based on merged processes

The purpose of the remaining part of this section is to generalise the
described approach to merged processes. However, when doing this,
one should bear in mind the following complications:

– An mp-configuration is generally a multiset (rather than a set)
of mp-events. Though this is not a major problem, it does ham-
per verification employing Boolean solvers, as associating a single
Boolean variable with each mp-event is no longer sufficient for
representing an mp-configuration. But if the original Petri net is
safe, the mp-configurations of its merged processes are sets.

– An easily testable characterisation of an mp-configuration is neces-
sary (our ‘indirect’ definition of an mp-configuration as an ~-image
of some configuration of the unfolding is not of much use for model
checking). In what follows, we develop such a characterisation for
mp-configurations of merged processes of safe Petri nets. Some
issues make it non-trivial to develop such a characterisation:
Spurious solutions of the marking equation Algorithms for

model checking working on unfolding prefixes [9,11,14,17] are
often based on the marking equation (perhaps expressed not
as integer linear constraints but in some other form, e.g., as
a Boolean formula) and the fact that for acyclic Petri nets it
cannot have spurious solutions [19, Theorem 16]. Since merged
processes are not generally acyclic, the marking equation can
have spurious solutions.
For example, the associated marking equation for the unravel-
ling shown in Figure 3(d) (with the places and transitions enu-
merated in the left-to-right top-to-bottom fashion) has a spu-

Merged Processes of Petri Nets 23

rious solution corresponding to the unreachable marking {p1
2}:

1
1
0
0
1
0
0

+

−1 −1 0 0 0 0
0 0 −1 −1 0 0
1 0 −1 −1 1 0
0 1 0 1 −1 −1
0 0 0 0 −1 −1
0 0 1 0 0 0
0 0 0 0 0 1

·

0
0
0
1
1
0

=

1
0
0
0
0
0
0

Intuitively, if one ‘borrows’ a token in p1
4 then the t3- and t4-

labelled mp-events forming a cycle can be executed, returning
the borrowed token to p1

4 and leading to the spurious marking
{p1

2}. Hence the constraint CONFβ described above, which
is equivalent to the marking equation (2), cannot be directly
re-used.

Spurious runs The correspondence between the runs and mp-
configurations of µ is not very straightforward: some of its runs
(e.g., the run comprised of the instance of t1 followed by the left
instance of t3 in Figure 3(d)) do not form mp-configurations.

Below we solve these problems for merged processes of safe Petri nets.

The case of safe Petri nets

To capture the notion of an mp-configuration in the case when the
original Petri net Σ is safe, we proceed as follows. Let C be a config-
uration of β, and Ĉ be a set of mp-events of µ. Similarly to G(C), we

define G(Ĉ) as the graph induced by the mp-events of Ĉ together with
their adjacent mp-conditions and the initially marked mp-conditions
of µ. We say that Ĉ satisfies:

ME if Ĉ is a solution of the marking equation (2) for µ;

ACYCLIC if G(Ĉ) is acyclic;
NG (no-gap) if, for all k > 1 and all places p of Σ, the

following holds: if pk is a node in G(Ĉ) then pk−1

is also a node in G(Ĉ), and there is a directed path

from pk−1 to pk in G(Ĉ).5

Note that if Ĉ = ~(C) then:

(*) ~〈C〉 = ~(C), and G(C) is isomorphic to G(Ĉ) (including the la-
belling in terms of places and transitions).

5 The latter part of this condition was missed in [12] even though it was tacitly
assumed in the proof of Proposition 6.

24 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

Indeed, since Σ is safe and all conditions in G(C) are not in
conflict, no two conditions in G(C) were fused together (see Re-
mark 1(2)), and so no two events in G(C) were fused together
either.

(**) NG holds and, if pk is in G(Ĉ) then there is a simple directed

path in G(Ĉ) going through p1, . . . , pk.
Follows from (*) and the fact that all conditions in G(C) labelled
by p are totally ordered, since C, being a configuration, con-
tained no conflicts and no two concurrent conditions in a branch-
ing process of a safe Petri net can have the same label.

The next result gives a direct characterisation of mp-configurati-
ons and is crucial for model checking:

Proposition 6 (mp-configurations in the safe case). A set of

mp-events Ĉ is an mp-configuration iff ME ∧ACYCLIC ∧NG holds
for Ĉ.

Proof. (=⇒) ME and ACYCLIC follow from (*), and NG from (**).

(⇐=) We proceed by induction on the number of mp-events in Ĉ.
Base case: ~(∅) = ∅.
Inductive step: Due to ACYCLIC there is a maximal mp-event
ê ∈ Ĉ. Let Ĉ ′ df

= Ĉ \ {ê}. We first observe that Ĉ ′ satisfies ME
and ACYCLIC (because ê was maximal) and NG (because ê was

maximal and (**) holds). Hence, by the induction hypothesis, Ĉ ′ is

an mp-configuration, i.e., Ĉ ′ = ~(C ′) for some configuration C ′ of

βΣ , and so, by (*), G(Ĉ ′) and G(C ′) are isomorphic graphs.

By ME , ê is enabled by Cut(Ĉ ′), and by graph isomorphism,

an ĥ(ê)-labelled event e is enabled by C ′ and ~(•e) = •ê. For each
condition c ∈ e•, there exists an mp-condition ĉ ∈ ê• with the same
label p. Let the occurrence-depth of c be k. Then ~(c) = pk. By NG,
ACYCLIC and (**), pk ∈ ê•.

Thus ĥ(ê) = h(e), ~(•e) = •ê and ~(e•) = ê•, and so ~(e) = ê.

Therefore, ~(C ′ ∪ {e}) = Ĉ ′ ∪ {ê} = Ĉ, i.e., Ĉ is an ~-image of a
configuration and thus an mp-configuration. ⊓⊔

Hence it is enough for model checking to take

CONFµ df

= ME ∧ACYCLIC ∧ NG

and apply an algorithm similar to that described at the beginning of
this section for unfolding prefixes.

The implementation of the ME constraint as a Boolean formula is
very similar to that for CONFβ, and the implementation of VIOL

Merged Processes of Petri Nets 25

is essentially the same as for branching processes. However, when
removing cut-off mp-events from the merged process before model
checking, one has to bear in mind that not all post-cut-off mp-condi-
tions can now be removed (see Remark 1(5)). An mp-condition can be
removed only if all the mp-events in its preset are cut-off mp-events.

To implement the ACYCLIC constraint, we re-formulate the prob-
lem as follows: given a digraph G = (V,E) (representing µ) with a
Boolean variable confv associated with each vertex v ∈ V , construct
a Boolean formula ACYCLIC (depending on the variables conf∗ and,
perhaps, new auxiliary variables) such that, given an assignment to
variables conf∗, the formula obtained from ACYCLIC by substitut-
ing the variables conf∗ by their values is satisfiable iff the subgraph
of G induced by the vertices whose corresponding variables were as-
signed to 1 is acyclic. (Note that ME , NG and VIOL also contain
the variables conf∗.)

Since each cycle is contained in some strongly connected compo-
nent of G, one can partition G into its strongly connected compo-
nents, generate such a constraint for each of them separately, and
form ACYCLIC as their conjunction. For each strongly connected
component Gk = (Vk, Ek) of G = (V,E), let >k be a total order
on Vk. A vertex v ∈ Vk is a feedback vertex w.r.t. >k if there exists
w ∈ Vk such that (w, v) ∈ Ek and w >k v. (In practice, the order-
ings >k are chosen with the view to heuristically minimise the number
of feedback vertices.) Then for each such a feedback vertex v ∈ Vk the
following formula is generated (reach∗ are auxiliary variables created
separately for each such v):

(confv⇒reachv) ∧
∧

(x,y)∈Ek
x≥kv∧y>kv

((reachx ∧ confy)⇒reachy) ∧
∧

(w,v)∈Ek
w>kv

¬reachw .

If the subgraph induced by conf∗ in Gk has a cycle, then the min-
imal vertex of this cycle is a feedback vertex. Hence, the idea behind
this formula is to perform a reachability analysis in Gk starting from v
and ignoring all the vertices which precede v in the chosen order or
are not selected (i.e., the associated variables conf∗ have the value 0).
Note that if the values of the variables conf∗ are fixed then this for-
mula is unsatisfiable iff at least one of the sources of the feedback
arcs ending at v is reachable from v (and hence there is a cycle);
moreover, the unsatisfiability can be proven by unit resolution alone,
i.e., one can setup the solver not to branch on the variables reach∗.

The NG constraint has been implemented as a conjunction of
implications of the form confpk ⇒ confpk−1, for all mp-conditions pk

such that k > 1. (Intuitively, confpk = 1 conveys that pk is in G(Ĉ);

26 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

similarly, confbe = 1 conveys that ê is in G(Ĉ), for each non-cut-off
mp-event ê of µ.) Moreover, in order to express that p1, . . . , pk should
be visited in the right order, one can modify the ACYCLIC constraint
by augmenting the digraph G with the additional arcs (pk−1, pk), for
all mp-conditions pk such that k > 1. (This amends the algorithm
of [12].)

Note that such an approach guarantees that: (i) there is no di-

rected path from pk to pk−1 in G(Ĉ), since such a path, together with
the arc (pk−1, pk) would result in a cycle, violating thus ACYCLIC;

and (ii) there is a directed path from pk−1 to pk in G(Ĉ). Indeed, to
the contrary, suppose that there is no such a path. Then the removal
of all the successors of pk−1 and pk (together with their incident arcs)

in the acyclic graph G(Ĉ) results in a graph still containing pk−1 and
pk and satisfying ACYCLIC ∧ME . In particular, this acyclic graph
defines a partial order on its vertices that correspond to mp-events.
Increasing this partial order to a total one results in a run σ̂ of µ lead-
ing to a marking of µ putting tokens inside both pk−1 and pk (note
that since all the successors of pk−1 and pk have been removed, these
tokens can never be consumed). Since ĥ is a net homomorphism, ĥ(σ̂)
is a run of the original Petri net putting at least two tokens within p,
which contradicts the assumption that the original Petri net is safe.

One can show that the sizes of ACYCLIC and NG, and hence the
size of CONFµ ∧ VIOL, are polynomial in the size of the merged
process.

We implemented a deadlock checking algorithm based on merged
processes using zChaff [18] as the underlying SAT solver. All the
experiments were conducted on a PC with a PentiumTM IV/3.2GHz
processor and 2G RAM.6

The experimental results in Tables 1 and 2 show that the devel-
oped model checking algorithm is quite practical; in fact it was as fast
as the unfolding based model checking on most of the benchmarks.
On the other hand, its performance deteriorated on the Dph and
Gasnq series. We reckon that this is due to our inefficient implemen-
tation of the ACYCLIC constraint, and that this can be significantly
improved.

The point we are making with these results is that: merged pro-
cesses are a more compact behaviour representation than unfolding
prefixes, but still allow model checking of reachability-like properties

6 The PC used was different from that in [12], which explains the differences
between the runtimes there and in this paper. Moreover, as explained above, the
NG constraint has been amended, which resulted in improvement of some of the
runtimes.

Merged Processes of Petri Nets 27

in at least comparable time. Since space considerations are of utmost
importance in model checking, we regard this as very promising — al-
though, to make merged processes practical, one still has to develop
an unravelling algorithm that builds them directly from Petri nets
instead of deriving them from unfolding prefixes.

5 Conclusions and future work

We proposed the notion of a merged process — a new condensed rep-
resentation of a Petri net’s behaviour allowing one to contain state
space explosion arising not only from concurrency, but also from a
sequence of choices, and from non-safeness of the Petri net. Experi-
mental results show that merged processes can be smaller by orders
of magnitude than the corresponding unfolding prefixes, and are in
many cases not much bigger than the original Petri nets. Many results
developed for Petri net unfoldings (related to canonicity, finiteness,
completeness and size) have been transferred to the new framework.
Moreover, we proved sharper upper bounds for some of the net sub-
classes, and directly characterised the mp-configurations of merged
processes of safe Petri nets, which allowed us to develop a model
checking algorithm.

In order to stimulate further research in this area, we present
below a few possible directions for future study.

Direct characterisation of merged processes

Currently, a merged process is defined as the result of applying the
Merge transformation to a branching process. It would be interesting
to find a direct structural characterisation of merged processes (cf.
the characterisation of branching processes by occurrence nets).

Direct characterisation of (general) mp-configurations

A direct characterisation of mp-configurations of merged processes of
non-safe Petri nets is still an open problem. Here we briefly summarise
our current understanding. First of all, the marking equation must
hold for mp-configurations. The natural generalisation of the no-gap
constraint requiring that the number of tokens which ‘visited’ pk+1

should not exceed that for pk in the merged process is, unfortunately,
incorrect, as shown in Figure 7. The acyclicity constraint is also not
applicable any more — the mp-events in an mp-configuration can, in

28 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

p1 p2 p3

t1 t2 t3

p4 p5

(a)

c1

p1(1)

c2

p2(1)

c3

p3(1)

e1t2

c4

p4(1)

c5

p5(1)

e2t1 e3 t3

c6p2(2) c7 p2(2)

e4t2 e5 t2

c8

p4(2)

c9

p5(2)

c10

p4(2)

c11

p5(2)

(b)

p1
1 p1

2 p1
3be1t2

p1
4 p1

5be2t1 be3 t3

p2
2be4t2

p2
4 p2

5

(c)

Fig. 7 A non-safe Petri net (a); its unfolding with nodes to be fused connected
by dashed lines (b); and its unravelling (c) showing that the generalised no-gap
constraint fails for the mp-configuration {be1, be2, be3} and mp-conditions p1

2 and p2
2.

general, induce cycles. Thus it should be generalised along the follow-
ing lines. One should restrict the runs in such a way that each token
in the merged process visits the same mp-condition at most once,
and visits the mp-conditions labelled by the same place but having
different occurrence-depths in the right order and without skipping
any of them. Hence the ‘life-history’ of each individual token should
be acyclic, and the cycles in an mp-configuration are an artefact of
overlapping of several independent acyclic life-histories. Intuitively,
an mp-configuration should be decomposable into several indepen-
dent acyclic ‘waves’ of tokens.

More efficient model checking

It would be important for applications to improve the efficiency of
the model checking algorithm. It should be noted that a decade of re-
search on unfolding-based model checking brought about algorithms
which are by a few orders of magnitude faster than the original
ones [9,11,15–17]. We envisage that there is a scope for significant
improvement of the proposed unravelling-based algorithm as well. In
particular, our implementation of the acyclicity constraint was quite
basic, and so the following lines of research look promising:

Merged Processes of Petri Nets 29

– It might be possible to replace the general acyclicity constraint
by an equivalent problem-specific one. However, we would need a
better understanding of the structure of mp-configurations to do
that.

– Some state-of-the-art SAT solvers, e.g., MiniSat [4], allow one to
use non-clausal constraints. This may be very helpful for efficiently
expressing ACYCLIC.

Unravelling algorithm

In this paper, we transform unfolding prefixes into merged processes
using the algorithm derived from Definition 2. Of course, this is not
practical, since one has to build the unfolding prefix first. To make
merged processes practical, one has to develop an algorithm building
them directly from Petri nets.

The main idea behind such an algorithm is to repeatedly solve the
problem of finding a new mp-event which can be used as a possible
extension of the built part of the unravelling. It is easily reducible to a
model checking problem and can be solved using the SAT technique
developed in this paper. Moreover, since the SAT instances to be
solved are related, the efficiency can be improved by running the
SAT solver in the incremental mode, i.e., on the subsequent runs the
solver can use some of the useful information (e.g., learnt clauses,
see [18]) collected so far.

There exists a working prototype of such an unravelling algorithm,
and a paper describing it is currently being prepared for publication.

Acknowledgements

The authors would like to thank Keijo Heljanko for a helpful discus-
sion about expressing ACYCLIC and Javier Esparza for sharing his
expertise on LSFC nets.

References

1. E.M.Clarke, O.Grumberg and D.Peled: Model Checking. MIT Press (1999).
2. J. C. Corbett: Evaluating Deadlock Detection Methods for Concurrent Soft-

ware. IEEE Transactions on Software Engineering 22 (1996) 161–180.
3. J.Desel and J. Esparza: Free Choice Petri Nets. Cambridge Tracts in Theo-

retical Computer Science 40, Cambridge University Press (1995).
4. N.Eén and N. Sörensson: An Extensible SAT-solver. Proc. of SAT’03, LNCS

2919 (2003) 502–518.

30 V. Khomenko, A. Kondratyev, M. Koutny, W. Vogler

5. J. Engelfriet: Branching Processes of Petri Nets. Acta Informatica 28 (1991)
575–591.

6. J. Esparza: Decidability and Complexity of Petri Net Problems — an In-
troduction. In: Lectures on Petri Nets I: Basic Models, LNCS 1491 (1998)
374–428.

7. J. Esparza, S.Römer and W.Vogler: An Improvement of McMillan’s Unfold-
ing Algorithm. Formal Methods in System Design 20 (2002) 285–310.

8. D.Harel, H.Lachover, A.Naamad, A.Pnueli, et. al.: STATEMATE: a Work-
ing Environment for the Development of Complex Reactive Systems. IEEE

Transactions on Software Engineering 16 (1990) 403–414.
9. K.Heljanko: Using Logic Programs with Stable Model Semantics to Solve

Deadlock and Reachability Problems for 1-Safe Petri Nets. Fundamenta In-

formatica 37 (1999) 247–268.
10. G.Kahn: The Semantics of a Simple Language for Parallel Programming.

Proc. of IFIP Congress, North Holland (1974) 471–475.
11. V.Khomenko: Model Checking Based on Prefixes of Petri Net Unfoldings.

PhD Thesis, School of Computing Science, University of Newcastle (2003).
12. V.Khomenko, A.Kondratyev, M.Koutny and V.Vogler: Merged Processes

— a New Condensed Representation of Petri Net Behaviour. Proc. of CON-

CUR’05, LNCS 3653 (2005) 338–352.
13. V.Khomenko, M.Koutny and V.Vogler: Canonical Prefixes of Petri Net Un-

foldings. Acta Informatica 40 (2003) 95–118.
14. V.Khomenko, M.Koutny and A.Yakovlev: Detecting State Coding Conflicts

in STG Unfoldings Using SAT. Fundamenta Informatica 62 (2004) 221–241.
15. K.L. McMillan: Using Unfoldings to Avoid State Explosion Problem in the

Verification of Asynchronous Circuits. Proc. of CAV’92, LNCS 663 (1992)
164–174.

16. K.L. McMillan: Symbolic Model Checking: an Approach to the State Explosion

Problem. PhD thesis, CMU-CS-92-131 (1992).
17. S.Melzer and S.Römer: Deadlock Checking Using Net Unfoldings. Proc. of

CAV’97, LNCS 1254 (1997) 352–363.
18. S.Moskewicz, C.Madigan, Y. Zhao, L. Zhang and S.Malik: Chaff: Engineer-

ing an Efficient SAT Solver. Proc. of DAC’01, ASME Tech. Publ. (2001)
530–535.

19. T.Murata: Petri Nets: Properties, Analysis and Applications. Proceedings of

the IEEE 77 (1989) 541–580.
20. A.Valmari: The State Explosion Problem. In: Lectures on Petri Nets I: Basic

Models, LNCS 1491 (1998) 429–528.

