
Formal Design and Verification of
an Asynchronous SRAM Controller

Victor Khomenko, Andrey Mokhov, Danil Sokolov, Alex Yakovlev
Newcastle University, Newcastle upon Tyne, United Kingdom

{Victor.Khomenko,Andrey.Mokhov,Danil.Sokolov,Alex.Yakovlev}@ncl.ac.uk

Abstract—We propose a new design of an asynchronous speed-
independent SRAM controller that is tolerant to variations
in supply voltage and can trade off performance for power
consumption. It uses the standard 6T memory cells and is more
robust than a comparable speed-independent design in literature
due to a delay-insensitive interface to bit-lines. Designing an
asynchronous SRAM controller presents a fascinating challenge
for the application of formal models: As there is no global
clocking, the switching events are inherently partially ordered,
with concurrency, sequencing and choice being inextricably inter-
twined. In contrast to previous designs, the proposed controller
was systematically developed, synthesised, and formally verified.

I. INTRODUCTION

Static Random-Access Memory (SRAM) is a ubiquitous
component used in many electronic devices. Hence its ef-
ficient and robust design is extremely important. In this
paper we focus on asynchronous SRAM, whose advantages
include the reliable operation under a wide range of supply
voltages and the possibility to trade off energy consumption
for performance – these traits are essential for low-power
devices, e.g. those powered by energy harvesters [1]. SRAM
is composed of a large number of identical memory cells and
a controller interfacing the environment. Since the memory
cells are standard, the paper focuses on the controller design,
as it significantly affects the quality of SRAM circuit.

Designing an asynchronous SRAM controller presents a
fascinating challenge and provides an interesting case study for
the application of formal models of concurrency: As there is no
global clocking, the switching events are inherently partially
ordered, with concurrency, sequencing and choice (Read vs.
Write and Bit=0 vs. Bit=1) being inextricably intertwined. In
fact, much of the prior art in designing asynchronous SRAM
has been exactly about searching the most elegant way of
designing such control logic.

In this paper we develop a formal model of a SRAM
controller, which is then automatically synthesised into an
asynchronous digital circuit. Moreover, due to the complexity
of behaviour, the formal verification of both the model and the
resulting circuit is an essential step of our design process. The
whole design flow relied heavily on the tool support provided
by the WORKCRAFT framework [2][3].

II. BACKGROUND AND PREVIOUS WORK

The conventional 6T SRAM cell is shown in Fig. 1. To read
the value stored in the cell, one has to connect it to the bit-
lines (signal WL) and wait for some time to make sure that

WL

D1

B0

D0

B1

Pre

WE

write driver

precharge

Figure 1. Conventional 6T SRAM.

Figure 2. Dependence of the 6T SRAM cell delay on the supply voltage in
terms of the number of inverter delays [4] (in each case the inverters operate
at the same voltage levels as the SRAM cell).

the bit-lines correctly reflect the stored value. To write a new
value into the cell one has to connect it to the bit-lines, set
signals D0 and D1 to the dual-rail encoding of the new value,
assert signal WE, and wait until the new value overpowers
the old value stored in the keeper formed by the two weak
inverters. Unfortunately, it is not easy to decide for how long
one has to wait – the delay of the memory cell varies very
significantly depending on the supply voltage [5] as shown in
Fig. 2, and is difficult to match accurately if the supply voltage
varies. (The delay is expressed in terms of the length of the
inverters chain needed to match it, with the inverters operating



at the same voltage as the SRAM cell.)
An asynchronous write-acknowledge circuit was proposed

in [6], that adds two transistors to a memory cell implemented
as cross-coupled NOR2 gates to generate an acknowledgement
signal (alternative embodiments with NAND2 gates were also
proposed there). Even if one somehow adapts this idea to
the 6T memory cell, it would require extra two transistors
per cell plus an extra acknowledgement line per column.
Another memory cell design with completion detection was
developed in [4]. It provides true completion detection for
both reading and writing, and is speed-independent and free
from voltage references. Unfortunately, it doubles the number
of transistors per SRAM cell as well as the number of bit-
lines, and so is costly in terms of area. Several asynchronous
SRAM controllers utilising the standard 6T memory cell were
proposed and successfully implemented over the past two
decades. [7] presents a partially speed-independent solution
with dual-rail voltage sensing completion detection in the read
mode and different bundled delays in the write mode. [8] relies
exclusively on bundled delays (with a Schmitt trigger as a
variable delay element) in both read and write modes. [9] relies
on timing assumptions in the write mode as well as during the
bit-line pre-charge operation. [10] uses a duplicated SRAM
column and dummy memory cells, and requires adjustable
voltage references to accommodate variations. These solutions
are clearly not ideal.

Note that the completion detection in the read mode is
relatively simple – one can pre-charge the bit-lines to 1 before
asserting WL, and then wait for one of the bit-lines to switch
to 0 which would indicate the completion. However, in the
writing mode completion detection is not always possible: it
can happen that the new value coincides with the one already
stored in the memory cell, in which case there is no signal that
would indicate the completion. The approach proposed in [4]
(based on the original idea in [11]) copes with this problem
by observing that:

• Completion detection is possible when the new value
differs from the old one (both bit-lines will then flip).

• One can first read the stored value to check if it needs
flipping.

The controller design1 proposed in [4] is shown in Fig. 3.
This design was produced with help of PETRIFY [12] and
then optimised manually, and hence not guaranteed to be
correct (asynchronous circuits are known to be very difficult to
design correctly without formal methods support). As a minor
contribution, we formally verified that the circuit in Fig. 3 is
indeed speed-independent. However, its interface to bit-lines is
not delay-insensitive, and hazards on the output x4 of gate 1
are possible, especially in the low-power mode and when the
bit-lines are buffered or augmented with a sense amplifier,
which is usually the case in practice. To illustrate this problem,
consider flipping the value stored in the memory cell in the
writing mode. In such a case the bit-lines are in the state either

1[4] first proposes a 12T cell with completion detection, but then goes on
to develop a controller for the usual 6T cells.

Figure 3. Asynchronous SRAM controller from [4].

(0,1) or (1,0), and they both will flip, with the one changing
from 1 to 0 flipping first. However, if the bit-lines are buffered,
the controller may observe these two events in any order, in
particular the transient state (1,1) is possible, resulting in a
hazard.

In this paper we propose a new SRAM controller design. It
is based on the same idea, but improves over the design in [4]
on several aspects:

• It was systematically developed, synthesised and formally
verified.

• Its interface to bit-lines is delay-insensitive, which solves
the above problems and makes the controller more robust.

• The reset phase of the controller is more concurrent and
overlaps with the actions of the environment.

Speed-independence and Signal Transition Graphs

The SRAM controller presented in this paper falls within
an important class of speed-independent (SI) asynchronous
circuits, where following the classical Muller’s approach [13]
each gate is regarded as an atomic evaluator of a Boolean
function, with a delay associated with its output. In the SI
framework this delay is positive but unbounded and variable,
i.e. the circuit must work correctly regardless of its gates’
delays, and the wires are assumed to have negligible delays.
Alternatively, one can regard wire forks as isochronic (Quasi-
Delay Insensitive (QDI) circuit class [14]) – then wire delays
can be added to their driving gates delays, i.e. SI≈QDI.

The SI assumptions are reasonable inside a small block,
but often one cannot rely on the block interface wires to
have negligible delays or be isochronic: Sometimes a part
of the block interface (e.g. the interface to bit-lines in our
case) should be delay-insensitive (DI), i.e. the circuit should
work correctly regardless of delays in some external wires
(but if such a wire is forked internally, these internal forks are
considered isochronic). Fortunately, one can easily simulate a
delay on a particular wire in the SI setup simply by adding a
buffer on that wire.

Signal Transition Graphs (STGs) [15][16] are a formalism
for specifying SI circuits. They are Petri nets [17] in which
transitions are labelled with the rising and falling edges of



circuit signals. The details of circuit synthesis from STGs can
be found in [12], [18]. The semantics of an STG coincides with
the semantics of its state graph, so STGs can be considered
‘syntax sugar’ for compact representation of state graphs.
This representation is particularly beneficial for concurrent
specifications, where state graphs suffer from state space
explosion [19].

Graphically, places are represented as circles, transitions as
textual labels, consuming/producing arcs are shown by arrows,
read arcs (which test if a token is present without consuming
it) are shown by lines without arrowheads, and tokens are
depicted by dots. For simplicity, places with one incoming
and one outgoing arc are usually hidden, allowing arcs (with
implicit places) between transitions.

Concurrency reduction

Concurrency Reduction [20] is a commonly used STG
transformation. The idea is to sequentialise some concur-
rent transitions in the STG by introducing new arcs. This
reduces the number of reachable states, which in turn may
remove some encoding conflicts (e.g. if one of two conflicted
states becomes unreachable) and introduces more “don’t-care”
entries in the Boolean minimisation tables which may result
in simpler Boolean functions computed by logic gates of the
circuit. The performance may or may not decrease: the loss of
concurrency may be more than offset in some cases by simpler
(and thus faster) logic gates and by avoiding extra logic gates
implementing internal signals introduced to resolve encoding
conflicts. Graphically, concurrency reduction is shown by thick
arcs in the STG.

In this paper we use a restricted subset of concurrency
reductions, which do not introduce any extra causal dependen-
cies on the inputs, i.e. if the original STG could produce some
output at some state, the modified STG in the corresponding
state will be able to produce this output too, perhaps after
firing some other outputs first, but without waiting for any
inputs from the environment. Such concurrency reductions do
not pose any extra assumptions on the environment and thus
allow one to reason compositionally at the level of the blocks,
which is much safer.

III. FORMAL SPECIFICATION

The top-level structure of the developed SRAM controller
is shown in Fig. 4: The blocks that should be replicated in
memory banks are shown as multiple boxes, and the memory
cells are shown with dashed boundaries to indicate that they
are not parts of the controller but rather of its environment.
The controller is composed of four blocks:
MASTER Handles memory access requests from the envir-

onment, controls SLAVEREAD and WRITECOM-
PLETION, and generates WE signal.

SLAVEREAD Pre-charges the bit-lines, connects the cells to
the bit-lines, and waits until the bit-lines correctly
reflect the values stored in the memory cells. It
interacts with READCOMPLETION to detect the
completion of pre-charge and set up of bit-lines.

Figure 4. The top-level structure of SRAM controller.

READCOMPLETION is replicated for each bit of the word and
indicates to SLAVEREAD the completion of pre-
charge and the completion of reading (i.e. that the
bit-lines correctly reflect the value stored in the
memory cell).

WRITECOMPLETION is replicated for each bit of the word
and, assuming that SLAVEREAD has already com-
pleted its operation and MASTER has issued WE
signal starting the write operation, waits until the
value stored in the cell becomes the same as that
on D0 / D1, and indicates this to MASTER.

We formally specified these four blocks using STGs, and
automatically synthesised them using WORKCRAFT frame-
work [2][3]. In some cases manual adjustments were done to
the automatically synthesised circuits. The resulting circuits
were verified as explained in Section IV.

A. MASTER

The specification of MASTER is shown in Fig. 5a. We
first consider the read mode. Upon receiving a read request
from the environment (transition rr+), MASTER communicates
with SLAVEREAD (using the rising transitions of the 4-phase
read / readReady handshake) and orders it to set the bit-
lines to the value stored in the memory cell, and then issues
a read acknowledgement to the environment (ra+). Once the
environment has finished reading the bit-lines, it must reset the
read request (rr-), and in response MASTER resets the read
acknowledgement to the environment (ra-) and concurrently
the falling transitions of the read / readReady handshake
are performed, causing the release of the bit-lines. Note that
concurrency reduction between read- and ra- is used to
simplify the resulting circuit.

Upon receiving a write request (wr+), the controller first
activates SLAVEREAD to set the bit-lines to the value stored
in the memory cell as described above, then activates WRITE-
COMPLETION to make sure that the new value gets stored



(a) STG specification.

(b) Implementation.

Figure 5. MASTER.

in the memory cell using the rising transitions of the write /
writeDone handshake, and then issues a write acknowledge-
ment to the environment (wa+). Note that write also serves
as WE and connects the write driver to the bit-lines – there
is no harm to do that even if the value stored in the memory
cell is the same as the one being written. Concurrently, the
reset of WRITECOMPLETION and SLAVEREAD is initiated
(write- and read-). Note that unlike the read mode, the reset of
SLAVEREAD is initiated without waiting for the environment
to withdraw its request – this improves the performance due
to the assumption that in the write mode the environment
will never read the bit-lines. Again, concurrency reduction
(shown by thick arcs) is used between some of the falling
signal transitions; note that the resets of WRITECOMPLETION
and SLAVEREAD are still concurrent, as writeDone- and
readReady- remain concurrent. The circuit implementation
of MASTER is shown in Fig. 5b.

B. SLAVEREAD

The specification of SLAVEREAD is shown in Fig. 6a.
In response to request read+ from MASTER, it pre-charges
all the bit-lines (Pre-) and sends request start+ to all the
replicas of READCOMPLETION. When all the bit-lines are
pre-charged, the replicas of READCOMPLETION detect and
indicate this with ready+ (signals ready from individual

(a) STG specification.

(b) Implementation.

Figure 6. SLAVEREAD.

READCOMPLETION replicas are combined using a C-element
to produce a joint signal that is fed to SLAVEREAD).

At this point SLAVEREAD closes the PMOS transistors
pre-charging the bit-lines (Pre+) and then connects all the
memory cells in the selected row to the corresponding bit-
lines (WL+). Note that the interface on Pre and WL is not
delay-insensitive, i.e. there is a theoretical possibility that
a memory cell is connected to the bit-lines while the pre-
charging transistors are still conducting. However, there is no
easy way to detect that all the pre-charging transistors are off,
and in practice WL is slower than Pre as the former has to
pass through several demultiplexers whereas the latter directly
controls the pre-charging transistors. Hence, relying on this
timing assumption (and checking it after the layout stage)
seems the most reasonable approach.

Concurrently, start- is issued to all the replicas of READ-
COMPLETION, and once they detect that all the bit-lines are
either in the state (0,1) or (1,0), they indicate this with ready-.
At this point the bit-lines correctly reflect the values stored in
the selected row of memory cells, and an acknowledgement
is sent to MASTER (readReady+). Note that WL is still high
and the memory cells stay connected to the bit-lines. After the
reading is completed, MASTER lowers its request (read-), and
in response SLAVEREAD disconnects the memory cells from
the bit-lines (WL-) and then lowers the acknowledgement to
MASTER (readReady-).

Again, concurrency reduction is used between some trans-
itions to simplify the resulting circuit, and the implementation
of SLAVEREAD is shown in Fig. 6b.



(a) STG specification of a single instance.

(b) Implementation of a single instance.

(c) Two instances sharing start and merging individual ready signals
with a C-element to form the overall ready signal, with the feedbacks
taken from the output of the C-element to optimise reset.

Figure 7. READCOMPLETION.

C. READCOMPLETION

The specification of a single instance of READCOMPLE-
TION is shown in Fig. 7a. Signals B0 and B1 represent the
bit-lines – note that they do not always follow the dual-
rail protocol. Initially, the environment is allowed to change
these signals arbitrarily, but when a request from SLAVEREAD
arrives (start+), the bit-lines are connected to the Vdd and so
only the rising transitions B0+ and B1+ are allowed to happen.
Once both bit-lines are 1, READCOMPLETION indicates this
to SLAVEREAD with ready+.

At this point SLAVEREAD connects the memory cell to
the bit-lines and informs READCOMPLETION (start-), which
waits for one of them to go low, depending on the stored value
(B0- or B1-), and then indicates this to SLAVEREAD (ready-).
After this READCOMPLETION returns to its initial state and
B0 and B1 are allowed to change their values freely.

Note that the STG assumes that start- arrives before B0- or
B1-. However, as was already noted for SLAVEREAD, WL is
a slow signal. Since SLAVEREAD issues start- concurrently
with WL+, the former is likely to be faster than B0- or B1-,
as these causally depend on WL+. An alternative would be to
re-design the STG in Fig. 7a to make start- concurrent to B0-
and B1-. However, the circuit then becomes more complicated,
which is significant as it is replicated for each bit of the word.

Figure 8. STG specification of WRITECOMPLETION: (i) without dashed
and dotted arcs – a non-delay-insensitive version not waiting for a falling
transition on a bit-line; (ii) with dashed arcs – a delay-insensitive version
with writeDone+ waiting for the falling transitions on a bit-line; (iii) with
dotted arcs – a delay-insensitive version with writeDone- waiting for the
falling transitions on a bit-line.

Hence, relying on the above assumption (and checking it after
the layout stage) seems the most reasonable approach. Note
that start is a local signal within the controller, i.e. the external
interface to bit-lines is delay-insensitive.

The circuit implementation of READCOMPLETION is shown
in Fig. 7b. Fig. 7c shows how to connect two replicas of
READCOMPLETION – note that to simplify the initial reset
it is advantageous to take the feedbacks from the output of
the C-element, as then it would be sufficient to reset only this
C-element.

D. WRITECOMPLETION

An STG specification (with some alternatives) of WRITE-
COMPLETION is shown in Fig. 8. WRITECOMPLETION is
activated by MASTER (write+) in the write mode. In this
mode signals D0 / D1 comprise a dual-rail representation of
the value to be stored in the memory cell. (The STG has
two branches – they correspond to the possible values on
D0 / D1 and are very similar.) The environment can freely
change this value before the activation of the controller or
in the read mode, but in the write mode it is assumed to
be stable and distinct from the spacer by the time the write
request wr+ arrives to MASTER, and so during the whole
operation of WRITECOMPLETION. WRITECOMPLETION also
relies on SLAVEREAD to keep the memory cell connected to
the bit-lines (i.e. WL is high). Furthermore, write+ connects
the write driver to the bit-lines, and so the value on B0 /
B1 is either the same as that on D0 / D1 (if the value
being written is the same as the currently stored value), or
will eventually become the same (if the overwriting is being
performed). In either of these cases, the response to write+
is identical: WRITECOMPLETION simply waits until the value



on the bit-lines is the same as that on D0 / D1 and issues an
acknowledgement to MASTER (writeDone+), after which the
handshake is completed (write-, writeDone-).

Note that the memory cell always flips first the bit-line
that is currently high, and only then raises the voltage on
the other bit-line, see Fig. 1. However, as the bit-lines are
usually buffered, WRITECOMPLETION may observe these two
events in any order. This situation can be handled in several
alternative ways, as shown in Fig. 8:

• If the dashed and dotted read arcs are disregarded,
WRITECOMPLETION waits only for the rising transition
on the bit-line that was low. Then it can be sure that the
writing has completed and avoid waiting for the event on
the other bit-line – that bit-line is guaranteed to be low
by now, but its falling transition may not have propagated
through the buffer or sense amplifier yet to become visible
to the controller. This design is not delay-insensitive on
the bit-lines, and has to rely on the timing assumption
that this falling transition propagates before start+ is
issued by SLAVEREAD on the next cycle of memory
access. Several possible circuit implementations of this
specification are shown in Fig. 9. Note that the circuit
in Fig. 9c is the same as the gate producing wa in the
circuit from [4] shown in Fig. 3, suggesting non-delay-
insensitivity of that circuit.

• If the dashed read arcs are added to the STG, writeDone+
waits for both bit-lines to flip. This ensures that the inter-
face on the bit-lines is delay-insensitive. Several possible
circuit implementations of this STG are shown in Fig. 9.
To the best of our knowledge the completion detector
in Fig. 10a is novel and allows having arbitrary delays
on the wires B0 and B1. Previously known completion
detectors used for flip-flops working in the ‘write-store’
discipline (the one we have in the SRAM design) rather
than more conventional ‘spacer-codeword’ discipline [21]
either did not allow arbitrary delay on the bit-lines or used
complex gates. This completion detector implements the
Boolean function (B0 · D0 · B1 + B1 · D1 · B0) · write.
It uses only simple two-input gates and operates in a
speed-independent way. The key assumptions for this new
completion detector are as follows: If the new value in the
cell matches the current value, when write+ occurs the
bit-lines cannot change. Otherwise, both bit-lines can flip
concurrently with write+. Moreover, the transitions on the
bit-lines can also happen concurrently with each other,
i.e. the bit-lines may go through either of the transient
states, 00 or 11. The transitions on B0 and B1 must be
monotonic (happen only once).

• If the dotted read arcs are added to the STG, writeDone+
waits for the positive transition on a bit-line, and
writeDone- waits for the negative transition on the other
bit-line. This also ensures that the interface on the bit-
lines is delay-insensitive, and may increase the perform-
ance in the case when the falling transition is significantly
delayed (which is not very likely to happen in practice).

(a) Fully decomposed implementation.

(b) Partially composed implementation.

(c) Complex-gate implementation.

Figure 9. Circuit implementation of the non-delay-insensitive version of
WRITECOMPLETION in Fig. 8 without dashed and dotted arcs.

(a) Fully decomposed implementation.

(b) Partially composed implementation.

Figure 10. Circuit implementation the delay-insensitive version of WRITE-
COMPLETION in Fig. 8 with dashed arcs.

Two possible circuit implementations of this STG are
shown in Fig. 11. Note that these implementations are
rather more complicated, and are not likely to give
any benefit in practice, so we just mention them as a
possibility but do not consider them further.

In each of these three cases, several alternative circuit
implementations are given. The first alternative is always fully
decomposed, and the other alternatives were obtained from
it by glueing some gates together – note that glueing gates
does not break the correctness. The rational is that glueing
gates decreases the transistor count (which is significant as
this part of the SRAM controller is replicated) and improves
the performance, but some gate libraries may lack big gates.

IV. VERIFICATION

We have formally verified some aspects of the developed
(i) STG specifications and (ii) circuits as explained below.
The verification was conducted with the help of WORK-
CRAFT [2][3] and its back-end tools. In phase (ii), each circuit
was automatically converted by WORKCRAFT into an STG



(a) Fully decomposed implementation.

(b) Partially composed implementation.

Figure 11. Circuit implementation of the alternative non-delay-insensitive
version of WRITECOMPLETION in Fig. 8 with dotted arcs.

modelling its behaviour using a variant of the well-known
construction [22]. The resulting STG was composed with the
corresponding STG specification with the help of PCOMP [23],
and then an unfolding-based verification method implemented
in PUNF [24] and MPSAT [25][26] tools was used to verify
the composed STG. (The whole process is automated in
WORKCRAFT, so that one does not have to deal with the back-
end tools directly.)

The environment of the SRAM controller was modelled as
the parallel composition of the two STGs in Fig. 12. The STG
on the top of this figure models mutually exclusive handshakes
rr / ra and wr / wa and expresses the assumption that when
wr+ occurs D0 / D1 form a stable dual-rail value distinct from
the spacer. The STG on the bottom of this figure models the
behaviour of the memory cell – this model is quite restrictive
and includes just a small number of scenarios, which actually
gives more confidence in the correctness of the circuit as
far as the verification of conformation is concerned (see the
explanation in Section IV-B). Note that the transitions on the
bit-lines are never sequential with each other, i.e. the interface
on the bit-lines is delay-insensitive.

A. Output-persistence and the absence of hazards

STGs specifying speed-independent circuits must be output-
persistent, i.e. an enabled output or internal signal must never
be disabled other than by firing it. This is necessary to prevent
hazards on the corresponding wires of the resulting circuit, i.e.
situations when some logic gate is about to change its state but
gets prematurely disabled by a change of some of its inputs
– this may result in a non-digital pulse on the driven wire.
We have formally verified that the STGs specifying the four
blocks comprising the SRAM controller are output-persistent.

However, verifying just STGs is insufficient: Though
in theory circuits synthesised from STGs are correct-by-
construction, logic synthesis is a complicated process and so
the software tools implementing it may have bugs. Hence the
synthesised circuits were also verified to get more confidence
in their correctness. This was done by checking that each of

Figure 12. Two STGs whose parallel composition forms a model of the
environment.

the four circuit blocks of SRAM controller is hazard-free in the
environment given by its STG. Moreover, the overall circuit
is hazard-free in the model of the environment in Fig. 12.

B. Conformation

We have formally verified that each of the four blocks of
SRAM controller conforms [27] to the environment given by



Table I
SIMULATION RESULTS.

voltage (mV) the developed controller the controller from [4]
write time (ps) read time (ps) write time (ps) read time (ps)

no flip flip no flip flip
set reset set reset set reset set reset set reset set reset

1,000 866 60 1,063 60 683 197 687 63 923 49 595 255
900 1,005 68 1,247 69 792 229 792 73 1,083 57 687 297
800 1,214 83 1,537 83 954 274 950 86 1,339 69 824 360
700 1,558 106 2,057 107 1,223 351 1,215 113 1,798 87 1,050 465
600 2,204 150 3,154 149 1,724 492 1,709 159 2,782 122 1,473 662
500 3,696 254 6,053 241 2,881 819 2,858 259 5,413 200 2,453 1,119
400 8,741 554 16,058 549 6,760 1,897 6,751 574 14,487 462 5,749 2,634
350 16,665 1,007 30,576 1,006 12,823 3,553 12,943 1,040 27,561 790 10,940 4,954
300 37,669 2,123 68,519 2,119 28,875 7,903 29,605 2,153 61,667 1,677 24,878 10,991
275 60,266 3,500 162,735 3,265 45,980 12,720 47,557 3,350 152,395 2,570 39,720 17,350

Overhead (%) 22 -3 11 19 14 -35

its STG specification, i.e. these circuits will not produce any
outputs that are unexpected by the environment. Moreover,
the overall circuit conforms to the model of the environment
in Fig. 12. Note that the restrictiveness of this model of the
environment gives a higher confidence in the correctness of
the circuit, as any deviation of the circuit from the restricted
set of permitted behaviours would have been reported: If the
circuit could produce an output that is not expected by this
model, it would have been flagged as an error, whereas a less
strict model might have tolerated it.

C. Deadlock-freeness

For each of the four blocks of SRAM controller we have
formally verified that its STG specification is deadlock-free,
and that its circuit implementation is deadlock-free in the
environment given by its STG. Moreover, the overall circuit
is deadlock-free in the model of the environment in Fig. 12.

V. SIMULATION

Both the developed SRAM controller and the one from [4]
were mapped to FARADAY gate library, with the UMC 90nm
technology process. The parameters of the SRAM were de-
rived from a standard UMC 90nm T6 cell. Several SPICE
simulations of these controllers were then performed on a
range of supply voltages using Cadence Spectre and Analogue
Design Environment. The voltage was reduced in 100mV
step from the nominal 1V, further decreasing the steps at the
sub-threshold voltages (below 400mV). The minimum voltage
at which we could get reliable operation was 275mV. The
simulation results are summarised in Table I, where write time
is the delay between the corresponding events of wr and wa
signals and read time is the delay between the events of rr
and ra signals. The signal events are “registered” at half of
the supply voltage level. Set and reset phases of the write/read
handshakes are measured separately. In the write mode two
scenarios are simulated, when the bit-lines do not flip and
when they flip.

On average, the complete read cycle (both set and reset
phases) of the decomposed circuit is ~3% slower compared to
the design in [4]. In write mode the overhead is ~11% if the

bit-lines flip and ~20% otherwise. Interestingly, the reset of
the read phase is 35% faster in the developed circuit, which is
due to the concurrent de-assertion of ra with the reset of the
internal signals.

Our experiments also showed that the delay-insensitive
implementation of WRITECOMPLETION modules shown in
Fig. 10 is the optimal design choice: The non-DI implementa-
tion of Fig. 9 only improves the write cycle by ~3.5% if there
is no flip of the bit-lines. We believe this marginal speedup
does not justify the reduced robustness. The alternative DI
implementation shown in Fig. 11 slows down the write cycle
by ~3% due to bigger gates on the critical path.

Note that this kind of simulations may be not reliable,
especially for the sub-threshold voltages, and are aimed only
to give a rough idea of the controller’s performance; we leave
a more detailed analysis for future work.

VI. CONCLUSIONS

We designed an asynchronous SRAM controller. It was
inspired by the design in [4], but was systematically developed,
synthesised and formally verified. It is more robust than the
design in [4] due to a delay-insensitive interface to bit-lines,
in particular it fixes the hazard due to the possibility of
transient 11 on buffered bit-lines during the write operations.
In our future work we plan to fine-tune the circuit to push the
minimum operating voltage further down, and to produce it
on silicon to confirm the possibility of its reliable operation
at sub-threshold voltages.

ACKNOWLEDGEMENTS

This research was supported by EPSRC grants
EP/L025507/1 “A4A: Asynchronous design for Analogue
electronics” and EP/K001698/1 “UNCOVER: UNderstanding
COmplex system eVolution through structurEd behaviouRs”.

REFERENCES

[1] S. Priya and D. J. Inman, Energy harvesting technologies. Springer,
2009, vol. 21.

[2] I. Poliakov, D. Sokolov, and A. Mokhov, “WORKCRAFT: a static data
flow structure editing, visualisation and analysis tool,” in Petri Nets and
Other Models of Concurrency. Springer, 2007, pp. 505–514.



[3] “WORKCRAFT homepage, URL: http://www.workcraft.org.”
[4] A. Baz, D. Shang, F. Xia, and A. Yakovlev, “Self-timed SRAM for

energy harvesting systems,” Journal of low power electronics, vol. 7,
no. 2, pp. 274–284, 2011.

[5] B. Zhai, S. Hanson, D. Blaauw, and D. Sylvester, “A variation-tolerant
sub-200 mV 6-T subthreshold SRAM,” Solid-State Circuits, IEEE
Journal of, vol. 43, no. 10, pp. 2338–2348, 2008.

[6] C. van Berkel and R. Saeijs, “Write-acknowledge circuit including
a write detector and a bistable element for four-phase handshake
signalling,” 1994, US Patent US 5280596 A.

[7] V. W.-Y. Sit, C.-S. Choy, and C.-F. Chan, “A four-phase handshaking
asynchronous static RAM design for self-timed systems,” Solid-State
Circuits, IEEE Journal of, vol. 34, no. 1, pp. 90–96, 1999.

[8] T. Soon-Hwei, L. Poh-Yee, and M. S. Sulaiman, “A 160-Mhz 45-mW
asynchronous dual-port 1-Mb CMOS SRAM,” in Electron Devices and
Solid-State Circuits, 2005 IEEE Conference on. IEEE, 2005, pp. 351–
354.

[9] J. Dama and A. Lines, “GHz asynchronous SRAM in 65nm,” in Asyn-
chronous Circuits and Systems, 2009. ASYNC’09. 15th IEEE Symposium
on. IEEE, 2009, pp. 85–94.

[10] M.-F. Chang, S.-M. Yang, and K.-T. Chen, “Wide embedded asynchron-
ous SRAM with dual-mode self-timed technique for dynamic voltage
systems,” Circuits and Systems I: Regular Papers, IEEE Transactions
on, vol. 56, no. 8, pp. 1657–1667, 2009.

[11] V. Varshavsky, et al., “A self-timed random access memory,” 1988,
USSR Patent.

[12] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “PETRIFY: a tool for manipulating concurrent specifica-
tions and synthesis of asynchronous controllers,” IEICE Transactions
on Information and Systems, vol. E80-D, no. 3, pp. 315–325, 1997.
[Online]. Available: citeseer.ist.psu.edu/cortadella96petrify.html

[13] D. Muller and W. Bartky, “A Theory of Asynchronous Circuits,” in Proc.
Int. Symp. of the Theory of Switching, 1959, pp. 204–243.

[14] A. Martin, “Compiling communicating processes into delay-insensitive
VLSI circuits,” Distributed computing, vol. 1, no. 4, pp. 226–234, 1986.

[15] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications,” Ph.D. dissertation, Dept. of Electrical Engineering and
Computer Science, MIT, 1987.

[16] L. Rosenblum and A. Yakovlev, “Signal graphs: from self-timed to timed
ones,” in International Workshop on Timed Petri Nets, Torino, Italy,
1985, 1985.

[17] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[18] V. Khomenko, M. Koutny, and A. Yakovlev, “Logic synthesis for
asynchronous circuits based on Petri net unfoldings and incremental
SAT,” Fundamenta Informaticae, vol. 70, pp. 49–73, 2006, special Issue
on Best Papers from ACSD’04.

[19] A. Valmari, “The state explosion problem,” in Lectures on Petri Nets I:
Basic Models, Advances in Petri Nets. Springer, 1998, pp. 429–528.

[20] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Automatic handshake expansion and reshuffling using
concurrency reduction,” in HWPNâĂŹ98, 1998, pp. 86–110.

[21] V. Varshavsky, Ed., Self-Timed Control of Concurrent Processes.
Kluwer Academic Publishers, 1990.

[22] W. Reisig, Petri Nets: An Introduction, ser. EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, 1985, vol. 4.

[23] A. Alekseyev, V. Khomenko, A. Mokhov, D. Wist, and A. Yakovlev,
“Improved parallel composition of labelled Petri nets,” in Proceedings
of ACSD’11. IEEE Computer Society Press, 2011, pp. 131–140.

[24] V. Khomenko, “Model checking based on prefixes of Petri net unfold-
ings,” Ph.D. dissertation, University of Newcastle upon Tyne, School of
Computing Science, 2003.

[25] ——, “Efficient automatic resolution of encoding conflicts using STG
unfoldings,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 17, pp. 855–868, 2009, special Section on Asynchronous
Circuits and Systems.

[26] ——, “Logic decomposition of asynchronous circuits using STG un-
foldings,” in Proceedings of the IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC). IEEE Computer Society
Press, 2011, pp. 3–12.

[27] D. L. Dill, Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. Cambridge, MA, USA: MIT Press, 1989.

http://www.workcraft.org
citeseer.ist.psu.edu/cortadella96petrify.html

