Optimisation of Balsa control path using STG
resynthesis

Arseniy Alekseyev, Ivan Poliakov, Victor Khomenko, Alex Yakovlev
{arseniy.alekseyev, ivan.poliakov, victor.khomenko, alex.yakovlev} @ncl.ac.uk

Newcastle University

Abstract—The paper proposes a modification of the standard
design workflow that is used in Balsa design automation system.
The controllers obtained by syntax-directed mapping used in
Balsa usually suffer from performance, area and power ove-
rheads because the predesigned set of components is required
to implement the declared protocols fully and correctly in order
to be reusable in all possible circuit configurations, which results
in redundancy. This redundancy can be eliminated by replacing
the manually designed gate-level implementations of the high
level components with the corresponding STG specifications. The
STGs of individual components that form the system are then
composed together to produce the final system STG that is used
to synthesise an optimal implementation of the control circuit.
The process is automated as a plug-in to Workcraft framework.

I. INTRODUCTION

The main obstacle for the wider spread of asynchronous
systems remains to be the inherent complexity of their design.
Several solutions are accepted by the industry that ease the
design process through abstraction of predesigned asynchro-
nous circuit parts as standardised high level components.
A designer is able to use these components as ‘“building
blocks”, and then obtain the final gate-level design through an
automated mapping process. Furthermore, some of the well-
known asynchronous design automation packages, such as
Tangram [9], and Balsa [2], define a high-level programming-
like language that is used to describe systems. The language
constructs are then directly translated into a network of hand-
shake components — blocks with predefined functionality that
use handshakes to interface with other components, which are
in turn mapped into a gate netlist.

Although this method greatly enhances the designer’s pro-
ductivity, it has several important drawbacks, of which the
control-path overhead is the most decisive. The controllers
obtained by syntax-directed mapping are usually far from
optimal, because the predesigned components are required to
implement their declared protocols fully and correctly in order
to be reusable in all possible circuit configurations. However,
it is often the case that a significant part of their functionality
becomes redundant due to the peculiarities of the specific
configuration, e.g. in many cases full handshaking between
the components can be avoided.

This redundancy can be eliminated by replacing the ma-
nually designed gate-level implementation of the high level
components with equivalent STG (signal transition graph) [4]
specification. The individual component STGs are then com-
posed together to form a complete system STG [5], which

Design refinement

Balsa description
‘breeze2ps’

l I@ ‘balsa-c’
e

synthesis

‘breeze-cost’

Breeze description

(HC netlist) N

Balsa behavioural
simulation system

Simulation
‘balsa-netlist’ results
I
Behavioural

Gate-level sim. |
——— > Functional

4
Gate-level netlist

Commercial Si
or FPGA P&R

4 Layout sim.
Layout / bitstream ~——————————— Timing

Figure 1: Balsa design workflow

is optimised using PETRIFY [1]. An optimal gate-level imple-
mentation can then be automatically produced from the STG
using tools such as PETRIFY [1], SIS [8] and MPSAT [3].
Automatic synthesis becomes problematic when the size of the
STG becomes large: modern synthesis tools can handle STGs
with not more than 100 signals. The impact of this problem
can be lessened by including STG decomposition tools [7] into
the workflow, that would break the large optimised STG down
into several smaller STGs that are synthesisable in reasonable
time.

This paper proposes an automated method to include the
aforementioned modification of the standard design workflow
that is used in Balsa design automation system [2] using
WORKCRAFT [6] framework.

II. BALSA WORKFLOW OPTIMISATION THROUGH STG
RESYNTHESIS

The standard Balsa design workflow is comprised of several
stages (Figure 1). The designer writes the system specification
in Balsa language. It is passed to the Balsa compiler, which
generates a handshake component netlist (produced in a lan-
guage called Breeze) using syntax-directed mapping on the
source code. Syntax-directed mapping in this context means
that there is a predefined handshake component construct for
every syntactic structure. The Breeze netlist is then translated
into a gate-level netlist using direct mapping, this time from
individual handshake components to their gate-level imple-
mentation, which is defined beforehand.

The proposed modification of this workflow is shown in Fi-
gure 2. The translation from Balsa language into Breeze netlist



Balsa description

Breeze description
(HC netlist)

j Workcraft + PCOMP (Breeze to STG mapping)
STG
l DesiJ (STG decomposition)
Decomposed (partial)
synthesisable STGs
J Petrify/MPSAT (synthesis)

Partial gate-level netlists
\ Workcraft? (composition of partial netlists)

Re-composed gate-level netlist

Figure 2: Modified Balsa workflow

is retained (and is still done by the Balsa compiler), but the
Breeze-netlist to gate-level-netlist mapping is replaced with
the STG resynthesis flow as introduced in section 1. Instead
of using Balsa tools to produce a gate-level netlist, the Breeze
netlist is read by a special interpreted graph model plug-
in to WORKCRAFT tool [6], which replaces the handshake
components with their STG specifications and produces a
composition of those STGs using PCOMP tool. If the resulting
STG is small enough, the gate-level implementation may
immediately be synthesised using any of the available syn-
thesis tools. However, for many practical cases the composed
STG will become quite large. In this case, to synthesise the
implementation it is necessary to insert an additional step:
STG decomposition. This step is supported by a tool called
DEs1 [7]. Therefore, the whole process can be automated
using WORKCRAFT framework.

The technique allows to synthesise more efficient control
circuits while at the same time preserving the benefit of
rapid design methodology fundamental to Balsa. It should be
noted, however, that full modelling of all Breeze components
with STGs is not practical. The behaviour of most data
components would be too complex to synthesise from an
STG. Circuit resynthesis for such components would take too
much time and would often be less effective than an already
existing gate-level implementation done by an experienced
designer. Subsequently, all data-related functionality in HCs
is modelled outside of STG composition framework: the STG
models include only control signals for the data path elements.
These control signals are to be connected after the gate-
level generation step to the data-path circuit that is assembled
separately (its components are specified by a structural Verilog
netlist). The data path is generated automatically side-by-side
with the STG behaviour model.

III. SUPPORT OF BREEZE HANDSHAKE CIRCUITS AS
INTERPRETED GRAPH MODEL IN WORKCRAFT

For the purpose of implementation of the design flow
discussed in this paper the Workcraft framework was extended
with a plug-in that introduces support for Breeze Handshake
Circuits (HCs). The new HC model allows WORKCRAFT’S

out1_ac+:

out1_rg-

activate activate_rq-—activate_ac+ out!_rq+-—e——out1_ac-

activate_ac--e-activate_rq+

out0_ac+ out0_rg-

activate 1 activate 2

out0_rq+——e——out0_ac-

(a) SequenceOptimised

out0_rq+—e—out0_ac-

activate activate_ac-—e—activate_rq+

out0_ac+:

out0_rg-

activate 1 activate 2

activate_rqg--

activate_ac+
- out!_rq+—e—out1_ac-

out1_ac+

out!_rg-

(b) Concur

Figure 3: Pure control path handshake components and their
respective STGs

convenient visual editing tools to be applied for creation
and editing of Breeze netlists. Import and export of breeze
netlists from/to BALSA .breeze files will also be supported,
however this feature is not implemented yet.

The same plug-in also performs generation of STG be-
haviour model for the specified HC. The STG generation
algorithm is designed to be highly customisable, with support
of multiple handshake protocols and various STG implementa-
tions for each type of component. Currently, STG generation
is implemented for a small set of components and only for
one protocol. The library of components will be expanded and
will include all Breeze components with support for different
handshake protocols.

IV. STG SPECIFICATIONS OF INDIVIDUAL HANDSHAKE
COMPONENTS

Balsa components can be roughly divided in three groups:
pure control components, data path control components and
data-control interface components. We will review each group
separately.

A. Pure control path components

Pure control components only control the behaviour of
another components and do not carry out any data operations.
These components are expected to gain the most from the new
design workflow because all of their handshakes are inside the
control path and such handshaking does not have to always
strictly correspond to the general protocol. Hence, every
handshake of such components can potentially be optimised
via the STG resynthesis.

The examples are Concur (Figure 3b) and SequenceOpti-
mised (Figure 3a) components. The STGs in those figures are
highly parallel specifications of these components. However,
experimental results show that although such implementation
might look better on paper, in practise it is sometimes better
to specify traditional, more sequential behaviour. This signi-
ficantly simplifies the task for synthesis tools, particularly
those based on state space exploration techniques, because
high parallelism often leads to early state space explosion
problem. Besides that, a parallel specification suffers more
from CSC (complete state coding) problems: a significant



inpA_ac+ inpB_rq+

inpB_ac+

inpA_rg- inpB_ac-

inpB_rq-

dpReq+
input data A

output data
opnins @.

‘ dpAck+-

)

out_rg+ dpReg-

out_ad+

dpAck-

(a) BinaryFunc

inp1_rq-

inp1_ac+
‘\ sellRqg+-————e———~sel1Rg-

inp1_rg+

!

inp0_ac- inp0_ac+

I

inp0_rg-
input data 1 1np0_rq A A
output data out_rq+—out_ac

out_ac-——out_rg-

input data N

(b) CallMux

latchAc-——IlatchRg-

latchRg+—~latchAc+

read0_rg--

read0_ac+

write_rq+—write_ac+ read0_ac-—e—read0_rq+

write_ac--—write_rq-

read1_rg-- read1_ac+

input data outpul data

Figure 4: Pure control path handshake components and their
respective STGs

read1_ac-—e—read1_rq+

(c) Variable

number of auxiliary signals have to be introduced to achieve
CSC.

B. Data path control components

This group of components is used to control the the
corresponding data path components that execute predefined
operations on data. These operations are far too complex for
automated synthesis, but the control path part can still be
optimised using STG resynthesis, which makes it reasonable
to separate data and control signals. The signals that control
the data path are in this case specified as the input and output
signals of the component’s STG. Because the data path blocks
are outside this specification, their handshake protocols must
be implemented strictly and thus cannot be optimised. This,
however, does not prevent the optimisation of handshakes that
belong to the same component but interface with other control
path components.

BinaryFunc (Figure 4a), CallMux (Figure 4b), Variable (Fi-
gure 4c) are good examples of the data path control compo-
nents.

activate_ac- activate_rq-

activate_rq+- activate_ac+

guard_ac-—e—guard_rg+

out_rq+—e—out_ac-

out_ac+—out_rg-

(a) While

out!_rq+-—e—out1_ac-

out1_ac+

outt_rg-
inp_ac-einp_rq+

inp_rg-—~inp_ac+

‘ input data

activate 1
activate 2

out0_rq+-—e—out0_ac-

out0_ac+ out0_rg-

(b) Case

Figure 5: Data-control interface components and their respec-
tive STGs

C. Data-control interface components

Data-control interface components provide conversion of
data to control signals or vice versa. For example, the While
component (Figure 5a) analyses the input data to decide
whether it should end its operation and conclude the activation
handshake, or to continue activating the output handshake.
Case component (Figure 5b) handles data in a very similar
way, however it has an arbitrary bus width, so for bus widths of
more than one bit a decoder that resides in the data path could
be used to reduce the STG complexity. These components
STGs can become quite complex and the strict behaviour of
their data-path handshakes must be preserved.

V. AN EXAMPLE: GCD CONTROLLER

We have chosen the GCD controller (Figure 6) to demons-
trate how the proposed technique applies to real-life circuits.
The GCD controller is a good research example because it has
components from every group described in section IV and its
complexity does not allow omitting of the STG decomposition
step, which is an important part of the proposed workflow. All
available synthesis tools failed to synthesise a circuit from the
fully composed STG model of GCD controller. This proves
that the STG decomposition is a necessary step lacking which
the synthesis of a practical circuit is not likely to succeed.

Decomposition on the level of STG can be replaced with
decomposition on the level of handshake components. Such
decomposition can be done simply by partitioning the input
handshake circuit into blocks, trying to minimise the number
of handshakes between blocks, and applying the synthesis
process to each block separately. While working with the



activate

inA

Figure 6: Breeze Handshake Circuit model of a GCD block

GCD example it was found that decomposition on the level
of handshake components can be done much easier and is
guaranteed to be successful, whereas decomposition on the
STG level is a complex task, which requires additional third-
party tools.

Although the GCD example has not yet been fully syn-
thesised due to issues that arise when the STGs of certain
components are connected in specific ways, the results of
partial synthesis are quite promising. For comparison, each
individual handshake component was synthesised separately
and its area estimated. Then, parts of the GCD handshake
circuit were synthesised from the STG composition, and the
area of this implementation was compared to the sum of areas
of individual components implementations. In Figure 6, two
such parts are highlighted — one with a dotted line (part 1)
and another with a dashed line (part 2). As can be seen from
the figure, part 1 is comprised of control path components.
This allows to obtain a very significant improvement when
the part is synthesised from a large STG: the difference in
area is almost 50%. Part 2, however, has a While component
in it, which has a data input. Although the width of this
input is always fixed at 1 bit, the STG is noticeably worse
for synthesis, which results in a less significant improvement
of the circuit area: only about 10%.

VI. CONCLUSIONS

The methodology presented in this paper aims to improve
the existing design workflow of Balsa asynchronous synthesis
system. A workflow modification was presented that intro-
duces automated synthesis based on STG composition into the
traditional Balsa workflow that allows to lessen the control
path overheads. The technique was implemented as a plug-
in to the WORKCRAFT framework and the whole process is
automatic. A GCD controller was used as a test example that

produced promising preliminary results, however there were
still problems during synthesis that prevented the circuit from
being completely implemented. Resolutions of these problems
is the focus of current work. In the future, STG decomposition
tools are going to be integrated into the plug-in to further
improve the efficiency.

Acknowledgement: this work is supported by EPSRC grant
VERDAD EP/G037809/1.

REFERENCES

—

[1] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Ya-
kovlev. PETRIFY: a tool for manipulating concurrent specifications and
synthesis of asynchronous controllers. IEICE Trans. Inf. and Syst., E80-
D(3):315-325, 1997.

[2] D. A. Edwards and A. Bardsley. Balsa: An asynchronous hardware

synthesis language. The Computer Journal, 45 (1):12-18, jan 2002.

[3] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting state encoding
conflicts in STG unfoldings using SAT. Fundam. Inf., 62(2):221-241,
2004.

[4] Alex Yakovlev. Albert M. Koelmans. Petri nets and Digital Hardware
Design Lectures on Petri Nets II: Applications. Advances in Petri Nets,
Lecture Notes. Computer Science, 1492:154-236, 1998.

[S] Marco A. Pena and Jordi Cortadella. Combining process algebras and
petri nets for the specification and synthesis of asynchronous circuits.
In ASYNC °96: Proceedings of the 2nd International Symposium on
Advanced Research in Asynchronous Circuits and Systems, page 222,
Washington, DC, USA, 1996. IEEE Computer Society.

[6] Ivan Poliakov, Victor Khomenko, and Alexandre Yakovlev. Workcraft -
a framework for interpreted graph models. In Petri Nets, pages 333-342,
20009.

[7] Mark Schaefer. Desij - a tool for stg decomposition. Technical Report
tr-11-2007, University of Augsburg, October 2007.

[8] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, PR. Stephan, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. Sis: A system for sequential circuit synthesis.
Technical Report UCB/ERL M92/41, EECS Department, University of
California, Berkeley, 1992.

[9] Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits

Schalij. The vlsi-programming language tangram and its translation into

handshake circuits. In EURO-DAC ’91: Proceedings of the conference on

European design automation, pages 384-389, Los Alamitos, CA, USA,

1991. IEEE Computer Society Press.



