
University of Newcastle upon Tyne

School of Computing Science

Model Checking Based on Prefixes

of Petri Net Unfoldings

by

Victor Khomenko

PhD Thesis

February 2003

Contents

Acknowledgements iv

Abstract v

Introduction vi

1 Basic Notions 1
1.1 Multisets . 1
1.2 Noetherian induction . 2
1.3 Petri nets . 2
1.4 Marking equation . 4
1.5 Branching Processes . 5

2 Canonical Prefixes 10
2.1 Semantical meaning of completeness 10
2.2 Algorithmics of prefix generation 11
2.3 The new approach . 12
2.4 König’s Lemma for branching processes 13
2.5 Complete prefixes of Petri net unfoldings 14

2.5.1 Cutting context . 14
2.5.2 Completeness of branching processes 16

2.6 Canonical prefix . 18
2.6.1 Static cut-off events . 18
2.6.2 Canonical prefix and its properties 19

2.7 Unfolding algorithms . 23
2.7.1 ERV unfolding algorithm 23
2.7.2 Unfolding with slices . 24

2.8 Conclusions . 27

3 Test Bench 28
3.1 Testing Unfolding Algorithms . 28
3.2 Test cases . 29

i

CONTENTS ii

4 Computing Possible Extensions 33
4.1 Employing the UpdatePotExt function 34
4.2 Reducing the number of candidates 35
4.3 Preset trees . 38
4.4 Building preset trees . 39
4.5 Implementation issues . 43
4.6 Experimental results . 48
4.7 Conclusions . 51

5 Parallel Unfolding Algorithm 53
5.1 The slicing algorithm . 53
5.2 Choosing a slice . 54
5.3 Cut-offs ‘in advance’ . 55
5.4 Parallelizing the unfolding algorithm 56
5.5 Implementation issues . 58

5.5.1 Minimizing interlocking 58
5.5.2 Computing final markings 59
5.5.3 Optimizing computation of possible extensions 60

5.6 Experimental results . 61
5.7 Conclusions . 62

6 Unfoldings of High-Level Petri Nets 64
6.1 High-level Petri nets . 65

6.1.1 M-nets . 65
6.1.2 M-net systems . 66

6.2 Translation into low-level nets . 68
6.3 Branching processes of high-level Petri nets 69
6.4 M-net unfolding algorithm . 70
6.5 Case studies . 71

6.5.1 Greatest common divisor 72
6.5.2 Mutual exclusion algorithm 73

6.6 Conclusions . 76

7 Prefix-Based Model Checking 77
7.1 Deadlock detection using linear programming 77
7.2 Solving systems of linear constraints 79
7.3 Integer programming verification algorithm 84

7.3.1 Reduction to a pure integer problem 84
7.3.2 Partial-order dependencies between variables 85
7.3.3 Compatible closures . 86
7.3.4 Removal of redundant constraints 87
7.3.5 Extending CDA (intuition) 88
7.3.6 Developing an extension of CDA 88
7.3.7 Applying the method for ΣΘ-compatible vectors 94

CONTENTS iii

7.4 Implementation of the algorithm 94
7.4.1 Retrieving a solution . 96
7.4.2 Shortest trail . 96

7.5 Optimizations . 97
7.6 Extended reachability analysis . 99

7.6.1 Deadlock checking in safe case 100
7.6.2 Terminal markings . 101

7.7 Other verification problems . 102
7.7.1 Mutual exclusion . 102
7.7.2 Reachability and coverability 103

7.8 Further optimization for deadlock detection 103
7.9 On-the-fly deadlock detection . 104
7.10 Efficiency of the branching condition 105
7.11 Parallelization issues . 106
7.12 Experimental results . 108
7.13 Conclusions . 109

8 Detecting State Coding Conflicts in STGs 112
8.1 Basic definitions . 114

8.1.1 Signal Transition Graphs 114
8.1.2 STG branching processes 116

8.2 State coding conflict detection using integer programming 117
8.2.1 Encoding constraint . 118
8.2.2 USC separating constraint 119
8.2.3 CSC separating constraint 119
8.2.4 Retrieving a solution . 120

8.3 Verifying the normalcy property 120
8.4 The case of conflict-free nets . 122
8.5 Handling dummy events . 123
8.6 Experimental results . 125
8.7 Conclusions . 128

Conclusions 130

Bibliography 132

Index 141

Acknowledgements

I would like to thank God for his constant help and inspiration during my study.
This work would not have been possible without intensive collaboration with

many people. In particular, I would like to express my gratitude to my super-
visors Maciej Koutny and Paul Watson in Newcastle University, and my former
supervisor Alexander Letichevsky in Glushkov Institute of Cybernetics for initi-
ating this research and for all the help and moral support they provided.

Most of the ideas described in this thesis are a result of numerous discus-
sions with Alex Bystrov, Javier Esparza, Keijo Heljanko, Sergei Krivoi, Chris-
tian Stehno, Walter Vogler and Alex Yakovlev, and, of course, my supervisors.
In addition, I would like to thank Jordi Cortadella for compiling a special version
of the Petrify tool used for the experiments in Chapter 8, Stephan Melzer for
sending his PhD thesis, Peter Rossmanith for suggesting the proof of an impor-
tant proposition in Chapter 4, and Jason Steggles for many helpful comments.

An essential contributing factor to this research was support of my family,
which I received in abundance from my wife Oksana and my parents Vladimir
and Polina, in spite of the fact that Petri nets are not their favourite topic of
conversation.

This research was supported by the Ors Awards Scheme grant ORS/C20/4,
the Epsrc grants GR/M99293 and GR/M94366 (Movie), the ACiD-WG grant
IST-1999-29119, and the Arc grant 1175 (Jip).

iv

Abstract

The human society is becoming increasingly dependent on automated control
systems, and the correct behaviour and reliability of the hardware and software
used to implement them is often of a paramount importance. Yet, the growing
complexity of such system makes it hard to design them without defects.

Especially difficult is the development of concurrent systems, because they
are generally harder to understand, and errors in them often do not show up
during the testing. Therefore, the conventional methods are not sufficient for
establishing the correctness of such systems, and some kind of computer-aided
formal verification is required.

One of the most popular formal verification techniques is model checking, in
which the verification of a system is carried out using a finite representation of
its state space. While being convenient in practice, it suffers a major drawback,
viz. the state space explosion problem. That is, even a relatively small system
specification can (and often does) yield a very large state space.

To alleviate this problem, a number of methods have been proposed. Among
them, a prominent technique is McMillan’s (finite prefixes of) Petri net unfold-
ings. It relies on the partial order view of concurrent computation, and represents
system states implicitly, using an acyclic net, called a prefix. Often such prefixes
are exponentially smaller than the corresponding reachability graphs, especially
if the system at hand exhibits a lot of concurrency.

This thesis is all about efficient verification based on this technique. It dis-
cusses the theory of finite and complete prefixes of Petri net unfoldings and
provides several practical verification algorithms.

On one hand, the thesis addresses the issue of efficient prefix generation,
suggesting a new method of computing possible extensions of a branching process,
a parallel unfolding algorithm, and an unfolding algorithm for a class of high-
level Petri nets. On the other hand, it shows how unfolding prefixes can be
used for practical verification, proposing a new integer programming verification
technique. This technique can be used to check many fundamental properties,
such as deadlock freeness, mutual exclusion, reachability and coverability of a
marking, and extended reachability. Moreover, it can be applied to check state
encoding properties of specifications of asynchronous circuits, yielding a fast and
memory-efficient algorithm.

v

Introduction

The human society is becoming increasingly dependent on automated control
systems, and the correct behaviour and reliability of the hardware and software
used to implement them is often of a paramount importance. A failure of such a
safety-critical application as an air traffic control system or a nuclear reactor can
entail a major casualty. Even when human lives are not involved, implementation
mistakes can sometimes lead to substantial economic loss, e.g., the notorious
floating point division bug in the Pentium microprocessor cost Intel $475 million
(see, e.g., [27]).

Yet, the growing complexity of such system makes it hard to design them
without defects. [47] puts it as follows:

For programmers in industrial software development, the residual
software defect ratio (the number of latent faults that remain in the
code at the end of the development process) is normally somewhere
between 0.5 and 5 defects per one thousand lines of non-comment
source code [. . .]

So without knowing anything about the particulars of a given in-
dustrially produced software product, one thing is generally safe to
assume: it has bugs. The same is of course true for all industrial
products, but what makes the problem unique in software is that the
effects of even very minor programming mistakes can cause major
system failures. It is very hard to contain the potential effects of a
software defect, especially in distributed systems software [. . .]

Even at a low residual defect density of 0.1 defect per one thousand
lines of code, a ten million line source package will have an expected
103 latent defects. To reduce this number, we need to devise com-
plementary analysis and testing techniques. It should also be noted
that no-one really knows how many latent defects there really are in
any given software product. All we can tell is how many of these
defects eventually lead to customer complaints, in the years follow-
ing product delivery. The industry average of 0.5 to 5 defects per
one thousand lines of code is based on a typical count of the typical
numbers of those customer complaints. We can suspect that the true
number of latent defects is at least an order of magnitude higher,
more likely in the range of 0.5 to 5 defects per one hundred lines of

vi

INTRODUCTION vii

source code. Looking for latent software defects, then, is not quite
like looking for needles in a haystack. Almost any new technique
that differs sufficiently from traditional testing should be expected to
intercept enough extra defects to justify its application.

Especially difficult is the development of concurrent systems, because they are
generally harder to understand, and errors in them often do not show up during
the testing. For example, even if due to a bug several processes can simultane-
ously access a critical section causing a race condition, this might happen quite
rarely when the length of this critical section is short or this part of the code is
executed relatively infrequently. Thus, such mistakes can easily go through the
testing phase undetected and show up only after a long period of exploitation.
The situation is in fact even more complicated, since concurrency related bugs
are often unrepeatable: even if such a bug is detected during a particular testing
run, it can well not occur during the next runs, making it difficult to locate it.

Therefore, conventional testing is not sufficient for establishing the correctness
of such systems, and some kind of formal verification is required, e.g., in the form
of a mathematical proof of correctness. (An alternative approach would be to
use a methodology guaranteing that the created system is ‘correct by design’
which does not require any validation at all, but in practice such methodologies
are, in most cases, either impossible due to algorithmic undecidability or hard
to implement.)

Traditionally, the correctness of a program is understood as termination with
the correct result. But many safety-critical control systems are in fact reactive
systems , i.e., non-terminating systems which maintain an ongoing interaction
with their environment. Moreover, unlike traditional sequential programs, such
systems are often composed of a set of concurrent processes and thus are non-
deterministic: different execution scenarios (sequences of performed actions)
are possible, depending on, e.g., how the operational system schedules those
processes.

Several formal models of concurrent computation have been proposed so far.
The most widely used are process algebras and Petri nets. The former are directly
related to actual programming languages and are compositional by definition,
i.e., larger systems can be composed from smaller ones in a structural way. They
come with a variety of algebraic laws, which can be used to manipulate system
specifications. The advantages of the latter formalism are simplicity and more
intuitive semantics of execution: global states and global activities are not basic
notions, but are derived from their local counterparts. Petri nets are one of
relatively few formalisms admitting the true concurrency semantics , i.e., they
can model concurrent execution of several actions directly, in contrast to the
interleaving semantics of concurrency, where such an execution is modelled by a
set of sequential runs, each of which is a permutation of these actions.1 Moreover,

1Though some process algebras also admit the true concurrency semantics, it is usually
given in a form resembling Petri net unfoldings (see, e.g., [71]).

INTRODUCTION viii

Petri nets come with an intuitive graphical representation, and have useful links
to graph theory and linear algebra. Some work has been done to combine the
advantages of both formalisms (see, e.g., [3–5,33,34,67]).

Classical logic is not well-suited for specifying and proving properties of con-
current computations, and [81] proposed to use temporal logic as a formalism
suitable for this purpose. But even in such logics a formal proof of correctness
can be much longer than the original system specification, and thus a hand-
made proof itself is subject to errors. The only viable option is computer-aided
verification.

The main two methods are theorem proving (see, e.g., [38]), in which a com-
puter is used to derive a logic proof of correctness, and model checking (see,
e.g., [13]), in which the verification of a system is carried out using a finite rep-
resentation of its state space (sometimes a combination of these two methods
is used). The former, while being very general, is semi-automatic and requires
considerable human interaction, which is the main obstacle to the widespread
use of this method. This problem is inherent for this method due to the classic
incompleteness results for first-order logics (see, e.g., [25, 39, 83, 90]) and the al-
gorithmic complexity of exploring the space of possible proofs. In this thesis we
concentrate on the latter method, which often is completely automatic.

The main drawback of model checking is that it suffers from the state space
explosion problem. That is, even a relatively small system specification can (and
often does) yield a very large state space. To alleviate this problem, a number of
techniques have been proposed. They can roughly be classified as aiming at an
implicit compact representation (e.g., in the form of a binary decision diagram,
or BDD, see [8]) of the full state space of a reactive concurrent system, or at
an explicit generation of its reduced (though sufficient for a given verification
task) representation (e.g., abstraction ([12]) and partial order reduction ([37])
techniques). Among them, a prominent technique is McMillan’s (finite prefixes
of) Petri net unfoldings (see, e.g., [30, 31, 74, 85]). It relies on the partial order
view of concurrent computation, and represents system states implicitly, using
an acyclic net. More precisely, given a Petri net Σ, the unfolding technique aims
at building a labelled acyclic net UnfΣ (a prefix) satisfying two key properties:

• Completeness. Each reachable marking of Σ is represented by at least
one ‘witness’, i.e., one marking of UnfΣ reachable from its initial marking.
Similarly, for each possible firing of a transition at any reachable state of
Σ there is a suitable ‘witness’ event in UnfΣ.

• Finiteness. The prefix is finite and thus can be used as an input to model
checking algorithms, e.g., those searching for deadlocks.

A prefix satisfying these two properties can be used for model checking as a
condensed representation of the state space of a system. Indeed, it turns out that
often such prefixes are exponentially smaller than the corresponding reachability
graphs, especially if the system at hand exhibits a lot of concurrency.

INTRODUCTION ix

1 2 3

4

5

6

7 8

Figure 1: A Petri net describing the dependencies between the chapters.

Traditionally, prefix-based model checking is typically done in two steps: (i)
generating a finite and complete prefix, and (ii) checking a relevant property on
the generated prefix.2 In this thesis, we address both these issues.

Organization of the Thesis

The thesis is organized as follows.

Chapter 1 provides the basic notions concerning Petri nets and their branching
processes.

Chapter 2 discusses the theory of canonical prefixes of Petri net unfoldings.

Chapter 3 describes the test bench and the set of benchmarks used in further
chapters to evaluate the algorithms developed there.

Chapter 4 addresses the issue of efficient computation of possible extensions of
a prefix.

Chapter 5 presents a parallel unfolding algorithm.

Chapter 6 generalizes the prefix-based model checking technique to a class of
high-level Petri nets.

2Another possible approach would be to check the property while generating a prefix, but
this approach is largely the topic of future research, and is not discussed in the thesis.

INTRODUCTION x

Chapter 7 describes how integer programming can be employed for efficiently
model checking a Petri net, using a finite and complete prefix of its unfold-
ing.

Chapter 8 shows how this technique can be applied to check state encoding
properties of specifications of asynchronous circuits.

The Petri net shown in Figure 1 describes the interdependencies between the
chapters. Any of its runs gives a sequence in which the chapters could be read.
Its unfolding (coinciding with the net itself) yields a partial order on the chapters.
For example, Chapter 1 should be read before Chapter 2, whereas Chapters 4
and 5 can be read in any order (one can even attempt to read them concurrently).
The reachability graph of this Petri net is shown in Figure 2. Its directed paths
starting from the initial state still give valid sequences of chapters, but it is rather
hard to comprehend because of its size. At least, it is not immediately obvious
from it which chapters are dependent and which are not. Thus the state space
explosion problem and the advantages of the unfolding technique can be clearly
seen even on this simple example!

INTRODUCTION xi

1 2 3

5

4

6

7

4

6

7

5

6

7

4

5

7

4

5

6

8

6

7

4

7

4

6

8

5

6

8

4

5

6

4

5

8

5

7

6

8

5

8

5

6

4

8

4

5

4

6

7

5

8

4

6

Figure 2: The reachability graph of the Petri net shown in Figure 1.

Chapter 1

Basic Notions

In this chapter, we present the basic notions which will be used throughout the
thesis.

1.1 Multisets

A multiset over a set X is a function µ : X → N
df
= {0, 1, 2, . . .}. Note that any

subset of X may be viewed (through its characteristic function) as a multiset
over X. We denote x ∈ µ if µ(x) ≥ 1, and for two multisets over X, µ and
µ′, we write µ ≤ µ′ if µ(x) ≤ µ′(x) for all x ∈ X. We will use ∅ to denote the

empty multiset defined as ∅(x)
df
= 0, for all x ∈ X. Moreover, a finite multiset

may be represented by explicitly listing its elements (perhaps, with coefficients
separated by ∗) between the {| . . . |} brackets. For example {|2∗a, b, 5∗c|} denotes
the multiset µ such that µ(a) = 2, µ(b) = 1, µ(c) = 5 and µ(x) = 0, for
x ∈ X \ {a, b, c}.

The sum of two multisets µ′ and µ′′ over X is given by (µ′ +µ′′)(x)
df
= µ′(x)+

µ′′(x), the difference by (µ′−µ′′)(x)
df
= max{0, µ′(x)−µ′′(x)}, and the intersection

by (µ′ ∩µ′′)(x)
df
= min{µ′(x), µ′′(x)}, for all x ∈ X. A multiset µ is finite if there

are finitely many x ∈ X such that µ(x) ≥ 1. In such a case, the cardinality of µ

is defined as |µ|
df
=
∑

x∈X µ(x).
The notation {|h(x) | x ∈ µ|}, or, alternatively, h{|µ|}, where µ is a multiset

over X and h : X → Y is a function, will be used to denote the multiset µ′

over Y such that
µ′(y)

df
=

∑

x∈X∧h(x)=y

µ(x) .

For example, {|x2+1 | x ∈ {| − 1, 2 ∗ 0, 1|}|} = h{| − 1, 2 ∗ 0, 1|} = {|2 ∗ 1, 2 ∗ 2|},

where h(x)
df
= x2 + 1.

If f : X → Z
df
= {0,±1,±2, . . .} is a function and µ is a multiset over X then

∑

x∈µ

f(x)
df
=
∑

x∈X

µ(x)f(x)

1

CHAPTER 1. BASIC NOTIONS 2

if the latter sum is defined.
Let � be some strict total order on set X. Then the lexicographical order

�lex and the size-lexicographical order �sl on the multisets over X are defined
as follows:

• µ′�lex µ′′ if there exists x ∈ X such that µ′(x) < µ′′(x) and, for all y ∈ X
such that y � x, µ′(y) = µ′′(y).

• µ′�sl µ
′′ if either |µ′| < |µ′′| or |µ′| = |µ′′| and µ′�lex µ′′.

1.2 Noetherian induction

In this section we discuss the principle of Noetherian induction (see [14, 15] for
more details), which will be used in Chapter 2.

Let � be a strict partial order on a set X. The set of �-predecessors of an
element x ∈ X is defined as {x′ ∈ X | x′

� x}. A set X ′ ⊆ X is called a �-chain
in X if the restriction of � to X ′ is a total order. A �-chain {x1, x2, . . .} ⊆ X is
descending if

· · ·� x2 � x1 .

The order � is well-founded if every descending chain in X has only finitely
many elements.

Proposition 1.1 (Principle of Noetherian Induction). Let � be a strict
well-founded partial order on a set X, and X ′ be a subset of X which contains
an element of X whenever it contains all its �-predecessors. Then X ′ = X.

This principle allows one to prove a property P for all elements of X by
showing that it holds for each element of X whenever it holds for all its �-
predecessors. Indeed, it suffices to apply the above proposition taking X ′ df

=
{x ∈ X | P (x)}. Similarly, one can define a predicate or function for each
element x ∈ X assuming that it has already been defined for all �-predecessors
of x. The principle of Noetherian induction ensures that it will be defined for all
the elements of X.

1.3 Petri nets

A net (with weighted arcs) is a triple N
df
= (P, T,W) such that P and T are

disjoint sets of places and transitions respectively, and W is a multiset over
(P ×T)∪ (T ×P) called the weight function. The net N is called ordinary if W
is a set; in such a case, W can be considered as a flow relation on (P×T)∪(T×P).
A marking of N is a multiset M over P (note that M is finite whenever P is), and
the set of all markings of N will be denoted by M(N). We adopt the standard
rules about drawing nets, viz. places are represented as circles, transitions as
boxes, the weight function by arcs with the indicated weight (we do not draw

CHAPTER 1. BASIC NOTIONS 3

arcs whose weight is 0, and we do not indicate the weight if it is 1), and markings

are shown by placing tokens within circles. The multisets •z
df
= {|y | (y, z) ∈W |}

and z• df
= {|y | (z, y) ∈ W |}, denote the pre- and postset of z ∈ P ∪ T . (Note

that if N is an ordinary net then both •z and z• are sets.) For ordinary nets we

also define •Z
df
=
⋃

z∈Z
•z and Z• df

=
⋃

z∈Z z•, where Z is a set of nodes. We will
assume that •t 6= ∅ 6= t•, for every t ∈ T .

A net system is a pair Σ
df
= (N,M0) comprising a finite net N = (P, T,W) and

an initial marking M0 ∈M(N). A transition t ∈ T is enabled at a marking M if
•t ≤M . Such a transition can be fired , leading to the marking M ′ df

= M− •t+ t•.
We denote this by M [t〉M ′. The set of reachable markings of Σ is the smallest
(w.r.t. ⊆) setRM(Σ) containing M0 and such that if M ∈ RM(Σ) and M [t〉M ′,
for some t ∈ T and M ′ ∈ M(N), then M ′ ∈ RM(Σ). For a finite sequence of
transitions σ = t1 . . . tk, we write M [σ〉M ′ if there are markings M1, . . . ,Mk+1

such that M1 = M , Mk+1 = M ′, and Mi[ti〉Mi+1, for all i = 1, . . . , k.
A marking is deadlocked if it does not enable any transitions. Σ is deadlock-

free if none of its reachable markings is deadlocked. A transition t is dead if
no reachable marking enables it. M ′ covers M , if M ≤ M ′. A marking M is
coverable if there exists M ′ ∈ RM(Σ) such that M ′ covers M .

Σ is k-bounded if, for every reachable marking M and every place p ∈ P ,
M(p) ≤ k, and safe if it is 1-bounded. Moreover, Σ is bounded if it is k-bounded
for some k ∈ N. One can show that the set RM(Σ) is finite iff Σ is bounded.

Note that if a safe net system Σ has arcs of weight more than 1, the transitions
incident to them can never become enabled, and so can be removed (together
with their incoming and outgoing arcs) without changing the behaviour of Σ.
Thus, one can assume that the underlying nets of safe net systems are ordinary.

Places p1, . . . , pk of a net system Σ are mutually exclusive if no reachable
marking puts tokens in more than one of them, i.e., for every M ∈ RM(Σ),
M(pi) ≥ 1 implies M(pj) = 0, for all j ∈ {1, . . . , k} \ {i}.

As an example, consider the net system Σp−c shown in Figure 1.1. At the
initial marking M0 = {|p1, 2 ∗ p2, p3|}, the only enabled transition is t1. It can
fire leading to the marking M1 = {|2 ∗ p2, p3, p4|}, i.e., M0[t1〉M1. At M1, the
only enabled transition is t2, and M1[t2〉M2 = {|p1, p2, p3, p5|}. M2 enables two
transitions, t1 and t3, any of which can fire, and so on. One can show (e.g., by
computing the set RM(Σp−c) of all reachable markings, which is finite in this
case) the following:

• Σp−c is deadlock-free, i.e., none of its reachable marking is deadlocked.

• Σp−c is 2-bounded but not safe.

• The places p1 and p4 of Σp−c are mutually exclusive, whereas the places p2

and p5 are not (note that, e.g., M2 marks both p2 and p5).

CHAPTER 1. BASIC NOTIONS 4

p1 p2

free slots

p3

p4

producer

p5

2-slot buffer

p6

consumer

t1produce t2put t3 take t4 consume

Figure 1.1: A Petri net model of a simple producer-consumer system.

p

t1 t2 t3

t4 t5 t6

2 3
2

2 7

M(p) = 2 + 2#t1σ + 3#t2σ + #t3σ − 2#t3σ − 2#t4σ −#t5σ − 7#t6σ

Figure 1.2: Marking equation (only one place with its environment and initial
marking is shown).

1.4 Marking equation

Let Σ = (N,M0) be a net system, p be one of its places, and σ be a finite
execution sequence of Σ such that M0[σ〉M . By counting the tokens brought
to and taken from p by the transitions in σ it is possible to calculate M(p) as
follows:

M(p) = M0(p) +
∑

t∈T

W ((t, p))#tσ −
∑

t∈T

W ((p, t))#tσ ,

where #tσ denotes the number of times a transition t occurs in σ (see Figure 1.2).
This is a linear equation which holds for every place of Σ. It can be written in
matrix form as follows.

Let p1, . . . , pm and t1, . . . , tn be respectively the places and transitions of Σ.
One can identify a marking M of Σ with the vector (M(p1), . . . ,M(pm)). The
incidence matrix of Σ is an m × n matrix IΣ = (IΣij) such that, for all i ≤ m

CHAPTER 1. BASIC NOTIONS 5

p1

t1 p2

p3

p1

t1 p2

p3

Figure 1.3: Two net systems which have distinct sets of reachable markings but
are indistinguishable by the marking equation. Note that these net systems have
the same incidence matrix and the same initial marking, and so the same set of
solutions of the marking equation.

and j ≤ n,
IΣij

df
= W ((tj, pi))−W ((pi, tj)) .

The Parikh vector of σ is a vector xσ = (#t1σ, . . . , #tnσ). One can show that if
σ is an execution sequence such that M0[σ〉M then M = M0 + IΣ · xσ.

This provides a motivation for investigating the feasibility (or solvability) of
the following marking equation (see also [76–78,88]):

{
M = M0 + IΣ · x
M ∈ Nm and x ∈ Nn .

(1.1)

If M is fixed then the feasibility of the above system is a necessary (but, in
general, not sufficient) condition for M to be reachable from M0. This is so
because the Parikh vector of every execution sequence σ such that M0[σ〉M is a
solution of (1.1), but, in general, (1.1) can have solutions which do not correspond
to any execution sequence of Σ (see Figure 1.3). Therefore, the set of markings
M for which (1.1) is feasible is an overapproximation of the set of reachable
markings of Σ.

A vector x ∈ Nn is Σ-compatible if it is the Parikh vector of some execution
sequence of Σ. Each Σ-compatible vector is a solution of the marking equation
for some reachable marking M , but, in general, not every solution of (1.1) is
Σ-compatible. However, for the class of acyclic nets (in particular, branching
processes defined below), this equation provides an exact characterization of the
set of reachable markings (see, e.g., [77, 78]) — the fact which is crucial for the
approach proposed in Chapter 7.

1.5 Branching Processes

In this section, we recall notions related to net unfoldings (see also [26,30,31,60,
61,85]).

Two nodes (places or transitions), y and y′, of an ordinary net N = (P, T,W)
are in conflict , denoted by y#y′, if there are distinct transitions t, t′ ∈ T such

CHAPTER 1. BASIC NOTIONS 6

that •t∩ •t′ 6= ∅ and (t, y) and (t′, y′) are in the reflexive transitive closure of the
flow relation W , denoted by �. A node y is in self-conflict if y#y.

An occurrence net is an ordinary net ON
df
= (B,E,G), where B is a set of

conditions (places), E is a set of events (transitions) and G is a flow relation,
satisfying the following: ON is acyclic (i.e., � is a partial order); for every b ∈ B,
|•b| ≤ 1; for every y ∈ B ∪ E, ¬(y#y) and there are finitely many y ′ such that
y′ ≺ y, where ≺ denotes the transitive closure of G. Min(ON) will denote the
set of minimal (w.r.t. ≺) elements of B ∪ E. The relation ≺ is the causality
relation. A ≺-chain of events is a finite or infinite sequence of events such that
for each two consecutive events, e and f , it is the case that e ≺ f . Two nodes
are concurrent , denoted y co y′, if neither of y#y′, y � y′, y′ � y holds. Two
events e and f are separated if there is an event g such that e ≺ g ≺ f .

Definition 1.2 (Branching process). A homomorphism from an occurrence
net ON = (B,E,G) to a net system Σ is a mapping h : B ∪ E → P ∪ T such
that

• h(B) ⊆ P and h(E) ⊆ T (conditions are mapped to places, and events to
transitions).

• For each e ∈ E, h{|•e|} = •h(e) and h{|e•|} = h(e)• (transition environments
are preserved).

• h{|Min(ON)|} = M0 (minimal conditions correspond to the initial mark-
ing).

• For all e, f ∈ E, if •e = •f and h(e) = h(f) then e = f (there is no
redundancy).

A branching process of Σ is a pair π
df
= (ON , h) such that ON is an occurrence

net and h is a homomorphism from ON to Σ. 3

If an event e is such that h(e) = t then we will often refer to it as being
t-labelled . A branching process π′ = (ON ′, h′) of Σ is a prefix of a branching
process π = (ON , h), denoted π′ v π, if ON ′ = (B′, E ′, G′) is a subnet of
ON = (B,E,G) containing all minimal elements and such that: (i) if e ∈ E ′

and (b, e) ∈ G or (e, b) ∈ G then b ∈ B ′; (ii) if b ∈ B ′ and (e, b) ∈ G then e ∈ E ′;
and (iii) h′ is the restriction of h to B ′ ∪ E ′. For each Σ there exists a unique
(up to isomorphism) maximal (w.r.t. v) branching process Unf max

Σ , called the
unfolding of Σ (see [26]).

Sometimes it is convenient to start a branching process with a (virtual) initial
event ⊥, which has the postset Min(ON), empty preset, and no label; we will
henceforth assume that such an event exists, without drawing it in figures or
treating it explicitly in algorithms. The depth of an event e is defined as the
length of the longest ≺-chain of events ending at e.

An example of a safe net system and two of its branching prefixes is shown in
Figure 1.4, where the homomorphism h is indicated by the labels of the nodes.
The process in Figure 1.4(b) is a prefix of that in Figure 1.4(c).

CHAPTER 1. BASIC NOTIONS 7

p1 p2

p3 p4 p5

p6 p7

t1 t2 t3

t6 t7

t4 t5

(a)

p1 p2

e1 t1 e2 t2 e3 t3

p3 p4 p5

e4t4 e5t5

p6 p7 p6 p7

e6 t6 e7 t7 e8 t6 e9 t7

p1 p2 p1 p2

(b)

p1 p2

e1 t1 e2 t2 e3 t3

p3 p4 p5

e4t4 e5t5

p6 p7 p6 p7

e6 t6 e7 t7 e8 t6 e9 t7

p1 p2 p1 p2

e10 t1 e11 t2 e12 t3 e13 t1 e14 t2 e15 t3

p3 p4 p5 p3 p4 p5

e16t4 e17 t5 e18t4 e19 t5

p6 p7 p6 p7 p6 p7 p6 p7

(c)

Figure 1.4: A net system (a) and two of its branching processes (b,c).

CHAPTER 1. BASIC NOTIONS 8

Configurations and cuts

A configuration of an occurrence net ON is a set of events C such that for all
e, f ∈ C, ¬(e#f) and, for every e ∈ C, f ≺ e implies f ∈ C; since we assume
the initial event ⊥, we additionally require that ⊥ ∈ C. For every event e ∈ E,
the configuration [e]

df
= {f | f � e} is called the local configuration of e, and

〈e〉
df
= [e] \ {e} denotes the set of causal predecessors of e. Moreover, for a set

of events E ′ we denote by C ⊕ E ′ the fact that C ∪ E ′ is a configuration and
C ∩ E ′ = ∅. Such an E ′ is a suffix of C, and C ⊕ E ′ is an extension of C.

The set of all finite (resp. local) configurations of a branching process π will
be denoted by Cπ

fin (resp. Cπ
loc), and we will drop the superscript π in the case

π = Unf max
Σ .

A set of events E ′ is downward-closed if all causal predecessors of the events
in E ′ also belong to E ′. Such a set induces a unique branching process π whose
events are exactly the events in E ′, and whose conditions are the conditions
incident to the events in E ′ (including ⊥).

A set of conditions B ′ such that for all distinct b, b′ ∈ B′, b co b′, is called
a co-set . A cut is a maximal (w.r.t. ⊆) co-set. Every marking reachable from
Min(ON) is a cut.

Let C be a finite configuration of a branching process π. Then the set

Cut(C)
df
=
(⋃

e∈C

e•
)
\
(⋃

e∈C

•e
)

is a cut (note that ⊥ ∈ C); moreover, the multiset of places Mark(C)
df
=

h{|Cut(C)|} is a reachable marking of Σ, called the final marking of C. A mark-
ing M of Σ is represented in π if there is C ∈ Cπ

fin such that M = Mark(C).
Every marking represented in π is reachable in the original net system Σ, and
every reachable marking of Σ is represented in Unf max

Σ .
The following definition is crucial for descriptions of unfolding algorithms.

Definition 1.3. Let π be a branching process of Σ and e be an event of π.
A possible extension of π is a pair (t,D), where D is a co-set in π and t is a
transition of Σ, such that h(D) = •t and π contains no t-labelled event with
preset D. A possible extension (t,D) of π is a (π, e)-extension if D∩ e• 6= ∅, and
e and (t,D) are not separated. 3

The pair (t,D) is an event used by unfolding algorithms to extend π, and
we will take it as being t-labelled and having D as its preset. PotExt(π) and
UpdatePotExt(π, e) will denote the set of possible extensions of π and the set
of (π, e)-extensions, respectively.

Unfolding algorithms, starting from a branching process induced by the initial
event, repeatedly apply the function PotExt to extend it, until certain stopping
criterion is met. An efficient method to compute the value of PotExt is to apply
the function UpdatePotExt to each event generated on the previous step.

CHAPTER 1. BASIC NOTIONS 9

If S is a set of possible extensions of a prefix π, we will denote by π ⊕ S a
prefix obtained by adding the events from S together with their postsets to π.
Note that by the definition of a possible extension, a branching process cannot
contain a t-labelled event with preset D, for any (t,D) ∈ S.

As an example, consider the branching process π̃ induced by events e1–e5

in Figure 1.4(c). Then PotExt(π̃) = {e6, e7, e8, e9}, UpdatePotExt(π̃, e4) =
{e6, e7}, and π̃⊕{e6, e8} is the branching process induced by events e1–e6 and e8.

Chapter 2

Canonical Prefixes

Though Petri net unfoldings are infinite whenever the original net systems have
infinite runs, it turns out that they can often be truncated in such a way that the
resulting prefixes, though finite, contain enough information to decide a certain
behavioural property, e.g., deadlock freeness. We then say that the prefixes are
complete for this property. Historically (see, e.g., [29–31, 74, 75, 85]), the com-
pleteness was intuitively understood as an ability to generate the full unfolding
from the given prefix, i.e., every reachable marking and every transition firing
of the original net system must be represented in the prefix. We examine and
generalize this notion of completeness, making it more applicable to practical
model checking. There are two fundamental issues which we wish to address in
this chapter, namely the precise semantical meaning of completeness, and the
algorithmic problem of generating complete prefixes.

This chapter is based on the results developed in [60,61].

2.1 Semantical meaning of completeness

A direct motivation to re-examine the issue of completeness was provided by
an experience of dealing with unfoldings of Signal Transition Graphs (STGs)
in [62, 63], used to specify the behaviour of asynchronous circuits. Briefly, an
STG (see [86]) is a Petri net together with a set of binary signals (variables),
which can be set or reset by transition firings. A transition can either change the
value of one specific signal, or affect no signals at all. Thus, the current encoding
(the vector of signal values) depends not on the current marking, but rather on
the sequence of transition firings that leads to it. In effect, one is interested in a
‘combined’ system state which includes both the current marking and the current
values of all binary signals. Therefore, in order to ensure that a prefix represents
the entire state space, some additional information (in this case, the valuation
of signal variables) must be taken into account. Clearly, the completeness as
sketched above does not guarantee this (see the example in Figure 8.3).

We soon found out that the situation can also be a totally opposite one,
i.e., the standard notion of completeness can be unnecessarily strong. As an

10

CHAPTER 2. CANONICAL PREFIXES 11

example, one can consider the building of a prefix when there is a suitable notion
of symmetric (equivalent) markings, as described in [24]. The idea is then to
ensure that each marking of Σ is represented in UnfΣ either directly or by a
symmetric marking. Such an approach may significantly reduce the size of the
prefix.

Having analyzed examples like these, we have concluded that the original
notion of completeness, though sufficient for certain applications, may be too
crude and inflexible if one wants to take into consideration more complicated
semantics of concurrent systems, or their inherent structural properties.

2.2 Algorithmics of prefix generation

The essential feature of the existing unfolding algorithms (see, e.g., [29–31,45,46,
74, 85]) is the use of cut-off events, beyond which the unfolding starts to repeat
itself and so can be truncated without loss of information. So far, cut-off events
were considered as an algorithm-specific issue, and were defined w.r.t. the part of
the prefix already built by an unfolding algorithm (in other words, at run-time).
Such a treatment was quite pragmatic and worked reasonably well. But, in more
complicated situations, the dynamic notion of a cut-off event may hinder defining
appropriate algorithms and, in particular, proving their correctness. This has
become apparent when dealing with a parallel algorithm for generating prefixes
in [45, 46], where the degree of possible non-determinism brought up both these
issues very clearly. As a result, the correctness proof given there is long and hard
to comprehend. To conclude, the algorithm-dependent notion of a cut-off event
is becoming increasingly difficult to manage.

There is also an important aspect linking cut-off events and completeness,
which was somewhat overlooked in previous works. To start with, the notion of
a complete prefix given in [30,31] did not mention cut-off events at all. But, with
the development of model checking algorithms based on unfoldings, it appeared
that cut-off events are heavily employed by almost all of them. Indeed, the dead-
lock detection algorithm presented in [74] is based on the fact that a Petri net
is deadlock-free iff each configuration of its finite and complete prefix can be ex-
tended to one containing a cut-off event, i.e., a Petri net has a deadlock iff there
is a configuration which is in conflict with all cut-off events. The algorithms pre-
sented in [40–42,44,52–55,77] use the fact that there is a certain correspondence
between the deadlocked markings of the original net and the deadlocked mark-
ings of a finite and complete prefix, and cut-off events are needed to distinguish
the ‘real’ deadlocks from the ‘fake’ ones, introduced by truncating the unfold-
ing. Moreover, those algorithms need a stronger notion of completeness than
the one presented in [30, 31], in order to guarantee that deadlocks in the prefix
do correspond to deadlocks in the original Petri net. Indeed, according to the
notion of completeness presented in [30,31], a marking M enabling a transition t
may be represented by a deadlocked configuration C in a complete prefix, as

CHAPTER 2. CANONICAL PREFIXES 12

long as there is another configuration C ′ representing this marking and enabling
an instance of t. This means that the prefix may contain a deadlock, which
does not correspond to any deadlock in the original net system (see Figure 2.1).
Since all these algorithms make certain assumptions about the properties of a
prefix with cut-off events, it is natural to formally link cut-off events with the
notion of completeness, closing up a rather uncomfortable gap between theory
and practice.

2.3 The new approach

In order to address the issues of semantical meaning of completeness and algorith-
mic pragmatics relating to Petri net unfolding prefixes, we propose a parametric
setup in which questions concerning, e.g., completeness and cut-off events, could
be discussed in a uniform and general way. One parameter captures the infor-
mation we intend to retain in a complete prefix, while the other two specify
under which circumstances a given event can be designated as a cut-off event.
Crucially, we decided to shift the emphasis from markings to the execution his-
tories of Σ, and the former parameter, a suitably defined equivalence relation
≈, specifies which executions can be regarded as equivalent. Intuitively, one has
to retain at least one representative execution from each equivalence class of ≈.
(The standard case in [29–31,74,85] is then covered by regarding two executions
as equivalent iff they reach the same marking.)

For efficiency reasons, the existing unfolding algorithms usually consider only
local configurations when deciding whether an event should be designated as
a cut-off event. But one can also consider arbitrary finite configurations for
such a purpose if the size of the resulting prefix is of paramount importance
(see, e.g., [43]). As a result, the final definition of the setup, called here a
cutting context, contains a parameter which specifies for each event precisely
those configurations which can be used to designate it as a cut-off event. For
a given equivalence relation ≈, we then define what it means for a prefix to be
complete. In essence, we require that all equivalence classes of ≈ are represented,
and that any history involving no cut-off events can be extended (by a single step)
in exactly the same way as in the full unfolding.

The definition of a cutting context leads to the central result of this chap-
ter, namely the algorithm-independent notion of a cut-off event and the related
unique canonical prefix; the latter is shown to be complete w.r.t. the new no-
tion of completeness. Though the canonical prefix is always complete, it may
still be infinite, making it unusable for model checking. We therefore investigate
what guarantees the finiteness of the canonical prefix and, in doing so, formu-
late and prove a version of König’s Lemma for branching processes of (possibly
unbounded) Petri nets.

To summarize, this chapter addresses both semantical and algorithmic prob-
lems using a single device, namely the canonical prefix. The theoretical notion

CHAPTER 2. CANONICAL PREFIXES 13

of a complete prefix is useful as long as it can be the basis of a practical prefix-
building algorithm. We show that this is indeed the case, generalizing the already
proposed unfolding algorithm presented in [30, 31] as well as the parallel algo-
rithm from [45, 46]. We believe that the approach presented in this chapter
results in a more elegant framework for investigating issues relating to unfolding
prefixes, and provides a powerful and flexible tool to deal with different variants
of the unfolding technique.

2.4 König’s Lemma for branching processes

König’s Lemma (see [66]) states that a finitely branching, rooted, directed acyclic
graph with infinitely many nodes reachable from the root has an infinite path.1

We prove here what can be regarded as a version of such a result for branching
processes of Petri nets.

Proposition 2.1. A branching process π of a net system Σ is infinite iff it
contains an infinite ≺-chain of events.

Proof. The ‘if’ part of the statement is trivial. To prove the ‘only if’ part,
we observe that if π is infinite then, by the fact that branching on each event
(including ⊥) is finite, π comprises infinitely many events.

For every event e of π, let d(e) be the depth of e, and Ek be the set of events
of π with the depth not greater than k. By induction, one can show that, for
every k, Ek is finite. Indeed, the base case is trivial, as E1 = {⊥}. Now, assuming
that Ek is finite we prove that Ek+1 is finite. By the induction hypothesis and
the finiteness of the set e• for every event e (including ⊥),

⋃
e∈Ek

e• is finite.
Since

⋃
e∈Ek+1

•e ⊆
⋃

e∈Ek
e• (note that ⊥ ∈ Ek for every k) and •e is non-

empty for every event e 6= ⊥, we get by the finiteness of Σ and the last property
(irredundancy) in the Definition 1.2 of a branching process that Ek+1 is finite.
(Compare the proof of Proposition 4.8 in [31].)

Now, consider a graph G on the set of events of π, such that there is an arc
from e to e′ iff e ≺ e′ and d(e′) = d(e) + 1. Clearly, G is an infinite, rooted,
directed acyclic graph with all its nodes being reachable from the root ⊥. By the
finiteness of Ek for every k, G is finitely branching, and so, by König’s Lemma,
there is an infinite path in G. Clearly, such a path determines an infinite ≺-chain
of events in π.

It is worth noting that the above result is not a trivial corollary from the orig-
inal König’s Lemma, since conditions of a branching process can have infinitely
many outgoing arcs.

1The graph may be such that, for every n ∈ N, there is a node with more than n branches,
but no node can have an infinite number of branches. Note also that the existence of an infinite
path is a stronger property than the existence of arbitrary long finite paths.

CHAPTER 2. CANONICAL PREFIXES 14

2.5 Complete prefixes of Petri net unfoldings

As explained in the beginning of the chapter, there exist different methods of
truncating Petri net unfoldings. The differences are related to the kind of infor-
mation about the original unfolding one wants to preserve in the prefix, as well as
to the choice between using either only local configurations (which can improve
the running time of an algorithm), or all finite configurations (which can result
in a smaller prefix). In addition, we need a more general notion of completeness
for branching processes. In this section, we generalize the entire setup so that it
will be applicable to different methods of truncating unfoldings and, at the same
time, allow one to express the completeness w.r.t. properties other than marking
reachability.

2.5.1 Cutting context

In order to cope with different variants of the technique for truncating unfoldings,
we generalize the whole setup, using an abstract parametric model. The first
parameter will determine the information we intend to preserve in a complete
prefix (in the standard case, this is the set of reachable markings). The main idea
behind it is to speak about finite configurations of Unf max

Σ rather than reachable
markings of Σ. Formally, the information to be preserved corresponds to the
equivalence classes of some equivalence relation ≈ on Cfin . The other parameters
are more technical: they specify the circumstances under which an event can be
designated as a cut-off event.

Definition 2.2. A cutting context is a triple

Θ
df
=
(
≈ , � , {Ce}e∈E

)
,

where:

1. ≈ is an equivalence relation on Cfin .

2. �, called an adequate order (compare [31, Definition 4.5]), is a strict well-
founded partial order on Cfin refining ⊂, i.e., C ′ ⊂ C ′′ implies C ′

� C ′′.

3. ≈ and � are preserved by finite extensions, i.e., for every pair of configu-
rations C ′ ≈ C ′′, and for every suffix E ′ of C ′, there exists2 a finite suffix
E ′′ of C ′′ such that

(a) C ′′ ⊕ E ′′ ≈ C ′ ⊕ E ′, and

(b) if C ′′
� C ′ then C ′′ ⊕ E ′′

� C ′ ⊕ E ′.

2Note that unlike [30, 31], we do not require that E ′′ = I2
1 (E′), where I2

1 is the ‘natural’
isomorphism between the finite extensions of C ′ and C ′′. That isomorphism is defined only if
Mark(C ′) = Mark(C ′′), and thus cannot be used in the proposed generalized setup.

CHAPTER 2. CANONICAL PREFIXES 15

4. {Ce}e∈E is a family of subsets of Cfin . 3

The main idea behind the adequate order is to specify which configurations
will be preserved in the complete prefix; it turns out that all �-minimal config-
urations in each equivalence class of ≈ will be preserved. The last parameter
is needed to specify the set of configurations used later to decide whether an
event can be designated as a cut-off event. For example, Ce may contain all finite
configurations of Unf max

Σ , or, as it is usually the case in practice, only the local
ones. We will say that a cutting context Θ is dense (saturated) if Ce ⊇ Cloc (resp.
Ce = Cfin), for all e ∈ E.

In practice, Θ is usually dense (or even saturated, see [43]), and at least the
following cases of the adequate order � and the equivalence ≈ have been shown
in the literature to be of interest:

Adequate orders

• C ′
�m C ′′ if |C ′| < |C ′′|. This is the original McMillan’s adequate

order (see [30, 31, 75]). It is adequate for arbitrary net systems, but,
in general, not total.

• C ′
�sl C ′′ if h{|C ′|}�sl h{|C

′′|}, where� is an arbitrary total order on
the transitions of the original net system. This is an adequate order
for arbitrary net systems, proposed in [31]. Though it refines �m , it
is, in general, not total.

• C ′
�erv C ′′ if either C ′

�sl C ′′ or h{|C ′|} = h{|C ′′|} and C ′�f C ′′,
where � is an arbitrary total order on the transitions of the original
net system and �f is built upon � as follows: C ′�f C ′′ if there
exists i ∈ N \ {0} such that h{|Fi(C

′)|}�sl h{|Fi(C
′′)|} and, for every

j ∈ {0, . . . , i − 1}, h{|Fj(C
′)|} = h{|Fj(C

′′)|}. Here Fk(C) is the k-th
level of the Foata normal form of C, defined as the set of events of C
whose depth in the unfolding is k. It is shown in [30,31] that �erv is a
total adequate order for safe net systems. It refines both �m and �sl .

Equivalence relations

• C ′≈marC
′′ if Mark(C ′) = Mark(C ′′). This is the most widely used

equivalence (see [29–31, 43, 45, 46, 74, 85]). Note that the equivalence
classes of ≈mar correspond to the reachable markings of Σ.

• C ′≈codeC
′′ if Mark(C ′) = Mark(C ′′) and Code(C ′) = Code(C ′′), where

Code is the signal coding function. Such an equivalence is used
in [86] for unfolding Signal Transition Graphs (STGs) specifying asyn-
chronous circuits (see Chapter 8).

• C ′≈symC ′′ if Mark(C ′) and Mark(C ′′) are symmetric markings (ac-
cording to some suitable notion of symmetry, see, e.g., [24, 49]). This
equivalence is the basis of the approach exploiting symmetries to re-
duce the size of the prefix, described in [24].

CHAPTER 2. CANONICAL PREFIXES 16

For an equivalence relation ≈, we denote by R
fin
≈

df
= Cfin/≈ the set of its equiv-

alence classes, and by R
loc
≈

df
= Cloc/≈ the set of the equivalence classes of the re-

striction of ≈ on the set of local configurations. We will also denote by ΘERV
df
=(

≈mar , �erv , {Cloc}e∈E

)
the cutting context corresponding to the framework

used in [30,31,85].
We will write e�f whenever [e]�[f]. Clearly, � is a well-founded partial order

on the set of events. Hence, we can use Noetherian induction (see Section 1.2),
i.e., it suffices to define or prove something for an event under the assumption
that it has already been defined or proved for all its �-predecessors.

Proposition 2.3. Let e and f be two events, and C be a finite configuration.

1. If f ≺ e then f � e.

2. If f ∈ C and C � [e] then f � e.

Proof. The first part follows from the fact that f ≺ e implies [f] ⊂ [e], and
so, by Definition 2.2(2), [f] � [e]. To show the second part, we observe that
f ∈ C implies [f] ⊆ C, i.e., either [f] = C and f � e trivially holds, or, by
Definition 2.2(2), [f] � C, and thus [f] � [e] by the transitivity of �.

In the rest of this chapter, we assume that the cutting context Θ is fixed.

2.5.2 Completeness of branching processes

We now introduce a new notion of completeness for branching processes.

Definition 2.4. A branching process π is complete w.r.t. a set Ecut of events of
Unf max

Σ if the following hold:

1. If C ∈ Cfin , then there is C ′ ∈ Cπ
fin such that C ′ ∩ Ecut = ∅ and C ≈ C ′.

2. If C ∈ Cπ
fin is such that C ∩Ecut = ∅, and e is an event such that C⊕{e} ∈

Cfin , then C ⊕ {e} ∈ Cπ
fin .

A branching process π is complete if it is complete w.r.t. some set Ecut . 3

Note that, in general, π remains complete after removing all events e for
which 〈e〉 ∩ Ecut 6= ∅; i.e., without affecting the completeness, one can truncate
a complete prefix so that the events from Ecut (usually referred to as cut-off
events) will be either maximal events of the prefix or not in the prefix at all.
Note also that the last definition depends only on the equivalence ≈, and not on
the other components of the cutting context.

For the relation ≈mar , each reachable marking is represented by a configura-
tion in Cfin and, hence, also by a configuration in Cπ

fin , provided that π is complete
(see Definition 2.4). This is what is usually expected from a correct prefix. But
even in this special case, the proposed notion of completeness differs from that

CHAPTER 2. CANONICAL PREFIXES 17

(a)

p1

p2

p3

p4

t1

t2

t3

t4

p5

p6

t5 p7

(b)

p1

p2

p3

p4

e1

t1

e2

t2

e3

t3

e4

t4

p5

p5

p6

p6

e5

t5 p7

Figure 2.1: A Petri net (a) and one of its branching processes (b), which is
complete w.r.t. the definition used in [30,31], but not w.r.t. Definition 2.4. Note
that the configuration {e1, e4} does not preserve firings and introduces a fake
deadlock. In order to make this prefix complete w.r.t. Definition 2.4 one has to
add another instance of t5, consuming the conditions produced by e1 and e4.

presented in [30, 31, 85], since it requires all configurations in Cπ
fin containing no

events from Ecut to preserve all transition firings, rather than the existence of a
configuration preserving all firings. Figure 2.1 and Section 2.2 justify why such
a stronger property is desirable. One can easily prove that this notion is strictly
stronger than the one considered in [30, 31], i.e., that the completeness in the
sense of Definition 2.4 implies the completeness in the sense of [30, 31], but not
vice versa. However, it should be noted that the proof of completeness in [30,31]
almost gives the stronger notion; we have adopted it (see Proposition 2.9) with
relatively few modifications.

As an example, consider the net system in Figure 1.4. If ≈ is taken to
be ≈mar then the prefix in Figure 1.4(b) is not complete w.r.t. any set Ecut

for the following reason. The reachable marking {p1, p7} is only represented
by the local configurations of e6 and e8; for completeness, at least one of these
events would not be in Ecut , but then its local configuration would have an
extension with a t1-labelled event, which is not the case. In contrast, the prefix
in Figure 1.4(c) is complete w.r.t. the set Ecut = {e5, e16, e17}.

3 Notice that
the events e8, e9, e13–e15, e18, and e19 can be removed from the prefix without
affecting its completeness.

3This choice of Ecut is not unique: one could have chosen, e.g., Ecut = {e4, e18, e19}.

CHAPTER 2. CANONICAL PREFIXES 18

2.6 Canonical prefix

In this section, we develop the central results of this chapter. First, we show that
cut-off events can be defined without resorting to any algorithmic argument. This
yields a definition of the canonical prefix, and we then prove several of its relevant
properties.

2.6.1 Static cut-off events

In [30,31], the notion of a cut-off event was considered as algorithm-specific, and
was given w.r.t. the already built part of a prefix. Now we define cut-off events
w.r.t. the whole unfolding instead, so that it will be independent of an algorithm
(hence the term ‘static’), together with feasible events, which are precisely those
events whose causal predecessors are not cut-off events, and as such must be
included in the prefix determined by the static cut-off events.

Definition 2.5. The set of feasible events, denoted by fsbleΘ, and the set of
static cut-off events, denoted by cutΘ, are two sets of events of Unf max

Σ defined
inductively, in the following way:

1. An event e is a feasible event if 〈e〉 ∩ cutΘ = ∅.

2. An event e is a static cut-off event if it is feasible, and there is a configu-
ration C ∈ Ce such that C ⊆ fsbleΘ \ cutΘ, C ≈ [e], and C � [e]. In what
follows, any C satisfying these conditions will be called a corresponding
configuration of e. 3

Note that fsbleΘ and cutΘ are well-defined sets due to Noetherian induction
(see Section 1.2). Indeed, when considering an event e, by the well-foundedness of
� and Proposition 2.3(1), one can assume that for the events in 〈e〉 it has already
been decided whether they are in fsbleΘ or in cutΘ. And, by Proposition 2.3(2),
the same holds for the events in any configuration C satisfying C�[e]. Therefore,
the status of each event (whether it is feasible or not, and whether it is a static
cut-off event or not) depends only on its �-predecessors.

The above definition implies that ⊥ ∈ fsbleΘ since 〈⊥〉 = ∅. Furthermore,
⊥ /∈ cutΘ, since ⊥ cannot have a corresponding configuration. Indeed, [⊥] = {⊥}
is the smallest (w.r.t. ⊆) configuration, and so, by Definition 2.2(2), it is also
�-minimal.

Note that the structure of adequate orders can be quite complicated, in par-
ticular it is possible for an event to have infinitely many �-predecessors (see
Figure 2.2). This means that there might not exist a one-to-one correspondence
F : E → N between the events of a branching process and natural numbers such
that e′ � e′′ iff F (e′) < F (e′′). Thus the standard induction on natural num-
bers is not always applicable, which justifies the use of Noetherian induction in
Definition 2.5.

CHAPTER 2. CANONICAL PREFIXES 19

p1

p2 p3

t1

t2

(a)

p1

e1

t1 p1

e2

t1 p1

. . .

p1

f

t1 p3

(b)

Figure 2.2: A Petri net (a) and its unfolding (b). If the adequate order is
defined as C ′

� C ′′ ⇐⇒ C ′ ⊂ C ′′ ∨ f ∈ C ′′ \ C ′ then f has infinitely many
�-predecessors.

Remark 2.6. A näıve attempt to define an algorithm-independent notion of a
cut-off event as an event e for which there is a configuration C ∈ Ce such that
C ≈ [e] and C � [e] generally fails for non-saturated cutting contexts, e.g., when
(as it is often the case in practice) only local configurations can be used as cut-
off correspondents. Indeed, a corresponding local configuration C of a cut-off
event e defined in this way may contain another cut-off event. Though in this
case Unf max

Σ contains another corresponding configuration C ′ ≈ C with no cut-off
events and such that C ′

� C, C ′ is not necessarily local (see Figure 2.3).
The proposed approach, though slightly more complicated, allows one to

deal uniformly with arbitrary cutting contexts. Moreover, it coincides with the
described näıve approach when Θ is saturated. 3

Proposition 2.7. Let e be an event of Unf max
Σ .

1. e ∈ fsbleΘ iff 〈e〉 ⊆ fsbleΘ \ cutΘ.

2. e ∈ cutΘ implies e ∈ fsbleΘ.

Proof. The ‘if’ part of the first clause follows directly from Definition 2.5(1). To
prove the ‘only if’ part, suppose that g /∈ fsbleΘ \ cutΘ for some g ≺ e. Since
e ∈ fsbleΘ and thus 〈e〉∩cutΘ = ∅ by Definition 2.5(1), g /∈ fsbleΘ. Therefore, by
Definition 2.5(1), 〈g〉 ∩ cutΘ 6= ∅, and so 〈e〉 ∩ cutΘ 6= ∅, a contradiction. Hence
〈e〉 ⊆ fsbleΘ \ cutΘ.

The second clause follows directly from Definition 2.5(2).

2.6.2 Canonical prefix and its properties

Once we have defined the feasible events, the notion of the canonical prefix
arises quite naturally, after observing that the ‘only if’ part of Proposition 2.7(1)
implies that fsbleΘ is a downward-closed set of events.

Definition 2.8 (Canonical Prefix). The branching process Unf Θ
Σ induced by

the set of events fsbleΘ is called the canonical prefix of Unf max
Σ . 3

CHAPTER 2. CANONICAL PREFIXES 20

p1

p2

t1

t2

t3

t4 p3 t5 p4

p5

(a)

c1p1

c2p2

e1

t1

e2

t2

e3

t3

e4

t4

c3 p4

c4

p2

c5 p4

c6 p5

c7

p3

e5

t3

e6

t5

c8 p5

c9 p4

c10 p5

(b)

Figure 2.3: A Petri net (a) and its unfolding (b). Assuming the cutting context
ΘERV , e6 is a cut-off event according to the näıve definition given in Remark 2.6,
with a corresponding configuration C

df
= [e5]. However, C contains another cut-

off event, viz. e2 (with [e1] as a corresponding configuration), and thus is not in
the prefix. Though the unfolding contains another corresponding configuration
C ′ df

= {e1, e3} with no cut-off events and such that C ′≈marC≈mar [e6] and C ′
�erv

C �erv [e6], C ′ is not local.

Note that Unf Θ
Σ is uniquely determined by the cutting context Θ.

In what follows, we prove several fundamental properties of Unf Θ
Σ . Note that,

unlike those given in [30,31], the adduced proofs are not algorithm-specific.

Proposition 2.9 (Completeness). Unf Θ
Σ is complete w.r.t. Ecut = cutΘ.4

Proof. (Compare the proof of Proposition 4.9 in [31]).

Let π
df
= Unf Θ

Σ . To show Definition 2.4(1), suppose that C ∈ Cfin . Let
C ′ ∈ Cfin be �-minimal among the configurations satisfying C ′ ≈ C. Note that C ′

exists since, by Definition 2.2(2), � is well-founded. Suppose that C ′∩cutΘ 6= ∅,
i.e., there is an event e ∈ C ′ ∩ cutΘ. Then C ′ = [e]⊕E ′, for some finite suffix E ′

of [e]. Let Ce be a corresponding configuration of e. Since Ce ≈ [e] and Ce � [e],
by Definition 2.2(3), there exists a suffix E ′′ of Ce such that Ce ⊕ E ′′ ≈ [e]⊕ E ′

and Ce ⊕ E ′′
� [e] ⊕ E ′, i.e., Ce ⊕ E ′′ ≈ C ′ ≈ C and Ce ⊕ E ′′

� C ′. Since �

is strict, this contradicts the choice of C ′, and so C ′ ∩ cutΘ = ∅. Therefore,
by Definition 2.5(1), each event of C ′ is feasible, and so C ′ is a configuration of
Unf Θ

Σ containing no events from Ecut .

4Since the new notion of completeness is different from that given in [30, 31], we have to
prove a stronger property than the one stated there, viz. that all configurations containing no
cut-off events preserve all firings.

CHAPTER 2. CANONICAL PREFIXES 21

p1

t1 p2

p3t2

t3 p4

(a)

p1

e1

t1 p2

p3

e2

t3 p4

e3

t2 p1

(b)

Figure 2.4: An unbounded net system (a) and its canonical prefix (b). The
cutting context is such that C ′ ≈ C ′′ ⇔ Mark(C ′) ∩ {p1, p3, p4} = Mark(C ′′) ∩
{p1, p3, p4} and {⊥} ∈ Ce3

, and so e3 is a static cut-off event.

To show Definition 2.4(2), suppose that C ∈ Cπ
fin , C∩Ecut = ∅, and C⊕{f} ∈

Cfin . Then, by Proposition 2.7(1), f ∈ fsbleΘ, and so C ⊕ {f} ∈ Cπ
fin .

Having proved that the canonical prefix is always complete, we now set out
to analyze its finiteness. This property is, clearly, crucial if one intends to use
such a prefix for model checking.

Proposition 2.10 (Finiteness I). Unf Θ
Σ is finite iff there is no infinite ≺-chain

of feasible events in Unf max
Σ .

Proof. Follows directly from Definition 2.8 and Proposition 2.1.

Thus, in order to guarantee that the canonical prefix is finite, one should
choose the cutting context so that the Ce’s contain enough configurations, and
≈ is coarse enough, to cut each infinite ≺-chain. It is interesting to observe that
certain cutting contexts sometimes allow one to produce finite canonical prefixes
even for unbounded net systems. Figure 2.4(a) shows a net system modelling a
loop, where place p2, used for counting the number of iterations, is unbounded.
If ≈ ignores the value of this counter, it is possible to build the finite canonical
prefix shown in Figure 2.4(b).

A necessary condition for the finiteness of the canonical prefix is the finiteness
of the set R

fin
≈ of the equivalence classes of ≈. Moreover, this becomes also a

sufficient condition if Θ is dense. The following result provides quite a tight and
practical indication whether Unf Θ

Σ is finite or not.

Proposition 2.11 (Finiteness II).

1. If R
fin
≈ is finite and Θ is dense, then Unf Θ

Σ is finite.

2. If R
fin
≈ is infinite, then Unf Θ

Σ is infinite.

CHAPTER 2. CANONICAL PREFIXES 22

Proof. (1) (Compare the proof of Proposition 4.8 in [31].)
By Proposition 2.10, it is enough to show that there is no infinite ≺-chain

of feasible events in Unf max
Σ . To the contrary, suppose that such a chain e1 ≺

e2 ≺ · · · does exist. Since R
fin
≈ is finite, there exist i, j ∈ N such that i < j and

[ei] ≈ [ej]. Since ei ≺ ej, we have [ei] ⊂ [ej], and so ei � ej by Definition 2.2(2).
Since Θ is dense, [ei] ∈ Cej

, and since ej is feasible, no event in [ei] belongs to
cutΘ. Thus, ej ∈ cutΘ and has no feasible causal successors, a contradiction.

(2) By Proposition 2.9, Unf Θ
Σ is complete. Therefore, it contains at least one

configuration from every equivalence class of ≈. Since a finite branching process
contains only a finite number of configurations, Unf Θ

Σ is infinite.

Corollary 2.12 (Finiteness III). Let ≈ be either of ≈mar , ≈code , ≈sym .

1. If Σ is bounded and Θ is dense, then Unf Θ
Σ is finite.

2. If Σ is unbounded, then Unf Θ
Σ is infinite.

Proof. Follows from Proposition 2.11 and the fact that each of the three equiv-
alences has a finite number of equivalence classes iff Σ is bounded. Indeed,
since there are finitely many signals, the set Code(Cfin) is finite, and so the set
of combined states {(Mark(C),Code(C)) | C ∈ Cfin}, which is isomorphic to

R
fin
≈code

, is finite iff the set RM(Σ) of reachable markings is finite. For ≈sym ,

|Rfin
≈sym
| ≤ |Rfin

≈mar
|, and so R

fin
≈sym

is finite if so is R
fin
≈mar

. Moreover, since C≈symC ′

implies |Mark(C)| = |Mark(C ′)|, R
fin
≈sym

is infinite whenever R
fin
≈mar

is infinite.

In the important special case of a total adequate order, one can also derive
an upper bound on the number of non-cut-off events in Unf Θ

Σ . A specialized
version of the next result (for Θ = ΘERV) was proven in [30,31,85] for the prefix
generated by the unfolding algorithm presented there.

Proposition 2.13 (Upper Bound). Suppose that � is total and:

• The set R
loc
≈ is finite.

• For every R ∈ R
loc
≈ , there is an integer γR > 0 such that, for every chain

e1 � e2 � · · ·� eγR of feasible events whose local configurations belong to R,
there is at least one i ≤ γR such that [ei] ∈

⋂
[e]∈R Ce.

Then
| fsbleΘ \ cutΘ | ≤

∑

R∈Rloc
≈

γR . (2.1)

Proof. First, we show that every equivalence class R ∈ R
loc
≈ contains at most γR

feasible non-cut-off events. To the contrary, suppose that e1, . . . , eγR+1 ∈ fsbleΘ\
cutΘ are distinct events whose local configurations belong to the same equivalence
class R of ≈. Since � is total, we may assume, without loss of generality, that
e1 � . . . � eγR+1. Hence, for at least one i ≤ γR, [ei] ∈

⋂
[e]∈R Ce ⊆ CeγR+1

. To

CHAPTER 2. CANONICAL PREFIXES 23

summarize, [ei] ≈ [eγR+1] (because these two events are in the same equivalence
class), ei � eγR+1, and [ei] ∈ CeγR+1

, i.e., eγR+1 ∈ cutΘ by Definition 2.5(2),

a contradiction. Thus every equivalence class R ∈ R
loc
≈ contains at most γR

feasible non-cut-off events, and (2.1) holds.

Note that if Θ is dense, then γR = 1 for every R ∈ R
loc
≈ , and

| fsbleΘ \ cutΘ | ≤ |R
loc
≈ | ≤ |R

fin
≈ | .

In the case Θ = ΘERV , the upper bound on the number of non-cut-off events in
the prefix derived in [31] can now be obtained as follows. Since the reachable
markings of Σ correspond to the equivalence classes of ≈mar , | fsbleΘ \ cutΘ | ≤
|RM(Σ)| by the above formula. Using Proposition 2.13, one can easily derive
the following upper bounds for the remaining two equivalences considered in this
chapter (in each case, we assume that Θ is dense):

• |Rfin
≈code
| = |{(Mark(C),Code(C))}C∈Cfin

| ≤ |Mark(Cfin)| · |Code(Cfin)| ≤

|RM(Σ)| · 2|Z|, where Z is the set of STG’s signals. This bound can
be improved to |RM(Σ)| if certain ‘pathological’ STGs are excluded (see
Chapter 8).

• |Rfin
≈sym
| ≤ |Rfin

≈mar
| = |RM(Σ)|.

Note that these upper bounds are rather pessimistic, particularly because we
bound |Rloc

≈ | by |Rfin
≈ |. In practice, the set R

fin
≈ is usually exponentially larger

than R
loc
≈ , and so prefixes are often exponentially smaller than reachability

graphs.

2.7 Unfolding algorithms

We now show that suitable modifications of existing unfolding algorithms gener-
ate the canonical prefix defined in the previous section. In particular, this is the
case for the algorithm presented in [30,31,85] and the parallel unfolding algorithm
proposed in [45,46]. The latter will also be described in detail in Chapter 5.

2.7.1 ERV unfolding algorithm

The unfolding algorithm presented in [30, 31] can be expressed as shown in Fig-
ure 2.5. We will call it the basic algorithm. In the present setup, it is parame-
terized by a cutting context Θ. It is assumed that the function PotExt(Pref)
finds the set of possible extensions of a branching process Pref , according to
Definition 1.3.

When � is a total order, the algorithm in Figure 2.5 is deterministic, and
thus always yields the same result for a given net system. A rather surprising
fact is that this is also the case for an arbitrary adequate order for which the

CHAPTER 2. CANONICAL PREFIXES 24

input : Σ = (N,M0) — a net system
output : Pref — the canonical prefix of Σ’s unfolding (if it is finite)

Pref ← the empty branching process
add instances of the places from M0 to Pref
pe ← PotExt(Pref)
cut off ← ∅
while pe 6= ∅ do

choose e ∈ min�pe
if [e] ∩ cut off = ∅
then

Pref ← Pref ⊕ {e}
pe ← PotExt(Pref)
if e is a cut-off event of Pref then cut off ← cut off ∪ {e}

else pe ← pe \ {e}

Pref ← Pref ⊕ cut off

Note: e is a cut-off event of Pref if there is C ∈ Ce such that
the events of C belong to Pref but not to cut off , C ≈ [e], and C � [e].

Figure 2.5: The unfolding algorithm presented in [30,31].

algorithm is, in general, non-deterministic. This fact was proven in [45, 46] in a
rather complicated way, by comparing two runs of the algorithm. The theory of
canonical prefixes developed in the previous section can provide a more elegant
proof (given later in this section), by showing that the algorithm always generates
the canonical prefix.

2.7.2 Unfolding with slices

An unfolding algorithm which admits efficient parallelization (proposed in [45,46]
and described in more detail in Chapter 5) is shown in Figure 2.6. We will call it
the slicing algorithm. When compared to the basic algorithm, it has the following
modifications in its main loop. A set of events Sl ∈ Slices(pe), called a slice of
the current set of possible extensions, is chosen on each iteration and processed
as a whole, without taking or adding any other events from or to pe.

Definition 2.14 (Slice). A slice Sl is a non-empty subset of pe such that, for
every event e ∈ Sl and every event f � e of Unf max

Σ , f /∈ pe \Sl and pe ∩〈f〉 = ∅.

In particular, if f ∈ pe and f � e for some e ∈ Sl , then f ∈ Sl . The set
Slices(pe) is chosen so that it is non-empty whenever pe is non-empty. Note
that this algorithm, in general, exhibits more non-determinism than the basic
one (it may be non-deterministic even if the order � is total).

CHAPTER 2. CANONICAL PREFIXES 25

input : Σ = (N,M0) — a net system
output : Pref — the canonical prefix of Σ’s unfolding (if it is finite)

Pref ← the empty branching process
add instances of the places from M0 to Pref
pe ← PotExt(Pref)
cut off ← ∅
while pe 6= ∅ do

choose Sl ∈ Slices(pe)
if ∃e ∈ Sl : [e] ∩ cut off = ∅
then

for all e ∈ Sl in any order refining � do
if [e] ∩ cut off = ∅
then

Pref ← Pref ⊕ {e}
if e is a cut-off event of Pref then cut off ← cut off ∪ {e}

pe ← PotExt(Pref)
else pe ← pe \ Sl

Pref ← Pref ⊕ cut off

Note: e is a cut-off event of Pref if there is C ∈ Ce such that
the events of C belong to Pref but not to cut off , C ≈ [e], and C � [e].

Figure 2.6: Unfolding algorithm with slices.

It was proven (in a very complicated way) in [45] that the unfolding algorithms
shown in Figures 2.5 and 2.6 are equivalent, in the sense that prefixes produced
by arbitrary runs of these algorithms are isomorphic. Here, we prove this result
by showing that arbitrary runs of these algorithms generate the canonical prefix.

Since the basic algorithm can be obtained as a special case of the slicing one,
by setting Slices(pe)

df
= {{e} | e ∈ min�pe} (compare [45, 46]), the proofs of

Lemmas 2.15–2.18 below are given only for the slicing algorithm.

Lemma 2.15. Consider the state of the algorithm in Figure 2.6 before adding
an event e to Pref . If cut off ⊆ cutΘ, g ∈ fsbleΘ and g � e, then g is in Pref .

Proof. Let Pref ′ be the state of the variable Pref at the moment when a slice Sl
was chosen in the current iteration of the main loop of the algorithm.

Suppose that g ∈ fsbleΘ is such that g � e and g is not in Pref . Consider the

set G
df
= {h ∈ [g] | h is not in Pref ′}. Clearly, G 6= ∅ since g ∈ G (as g is not in

Pref and the algorithm never removes events from the prefix being constructed).
Thus there exists f ∈ min≺ G. By Proposition 2.3(2), f � e. Moreover, f ∈ pe
because all its causal predecessors are in Pref ′ by the choice of f .

CHAPTER 2. CANONICAL PREFIXES 26

By Definition 2.14 and the facts that e ∈ Sl , f � e and f ∈ pe, we have
that f ∈ Sl . Moreover, if f 6= g then f ≺ g, contradicting Definition 2.14,
since e ∈ Sl , g � e, and pe ∩ 〈g〉 6= ∅ (because f ∈ pe ∩ 〈g〉). Therefore,
g = f ∈ Sl . Since g � e, it was processed before e in the for all loop of the
algorithm. By g ∈ fsbleΘ, cut off ⊆ cutΘ and Proposition 2.7(1), we obtain
that 〈g〉 ∩ cut off ⊆ 〈g〉 ∩ cutΘ = ∅. Moreover, g /∈ cut off when g is being
processed. Therefore, g has been added to Pref before the processing of e, a
contradiction.

Lemma 2.16 (Soundness). If the algorithm in Figure 2.6 adds an event e to
Pref , then e ∈ fsbleΘ. Moreover, such an event e is added to cut off iff e ∈ cutΘ.

Proof. By induction on the number of events added before e. When e is being
added to Pref , the condition [e]∩ cut off = ∅ is satisfied. Since the events in 〈e〉
have been added before, 〈e〉 ∩ cutΘ = ∅ by induction, and so e ∈ fsbleΘ.

If e is then added to cut off due to some corresponding configuration C � [e],
then the events of C belong to Pref but not to cutΘ. Hence, by induction,
C ⊆ fsbleΘ \ cutΘ. Thus, e ∈ cutΘ.

Now assume an event e added to Pref is in cutΘ with a corresponding con-
figuration C. Since, by Proposition 2.3(2), g ∈ C � [e] implies g � e, and by the
fact that cut off ⊆ cutΘ before e was added to Pref (by induction), each g ∈ C
has already been added to Pref by Lemma 2.15. Furthermore, g /∈ cut off , by
C ∩ cutΘ = ∅ and the induction hypothesis. Therefore, the algorithm will add e
to cut off .

Lemma 2.17 (Termination). If Unf Θ
Σ is finite, then the algorithm in Fig-

ure 2.6 terminates in a finite number of steps.

Proof. The only time when events are added to pe is the call to PotExt. Such
a call returns only a finite set of possible extensions, and so pe is always finite. In
the body of the while loop, non-empty (by Definition 2.14) slices are removed
from pe. This is repeated until a new event is added to Pref , which, by the
assumption and Lemma 2.16, can happen only finitely many times, or until pe
becomes empty and the algorithm terminates.

Lemma 2.18 (Completeness). Let e ∈ fsbleΘ. If the algorithm in Figure 2.6
terminates yielding a prefix Pref , then e is an event of Pref .

Proof. Suppose that e is a �-minimal event of fsbleΘ which is not in Pref at
termination. All causal predecessors of e are in Pref , but, by Lemma 2.16, not
in cut off . Thus, e was in pe after possible extensions were computed for the
last time; the condition [e] ∩ cut off = ∅ holds at termination, and thus has
been holding before. Therefore, since pe is empty at termination, e was added
to Pref , a contradiction.

Proposition 2.19 (Correctness). If Unf Θ
Σ is finite, then the algorithms in

Figures 2.5 and 2.6 generate Unf Θ
Σ in a finite number of steps.

CHAPTER 2. CANONICAL PREFIXES 27

Proof. Follows directly from Lemmas 2.16, 2.17, and 2.18, and the fact that the
basic algorithm is a special case of the slicing one.

In particular, this result implies the completeness of prefixes produced by the
basic and slicing algorithms w.r.t. Definition 2.4 (and thus w.r.t. the weaker defi-
nition given in [30,31]), and the fact that arbitrary runs of these non-deterministic
algorithms always yield the same result, viz. the canonical prefix.

2.8 Conclusions

We presented a general framework for truncating Petri net unfoldings. It provides
a powerful tool for dealing with different variants of the unfolding technique, in
a flexible and uniform way. In particular, by finely tuning the cutting contexts,
one can build prefixes which better suit a particular model checking problem. A
fundamental result is that, for an arbitrary Petri net and a cutting context, there
exists a ‘special’ canonical prefix of its unfolding, which can be defined without
resorting to any algorithmic argument.

We introduced a new, stronger notion of completeness of a branching pro-
cess, which was implicitly assumed by many existing model checking algorithms
employing unfoldings (see Figure 2.1 and the explanation in Section 2.2). We
have shown that the canonical prefix is complete w.r.t. this notion, and that it is
exactly the prefix generated by arbitrary runs of the non-deterministic unfolding
algorithms presented in [30,31,45,46,85]. This gives a new correctness proof for
the unfolding algorithms presented there, which is much simpler in the case of the
slicing algorithm developed in [45,46]. As a result, relevant model checking tools
can now make stronger assumptions about the properties of the prefixes they
use. In particular, they can safely assume that each configuration containing no
cut-off events preserves all firings.

Finally, we proposed conditions for the finiteness of the canonical prefix, and
presented criteria allowing bounds to be placed on its size, which should help
in choosing problem-specific cutting contexts. It is worth noting that in order
to deal with the finiteness problem we proved a version of König’s Lemma for
branching processes of (possibly unbounded) Petri nets.

We believe that the results contained in this chapter, on the one hand, will
help to understand better the issues relating to prefixes of Petri net unfoldings,
and, on the other hand, will facilitate the design of efficient model checking tools.

Chapter 3

Test Bench

Implementations of unfolding algorithms are usually quite intricate and error
prone, and as such require extensive testing. But testing itself is a complicated
problem, since it is not trivial to check whether a generated prefix is correct. In
this chapter, we develop an approach to testing unfolding algorithms and describe
the test cases. These test cases are used in Chapters 4, 5, and 7 to check the
correctness of the algorithms described there, and to evaluate their performance
(Chapters 6 and 8 use their own specific benchmarks).

3.1 Testing Unfolding Algorithms

Due to the canonicity of the prefix for a given cutting context (see Chapter 2), any
two correct implementations of (possibly non-deterministic) unfolding algorithms
produce the same result. Therefore, it is possible to experimentally confirm the
correctness of an implementation of an unfolding algorithm, by checking that
the resulting prefixes are isomorphic to those generated by an independently
developed implementation. For this purpose, we used the ERVunfold 4.5.1

unfolder by Stefan Römer (see [29–31,85]).
Though the prefixes must be isomorphic, they are not necessarily identical,

since their events and conditions might be generated in different orders. There-
fore, a special utility for ‘sorting’ files containing prefixes of safe net systems
was developed, so that if two prefixes were isomorphic then after ‘sorting’ the
corresponding files become identical. Assuming that the prefix is represented as
a list of events and a list of conditions, and to each node a list of nodes in its
preset and a list of nodes in its postset are attached, the ‘sorting’ algorithm can
be described as follows:

1. Separate cut-off events, pushing them to the end of the list of events.

2. Sort the other events in the list according to �erv .

3. Separate the conditions occurring in the postsets of cut-off events, pushing
them to the end of the list of conditions.

28

CHAPTER 3. TEST BENCH 29

4. Sort the other conditions according to the following ordering: c′ l c′′ if
e′ �erv e′′, or e′ = e′′ and h(c′) � h(c′′), where {e′} = •c′, {e′′} = •c′′,
and � is an arbitrary total order on the places of the original net system
(e.g., the size-lexicographical ordering on their names).
Note that e and e′ are non-cut-off events, and that the non-cut-off events
of the prefix have already been sorted according to �erv by this step.

5. Sort the presets of the events (including the cut-off events) according to l.

6. Sort the cut-off events according to the following ordering: e′ l e′′ if •e′ lsl
•e′′, or •e′ = •e′′ and h(e′) � h(e′′), where lsl is the size-lexicographical
order, built upon l, and � is an arbitrary total order on the set of the
transitions of the original net system (e.g., the size-lexicographical ordering
on their names).
Note that the conditions which can appear in the presets of the events have
already been sorted by this step.

7. Sort the part of the list of conditions containing the conditions occurring
in the postsets of cut-off events according to l.
Note that all events have already been sorted by this step.

8. Sort the postsets of the events (including the cut-offs) according to the l
ordering.
Note that all conditions have already been sorted by this step.

3.2 Test cases

Here we describe low-level Petri net benchmarks, which are used in Chapters 4
and 5 to test the performance of unfolding algorithms described there. Moreover,
the canonical prefixes of their unfoldings are used in Chapter 7 to test the integer
programming model checking algorithm. All the experiments except those in
Chapter 5 were conducted on a PC with a PentiumTM III/500MHz processor
and 128M RAM.

In most of experiments the popular set of benchmark examples collected
by J.C. Corbett ([19]), K. McMillan, S. Melzer, S. Merkel, and S. Römer was
attempted (many of the examples from this set were also used in [29, 40–44,52–
55,77]). They are as follows:

Abp — Alternating Bit Protocol. A simple but often analyzed model with 6
tasks representing two users, a sender, a receiver, and two lossy channels.

Bds — Border Defense System. This example is the communication skeleton
of a real Ada tasking program that simulates a border defense system. The
example has 15 tasks, but the skeleton of each is relatively simple.

Buf(100) — Buffer of capacity 100 (with 2100 reachable states).

CHAPTER 3. TEST BENCH 30

Byz — Byzantine agreement protocol for 4 processors, one of which is faulty.

Cyclic(n) — Milner’s Cyclic Scheduler. It uses n scheduler tasks to keep n
customer tasks loosely synchronized.

Dac(n) — Divide and Conquer. A program modelling a divide and conquer
computation by forking up to n solver tasks that proceed in parallel.

Dme(n) — Distributed mutual exclusion asynchronous circuit with n cells.

Dp(n), Dpd(n), Dpfm(n), and Dph(n) — Dining Philosophers. In addition
to the standard version Dp(n), which can deadlock, several versions of the
problem where deadlock is prevented will also be analyzed.

In the dictionary version Dpd(n), the deadlock is prevented by having the
philosophers pass a dictionary around the table. The philosopher holding
the dictionary cannot hold any forks.

In the version with a fork manager Dpfm(n), philosophers pick up both
forks simultaneously by rendezvous with a fork manager task, which records
the state of all forks in lieu of the fork tasks.

Finally, in the version with a host Dph(n), there is an additional host task
with which a philosopher must synchronize before attempting to acquire
his forks. The host will allow at most n − 1 philosophers to hold forks at
any one time.

Elev(n) — Elevators. A model of a controller for a building with n elevators,
using tasks to model the behaviour of the elevators themselves. The size n
version has n + 3 tasks.

Ftp(n) — File Transfer Program. A model of a program which services requests
from n users to transfer files over a network. The size n version has n + 8
tasks.

Furn(n) — Remote Furnace Program. This program manages temperature
data collection for n furnaces. The size n version has 2n + 6 tasks.

Gasq(n), Gasnq(n) — Gas Station (queueing and non-queueing versions).
This example models a self-service gas station. The model has one operator
task, two pump tasks, and n customer tasks.

Hart(n) — Hartstone Program. The communication skeleton of an Ada pro-
gram in which one task starts and then stops n worker tasks.

Key(n) — Keyboard Program. The communication skeleton of an Ada pro-
gram that manages keyboard/screen interaction in a window manager. The
program is scaled by making the number of customer tasks a parameter n.
The size n version has n + 5 tasks.

CHAPTER 3. TEST BENCH 31

Mmgt(n) — Distributed Memory Manager. The communication skeleton of
an Ada program implementing the memory management scheme with n
users. The size n version has n + 4 tasks.

Over(n) — Overtake Protocol. An Ada version of an automated highway
system overtake protocol for n cars comprising 2n + 1 tasks.

Q — User Interface. A model of an RPC client/server-based user interface with
18 tasks that is used by several real applications.

Ring(n) — Token Ring Mutual Exclusion Protocol. A model of a standard
distributed mutual exclusion algorithm in which n user tasks synchronize
access to a resource through n sever tasks that pass a token around a ring.

Rw(n) — Readers and Writers. A model of a database that may be simultane-
ously accessed by any number of readers or a single writer. Each of the n
reader tasks and n writer tasks must synchronize with a controller task
before accessing and when finished accessing the database.

Sent(n) — Sensor Test Program. The communication skeleton of an Ada
program that starts up n tasks to test sensors. The size n version has n+4
tasks.

Speed — Speed Regulation Program. The communication skeleton of an Ada
program with 10 tasks that monitor and regulate the speed of a car.

Sync(n) — Readers/Writers Synchronization. A model of a scalable and
bottleneck-free readers/writers synchronization algorithm for shared mem-
ory parallel machines.

A more detailed description of these examples can be found in [19,77].
In order to test the algorithms on nets with larger presets (in particular, to

test the procedure for generating the possible extensions of a prefix, described
in Chapter 4), we have built a set of examples Rnd(m,n, k) in the following
way. First, m loops consisting of n places and n transitions each were created;
the first place of each loop was marked with one token. Then k additional
transitions were added to this skeleton, so that each of them takes a token from
a randomly chosen place in each loop and puts it back in another randomly
chosen place of the same loop (thus, the net has mn transitions with presets of
size 1 and k transitions with presets of size m). It is easy to see that the nets
built in this way are safe. Moreover, we modelled (with help of A. Bystrov) the
priority arbiter circuits based on dual-rail logic, described in [9]. Basically, a
priority arbiter handles requests from several concurrent processes and decides
(using some priority system) which request should be granted. We generated two
series of examples: Spa(n) for n processes and linear priorities (i.e., among the
processes sending requests, the one with the smallest number is granted first),

CHAPTER 3. TEST BENCH 32

and Spa(m,n) for m groups and n processes in each group with the following
priority function:

1. Group with the largest number of requests is handled first.

2. Among several groups with the same number of requests, the one having
the smallest number is handled first.

3. Within a group, the process with the smallest number, sending a request,
is granted first.

The priority function is in fact a boolean function of many variables, and so these
series of examples have many transitions with relatively large presets.

Chapter 4

Computing Possible Extensions

As it was already mentioned in the Introduction, prefix-based model checking is
typically done in two steps: (i) generating a finite and complete prefix, and (ii)
checking a relevant property on the generated prefix. In view of recent very fast
model checking algorithms employing unfoldings (e.g., the integer programming
algorithm described in Chapter 7 and the one based on computing a stable
model of a logic program from [40–42, 44]), the problem of efficiently building
them becomes crucial. In fact, building a prefix is often the bottleneck of the
prefix-based verification. [29–31, 85] address this issue, considerably improving
the original McMillan’s technique, but we think that certain important details
of the unfolding algorithm proposed there should be further developed.

Though the complexity of constructing a prefix in the worst case is high
(see [28, 42]), in practice there are many cases, when unfoldings can be built
quite efficiently. [30,31] mentioned that the slowest part of their unfolding algo-
rithm was building possible extensions of the unfolding being constructed (this
is, in fact, an NP-complete problem,1 see [42]), but the question how actually
to efficiently compute them was left open. [29, 85] suggests to keep concurrency
relation (i.e., the co relation defined in Section 1.5) as a set of bit-vectors and
provides a method of efficiently maintaining and using this data structure. This
approach is quick for simple systems, but soon becomes intractable (the amount
of memory to store this relation is proportional to the product of the numbers
of conditions and events in the already built part of the prefix).

In this chapter, we describe another method of computing possible extensions,
applicable to safe net systems and fully compatible with the concurrency relation.
Essentially, we show how to find new transition instances to be inserted in the
unfolding, not trying all the transitions one-by-one, but all at once, merging
common parts of the work. Moreover, we provide some additional heuristics,
helping to speed up the algorithm. Experiments demonstrate that the resulting

1The maximum size of a transition preset together with the size of the currently built
part of the prefix must be parameters of the algorithm deciding whether the set of possible
extensions is empty or not. If the maximum size of a transition preset is fixed, there exists a
polynomial-time algorithm.

33

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 34

algorithms can achieve significant speedups if the transitions of the Petri net
being unfolded have large presets.

This chapter is based on the results developed in [56,57].

4.1 Employing the UpdatePotExt function

Almost all the steps of the unfolding algorithm in Figure 2.5 can be implemented
quite efficiently. The only hard part is to calculate the set of possible extensions,
PotExt(Pref), and we will concentrate on this task. As the decision version
of the problem is NP-complete in the size of the already built part of the pre-
fix ([42]), it is unlikely that we can achieve substantial improvements in the
worst case for a single call to the PotExt subroutine. However, the following
approaches can still be attempted: (i) using heuristics to reduce the cost of a
single call; and (ii) merging the common parts of the work performed to insert
individual instances of transitions. An excellent example of a method aimed at
reducing the amount of work is the improvement proposed in [30, 31], where a
total order on configurations is used to reduce both the size of the constructed
complete prefix and the number of calls to PotExt. Another method is outlined
in [29, 75], where the algorithm does not have to recompute all the possible ex-
tensions in each step: it suffices to update the set of possible extensions left from
the previous call, by adding events consuming conditions from e•, where e is the
last inserted event. Formally, the algorithm computes the (Pref , e)-extensions
(rather than all possible extensions of Pref), according to Definition 1.3.

With this approach, the set pe in the algorithm in Figure 2.5 can be seen as
a priority queue (with the events ordered according to the adequate order � on
their local configurations) and implemented using, e.g., a binary heap.2 The call
to PotExt(Pref) in the body of the main loop of the algorithm is replaced by
UpdatePotExt(Pref , e), which finds all the possible (Pref , e)-extensions. This
also reduces the size of the NP-complete problems to be solved at least by one; in
particular, in the important special case of binary synchronization, when the size
of a transition’s preset is at most 2, say •t = {h(c), p}, the problem is equivalent
to finding the set {c′ ∈ h−1(p) | c′ co c}, which can be efficiently computed (note
that the problem becomes vacuous when |•t| = 1). Moreover, this approach
leads to a further simplification in the algorithm of Figure 2.5.3 Indeed, since
now we can be sure that we do not compute any possible extension more than
once, we do not have to add the cut-off events (and their postsets) into the
prefix being built until the very end of the algorithm. Hence we can altogether
avoid checking whether a configuration contains a cut-off event. Furthermore,

2The slicing algorithm shown in Figure 2.6 allows for a more efficient data structure for pe.
It will be discussed in detail in Chapter 5.

3For the sake of simplicity, the discussion in this chapter concentrates on the basic unfolding
algorithm, but all the results are directly applicable to the slicing algorithm. The only thing
which needs to be done is to replace the call to PotExt in the main loop of the slicing
algorithm by the call to UpdatePotExt, as will be discussed in Chapter 5.

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 35

input : Σ = (N,M0) — a safe net system
output : Pref — the canonical prefix of Σ’s unfolding

Pref ← the empty branching process
add instances of the places from M0 to Pref
pe ← PotExt(Pref)
cut off ← ∅
while pe 6= ∅ do

choose e ∈ min� pe
pe ← pe \ {e}
if e is a cut-off event of Pref
then cut off ← cut off ∪ {e}
else

Pref ← Pref ⊕ {e}
pe ← pe ∪UpdatePotExt(Pref , e)

Pref ← Pref ⊕ cut off

Note: e is a cut-off event of Pref if there is C ∈ Ce such that
the events of C belong to Pref but not to cut off , C ≈ [e], and C � [e].

Figure 4.1: An improved version of the basic unfolding algorithm.

in the case of a dense cutting context and total adequate order �, the check of
the cut-off criterion can be simplified. Indeed, in such a case it is guaranteed
that, on each iteration of the main loop of the algorithm, the event extracted
from the queue is greater (w.r.t. �) than any event in Pref , and so one can skip
computing �. In fact, one can implement this test as one look-up in a hash
table containing the equivalence classes of ≈ for each local configuration of Pref
(e.g., for ≈mar the hash table contains final markings of local configurations).
The resulting unfolding algorithm is shown in Figure 4.1. At this point, we set
out for optimizing the UpdatePotExt subroutine.

4.2 Reducing the number of candidates

Note that in Definition 1.3, e and (t,D) are not separated events, which basically
suggests that any sufficient condition for being a pair of separated events may
help in reducing the computational cost involved in calculating the set of (π, e)-
extensions. In what follows, we identify two such cases.

In the pseudo-code given in [75], the conditions c ∈ e• are inserted into
the unfolding one by one, and the algorithm tries to insert new instances of
transitions from h(c)• with c in their presets. Such an approach can be improved
as the algorithm is sub-optimal in the case when a transition t can consume

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 36

more then one condition from e•. Indeed, t is considered for insertion after each
condition from e• it can consume has been added; this may lead to a significant
overhead when the size of t’s preset is large. Therefore, it is better to insert into
the unfolding the whole postset e• at once, and use the following simple result,
which essentially means that possible extensions being added consume as many
conditions from e• as possible (note that this results in an improvement each
time when there is a transition t ∈ (h(e)•)• such that its instance can consume
more than one condition produced by e).

Proposition 4.1. Let e and f be events in a branching process of a safe net
system such that f ∈ (e•)• and h(e• ∩ •f) 6= h(e)• ∩ •h(f). Then e and f are
separated.

Proof. Since h(e• ∩ •f) ⊆ h(e)• ∩ •h(f) always holds, there exists a place p ∈
(h(e)• ∩ •h(f)) \ h(e• ∩ •f). By the definition of a branching process, there are
distinct non-conflicting p-labelled conditions c ∈ e• and d ∈ •f . Hence, as the
net system is safe, c and d are not concurrent, i.e., c ≺ d or d ≺ c holds. Since
the latter contradicts f ∈ (e•)•, we have c ≺ d, and so e and f are separated.

Corollary 4.2. Let π be a branching process of a safe net system, e be an event
of π, and (t,D) be a (π, e)-extension. Then |e• ∩D| = |h(e)• ∩ •t|.

Another way of reducing the number of calls to PotExt is to ignore some
of the transitions from (u•)•, which the algorithm attempts to insert after a u-
labelled event e. Indeed, in a safe net system, if the preset •t of a transition
t ∈ (u•)• has non-empty intersection with •u \ u•, then t cannot be executed
immediately after u. Therefore, in the unfolding procedure, an instance f of t
cannot be inserted immediately after a u-labelled event e (though f may actually
consume conditions produced by e, as shown in Figure 4.2; note that in such a
case e and f are separated).

c

p

e

u

b g d
p

f

t

Figure 4.2: If •t ∩ (•u \ u•) 6= ∅ then a t-labelled event f cannot be inserted
immediately after a u-labelled event e, even though it can consume a condition
produced by e.

Proposition 4.3. Let e and f be events in the unfolding of a safe net system
such that f ∈ (e•)• and •h(f)∩ (•h(e) \ h(e)•) 6= ∅. Then e and f are separated.

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 37

Proof. Let p ∈ •h(f) ∩ (•h(e) \ h(e)•), and c ∈ •e and d ∈ •f be two p-labelled
conditions (see Figure 4.2). Since e and f are distinct non-conflicting events, c
and d are distinct non-conflicting conditions. Hence, as the net system is safe, c
and d are not concurrent, i.e., either c ≺ d or d ≺ c. Since the latter contradicts
f ∈ (e•)•, we have c ≺ d. Now, as p /∈ h(e)•, there must be a condition b ∈ e•

such that h(b) 6= p and b ≺ d, and so e and f are separated.

Corollary 4.4. Let π be a branching process of a safe net system, e be one of
its events, and (t,D) be a (π, e)-extension. Then •t ∩ (•h(e) \ h(e)•) = ∅.

In view of the above corollary, the algorithm may consider only the transitions
from the set (u•)• \ (•u \ u•)• rather than (u•)• as the candidates for insertion
after a u-labelled event e. The resulting algorithm for updating the set of possible
extensions after inserting an event e into the unfolding is shown in Figure 4.3. In
order to efficiently find all the conditions which are concurrent to a condition d,
one can maintain the concurrency relation, as suggested in [29]. However, such
an approach is not suitable if we aim at producing large unfoldings. Another way
is to mark in the procedure Cover all the conditions which are not concurrent
to d as unusable, and unmark them during the backtracking.

It is interesting to apply this technique in the special case where a transition t
has a self-loop, i.e., t ∈ (t•)• (clearly, if t /∈ (t•)• then a new instance of t cannot
be inserted after an event marked by t). We consider the following cases:

• •t ⊂ t•. Then t must be dead, otherwise the net is not safe (and even
unbounded). Indeed, executing t produces all necessary tokens for t to be
executed again. Therefore, if t is not dead, it can be executed successively
an arbitrary number of times, producing arbitrary many tokens on the
places from t• \ •t 6= ∅.

• •t = t• (such ‘strange’ transitions do appear in some of the examples at-
tempted in Section 4.6, e.g., in the Elev(n) series described in Chapter 3).
Then, according to Proposition 4.1, for any instance e of t occurring in the
built part of the prefix, only one instance f of t (with •f = e•) can be
inserted directly after e, producing in the case of a dense cutting context
a cut-off event (note that Mark([e]) = Mark([f]), and [e] ⊂ [f], i.e., e � f
for any adequate order �). Moreover, in the case of a saturated cutting
context, every instance e of t is a cut-off event, with the corresponding
configuration [e] \ {e}, and so we do not have to insert other events after
it.

• •t∩t• 6= ∅ and •t * t•. Then, by Corollary 4.4, another instance of t cannot
be inserted directly after t.

As a result, a new instance of t can be inserted after a t-labelled event only if
•t = t•.

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 38

function UpdatePotExt(π, e)
extensions ← ∅ /* global */
u← h(e)
for all t ∈ (u•)• \ (•u \ u•)• do

preset ← {b ∈ e• | h(b) ∈ •t} /* not complete yet */
C ← all conditions of π concurrent to e
Cover(C, t, preset)

return extensions

procedure Cover(C, t, preset)
if |•t| = |preset |
then extensions ← extensions ∪ {(t, preset)}
else

choose p ∈ •t \ h(preset)
for all d ∈ C such that h(d) = p do

C ′ ← {c ∈ C | c co d}
Cover(C ′, t, preset ∪ {d})

Figure 4.3: An algorithm for updating the set of possible extensions.

4.3 Preset trees

The presets of candidate transitions for inserting after an event e have often
common parts besides the places from h(e)•, and the algorithm may be finding
instances of the same places in the generated part of the prefix for several times.
To avoid this, one may identify the common parts of the presets, and treat them
only once. The main idea is illustrated by the following example.

Let e be the last event inserted into the prefix being built and h(e)• = {p}.
Moreover, let t1, t2, t3, and t4 be the possible candidates for inserting after e
such that •t1 = {p, p1, p2, p3, p4},

•t2 = {p, p1, p2, p3},
•t3 = {p, p1, p2, p3, p5}, and

•t4 = {p, p2, p3, p4, p5}. The condition labelled by p in each case comes from e•.
Hence, to insert ti, the algorithm has to find a co-set Ci such that e co Ci and
h(Ci) = •ti \ {p} (if there are several such co-sets, then several instances of ti

should be inserted). By gluing the common parts of the transition presets, we
can obtain a tree shown in Figure 4.4(a), which can then be used to simplify the
task of finding the co-sets Ci. Formally, we proceed as follows.

Definition 4.5. Let u be a transition of a net system Σ and U = (u•)•\(•u\u•)•.
A preset tree of u, PT u, is a directed tree satisfying the following:

• Each vertex is labelled by a set of places, so that the root is labelled by ∅,
and the sets labelling the nodes of any directed path are pairwise disjoint.

• Each transition t ∈ U has a unique associated vertex v, such that the union

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 39

of all the place sets along the path from the root to v is equal to •t \ u•

(different transitions may have the same associated vertex).

• Each leaf is associated to at least one transition (unless the tree consists of
one vertex only).

The weight of PT u is defined as the sum of the weights of all the nodes, where
the weight of a node is the cardinality of the set of places labelling it.

∅

{p2, p3}

t2 {p1}

t1

{p4}

t3

{p5}

t4

{p4, p5}

(a)
∅

t1

{p1, p2, p3, p4}
t2

{p1, p2, p3}
t3

{p1, p2, p3, p5}

t4

{p2, p3, p4, p5}

(b)

Figure 4.4: An optimized preset tree (a) of weight 7, and a non-optimized one
(b) of weight 15.

pt

t1

t2
∅

t1, t2{p}

Figure 4.5: Using preset trees may be useful even if PreMaxΣ = 2 and no two
transitions have the same preset.

Having built a preset tree, one can use the algorithm shown in Figure 4.6 to
update the set of possible extensions, aiming at avoiding redundant work. As
shown in Figure 4.5, there might be gains even when no two transitions have
the same preset and PreMaxΣ = 2, where PreMaxΣ

df
= maxt∈T |

•t| denotes
the size of the maximal transition preset in Σ. Note that we only need one
preset tree PT u per transition u of a net system, which can be built during the
preprocessing stage.

4.4 Building preset trees

Two problems which we now address are: (i) how to evaluate the ‘quality’ of
preset trees, and (ii) how to efficiently construct them. If we use the ‘totally
non-optimized’ preset tree shown in Figure 4.4(b) instead of that in Figure 4.4(a)

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 40

function UpdatePotExt(π, e)
extensions ← ∅ /* global */
tree ← preset tree for h(e) /* pre-calculated */
C ← all conditions of π concurrent to e
Cover(C, tree, e, ∅)
return extensions

procedure Cover(C, tree, e, preset)
for all transitions t labelling the root of tree do

extensions ← extensions ∪ {(t, preset ∪ {b ∈ e• | h(b) ∈ •t})}

for all sons tree ′ of tree do
R← places labelling the root of tree ′

for all co-sets CO ⊆ C such that h(CO) = R do
Cover({c ∈ C | c co CO}, tree ′, e, preset ∪ CO)

Figure 4.6: An algorithm for updating the set of possible extensions.

as an input to the algorithm in Figure 4.6, it will work in a way very similar to
that of the standard algorithm in Figure 4.3, trying the candidate transitions
one-by-one. However, gluing the common parts of the presets decreases both
the weight of the preset tree and the number of times the algorithm attempts to
find new conditions concurrent to the already constructed part of event presets.
This suggests that preset trees with small weight should be preferred. Such a
‘minimal weight’ criterion may be seen as rather rough, since it is hard to predict
during the preprocessing stage which preset tree will be better, as different ones
might be better for different instances of the same transition. Another problem
is that the reduction of the weight of a preset tree leads to the creation of new
vertices and splitting of the sets of places among them, effectively decreasing
the weight of a single node. This may affect the efficiency of heuristics which
potentially might be used for finding co-sets in the algorithm in Figure 4.6. But
in our experiments this drawback was usually more than compensated for by
the speedup gained by merging the common parts of the work spent on finding
co-sets forming the presets of newly inserted events.

Since there may exist a whole family of minimal-weight preset trees for the
same transition, one could improve the criterion by taking into account the re-
mark about heuristics for finding co-sets, and prefer minimal weight preset trees
which also have the minimal number of nodes. Furthermore, one could assign co-
efficients to the vertices, depending on the distance from the root, the cardinality
of the labelling sets of places, etc., and devise more complex optimality criteria.
However, this may get too complicated and the process of building preset trees
can easily become more time consuming then the unfolding itself. And, even if a
very complicated criterion is used, the time spent on building a highly optimized

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 41

preset tree can be wasted: the transition may be dead, and the corresponding
preset tree will never be used by the unfolding algorithm.4 Therefore, in the
actual implementation, we decided to adopt the simple minimal-weight criterion
and, in the view of the next result, it was justifiable to implement a relatively
fast greedy algorithm aiming at ‘acceptably light’ preset trees.

Proposition 4.6. Deciding whether there exists for a given transition t of a net
system Σ a preset tree of at most the given weight W is an NP-complete problem
in the size of Σ. Moreover, it remains NP-hard even in the case PreMaxΣ = 3.

Proof.5 The problem is in NP as the size of a preset tree is polynomial in the size
of Σ, and we can guess it and check its well-formedness and weight in polynomial
time.

The proof of NP-hardness is by reduction from the vertex cover problem.
Given an undirected graph G = (V,E), construct Σ as follows: take V ∪{p′, p′′},
where p′, p′′ /∈ V ∪ E are new elements, as the set of places, and for each edge
{v1, v2} ∈ V take a transition with {p′′, v1, v2} as its preset. Moreover, take
another transition t such that •t = {p′} and t• = {p′′} (note that all the other
transitions belong to (t•)•). There is a one-to-one correspondence between preset
trees for t and vertex covers for G, such that the weight of a preset tree is
equal to the size of the corresponding vertex cover. Therefore, the problem of
deciding whether there is a preset tree of at most the given weight W is NP-hard;
moreover, PreMaxΣ = 3 for our construction, and so the problem is NP-hard
even in such a restricted case.

In Figure 4.7 we outlined simple bottom-up and top-bottom algorithms for
solving this problem. Note that the input in each case is a set of sets of places
{A1, . . . , Ak} = {•u \ t• | u ∈ U} ∪ {∅}. As it is trivial to assign vertices to
the transitions, we do not show this part in the algorithms in Figure 4.7. We
denote by Tree(v, {Tr 1, . . . ,Tr l}) a tree with the root v and sons Tr 1, . . . ,Tr l,
which are trees, and use · instead of the set of son trees if their identities are
irrelevant. Moreover, in the further discussion, we will often identify a tree with
the set of places at its root, provided that this does not create an ambiguity. We
also adopt the standard notation

⋂
S

df
=
⋂

A∈S A and
⋃

S
df
=
⋃

A∈S A.
The bottom-up algorithm first computes the root of the preset tree being

built as the intersections of the sets in S, and this intersection is removed from
all these sets. Then it chooses a place p belonging to the maximum number of
sets, removes it from there, and recursively builds a preset tree for such sets,
subsequently adding p to its root. The recursively processed sets are removed
from further consideration, and the process is repeated for the remaining sets,

4In the Dpfm(11) example (see Chapter 3), the net has 5633 transitions, but the built
complete prefix has only 199 non-cut-off events. For this benchmark, the preprocessing stage
took more time then the process of unfolding, even though the simple ‘minimal weight’ criterion
was used. This suggests that one might generate preset trees ‘on demand’ during a run of the
unfolding algorithm and cache them.

5The main idea of this proof was suggested by Peter Rossmanith.

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 42

function BuildTree(S = {A1, . . . , Ak}) /* bottom-up */
root ←

⋂
S

S ← {A \ root | A ∈ S}
TS ← ∅
while

⋃
S 6= ∅ do /* while there are non-empty sets */

choose p ∈
⋃

S such that |{A ∈ S | p ∈ A}| is maximal
Tree(v, ts)← BuildTree({A \ {p} | A ∈ S ∧ p ∈ A})
TS ← TS ∪ {Tree(v ∪ {p}, ts)}
S ← {A ∈ S | p /∈ A}

return Tree(root ,TS)

function BuildTree({A1, . . . , Ak}) /* top-down */
TS ← {Tree(A1, ∅), . . . ,Tree(Ak, ∅)}
while |TS| > 1 do

choose Tree(A′, ·) ∈ TS and Tree(A′′, ·) ∈ TS
such that A′ 6= A′′ and |A′ ∩ A′′| is maximal

I ← A′ ∩ A′′

T⊂ ← {Tree(B \ I, ts) | Tree(B, ts) ∈ TS ∧ I ⊂ B}
TS ← {Tree(B, ·) ∈ TS | I * B} ∪ {Tree(I, T⊂)}

/* |TS | = 1 */
return the remaining tree Tr ∈ TS

Figure 4.7: Two algorithms for building trees.

until there are no more non-empty ones. The resulting preset tree comprises the
root computed in the beginning of the algorithm, and the set of son trees built
recursively.

In contrast to the bottom-up algorithm, the top-bottom one builds a preset
tree starting from the leafs. Each set in the list of parameters is considered as a
preset tree consisting of one node, and the set of such trees is stored in TS . On
each iteration of the main loop, a set I is computed as an intersection having the
maximal cardinality of two distinct sets in TS . Then all the preset trees in TS
with roots labelled by supersets of I are extracted from TS and merged into a
single preset tree, obtained by subtracting I from all these supersets and taking
it as the new root and these trees as the sons. This new tree is added to TS ,
and the process is continued until only one tree is left in TS ; it then is returned
as the result.

Note that in this algorithm the value of I cannot be the same on two different
iterations of the main loop, because on the first of such two iterations the super-
sets of I are removed from TS , and I is added there. After this, all the pairwise
intersections of the sets which ever appear in TS are not supersets of I. There-
fore, if on some iteration, right after computing I, there is a tree Tree(I, ts) ∈ TS ,

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 43

then it is a leaf, i.e., ts = ∅. Indeed, otherwise the set I labelling its root would
have also been selected on an earlier iteration, a contradiction. Thus only proper
supersets of I in TS are considered by the algorithm when it computes the set
T⊂ of sons of the tree being built on the current iteration.

The described two algorithms do not necessarily give an optimal solution,
but they do allow in many cases to produce a significantly ‘lighter’ tree com-
pared to the totally non-optimized one (see the Wrat column in Tables 4.1–4.3).
We implemented them both, to check which approach performs better. The
tests indicated that in most cases the produced trees had the same weight, but
sometimes the bottom-up approach suffered from the effect which can be illus-
trated by the following example. Let A1 = {p1, . . . , p10}, A2 = {p2, . . . , p10},
A3 = {p1, p11}, and A4 = {p1, p12}. On the first iteration of the algorithm p1 is
chosen, and this results in the tree of weight 21, shown in Figure 4.8(a), whereas
it is possible to build a tree of weight 13 (Figure 4.8(b)).

∅

{p1}

{p2, . . . , p10} {p11} {p12}

{p2, . . . , p10}

(a)
∅

p1

{p11} {p12}

{p2, . . . , p10}

{p1}

(b)

Figure 4.8: A tree of weight 21, produced by the bottom-up algorithm (a) and
a tree of weight 13, corresponding to the same sets (b).

The top-down algorithm is more stable, and only in rare (see, for example,
Figure 4.9) cases it produces ‘heavier’ trees then the bottom-up one. Therefore,
we will concentrate on the top-down algorithm and its efficient implementation.

4.5 Implementation issues

A sketch of a possible implementation of the top-down algorithm for building
preset trees is shown in Figure 4.10, and Figure 4.11 illustrates its work. Note
that the size of any set which can appear during the calculations does not exceed
PreMaxΣ. Therefore, we can assume that the cardinalities are attached to the
sets, and the other operations on sets (we only need to compute intersection of
sets, cardinality of a set, and check set inclusion and equality) can be performed
in O(PreMaxΣ) worst case time. In practice, the sets usually quickly degrade
to singletons or to the empty set, so the calculations are quite fast.

The idea of the algorithm is to compute all pairwise intersections of the sets in
TS before the main loop starts, and then maintain this data structure. On each

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 44

∅

{p2}

{p4} {p5}

{p1, p6}
{p3}

{p1} {p2}

(a)
∅

{p1}

{p3} {p6}

{p2}

{p3} {p4} {p5}

(b)

Figure 4.9: A tree of weight 8, produced by the top-down algorithm (a) and a tree
of weight 7, produced by the bottom-up algorithm (b). Both trees correspond
to the sets A1 = {p1, p3}, A2 = {p1, p6}, A3 = {p2, p3}, A4 = {p2, p4}, and
A5 = {p2, p5}. The intersection {p3} = A1 ∩A3 was chosen on the first iteration
of the top-down algorithm.

step, the algorithm chooses a set I of maximal cardinality from Intersections,
and updates the variables TS and Intersections in the following way. It finds all
the supersets of I in TS , and removes them (this can be done using O(|TS |) op-
erations with sets, if TS is implemented as, e.g., a double linked list). Moreover,
the algorithm also removes all the intersections from Intersections correspond-
ing to these sets. Then the intersections of I with the remaining sets in TS are
added to Intersections , and I is inserted into TS .

Since we have k sets in the beginning of the algorithm, the main loop of the
algorithm cannot be executed more then k − 1 times, because on each step we
remove at least 2 sets from the set TS and then add one. Therefore, the number
of sets which ever appear in TS does not exceed 2k − 1, i.e., the algorithm
performs O(k2) insertions into Intersections, O(k2) removals from there, and
O(k) operations of finding a set with maximal cardinality (note that the size
of Intersections is O(k2)). Using a suitable data structure such as a red-black
tree (see, e.g., [20]) for representing Intersections, we can perform any of these
operations in O(PreMaxΣ· log k2) = O(PreMaxΣ· log k) worst case time (note
that in this case we have to introduce another operation on sets, viz. checking
if Ai ≺tot Aj, where ≺tot is an arbitrary total order, refining the size order
Ai ≺size Aj ⇔ |Ai| < |Aj|). Therefore, the worst case time of the algorithm in
Figure 4.10 is O(PreMaxΣ·k

2· log k).
One can achieve O(PreMaxΣ·k

2) average time, using instead of a red-black
tree the following simple data structure for Intersections. For each possible size
of a set (as it was already mentioned, these sizes do not exceed PreMaxΣ), we
keep a double linked list of sets having this cardinality (reducing, thus, inserting
a set into Intersections to adding it into the list corresponding to its cardinality,
which requires just O(1) time). In order to facilitate removing an item from
Intersections, we can maintain a hash table (note, that in this case we need an
additional operation with sets, viz. computing the hash code of a set, which may

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 45

function BuildTree({A1, . . . , Ak})
TS ← {Tree(A1, ∅), . . . ,Tree(Ak, ∅)}
Intersections ← {|Ai ∩ Aj | 1 ≤ i < j ≤ k|} /* multiset of sets */
while |TS| > 1 do

choose I ∈ Intersections such that |I| is maximal
T⊂ ← {Tree(B \ I, ts) | Tree(B, ts) ∈ TS ∧ I ⊂ B}
for all Tree(A, ts) ∈ TS such that I ⊆ A do

TS ← TS \ {Tree(A, ts)}
Intersections ← Intersections − {|A ∩B | Tree(B, ·) ∈ TS |}

Intersections ← Intersections + {|I ∩B | Tree(B, ·) ∈ TS |}
TS ← TS ∪ {Tree(I, T⊂)}

/* |TS | = 1 */
return the remaining tree Tr ∈ TS

Figure 4.10: A top-down algorithm for building preset trees.

be assumed to take O(PreMaxΣ) in the worst case). With this idea, removal of
a set can be done in O(PreMaxΣ) average time (in order to remove an element,
the algorithm has to make a single lookup in the hash table to find it, which
leads on average to O(1) calls to the hash function, each costing O(PreMaxΣ)
time units; the remaining operations take just O(1) time units). Moreover, if
we keep track of the current maximal cardinality (since the size of sets added
into Intersections cannot exceed the size of the last removed from there set, the
number of times the cardinality changes does not exceed the number of possible
cardinalities) then the total time spent by algorithm on finding sets with maximal
cardinality is O(k + PreMaxΣ).

It is essential for the correctness of the algorithm that Intersections is a mul-
tiset rather than a set, and so we have to keep duplicates in this data structure.
It is probably better to implement this by keeping a counter for each set inserted
into Intersections, rather then by keeping several copies of the same set, since
the multiplicity of simple sets (e.g., singletons or the empty set) can by very high
(note that inserting a set is now slightly more complicated, but one can use the
same hash table as for removing, and perform it in O(PreMaxΣ) average time).
Moreover, if the multiplicities are calculated, we often can reduce the weights of
produced trees. The idea is to choose among the sets with maximal cardinality
those which have the maximal number of supersets in TS (this would improve
the tree in Figure 4.9(a), forcing {p2} to be chosen on the first iteration). Let
us show that such sets have the highest multiplicity among the sets with the
maximal cardinality. Indeed, each time at the moment this choice is made by
the algorithm, the values of TS and Intersections are ‘synchronized’ in the sense
that Intersections contains all pairwise intersections of the sets from TS , with
proper multiplicities. Now, let I ∈ Intersections be a set with the maximal car-

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 46

{p1, p2, p3} {p1, p2, p4} {p1, p2, p5} {p1, p3, p4} {p1, p4} ∅

TS T⊂

Intersections = {|3 ∗ {p1, p2}, 1 ∗ {p1, p3}, 3 ∗ {p1, p4}, 3 ∗ {p1}, 5 ∗ ∅|}, I = {p1, p2}

{p3} {p4} {p5}

{p1, p3, p4} {p1, p4} ∅{p1, p2}

TS T⊂

Intersections = {|1 ∗ {p1, p4}, 2 ∗ {p1}, 3 ∗ ∅|}, I = {p1, p4}

{p3} {p4} {p5} {p3}

∅{p1, p2} {p1, p4}

TS T⊂

Intersections = {|1 ∗ {p1}, 2 ∗ ∅|}, I = {p1}

{p3} {p4} {p5} {p3}

∅

{p2}
{p4}

{p1}

TS T⊂

Intersections = {|∅|}, I = ∅

{p3} {p4} {p5} {p3}

{p2}
{p4}

{p1}

∅

TS

Figure 4.11: An example run of the top-down algorithm shown in Figure 4.10.
Snapshots (except the last one) are taken for every iteration of the main loop,
before the for all loop starts.

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 47

dinality, and n be the number of its supersets in TS (note that n ≥ 2). The
intersection of two sets can be equal to I only if they both are supersets of I.
Moreover, since there is no set in Intersections with cardinality greater then
|I|, the intersections of any two distinct supersets of I from TS are exactly I.
Therefore, the multiplicity of I is C2

n = n(n − 1)/2, for some n ≥ 2. This func-
tion is strictly monotonic for all positive n, i.e., there is monotonic one-to-one
correspondence between the multiplicities of sets with the maximal cardinality
from Intersections, and the numbers of their supersets in TS . Therefore, among
the sets of maximal cardinality, those having the maximal multiplicity have the
maximal number of supersets in TS .

It is easy to implement this improvement if a red-black tree is used to repre-
sent Intersections. The only thing to be done is to choose the total ordering on
the nodes of the tree refining the following size-multiplicity one: Ai ≺sm Aj ⇔
|Ai| < |Aj| ∨ |Ai| = |Aj| ∧ Intersections(Ai) < Intersections(Aj). We may as-
sume that it can be computed in O(PreMaxΣ) worst case time, so the worst
case complexity of the algorithm remains O(PreMaxΣ·k

2· log k).
But if we want to use the described above data structure based on a hash

table, some changes are needed. The main idea is to ‘slice out’ the sets from
Intersections having the maximal cardinality and handle them separately. The
remaining sets can be processed in the same way as before (we never have to look
for a set with the maximal multiplicity among them, because their cardinalities
are not maximal). The multiplicities of the ‘sliced out’ sets are of the form C2

i ,
where i ≤ |TS | ≤ k, and we can hold them in an array of double linked lists,
such that the items of the i-th list have the multiplicity C2

i (note that the size
of the array does not exceed imax ≤ k, where C2

imax
is the maximal multiplicity).

This additional data structure can be built in time linear in the number of
sets of maximal cardinality in Intersections. Therefore, the total time spent on
building such a structure is O(k2), since the total number of sets which appear
in Intersections is O(k2).

Now, since the sizes of all the sets which are inserted into Intersections are less
than the current maximal cardinality, one does not have to modify this additional
data structure when inserting new items. Therefore, the only operations we
still need are removing a set and finding a set of maximal multiplicity. The
latter is simple if we maintain the index of the non-empty list containing the
sets of maximal multiplicity. Since we never add new sets to the lists, and the
multiplicity of the sets of maximal cardinality can only decrease, the value of
this index can only decrease for each particular cardinality (though it may be
increased when the algorithm, having exhausted the current ‘slice’ of sets of
the maximal cardinality, switches to smaller ones). Since the sum of imax ’s for
all slices does not exceed 2k (because for each slice at least once we replace
imax ≥ 2 sets from TS by one set), the total number of updates of this index is
O(k + PreMaxΣ).

Therefore, the only thing which still needs to be explained is how to remove a
set of the maximal cardinality from Intersections. If the multiplicity of this set is

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 48

procedure Remove(A)
if the cardinality of A is not maximal
then remove A in the usual way
else

if the multiplicity of A is 1
then remove A from the 2nd list /* 1 = C2

2 */
else

if ∃i such that the multiplicity of A is C2
i

then
move A from the i-th list to (i− 1)-th list

decrement the multiplicity of A

Figure 4.12: Removing a set from Intersections .

one, we can just remove it from the list to which it belongs. But if its multiplicity
is greater than one then it is of the form C2

i , and, since the multiplicities of the
sets of the maximal cardinalities corresponds to the number of their supersets in
TS , we can be sure that this set will be removed for several more times by the
end of the current iteration, so that eventually its multiplicity will be of the form
C2

j for some j < i. Therefore, we can use the algorithm shown in Figure 4.12
(note that we allow the multiplicities of the set in the i-th list to be greater
than C2

i , but it is guaranteed that they will have the proper form by the end of
the current iteration of the main loop). The average time for removing an item
is O(PreMaxΣ), thus, this implementation of the algorithm for building trees
takes on average O(PreMaxΣ·k

2) time units.

4.6 Experimental results

The results of experiments are summarized in Tables 4.1–4.3, where we use time
to indicate that the test had not stopped after 15 hours, and mem to indicate
that the test terminated because of memory overflow. The methodology of testing
correctness of the algorithm and the test cases are described in Chapter 3. For
comparison, the ERVunfold 4.5.1 tool, available from the Internet, was used.
The methods implemented in it are described in [29–31, 85]; in particular, it
maintains the concurrency relation.

The meaning of the columns in the tables is as follows (from left to right):
the name of the problem; the number of places and transitions and the aver-
age/maximal size of transition presets in the original net system; the number
of conditions, events and cut-off events in the complete prefix; the time spent
by the ERVunfold tool (in seconds); the time spent by the new algorithm on
building the preset trees and unfolding the net; the ratio Wrat = Wopt/W, where
Wopt is the sum of the weights of the constructed preset trees, and W is the sum

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 49

Problem Net Unfolding Time, [s]
|S| |T | a/m|•t| |B| |E| |Ecut | ERV p-tr Unf Wrat

Bds 53 59 1.88/2 12310 6330 3701 1.30 <0.01 3.87 0.53
Ftp(1) 176 529 1.98/2 178085 89046 35197 time 0.16 2625 0.52
Q 163 194 1.89/2 16123 8417 1188 8.69 0.03 39.43 0.81
Dpd(4) 36 36 1.83/2 594 296 81 0.01 <0.01 0.02 0.71
Dpd(5) 45 45 1.82/2 1582 790 211 0.04 <0.01 0.16 0.71
Dpd(6) 54 54 1.81/2 3786 1892 499 0.22 <0.01 0.83 0.71
Dpd(7) 63 63 1.81/2 8630 4314 1129 1.16 <0.01 5.49 0.71
Dpfm(2) 7 5 1.80/2 12 5 2 0.00 <0.01 <0.01 1.00
Dpfm(5) 27 41 1.98/2 67 31 20 0.00 0.01 <0.01 1.00
Dpfm(8) 87 321 2/2 426 209 162 0.01 0.08 0.01 1.00
Dpfm(11) 1047 5633 2/2 2433 1211 1012 0.05 89.35 0.74 1.00
Dph(4) 39 46 1.96/2 680 336 117 0.01 <0.01 0.03 1.00
Dph(5) 48 67 1.97/2 2712 1351 547 0.10 <0.01 0.36 1.00
Dph(6) 57 92 1.98/2 14590 7289 3407 2.16 <0.01 9.74 1.00
Dph(7) 66 121 1.98/2 74558 37272 19207 57.43 0.01 263 1.00
Elev(1) 63 99 1.89/2 296 157 59 0.01 0.01 0.01 0.62
Elev(2) 146 299 1.95/2 1562 827 331 0.02 0.13 0.14 0.60
Elev(3) 327 783 1.97/2 7398 3895 1629 0.61 1.59 2.73 0.60
Elev(4) 736 1939 1.99/2 32354 16935 7337 16.15 25.57 68.43 0.61
Furn(1) 27 37 1.65/2 535 326 189 0.01 <0.01 0.02 0.50
Furn(2) 40 65 1.71/2 4573 2767 1750 0.19 <0.01 0.54 0.44
Furn(3) 53 99 1.75/2 30820 18563 12207 8.18 <0.01 29.10 0.41
Gasnq(2) 71 85 1.94/2 338 169 46 0.01 0.01 0.01 0.94
Gasnq(3) 143 223 1.97/2 2409 1205 401 0.09 0.03 0.36 0.96
Gasnq(4) 258 465 1.98/2 15928 7965 2876 4.54 0.10 18.45 0.97
Gasnq(5) 428 841 1.99/2 100527 50265 18751 785 0.32 817 0.98
Gasq(1) 28 21 1.86/2 43 21 4 <0.01 <0.01 <0.01 0.86
Gasq(2) 78 97 1.95/2 346 173 54 <0.01 <0.01 0.02 0.93
Gasq(3) 284 475 1.99/2 2593 1297 490 0.11 0.12 0.40 0.97
Gasq(4) 1428 2705 2/2 19864 9933 4060 7.93 7.91 29.70 0.99
Key(2) 94 92 1.97/2 1310 653 199 0.06 0.01 0.15 0.93
Key(3) 129 133 1.98/2 13941 6968 2911 2.51 0.03 10.48 0.94
Key(4) 164 174 1.98/2 135914 67954 32049 6247 0.06 864 0.94
Mmgt(1) 50 58 1.95/2 118 58 20 0.01 0.01 <0.01 0.66
Mmgt(2) 86 114 1.95/2 1280 645 260 0.03 0.03 0.08 0.64
Mmgt(3) 122 172 1.95/2 11575 5841 2529 1.75 0.07 6.09 0.64
Mmgt(4) 158 232 1.95/2 92940 46902 20957 188 0.14 504 0.64
Over(2) 33 32 1.88/2 83 41 10 <0.01 <0.01 <0.01 0.89
Over(3) 52 53 1.89/2 369 187 53 0.01 0.01 0.01 0.88
Over(4) 71 74 1.89/2 1536 783 237 0.06 <0.01 0.15 0.87
Over(5) 90 95 1.89/2 7266 3697 1232 0.94 <0.01 3.35 0.86
Rw(6) 33 85 1.99/2 806 397 327 0.01 0.01 0.01 1.00
Rw(9) 48 181 1.99/2 9272 4627 4106 0.21 0.03 0.34 1.00
Rw(12) 63 313 2/2 98378 49177 45069 14.46 0.10 15.30 1.00

Table 4.1: Experimental results for standard benchmarks with small transition
presets.

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 50

Problem Net Unfolding Time, [s]
|S| |T | a/m|•t| |B| |E| |Ecut | ERV p-tr Unf Wrat

Byz 504 409 3.33/30 42276 14724 752 126 0.14 231 0.71
Dme(2) 135 98 3.24/5 487 122 4 0.01 0.01 0.02 0.93
Dme(3) 202 147 3.24/5 1210 321 9 0.07 0.01 0.09 0.93
Dme(4) 269 196 3.24/5 2381 652 16 0.25 0.03 0.34 0.93
Dme(5) 336 245 3.24/5 4096 1145 25 0.79 0.03 1.01 0.93
Dme(6) 403 294 3.24/5 6451 1830 36 2.37 0.05 2.96 0.93
Dme(7) 470 343 3.24/5 9542 2737 49 6.37 0.19 7.28 0.93
Dme(8) 537 392 3.24/5 13465 3896 64 14.12 0.09 16.08 0.92
Dme(9) 604 441 3.24/5 18316 5337 81 27.78 0.11 31.82 0.92
Dme(10) 671 490 3.24/5 24191 7090 100 51.67 0.13 58.14 0.92
Dme(11) 738 539 3.24/5 31186 9185 121 89.18 0.16 98.96 0.92
Sync(2) 72 88 1.89/3 3884 2091 474 0.29 <0.01 1.38 0.91
Sync(3) 106 270 2.21/4 28138 15401 5210 14.15 0.06 74.84 0.77

Table 4.2: Experimental results for standard benchmarks with larger transition
presets.

of the weights of the ‘non-optimized’ preset trees (see Figure 4.4). This ratio
may be used as a rough approximation of the effect of employing preset trees:
Wrat = 1 means that there is no optimization. Note that when transition presets
are large, employing preset trees gives certain gains, even if this ratio is close
to 1 (see, e.g., the Dme(n) series).

Test cases

We attempted (Tables 4.1–4.3) the set of benchmark examples described in Chap-
ter 3 (some of the examples from this set are not shown in the tables, since they
were trivial for both algorithms).

The sizes of transition presets in the examples shown in Table 4.1 do not
exceed 2 for all the examples. Thus, the advantage of using preset trees is not
very big, and ERVunfold is usually quicker due to maintaining concurrency
relation.6 But when the size of this relation becomes greater then the amount
of the available memory, ERVunfold slows down because of page swapping
(e.g., in Gasnq(5), Ftp(1), and Key(4) examples). As for the proposed algo-
rithm, though it is usually slower on these examples, its running time on all the
examples in Table 4.1 is quite acceptable, and it was superior on the largest ones
(Ftp(1) and Key(4)). Moreover, it scales better on some of these benchmarks
(e.g., on the Elev(n) and Mmgt(n) series).

In Table 4.2, the results concerning nets with slightly bigger transition presets
are shown. The new algorithm, though it does not use concurrency relation, is
almost as fast as ERVunfold, and scales better. The only example in this set
with big maximal preset is Byz, but it in fact has only one transition with the
preset of size 30, and one transition with the preset of size 13; the sizes of the

6After we had implemented concurrency relation, the algorithm became much faster, but
for these experiments we decided to switch it off in order not to hinder the effect of using preset
trees. See also the experiments in Chapter 7, where the concurrency relation was employed.

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 51

presets of the other transitions in this net do not exceed 5.
The experimental results shown in the first part of Table 4.3 indicate that on

random nets with large presets (the Rnd(m,n, k) series described in Chapter 3)
the new algorithm significantly outperforms ERVunfold.

One can argue that random nets is not a practical example, and that in
practice the presets of transitions are small (and, in fact, do not contain more
than two places in the case of binary synchronization). So we tried to spot areas
where nets with large transition presets naturally arise. The first candidate is
data intensive applications, where processes being modelled compute functions
depending on many variables. As an example, we modelled priority arbiters based
on dual-rail logic (see Chapter 3). The results are summarized in the second part
of Table 4.3. The new algorithm scales better and was able to produce much
larger unfoldings.

We expect that many other areas where Petri nets with large presets are
needed will be found. Potentially, such nets appear as the result of net transfor-
mation, e.g., introducing complementary places or converting bounded nets into
safe ones.7 But even for nets with small transition presets the new algorithm is
quite quick (the only reason it was slower than ERVunfold for the examples
in Tables 4.1 and 4.2 is because we switched off the concurrency relation).

4.7 Conclusions

In this chapter we have proposed an efficient method of generating possible exten-
sions of a branching process, which is the most time-consuming part of unfolding
algorithms. Experimental results indicate that the proposed algorithm can build
quite large unfoldings in reasonable time, and have significant advantages for
nets with large transition presets.

7Such transformation is the basis of the unfolding algorithm for arbitrary bounded nets
described in [31].

CHAPTER 4. COMPUTING POSSIBLE EXTENSIONS 52

Problem Net Unfolding Time, [s]
|S| |T | a/m|•t| |B| |E| |Ecut | ERV p-tr Unf Wrat

Rnd(5,4,500) 20 520 4.85/5 20814 5645 4712 1.86 8.02 0.79 0.30
Rnd(5,5,500) 25 525 4.81/5 55698 14029 11689 11.45 7.36 3.66 0.39
Rnd(5,6,500) 30 530 4.77/5 84451 21774 17269 31.43 8.68 12.21 0.44
Rnd(5,7,500) 35 535 4.74/5 144700 36019 28922 82.92 8.90 30.69 0.50
Rnd(5,8,500) 40 540 4.70/5 235600 56691 46559 196 8.79 62.96 0.54
Rnd(5,9,500) 45 545 4.67/5 304656 72895 59840 324 7.43 105 0.58
Rnd(5,10,500) 50 550 4.64/5 419946 98477 82279 554 9.07 160 0.60
Rnd(5,11,500) 55 555 4.60/5 573697 132344 112310 994 6.20 246 0.63
Rnd(5,12,500) 60 560 4.57/5 627303 145378 122465 1187 5.72 322 0.65
Rnd(5,13,500) 65 565 4.54/5 718762 166093 140147 1560 5.27 420 0.67
Rnd(5,14,500) 70 570 4.51/5 802907 185094 156417 1952 5.58 507 0.69
Rnd(5,15,500) 75 575 4.48/5 842181 195228 163722 6685 6.63 616 0.70
Rnd(5,16,500) 80 580 4.45/5 886158 206265 171957 time 7.10 717 0.71
Rnd(5,17,500) 85 585 4.42/5 987605 229284 191576 — 3.78 863 0.72
Rnd(5,18,500) 90 590 4.39/5 1025166 239069 198524 — 5.62 998 0.73
Rnd(10,2,500) 20 520 9.65/10 34884 7136 6125 12.46 7.34 1.14 0.25
Rnd(10,3,500) 30 530 9.49/10 1415681 153628 144548 1638 3.90 82 0.49
Rnd(10,4,500) 40 540 9.33/10 2344821 252320 237000 mem 3.51 207 0.59
Rnd(10,5,500) 50 550 9.18/10 2485903 271083 250600 — 7.90 331 0.64
Rnd(10,6,500) 60 560 9.04/10 2535070 280560 255010 — 11.32 485 0.67
Rnd(10,7,500) 70 570 8.89/10 2537646 285323 254767 — 11.91 663 0.70
Rnd(10,8,500) 80 580 8.76/10 2534970 289550 254000 — 14.84 872 0.72
Rnd(15,2,500) 30 530 14.21/15 1836868 135307 128358 mem 32.28 70.24 0.37
Rnd(15,3,500) 45 545 13.84/15 3750719 271074 255560 — 14.69 259 0.57
Rnd(15,4,500) 60 560 13.50/15 3787575 280560 257515 — 7.54 456 0.67
Rnd(15,5,500) 75 575 13.17/15 3795090 288075 257515 — 6.38 718 0.73
Rnd(20,2,500) 40 540 18.59/20 4744587 256197 245750 mem 46.71 176 0.43
Rnd(20,3,500) 60 560 17.96/20 5040080 280560 260020 — 16.36 427 0.61
Rnd(20,4,500) 80 580 17.38/20 5050100 290580 260020 — 9.03 771 0.71

Spa(2) 52 37 2.16/4 111 52 4 <0.01 <0.01 <0.01 0.87
Spa(3) 75 57 2.40/4 324 141 19 0.01 0.01 0.01 0.79
Spa(4) 98 81 2.77/5 1048 421 96 0.04 0.01 0.07 0.72
Spa(5) 121 113 3.34/6 3594 1362 457 0.26 0.03 0.53 0.63
Spa(6) 144 161 4.20/7 13334 4860 2145 3.79 0.08 5.51 0.56
Spa(7) 167 241 5.38/8 52516 18712 9937 64.22 0.28 75.54 0.49
Spa(8) 190 385 6.82/9 216772 76181 45774 time 1.26 943 0.43
Spa(9) 213 657 8.35/10 920270 320582 209449 — 6.66 12571 0.38
Spa(2,1) 52 37 2.16/4 111 52 4 <0.01 <0.01 <0.01 0.87
Spa(2,2) 98 81 2.77/5 1206 476 110 0.04 0.01 0.10 0.72
Spa(2,3) 144 161 4.20/7 15690 5682 2512 5.53 0.08 8.28 0.56
Spa(2,4) 190 385 6.82/9 253219 88944 52826 time 1.29 1326 0.43
Spa(3,1) 75 57 2.40/4 324 141 19 0.01 <0.01 0.02 0.79
Spa(3,2) 144 161 4.20/7 15690 5682 2512 5.49 0.08 9.09 0.56
Spa(3,3) 213 657 8.35/10 1142214 398850 256600 time 6.67 20594 0.38
Spa(4,1) 98 81 2.77/5 1048 421 96 0.04 0.01 0.09 0.72
Spa(4,2) 190 385 6.82/9 253219 88944 52826 time 1.27 1326 0.43

Table 4.3: Experimental results for the Rnd(m,n, k), Spa(n), and Spa(m,n)
series.

Chapter 5

Parallel Unfolding Algorithm

In view of recent very fast model checking algorithms employing unfoldings
(e.g., the integer programming algorithm described in Chapter 7 and the one
from [40–42, 44] based on computing a stable model of a logic program), the
problem of efficiently building them becomes increasingly important. Chapter 4
addressed this issue, but we feel that generating net unfoldings deserves further
investigation.

In this chapter, a parallel unfolding algorithm is described. Besides offering a
high degree of parallelism, it has several other important advantages. In partic-
ular, if the cutting context is dense and the used adequate order � is total and
refines �m , the total number of times two configurations are compared w.r.t.
� is reduced down to the number of cut-off events in the resulting prefix. This
allows to gain certain speedup even in a sequential implementation. Some other
optimizations are also described.

This chapter is based on the results developed in [45,46,60,61].

5.1 The slicing algorithm

We will use the slicing algorithm shown in Figure 2.6 as the basis for subsequent
parallelization. As explained in Chapter 4, the slowest part of unfolding algo-
rithms is computing the set of possible extensions carried out on each iteration
of the main loop of the algorithm (a decision version of this problem is, in fact,
NP-complete, see [32,42]), and in this chapter we will concentrate on distributing
this task among several processors.

Similarly as it was done for the basic algorithm in Chapter 4, one can replace
the call PotExt(Pref) in the body of the main loop of the slicing algorithm by a
call UpdatePotExt(Pref , e), which finds all the possible (Pref , e)-extensions.
The resulting algorithm is shown in Figure 5.1. Note that the reason for using
the slicing version of the unfolding algorithm rather than the basic one for par-
allelization is that the iterations in its internal loop are almost independent and
can be executed in parallel. Of course, for such a scheme to work, one has to
provide a way of choosing a slice satisfying the definition of a slice formulated

53

CHAPTER 5. PARALLEL UNFOLDING ALGORITHM 54

input : Σ = (N,M0) — a net system
output : Pref — the canonical prefix of Σ’s unfolding (if it is finite)

Pref ← the empty branching process
pe ← {⊥}
cut off ← ∅
while pe 6= ∅ do

choose Sl ∈ Slices(pe)
pe ← pe \ Sl
for all e ∈ Sl in any order refining � do

if e is a cut-off event of Pref
then cut off ← cut off ∪ {e}
else

Pref ← Pref ⊕ {e}
pe ← pe ∪UpdatePotExt(Pref , e)

Pref ← Pref ⊕ cut off

Note: e is a cut-off event of Pref if there is C ∈ Ce such that
the events of C belong to Pref but not to cut off , C ≈ [e], and C � [e].

Figure 5.1: An improved version of the slicing unfolding algorithm.

in Chapter 21 and remove the remaining dependencies between the iterations of
the internal loop.

5.2 Choosing a slice

When � refines �m (in particular, this is the case for all the adequate orders
described in Chapter 2), there is a simple scheme for choosing an appropriate
set Slices(pe), by setting it to contain all non-empty closed w.r.t. � sets of
events from pe whose local configurations have the minimal size. Such a set
satisfies the definition of a slice formulated in Chapter 2. Indeed, suppose that
e ∈ Sl ∈ Slices(pe) and g be an event of Unf max

Σ . If f ≺ g for some f ∈ pe then
it is the case that |[g]| > |[e]|. Hence, since � refines �m , g 6 e. Moreover, if
g ∈ pe \ Sl then g 6 e as Sl is a closed w.r.t. � set of events from pe.

Notice that in order to achieve better parallelization, it is advantageous to
choose large slices. Therefore, one can simply choose as a slice the set of all
events from pe, whose size of the local configuration is minimal (note that this
set is closed w.r.t. �, and, therefore, is in Slices(pe)). With this scheme, we

1Note that the definition of a slice contains a quantification over the events of the full
unfolding, and thus cannot be directly checked.

CHAPTER 5. PARALLEL UNFOLDING ALGORITHM 55

p1

t1

t2

p2 t3 p3

(a)

p1

e1

t1

e2

t2

p2

p2

e3

t3

e4

t3

p3

p3

(b)

Figure 5.2: A Petri net (a) and its unfolding (b). Assuming the cutting con-
text ΘERV , e2 is a cut-off event. However, the näıvely parallelized slicing algo-
rithm is not always able to detect this when it processes the slice {e1, e2}, since
parallel tasks can be scheduled in such a way that e2 is processed before e1. This
results in erroneously adding e4 to the prefix being built.

may simply consider pe as a sequence Sl 1, Sl2, . . . of sets of events such that Sl i

contains the events whose local configurations have the size i (clearly, in each step
of the algorithm there is only a finite number of non-empty Sl i’s). Thus inserting
an event e into the queue is reduced to adding it into the set Sl |[e]|, and choosing
a slice in the main loop of the algorithm can be replaced by a call to Front(pe),
returning the first non-empty set Sl i in pe. Now all the required operations with
the queue can be performed without comparisons of configurations at all.

5.3 Cut-offs ‘in advance’

The main dependency between the iterations of the internal loop is that they
must be executed in an order consistent with �. It is essential for correct paral-
lelization to remove this dependency (Figure 5.2 shows that one cannot parallelize
the for all loop of the slicing algorithm by simply ignoring this dependency).
One can see that the consistency with � is required only for detecting cut-off
events properly, but the order of computing the possible extensions does not
matter. Therefore, if the cut-off events appearing in the slice were identified and
removed from it ‘in advance’, the restriction that the events from Sl must be
processed in an order consistent with � can be safely left out. In the rest of
this section we describe a new policy for computing cut-off events, so that when
a new slice is chosen by the algorithm it is guaranteed that it does not contain
them.

This can be achieved by checking the cut-off criterion each time a new possible
extension e is computed rather than in the main loop of the algorithm. Such a
strategy introduces several complications. In particular, one has to look for the

CHAPTER 5. PARALLEL UNFOLDING ALGORITHM 56

corresponding configurations in Pref ⊕ pe rather than in Pref . Moreover, the
cut-off criterion should be checked not only for e, but for all events in pe (since e
might be a part of a corresponding configuration of some event in the queue).
But this strategy has also clear advantages: besides making the iterations of
the internal loop independent, it allows one to move the code computing the
cut-off criterion into the part of the algorithm which is executed in parallel.
Surprisingly, it even allows for significant reduction of the number of times the
order � is computed, gaining speedup compared to the traditional strategy (see
Section 5.5).

5.4 Parallelizing the unfolding algorithm

Taking into account the ideas from the previous section, the events in Sl can be
processed in any order. This leads to a possibility of parallelizing the unfolding
algorithm when |Sl | > 1. But still there is one more problem: the (Pref , f)-
extensions for f ∈ Sl may have in their presets conditions produced by other
events from Sl , inserted into the prefix before f . This can be achieved by inserting
all the events from Sl into Pref before the loop for computing possible extensions
starts, and ignoring some of the inserted events in UpdatePotExt in order to
prevent computation of duplicates for some of the possible extensions.

The resulting algorithm is shown in Figure 5.3. Note that the possible exten-
sions are now computed in parallel, and the calls to UpdatePotExt are not
interlocked. The critical section is still quite long, but it can be implemented
very efficiently and with minimum interlocking (see Section 5.5).

Since UpdatePotExt is the most time-consuming part of the algorithm,
this strategy usually provides quite a good parallelization. In most of the per-
formed experiments, there were less then 200 iterations of the main loop, so the
time spent on executing the sequential parts of the algorithm was negligible (this
fact was confirmed by profiling the program). The first and the last few iterations
usually allowed to execute 5–20 ProcessEvent’s in parallel (which is already
enough to provide quite good parallelism for most existing shared memory archi-
tectures), whereas the middle ones were highly parallel (from several hundreds
up to several thousands tasks could potentially be executed in parallel). Thus
the scalability of the algorithm is usually very good.

Of course, bad examples do exist, in particular those having ‘long and narrow’
unfoldings, e.g., the Buf(100) net described in Chapter 3 (see the experiments
in Section 5.6). But such examples are rare in practice. Intuitively, they have
only a small number of different partial order executions of the same length.
This means that they have a very small number of conflicts and a low degree of
concurrency (as for the Buf(100) example, it has no conflicts at all and allows
only few transitions to be executed concurrently). Experiments show that as
soon as first conflicts are encountered and added into the prefix being built, the
number of events in Front(pe) grows rapidly from step to step.

CHAPTER 5. PARALLEL UNFOLDING ALGORITHM 57

input : Σ = (N,M0) — a bounded net system
output : Pref — a finite and complete prefix of Σ’s unfolding

Pref ← the empty branching process
pe ← {⊥}
cut off ← ∅
while pe 6= ∅ do

Sl ← Front(pe)
pe ← pe \ Sl

Pref ← Pref ⊕ Sl /* events are numbered when added to Pref */
for all e ∈ Sl do parallel

ProcessEvent(e)

Pref ← Pref ⊕ cut off

procedure ProcessEvent(e)
Pref dee ← the prefix induced by the events with

numbers not greater than that of e
for all g ∈ UpdatePotExt(Pref dee, e) do

begin critical section
pe ← pe ∪ {g}
Compute the set S ⊆ pe of cut-off events of Pref ⊕ pe
cut off ← cut off ∪ S
pe ← pe \ S

end critical section

Note: e is a cut-off event of Pref if there is C ∈ Ce such that
the events of C belong to Pref but not to cut off , C ≈ [e], and C � [e].

Figure 5.3: A parallel algorithm for unfolding Petri nets.

CHAPTER 5. PARALLEL UNFOLDING ALGORITHM 58

We implemented the proposed algorithm on the shared memory architecture.
It should not be hard to implement it on the distributed memory or even hybrid
architecture, consisting of a network of multiprocessors. In that case, each node
keeps a local copy of the built part of the prefix and synchronizes it with the
master node at the beginning of each iteration of the main loop. The master node
is responsible for maintaining the queue of possible extensions, checking the cut-
off criterion, and for distributing the work between the slaves; the slaves compute
possible extensions and send them to the master. Such a scheme guarantees that
the amount of message passing is linear in the size of the resulting prefix.

5.5 Implementation issues

In this section, we concentrate on efficient implementation of the parallel unfold-
ing algorithm. In particular, we suggest how to avoid unnecessary interlocking.
We assume that the cutting context is such that � refines �m and Ce = Cloc for
all e ∈ E.

5.5.1 Minimizing interlocking

It is a well-known fact that in order to gain efficiency one should minimize in-
terlocking and make critical sections of parallel algorithms as ‘short’ as possible.
This can be achieved by making computations as local as possible. For example,
the algorithm in Figure 5.3 has to guard the access to the variable cut off . By
distributing this variable between the working threads one can avoid contention
when accessing it, and the final value of this variable can be composed as the
union of the corresponding local values.

Similarly, the queue pe can also be distributed. Each thread can have its own
local queue to avoid interlocking when inserting a new element into it. In this
case, the function Front has to compose the slice of several parts coming from
different local queues. But since the slice is calculated in the sequential part of
the algorithm, interlocking is not needed.

An efficient implementation of the cut-off criterion check is of paramount
importance and thus should be discussed in more detail. Due to the restrictions
assumed in the beginning of this section, an event e is a cut-off event of Pref
iff there is an event f in Pref ⊕ pe such that [f] ≈ [e] and [f] � [e]. In the
case of ≈mar , [30, 31, 85] suggest to maintain a hash table of final markings
of local configurations in the prefix to facilitate the search for corresponding
configurations. This can be generalized to arbitrary equivalence relations ≈, if
one uses equivalence classes of ≈ (corresponding to the final markings in the case
of ≈mar) on local configurations as keys to the hash table.

Suppose e is a possible extension computed by the algorithm. Using the
hash table it is easy to find all the events f1, . . . , fk of Pref ⊕ pe such that
[f1] ≈ · · · ≈ [fk] ≈ [e]; only such events can become cut-off events with [e]

CHAPTER 5. PARALLEL UNFOLDING ALGORITHM 59

as their correspondent configuration, and only the local configuration of such
an event can become a corresponding configuration of e, if e is a cut-off event.
Therefore, if there is i ∈ {1 . . . k} such that fi � e then e is a cut-off event.
Otherwise, e is inserted into the queue, and, for every i ∈ {1 . . . k} such that
e � fi, fi is declared a cut-off event and removed from the queue (fi cannot be
in Pref since, by definition, the slice to which it belongs contains e and thus
has not been inserted into the prefix yet). Note that the case fi � e � fj for
some i, j ∈ {1 . . . k} is not possible, since fj is a cut-off event with [fi] as a
corresponding configuration, and thus would have been removed from the queue.

One can observe that with such a strategy events whose local configurations
are in different equivalence classes of ≈ can be processed in parallel, without
interlocking. Therefore, it is sufficient to lock only the entries of the hash table
corresponding to the hash code of the equivalence class of ≈ on [e] rather than
the whole hash table. With such a strategy, the contention occurs only when
several threads at the same time try to access entries of the hash table having
the same hash code, which happens rarely in practice (this fact was confirmed
by experiments).

When � is a total adequate order, each time two configurations are compared
w.r.t. �, one of the events becomes a cut-off event. Thus the number of the
performed comparisons is exactly |Ecut | (rather than Θ(|E| log |E|) as in the
basic algorithm),2 and the algorithm achieves noticeable speedup even when
only one processor is available (see Section 5.6). One can reduce the number of
comparisons even further, using the fact that the local configurations of the events
which are already in the prefix are always less than those of newly computed
possible extensions. But this would provide almost no speedup, since in this
case the sizes of local configurations to be compared always differ, and so the
comparisons are fast (we may assume that the size of the local configuration is
attached to an event).

5.5.2 Computing final markings

Often in order to compute the equivalence class of a configuration, one has
to compute its final marking. It is possible to use the definition Mark(C)

df
=

h{|Cut(C)|}, where Cut(C)
df
=
(⋃

e∈C e•
)
\
(⋃

e∈C
•e
)

(note that ⊥ ∈ C), but this
approach is not efficient.

2In the basic algorithm, |E| events in total pass through the queue, i.e., there are |E|
insertions and |E| extractions of the minimal (w.r.t. �) event from pe. Assuming that pe is
implemented as a binary heap (and thus any of these two operations can be performed using
Θ(log |pe|) comparisons), and that the maximal size of pe is Θ(|E|) (which is indeed the case
for ‘wide’ prefixes), the basic algorithm performs Θ(|E| log |E|) comparisons in total. The new
algorithm does not extract minimal (w.r.t. �) events from pe, and instead computes Front(pe).
Thus the binary heap can be replaced by a data structure allowing to perform this operation
and an insertion of an event without any comparisons at all (note that |Ecut | comparisons are
performed by the new algorithm when checking the cut-off criterion).

CHAPTER 5. PARALLEL UNFOLDING ALGORITHM 60

A better method is to compute the vector (h{|C|}(t1), . . . , h{|C|}(tn)), where
t1, . . . , tn are the transitions of Σ, and consider it as the Parikh vector xσ of some
linearization σ of the partial order execution represented by C. It can then be
used in the marking equation M = M0 + IΣ · xσ (see Section 1.4) to calculate
the final marking of C. The advantage of this approach is that the calculation is
performed using the original net system rather than the built part of the prefix
which can be much larger.

In the case of safe net systems, this approach can be further refined. Indeed,
we can perform all calculations modulo 2, which is useful if final markings are
represented as bit vectors.

Note that it is simpler to calculate the marking change vector M̃ = M −M0

rather than marking M using the formula M̃ = IΣ · xσ. Since M̃ unambigu-
ously determines M , it can be used as a representation of the final marking of a
configuration.

As experiments showed, these simplifications lead to so fast a routine that
one can afford recomputing final markings each time they are needed rather than
attach them to the corresponding events (we estimate that the time overhead is
less than 5% for large prefixes, yet the memory gains may be significant). Note
that in such a case searching an entry in a hash table takes more time, since
there can be several keys with the same hash code, and each comparison of keys
involves computing the final marking of a local configuration. Therefore it makes
sense to sort the keys having the same hash code according to some (arbitrary)
fixed order, and use a binary rather than linear search when resolving a collision.

5.5.3 Optimizing computation of possible extensions

Since the unfolding algorithm adds events to the prefix being built slice by slice
rather than individually, the process of computing possible extensions can be op-
timized due to merging common parts of the work in the spirit of the preset trees
construction described in Chapter 4. This direction is still to be investigated;
here we present a simple improvement taking advantage of this idea.

A cluster is a non-empty set Cl of (Pref , e)-extensions for some event e in
Pref such that Cl ⊆ Sl . If CP is a partitioning of Sl into non-overlapping clusters
then the problem of computing the (Pref ⊕ Sl , e)-extensions for all e ∈ Sl can
be decomposed in the following way:

⋃

e∈Sl

UpdatePotExt(Pref ⊕ Sl , e) =
⋃

Cl∈CP

⋃

e∈Cl

UpdatePotExt(Pref ⊕ Sl , e)

Let Cl be a cluster whose elements are (Pref , e)-extensions for some event e,
and f ∈ Cl . In order to find (Pref ⊕ Sl , f)-extensions, the algorithm considers
the conditions of Pref ⊕ Sl which are concurrent to f (only such conditions,
together with those from f •, can be in the presets of (Pref ⊕ Sl , f)-extensions).
This can be done by marking the conditions which are f ’s causal predecessors,
or are in conflict with f , as unusable (note that f ∈ Sl is a maximal (w.r.t. ≺)

CHAPTER 5. PARALLEL UNFOLDING ALGORITHM 61

event of Pref ⊕Sl , so the only nodes which are the causal successors of f are the
conditions in f •).

Since e ≺ f for every event f ∈ Cl , the following holds for any condition b of
Pref ⊕ Sl :

• If b ≺ e then b ≺ f .

• If b#e then b#f .

In other words, the set of conditions, which are either the causal predecessors of e
or in conflict with it, is a common subset of unusable conditions for all f ∈ Cl .
Therefore, one can merge the common parts of the work, marking the elements
of this set as unusable only once rather than for each f ∈ Cl . This approach
saves computation time as long as some of the clusters contain more than one
event.

This way of computing possible extensions is fully compatible with preset
trees construction described in Chapter 4 and, for some examples, it reduced the
time needed for generating the prefix by more than 30%.

5.6 Experimental results

We used the unfolding algorithm described in Chapter 4 (with the cutting context
ΘERV) as the basis for a parallel implementation and for the comparison. The
experiments were conducted on a workstation with four PentiumTM III/500MHz
processors and 512M RAM. The parallel algorithm was implemented using
Posix threads. The methodology of testing correctness of the algorithm and
the test cases are described in Chapter 3.

The results of experiments are summarized in Table 5.1. The meaning of the
columns in the table is as follows (from left to right): the name of the problem;
the number of places and transitions and the average/maximal size of transition
presets in the original net system; the number of conditions, events and cut-off
events in the complete prefix; the time spent by the sequential unfolder described
in Chapter 4; the time spent by the parallel unfolder with different number N of
working threads;3 the average/maximal number of independent tasks which may
be performed in parallel on each iteration of the main loop (this coincides with the
number of clusters in CP). Although, due to the limited number of processors,
we could not exploit all the arising parallelism in the performed experiments,
this data shows the potential scalability of the problem.

It is interesting to note that the new algorithm with only one working thread
(N = 1) works faster than the sequential unfolder described in Chapter 4. This
is so due to the improvements discussed in Section 5.5.

One can see that the proposed algorithm does not achieve linear speedup.
This was a surprising discovery, since the potential parallelism (the last column

3The concurrency relation was switched off for all these experiments.

CHAPTER 5. PARALLEL UNFOLDING ALGORITHM 62

in the table) is usually very high. Profiling shows that the program spends more
than 95% of time in a function which neither acquires locks, nor performs system
calls, so the contention on locks cannot be the reason for such a slowdown. The
only rational explanation we could think of is bus contention: the mentioned
function tries to find co-sets forming presets of possible extensions, exploring
the built part of the prefix. It is a fairly large pointer-linked structure, and the
processors have to intensively access the memory in a quite unsystematic way,
so that the processors’ caches often have to redirect the access to the RAM.
Therefore, the processors are forced to contend for the bus, and the program
slows down.

Since this explanation might seem superficial, we decided to establish that
bus contention does reveal itself in practice, and the following experiment was
performed. Several processors intensively read random locations in a large array
and performed some fake computation with the fetched values. The total number
of fetches was fixed and evenly distributed among them. In the absence of bus
contention, the time spent by such a program would decrease linearly in the
number of used processors, but we observed the degradation of speed similar to
that shown by the unfolding algorithm. We expect that future generations of
hardware will alleviate this problem, e.g., by increasing the bus frequency or by
introducing a separate bus for each processor.

5.7 Conclusions

We proposed a new unfolding algorithm, which admits an efficient parallelization,
both for shared and distributed memory architectures. Experimental results in-
dicate that it can achieve significant (in theory, even linear) speedup. Moreover,
due to the improved structure of the queue of possible extensions and the op-
timized routine for generating possible extensions, this algorithm is faster than
the former implementations even in the sequential case.

CHAPTER 5. PARALLEL UNFOLDING ALGORITHM 63

Problem Net Unfolding Time, [s]
|S| |T | |B| |E| |Ecut | Seq N=1 N=2 N=3 N=4 a/m |CP |

Buf(100) 200 101 10101 5051 1 31 18 13 13 13 1.94/9
Byz 504 409 42276 14724 752 246 183 110 84 78 135.84/896
Dme(7) 470 343 9542 2737 49 7 5 2 2 1 42.02/56
Dme(8) 537 392 13465 3896 64 16 12 6 5 4 55.54/72
Dme(9) 604 441 18316 5337 81 33 26 14 11 10 71.03/90
Dme(10) 671 490 24191 7090 100 61 49 28 21 19 88.47/110
Dme(11) 738 539 31186 9185 121 105 86 50 39 35 107.89/132
Dph(6) 57 92 14590 7289 3407 10 7 3 3 2 62.05/127
Dph(7) 66 121 74558 37272 19207 286 211 126 97 90 219.96/509
Elev(4) 736 1939 32354 16935 7337 73 42 25 19 17 204.58/964
Ftp(1) 176 529 178085 89046 35197 2820 1609 975 761 714 915.57/3249
Furn(3) 53 99 30820 18563 12207 30 15 9 7 5 91.83/264
Gasnq(4) 258 465 15928 7965 2876 19 11 6 5 4 110.94/284
Gasnq(5) 428 841 100527 50265 18751 884 553 334 259 243 529.16/1400
Gasq(4) 1428 2705 19864 9933 4060 30 18 11 7 6 138.25/493
Key(3) 129 133 13941 6968 2911 10 7 4 3 2 57.91/145
Key(4) 164 174 135914 67954 32049 935 806 485 379 354 427.27/1224
Mmgt(3) 122 172 11575 5841 2529 6 4 2 1 1 96.17/328
Mmgt(4) 158 232 92940 46902 20957 556 339 205 159 150 567.77/1992
Q 163 194 16123 8417 1188 41 25 15 11 10 84.03/344
Rw(12) 63 313 98378 49177 45069 15 6 3 2 2 157.62/462
Sync(3) 106 270 28138 15401 5210 79 62 36 27 24 116.27/343
Rnd(5,8,500) 40 540 235600 56691 46559 68 51 29 22 19 386.81/1344
Rnd(5,9,500) 45 545 304656 72895 59840 113 90 53 41 37 447.62/1519
Rnd(5,10,500) 50 550 419946 98477 82279 175 144 85 66 61 474.97/1712
Rnd(5,11,500) 55 555 573697 132344 112310 267 227 134 104 99 526.03/1853
Rnd(5,12,500) 60 560 627303 145378 122465 351 297 178 140 131 557.76/1872
Rnd(5,13,500) 65 565 718762 166093 140147 453 382 232 183 172 539.40/1881
Rnd(5,14,500) 70 570 802907 185094 156417 546 471 284 225 215 584.35/1970
Rnd(5,15,500) 75 575 842181 195228 163722 665 567 345 274 259 605.35/1971
Rnd(5,16,500) 80 580 886158 206265 171957 787 674 413 329 312 623.24/2013
Rnd(5,17,500) 85 585 987605 229284 191576 942 822 503 404 382 607.82/2066
Rnd(5,18,500) 90 590 1025166 239069 198524 1091 956 584 469 448 614.02/2114
Rnd(10,3,500) 30 530 1415681 153628 144548 84 46 26 19 17 633.79/2095
Rnd(10,4,500) 40 540 2344821 252320 237000 216 137 80 61 55 720.00/2415
Rnd(10,5,500) 50 550 2485903 271083 250600 354 236 140 108 101 751.15/2406
Rnd(10,6,500) 60 560 2535070 280560 255010 526 360 216 168 159 746.97/2343
Rnd(10,7,500) 70 570 2537646 285323 254767 724 510 306 242 229 707.14/2323
Rnd(10,8,500) 80 580 2534970 289550 254000 953 681 411 327 312 786.64/2116
Rnd(15,2,500) 30 530 1836868 135307 128358 70 17 9 6 5 664.40/1979
Rnd(15,3,500) 45 545 3750719 271074 255560 270 128 74 56 49 895.59/2141
Rnd(15,4,500) 60 560 3787575 280560 257515 487 277 162 128 117 874.85/2301
Rnd(15,5,500) 75 575 3795090 288075 257515 776 480 286 228 214 819.19/2472
Rnd(20,2,500) 40 540 4744587 256197 245750 176 42 21 14 11 841.25/2797
Rnd(20,3,500) 60 560 5040080 280560 260020 447 203 118 90 82 842.21/2237
Rnd(20,4,500) 80 580 5050100 290580 260020 825 456 271 213 201 865.03/2510
Spa(7) 167 241 52516 18712 9937 81 48 28 21 19 169.27/629
Spa(8) 190 385 216772 76181 45774 1005 603 362 280 264 480.21/2002
Spa(9) 213 657 920270 320582 209449 13512 8066 4854 3750 3537 1669.04/6953
Spa(2,3) 144 161 15690 5682 2512 8 4 2 2 1 71.11/232
Spa(2,4) 190 385 253219 88944 52826 1412 872 524 406 382 614.64/2455
Spa(3,2) 144 161 15690 5682 2512 8 4 2 2 1 71.11/232
Spa(3,3) 213 657 1142214 398850 256600 22011 13565 8171 6317 5943 2166.84/8928

Table 5.1: Experimental results.

Chapter 6

Unfoldings of High-Level Petri
Nets

The unfolding technique and algorithms described in Chapters 2, 4, and 5 help to
alleviate the state space explosion problem when model checking low-level Petri
nets. But their applicability may be considered restricted, since low-level Petri
nets are a very low-level model, and thus inconvenient for practical modelling.
Therefore, it is highly desirable to generalize this technique to more expressive
formalisms, such as high-level (or ‘coloured’) Petri nets. This formalism allows
one to model in quite a natural way many constructs of high-level specification
languages used to describe concurrent systems (see, e.g., [5, 33, 34]). Though it
is possible to translate a high-level net into a low-level one and then unfold the
latter, it is often the case that the intermediate low-level net is exponentially
larger than the resulting prefix. Moreover, such a translation often completely
destroys the structure present in the original model.

In this chapter, we describe an approach which allows one to build a prefix
directly from a high-level net, thus avoiding a potentially expensive translation
into a low-level net. Experiments demonstrate that this method is often superior
to the traditional one, involving the explicit construction of an intermediate low-
level net. We show that it is possible to generate exactly the same prefix which
would have been generated by the traditional approach, and so all the verification
tools employing unfoldings can be re-used with prefixes generated by the method
proposed in this chapter.

While writing up the original paper [58], it turned out that a related work had
been reported in [68]. Therefore, we highlight here the main differences between
the proposed approach and that of [68]. We establish an important relation
between the branching processes of a high-level net and those of its low-level
counterpart. This allows us to import the results of Chapters 2, 4, and 5 rather
than re-prove them. Among such results are the canonicity of the prefix for
different cutting contexts, the usability of the total adequate order �erv , and the
parallel unfolding algorithm (neither of these were proved in [68]). Moreover, we
adopt a different way of introducing branching processes of high-level nets, which

64

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 65

results in a neater and easier-to-comprehend presentation. In particular, we do
not use algorithm-dependent proofs, and we tried to make all the definitions as
similar to the corresponding ones for low-level nets as possible. Finally, we do
not restrict ourselves to finite sets of colours, and fix a subtle mistake of [68] in
the definition of cut-off events and the related prefix (see Remark 2.6).

This chapter is based on the results developed in [58,59].

6.1 High-level Petri nets

In this chapter we use M-nets (see [4]) as the main high-level Petri net model,
as we believe that it is general enough to cover many other existing relevant
formalisms. The full description of M-nets can be found in [4]. Here, in order to
match the presentation of low-level nets as closely as possible, we give suitably
adapted short definitions, omitting those details which are not directly needed
for the purposes of this chapter. In particular, [4] devotes a lot of attention to
the composition rules for M-nets, which are relevant only at the construction
stage of an M-net, but not for model checking of an already constructed one.

6.1.1 M-nets

It is assumed that there exists a (finite or infinite) set Tok of elements (or
‘colours’) and a set VAR of variable names, such that Tok ∩VAR = ∅. An M-net

N is a quadruple N
df
= (P, T,W, ι) such that P and T are disjoint sets of respec-

tively places and transitions , W is a multiset over (P×VAR×T)∪(T×VAR×P)
of arcs, and ι is an inscription function with the domain P ∪ T . It is assumed
that, for every place p ∈ P , ι(p) ⊆ Tok is the type of p and, for every transition
t ∈ T , ι(t) is a well-formed boolean expression over Tok ∪VAR, called the guard
of t. We assume that the types of all places are finite.1 In what follows, we
assume that N = (P, T,W, ι) is a fixed M-net.

For a transition t ∈ T , let •t
df
= {|pv | (p, v, t) ∈ W |}, t•

df
= {|pv | (t, v, p) ∈W |},

and VAR(t)
df
= {v | (p, v, t) ∈ W ∨ (t, v, p) ∈ W} ∪ VAR(ι(t)), where VAR(ι(t))

is the set of variables occurring in ι(t). (The notation pv, similarly as px and tσ

used later on, is a shorthand for the pair (p, v).) A firing mode of t is a mapping
σ : VAR(t) → Tok such that for all pv ∈ •t + t•, σ(v) ∈ ι(p), and ι(t) evaluates
to true under the substitution given by σ.

We define the set of legal place instances as P
df
= {px | p ∈ P ∧ x ∈ ι(p)} and

the set of legal firings as T
df
= {tσ | t ∈ T and σ is a firing mode of t}. For every

tσ ∈ T , we will also denote •tσ
df
= {|pσ(v) | pv ∈ •t|} and tσ•

df
= {|pσ(v) | pv ∈ t•|}.

According to the definitions given below, all valid markings of an M-net will
be composed of legal place instances, and its firing sequences will be composed

1In general, allowing infinite types yields a Turing-powerful model. Nevertheless, this re-
striction can be omitted in certain important cases (see Section 6.4).

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 66

of legal firings. Furthermore, the sets P and T will provide the basis for the
construction of the low-level net corresponding to a high-level one.

A marking M of N is a multiset over P . We will denote the set of all such
markings by M(N). (Traditionally, a marking is a mapping which, to every
place p ∈ P , associates a multiset over ι(p). Clearly, such a representation is
equivalent to the one we chose to use.)

The transition relation is a ternary relation on M(N) × T × M(N) such
that a triple (M ′, tσ,M ′′) belongs to it (denoted M ′[tσ〉M ′′) if •tσ ≤ M ′ and
M ′′ = M ′ − •tσ + tσ•. Note that σ is a firing mode of t, which guarantees
that M ′′ is a valid marking of N whenever M ′ was.

6.1.2 M-net systems

An M-net system is a pair Υ
df
= (N,M0) comprising a finite M-net N and an

initial marking M0. The set of reachable markings of an M-net system Υ is the
smallest (w.r.t. ⊆) set RM(Υ) containing M0 and such that if M ∈ RM(Υ)
and M [tσ〉M ′ in N , for some tσ ∈ T , then M ′ ∈ RM(Υ).

An M-net system Υ is k-bounded if, for every marking M ∈ RM(Υ) and
every px ∈ P , M(px) ≤ k; safe if it is 1-bounded; and bounded if it is k-
bounded for some k ∈ N. Moreover, Υ is strictly k-bounded if, for every marking
M ∈ RM(Υ) and every place p ∈ P , |{|x | px ∈M |}| ≤ k, and strictly safe if it is
strictly 1-bounded. One can show that strictly k-bounded M-net systems are k-
bounded, strictly safe ones are safe, and the setRM(Υ) is finite iff Υ is bounded.
Note that according to the above definitions, a safe (but not strictly safe) M-net
system can have a reachable marking which places several tokens on the same
place, provided that their ‘colours’ are all distinct. The rational behind this
choice of the definition is that the low-level expansion (defined below) of an M-
net system is safe iff the original M-net system is safe, and so the total adequate
order on configurations of unfoldings of safe net systems proposed in [30, 31, 85]
can be re-used (see the end of Section 6.3).

We adopt the standard rules about drawing M-net systems, viz. places are
represented as circles, transitions as boxes, and each element of W as a directed
arc labelled by a variable. The values of the inscription function ι are indi-
cated near the corresponding nodes, and markings are shown by placing tokens
(e.g., natural numbers) within circles.

As an example, consider the M-net system shown in Figure 6.1(a). At the

initial marking, t1 can fire with the firing modes σ
df
= {v1 7→ 1, v2 7→ 2, v3 7→ 1}

or σ′ df
= {v1 7→ 1, v2 7→ 2, v3 7→ 2}, consuming the tokens from p1 and p2 and

producing respectively the token 1 or 2 on p3. Formally, we have {|p1
1, p

2
2|}[t

σ
1 〉{|p

1
3|}

and {|p1
1, p

2
2|}[t

σ′

1 〉{|p
2
3|}.

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 67

1

p1:{1..2}

2

p2:{1..2}

p3:{1..4}

t1v3 < v1 + v2

v1 v2

v3

(a)

p1
1 p2

1 p1
2 p2

2

p1
3 p2

3 p3
3 p4

3

t1111 t1211 t1221 t2111 t2121 t2211 t2221 t2231

(b)

p1
1 p2

2

p1
3 p2

3

e1t1211
e2 t1221

(c)

Figure 6.1: An M-net system (a), its expansion (b), and its unfolding (c). Note
that a firing mode σ of t is represented as a three-element string σ(v1)σ(v2)σ(v3).

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 68

6.2 Translation into low-level nets

For each M-net system it is possible to build an ‘equivalent’ low-level one. Such a
transformation is called ‘unfolding’ in [4], but since we use this term in a different
meaning (see Chapter 1), we adopt the term ‘expansion’ instead.

The expansion of an M-net N = (P, T,W, ι) is a low-level net E(N)
df
=

(P , T ,W ′) where

W ′ df
=
∑

tσ∈T

(
{|(pσ(v), tσ) | (p, v, t) ∈ W |}+ {|(tσ, pσ(v)) | (t, v, p) ∈ W |}

)
.

Moreover, the expansion E(M) of a marking M of N is M itself, i.e., E(M)
df
= M

(this is possible since we deliberately chose the definitions so that the setsM(N)
andM(E(N)) coincide). Finally, the expansion of an M-net system Υ = (N,M0)

is defined as E(Υ)
df
= (E(N), E(M0)). Figure 6.1(a,b) illustrates the last definition.

One can show that the following hold.

Proposition 6.1 ([4]). Let N be an M-net, and M ′,M ′′ ∈M(N).
Then M ′[tσ〉M ′′ in Υ iff M ′[tσ〉M ′′ in E(Υ).

Proposition 6.2. Let Υ = (N,M0) be an M-net system.

• For every k ∈ N, E(Υ) is k-bounded iff Υ is k-bounded.

• E(Υ) is safe iff Υ is safe.

• If Υ is strictly safe and p is a place of Υ, then the places px, x ∈ ι(p), are
mutually exclusive in E(Υ).

Proof. Follows directly from the definitions.

Though, according to Proposition 6.1, the expansion of an M-net system
faithfully models the original system, the disadvantage of this transformation is
that it typically yields a very large net. Moreover, the resulting net system is
often unnecessarily large, in the sense that it contains many places which cannot
be marked and many dead transitions. This is so because the place types are
usually overapproximations, and the transitions of the original M-net system
may have many firing modes, only few of which are realized when executing the
net from the initial marking. For example, only two out of eight transitions
of the expansion of the M-net system in Figure 6.1(a), shown in Figure 6.1(b),
can actually fire. Therefore, though the M-net expansion is a neat theoretical
construction, it is often impractical.

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 69

6.3 Branching processes of high-level Petri nets

In this section we develop the main results of this chapter, namely the notions
of a branching process of an M-net system, the associated unfolding, and its
canonical prefix. We also show that there is a strong correspondence between
the branching processes of an M-net system and those of its expansion. This
allows for importing many results from the theory of branching processes of low-
level Petri nets.

Definition 6.3 (Branching Process of an M-net System). A homomor-
phism from an occurrence net ON = (B,E,G) to an M-net system Υ is a
mapping h : B ∪ E → P ∪ T such that

• h(B) ⊆ P and h(E) ⊆ T (conditions are mapped to legal place instances,
and events to legal firings).

• For every e ∈ E, h{|•e|} = •h(e) and h{|e•|} = h(e)• (the environments of
legal firings are preserved).

• h{|Min(ON)|} = M0 (minimal conditions are mapped to the initial mark-
ing).

• For all e, f ∈ E, if •e = •f and h(e) = h(f), then e = f (there is no
redundancy).

A branching process of Υ is a pair π
df
= (ON , h) such that ON is an occurrence

net and h is a homomorphism from ON to Υ. 3

The above definition is illustrated in Figure 6.1.
Definition 6.3 coincides with the definition of a (low-level) branching process

of E(Υ). Thus most of the definitions for branching processes of low-level net
systems can now be lifted to branching processes of M-net systems. In particular,
this is the case for the notions of a configuration, cut, final marking, prefix relation
v, cutting context, and the notion of completeness of a prefix. Similarly, most of
the results proven for branching processes of low-level Petri nets can also be lifted
to branching processes of M-net systems. In particular, for each M-net system Υ
there exist a unique (up to isomorphism) maximal w.r.t. v branching process
Unf max

Υ of Υ, called the unfolding of Υ. Moreover, for any cutting context Θ
there exists unique canonical prefix Unf Θ

Υ (coinciding with Unf Θ
E(Υ)) of Unf max

Υ ,
and the theory of canonical prefixes (see Chapter 2) can be transferred without
any changes.

Remark 6.4. One should be careful when dealing with adequate orders: though
they are abstractly defined on the configurations of the unfolding, in practice the
node labels are often employed in order to compute it. In particular, � is often
parameterized by some order � on the set of transitions of the low-level Petri
net (see Chapter 2). Hence, in order to unfold an M-net system Υ one has to
define such an order on T rather than on T . 3

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 70

It is straightforward to give an upper bound on the size of Unf Θ
Υ , since the

results of Chapter 2 regarding the size of the canonical prefix are still applicable.
In particular, for the cutting context ΘERV the number of non-cut-off events in
Unf Θ

Υ does not exceed |RM(Υ)|.

6.4 M-net unfolding algorithm

Due to the results developed in the previous section, it is now possible to modify
the unfolding algorithms proposed in Chapters 2, 4, and 5 making them capable
of building canonical prefixes of M-net unfoldings. It turns out that the only
thing which has to be changed is the notion of a possible extension (so all the
modifications are inside the PotExt (or UpdatePotExt) function and thus
are not visible in the top-level description of the algorithm).

Definition 6.5. For a branching process π of an M-net system Υ, a possible
extension is a pair (tσ, D), where D is a co-set in π and tσ ∈ T is a legal firing,
such that h{|D|} = •tσ and π contains no tσ-labelled event with preset D. 3

Similarly as in the low-level case, we will take the pair (tσ, D) as a new event
of the prefix, with the preset D. After it is inserted into the prefix, its postset
D′ consisting of new conditions such that h{|D′|} = tσ• is also inserted.

It is worth noting that most of the existing heuristics aiming at speeding up
the prefix generation can be applied. In particular, the total adequate order �erv

for safe net systems can be used to unfold safe M-net systems. (It remains
adequate since Unf max

Υ coincides with Unf max
E(Υ) and the expansion of a safe M-

net system is safe.) Moreover, the concurrency relation (see [29, 85]) can also
be employed, even for non-safe systems. As for the preset trees construction
described in Chapter 4, it can be used without any modifications to unfold strictly
safe M-net systems (and we work now on generalizing it to a wider class of M-net
systems).

It turns out that directly unfolding a high-level net not only avoids the gen-
eration of its (potentially, very large) expansion, but often is also more efficient
than unfolding its expansion. Indeed, as it was mentioned in Chapter 4, the
most time-consuming part of the algorithm is computing the possible extensions
of the built part of the prefix. Since one high-level transition usually corresponds
to several low-level ones, less transitions have to be tried each time possible ex-
tensions are computed, which may lead to considerable savings in the running
time. (Though the preset trees construction described in Chapter 4 alleviates
the problem in the low-level case, it is not very efficient in the presence of many
dead transitions.)

It is often the case that the information about the firing mode of an event
needs not be explicitly stored. Indeed, this information almost always can be
discarded, since one is usually not interested in what was the precise firing mode
of a transition, as long as the consumed and produced tokens remain the same.

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 71

An important extension of the proposed approach allows for M-net systems
with places having infinite types. For example, it is often convenient to assign
to a place the type N rather than {0, . . . , n}, since n might be not known in
advance. Even when the set of reachable markings of such an M-net system is
finite, its expansion is infinite and so of little use for model checking, whereas
with the described direct approach we still can build the canonical prefix and
complete the verification. The only thing which needs to be ensured is that at
any stage of prefix construction only a finite number of legal firings needs to
be considered. This will be the case if, for every transition t and every finite
multiset Z over P , the set of all firing modes σ of t such that •tσ ≤ Z is both
finite and computable.

Having built a canonical prefix, one can easily construct the refined version
of the low-level expansion of the original M-net system, with unreachable places
and dead transitions removed. This may be important, e.g., for directly mapping
a Petri net to a circuit simulating its behaviour.

Finally, it is worth mentioning that since the proposed method constructs
exactly the same prefix which would have been generated from the correspond-
ing expansion of the M-net system, all the existing model checkers employing
unfolding prefixes derived from low-level nets can be used without any changes
when dealing with prefixes generated directly from M-net systems.

6.5 Case studies

In this section, we compare the described approach with the traditional one,
viz. the unfolding of M-net expansions. We used the unfolding engine described
in Chapters 4 and 5 which after suitable modifications was able to unfold both
low-level and high-level Petri nets. For building M-net expansions, we used the
Hl2ll utility from the Pep tool (see [6, 7]).

The meaning of the columns in Tables 6.1 and 6.2 is as follows (from left
to right): the name of the problem; the number of places and transitions in the
original M-net system; the number of places and transitions in the corresponding
expansion, together with the time required by the Hl2ll utility to build the
expansion; the number of conditions, feasible events, and cut-off events in the
canonical prefix; the time (in seconds) required to unfold the expansion of the
M-net system and the M-net system itself, respectively.

The first example is data-intensive, and so the traditional (via low-level nets)
approach is extremely inefficient, whereas we expected the new algorithm to
perform well. The second example is control-intensive, so the M-net expansions
are just slightly larger that the original M-nets. It was chosen to test the worst-
case performance of the proposed method relatively to the unfolding of the low-
level expansion.

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 72

mp1:{0..3} n p2:{0..3}

p3:{0..3}

t1

v1 6= 0 ∧ u1 = v2%v1 ∧ u2 = v1

t2 v1 = 0 ∧ u1 = v2

v1 v2

u1

v1

u1

v2

u2

(a)

p2
1 p3

2

e1

t1

p1
1 p2

2

e2

t1

p0
1 p1

2

e3

t2

p1
3

(b)

Figure 6.2: An M-net system modelling Euclid’s algorithm for computing the
greatest common divisor of two non-negative integers (a) and its unfolding for
m = F3 = 2 and n = F4 = 3 (b) (firing modes are not shown).

6.5.1 Greatest common divisor

An M-net simulating Euclid’s algorithm for computing the greatest common
divisor of two non-negative integers m and n and its unfolding are shown in
Figure 6.2. This M-net is very data-intensive, and thus its expansion is much
larger than the original high-level net, especially when the values of m and n are
large. In these experiments, we computed the greatest common divisor of two
consecutive Fibonacci’s numbers, Fi and Fi−1, for different values i (such numbers
are known to produce the longest sequences of computational steps for Euclid’s
algorithm). The results of these experiments are summarized in Table 6.1. From
the structure of the M-net it is easy to calculate that its expansion contains
3(Fi +1) places and (Fi +1)2 transitions (note that Fi is exponential in i). These
values are reported in the corresponding columns of the table, even though Hl2ll

failed to produce the expansions when they became large.
The experimental results show that for this example the high-level unfolding

is clearly superior. Though the M-net expansion grows very quickly, the resulting
prefix has only 2i− 1 conditions and i− 1 events. Therefore, the new algorithm
was able to build it for relatively large i (we had to stop the experiments after
i = 45 since F50 overflows 4-bytes integer, but it is a limitation of the current
implementation rather than of the method itself).

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 73

Problem M-net Expansion Unfolding t[s]
|P | |T | |P | |T | t[s] |B| |E| |Ecut| LL HL

Gcd(F5, F4) 3 2 18 36 <1 9 4 0 <1 <1
Gcd(F10, F9) 3 2 168 3136 1 19 9 0 6 <1
Gcd(F15, F14) 3 2 1833 >105 — 29 14 0 — <1
Gcd(F20, F19) 3 2 >104 >107 — 39 19 0 — <1
Gcd(F25, F24) 3 2 >105 >109 — 49 24 0 — <1
Gcd(F30, F29) 3 2 >106 >1011 — 59 29 0 — <1
Gcd(F35, F34) 3 2 >107 >1013 — 69 34 0 — <1
Gcd(F40, F39) 3 2 >108 >1016 — 79 39 0 — <1
Gcd(F45, F44) 3 2 >109 >1018 — 89 44 0 — <1

Table 6.1: Experimental results for M-net systems modelling Euclid’s algorithm.

6.5.2 Mutual exclusion algorithm

The previous example was rather favourable for the new algorithm, since the
expansions of the M-net systems were very large. We therefore checked the
performance of the proposed approach in a totally opposite case, when the ex-
pansion of an M-net is relatively small. This happens when the transitions of
the M-net are connected to few places and the cardinality of most place types
is 1. Such M-nets arise when modelling Lamport’s mutual exclusion algorithm
for n processes trying to access a critical section (see [49, 70]). Its distinctive
characteristic is ‘very small’ atomic actions. The pseudo-code of this algorithm
is shown in Figure 6.3. We encoded it in the B(PN)2 language supported by
the Pep tool (see [5, 7, 33, 34]), as shown in Figure 6.4. Note that we had to
replicate parts of the code since currently B(PN)2 does not support the goto
operator. The Pep tool can automatically compile a B(PN)2 program into both
a high-level and a low-level Petri net.

The type of the places corresponding to the variables x and y is {0, . . . , n},
the type of places corresponding to bi’s is {false, true}, and all the other places
have the type {•} and thus are not replicated in the expansion. Every transition
has not more than 2 incoming and 2 outgoing arcs, and is connected to at least
two places of type {•}; moreover, in all assignments and conditions, one of the
operands is always a constant. Therefore, the number of transition replicas in
the expansion is relatively small.

The experimental results for Lamport’s mutual exclusion algorithm are shown
in Table 6.2. As one can see, the new algorithm performs almost as well as the
algorithm for low-level nets. Though there is some overhead when computing
transition guards and more complicated final states, it is relatively small, because
the most time-consuming operation is computing the possible extensions of a
current prefix. Moreover, this overhead becomes relatively smaller as the size of
the prefix grows (it is just 0.5% for the last example in the table).

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 74

start :
< bi ← true >;
< x← i >;
if < y 6= 0 > then

< bi ← false >;
await < y = 0 >;
goto start;

< y ← i >;
if < x 6= i > then

< bi ← false >;
for j ← 1 to n do

await < bj = false >;
if < y 6= i > then

await < y = 0 >;
goto start;

critical section;

< y ← 0 >;
< bi ← false >;

Figure 6.3: The pseudocode of the i-th process in Lamport’s mutual exclusion
algorithm.

After the prefixes had been built, we verified using the efficient model checker
described in Chapter 7 that the M-net system is deadlock free, and that the places
corresponding to the critical sections of the processes are mutually exclusive.
This was done without recompiling the model checker, since the new unfolding
algorithm generates prefixes which are indistinguishable from those generated by
a low-level net unfolder from the corresponding expansions of the M-nets.

It is worth noting that in this example partial-order methods have advantage
over the state-space based ones. In [49], this mutual exclusion algorithm was
verified for n = 3 by building a reachability graph of the Petri net model and
for n = 4 by applying symmetry reductions. We managed to verify the case
n = 4 without applying symmetry reductions, using a PC with smaller memory
(128M rather than 256M), for a net system which was generated from a relatively
high-level description (B(PN)2 language) rather than built by hand. Moreover,
as it was already noted, the specification we used was not optimal since we
had to replicate parts of the code. In principle, due to the results developed
in Chapter 2, it is also possible to apply partial-order methods together with
symmetry reductions (see also [24]) to achieve even better results, but we have
not implemented the combined method yet.

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 75

begin

VAR x : {0..n} init 0;
VAR y : {0..n} init 0;
VAR b1, . . . , bn : {false, true} init false;

proc PROCESS(const i : {1..n}, ref b : {false, true}) max n
begin

do
< b′ = true >; < x′ = i >;
do

< y # 0 >; < b′ = false >; < y = 0 >; exit
2 < y = 0 >; < y′ = i >;

do
< x#i >; < b′ = false >;
< b1 = false >; . . . ; < bn = false >;
do

< y#i >; < y = 0 >; exit
2 < y = i >;

critical section

< y′ = 0 >; < b′ = false >; exit
od; exit

2 < x = i >;

critical section

< y′ = 0 >; < b′ = false >; exit
od; exit

od; repeat
od

end ;

PROCESS(1, b1) ‖ . . . ‖ PROCESS(n, bn)

end

Figure 6.4: The B(PN)2 code for Lamport’s mutual exclusion algorithm.

CHAPTER 6. UNFOLDINGS OF HIGH-LEVEL PETRI NETS 76

Problem M-net Expansion Unfolding t[s]
|P | |T | |P | |T | t[s] |B| |E| |Ecut| LL HL

Lamp(2) 52 50 58 88 <1 711 368 102 <1 <1
Lamp(3) 77 76 86 154 <1 23424 12026 4562 29 30
Lamp(4) 104 104 116 236 <1 736507 375983 167780 28772 28917

Table 6.2: Experimental results for M-net systems modelling Lamport’s mutual
exclusion algorithm.

6.6 Conclusions

In this chapter, we defined branching processes and unfoldings of high-level Petri
nets and proposed an algorithm which builds finite and complete prefixes of
such unfoldings. We established an important relation between the branching
processes of a high-level net and those of its low-level expansion. This allows
for importing results proven for branching processes of low-level nets rather than
re-prove them. Among such results are the canonicity of the prefix for different
cutting contexts, the usability of the total adequate order �erv , and the parallel
unfolding algorithm. The proposed approach is conservative in the sense that
all the verification tools employing the traditional unfoldings can be reused with
such prefixes. The conducted experiments demonstrated that it is, on one hand,
superior to the traditional approach on data-intensive application, and, on the
other hand, has the same performance on control-intensive ones.

Chapter 7

Prefix-Based Model Checking

Chapters 4–6 discussed how to efficiently generate finite and complete prefixes of
Petri net unfoldings. In this chapter, we show how such prefixes can be used for
efficient model checking reachability-like properties, i.e., finding reachable states
satisfying certain properties, e.g., deadlocked markings.

In [77], the problem of deadlock checking a Petri net was reduced to a mixed
integer linear programming (MIP) problem. In this chapter, we present a fur-
ther development of this approach. We adopt Contejean and Devie’s algorithm
(CDA), developed in [1, 2, 16–18], for efficiently solving systems of linear con-
straints over the domain of natural numbers, and refine it by employing specific
properties of the systems of linear constraints to be solved. The essence of
the proposed modifications is to transfer the information about causality and
conflicts between events involved in an unfolding into a relationship between
the corresponding integer variables in the system of linear constraints. Experi-
mental results demonstrate that the resulting algorithms can achieve significant
speedups.

This chapter is based on the results developed in [52–55].

7.1 Deadlock detection using linear program-

ming

In the rest of this chapter, we assume that Θ is a dense cutting context with
the equivalence relation refining ≈mar , and ΣΘ df

= (B,E,G,Min) is the safe net
system built from the canonical prefix Unf Θ

Σ = (B,E,G, h) of the unfolding
of a bounded net system Σ = (P, T, F,M0), where Min is the canonical initial
marking of ΣΘ which places a single token in each of the minimal conditions
and no token elsewhere.1 Furthermore, we will assume that b1, b2, . . . , bp and
e1, e2, . . . , eq are respectively the conditions and events of Unf Θ

Σ , and that IΣΘ

is the p × q incidence matrix of ΣΘ. The set of cut-off events of Unf Θ
Σ will be

denoted by Ecut .

1We will often identify ΣΘ and Unf Θ

Σ , provided that this does not create an ambiguity.

77

CHAPTER 7. PREFIX-BASED MODEL CHECKING 78

We now recall the main results from [77]. Since Unf Θ
Σ is complete, each reach-

able deadlocked marking in Σ is represented by a deadlocked marking in ΣΘ.
However, ΣΘ can have additional deadlocks introduced by truncating the un-
folding of Σ. Such false deadlocks can be eliminated by prohibiting the cut-off
events from occurring.

Since for an acyclic Petri net the feasibility of the marking equation (see
Section 1.4) is a sufficient condition for a marking to be reachable, the problem
of deadlock checking can be reduced to the feasibility test of a system of linear
constraints.

Proposition 7.1 ([77]). Σ is deadlock-free iff the following system has no so-
lution (in M and x):





M = Min + IΣΘ · x
∑

b∈•e

M(b) ≤ |•e| − 1 for all e ∈ E

x(e) = 0 for all e ∈ Ecut

M ∈ Np and x ∈ Nq ,

(7.1)

where x(ei) = xi, for every i ∈ {1, . . . , q}.

The first equation in (7.1) is the marking equation for ΣΘ in the matrix
form (see Section 1.4); it states that M is a marking of ΣΘ reachable via some
sequence of transitions whose Parikh vector is x. The second set of equations
states that M enables no transitions of ΣΘ and thus is a deadlocked marking
(note that ΣΘ is a safe net system). The last set of equations requires all the
cut-off events not to occur in the execution sequence leading to M , and thus
excludes the ‘false’ deadlocks from the set of solutions of the system.

In order to decrease the number of integer variables, M ≥ 0 can be treated
as a rational vector, since x ∈ Nq and M = Min + IΣΘ · x ≥ 0 always imply that
M ∈ Np. Moreover, as an event can occur at most once in a given execution
sequence of ΣΘ from the initial marking Min , it is possible to require x to be a
binary vector, x ∈ {0, 1}q.

To solve the resulting mixed integer LP-problem (MIP problem), [77] used
the general-purpose LP-solver CplexTM [23], and demonstrated that there are
significant performance gains if the number of cut-off events is relatively high,
since all variables in x corresponding to cut-off events are set to 0.

We will show in Section 7.3 that it is possible to reduce (7.1) to a purely
integer LP-problem without increasing the total number of integer variables.
Moreover, (7.1) has several problem-specific interdependencies between the vari-
ables, and taking them into account may allow one to significantly reduce the
time needed to solve the system. Therefore, it turns out to be non-optimal to
use general-purpose LP-solvers for this particular problem.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 79

7.2 Solving systems of linear constraints

In this chapter, we will adapt the approach proposed in [1, 2, 16–18], in order to
solve Petri net verification problems which can be reformulated as LP-problems.
We start by recalling some basic results.

The original Contejean and Devie’s algorithm, or CDA ([16–18]), solves a
system of linear homogeneous equations with arbitrary integer coefficients





A11x1 + · · · + A1qxq = 0
A21x1 + · · · + A2qxq = 0

...
...

...
Ap1x1 + · · · + Apqxq = 0 ,

(7.2)

or A · x = 0, where x ∈ Nq and A
df
= (Aij). For every 1 ≤ j ≤ q, let

εj
df
= (0, . . . , 0,︸ ︷︷ ︸

j − 1 times

1, 0, . . . , 0)

be the j-th vector in the canonical basis CB of Nq. Vector A · εj — the j-th
column vector of the matrix A — is called the j-th basic default vector .

The set S of all solutions of (7.2) can be represented by a finite basis BS
which is the minimal (w.r.t. ⊆) subset of S such that every solution is an N-
linear combination of the solutions in BS. It can be shown that BS comprises
all solutions in S different from the trivial one, x = 0, which are minimal with
respect to the ≤ ordering on Nq (x ≤ x′ if xi ≤ x′

i, for all 1 ≤ i ≤ q; moreover,
x < x′ if x ≤ x′ and x 6= x′).

Any solution of (7.2) can be seen as a multiset of default vectors whose sum
is 0. Choosing an arbitrary order among these vectors amounts to constructing
a sequence of default vectors starting from, and returning to, the origin of Zp.
CDA constructs such a sequence step by step: starting from the empty sequence,
new default vectors are added until a solution is found, or no minimal solution
can be obtained. However, different sequences of default vectors may correspond
to the same solution (up to permutation of vectors). To eliminate some of the
redundant sequences, a restriction for choosing the next default vector is used.

Branching Condition 1. A vector x ∈ Nq (corresponding to a sequence of
default vectors) such that A·x 6= 0 can be incremented by 1 on its j-th component
provided that A · (x + εj) = A · x +A · εj lies in the half-space containing 0 and
delimited by the affine hyperplane perpendicular to the vector A·x at its extremity
when originating from 0 (see Figure 7.1). 3

This reflects a view that A · x should not become too large, hence adding
A · εj to A · x should yield a vector A · (x + εj) = A · x +A · εj ‘returning to the
origin’. Formally, this restriction can be expressed as

(A · x)� (A · εj) < 0 , (7.3)

CHAPTER 7. PREFIX-BASED MODEL CHECKING 80

0

A · (x + εj)

A · x

A · εj

Figure 7.1: Geometric interpretation of the branching condition in CDA.

where � denotes the scalar product of two vectors.
This reduces the search space without losing any minimal solution, since every

sequence of default vectors which corresponds to a solution can be rearranged
into a sequence satisfying (7.3).

Proposition 7.2 (Correctness, [18]). The following hold for CDA shown in
Figure 7.2:

1. Every minimal solution of (7.2) is found. (completeness)

2. Every solution found by CDA is minimal. (soundness)

3. The algorithm always terminates. (termination)

search breadth-first a directed acyclic graph rooted at ε1, . . . , εq

if a node y is equal to, or greater than, an already found
solution of A · x = 0

then y is a terminal node
else construct the sons of y by computing y + εj

for each j ≤ q satisfying A · y �A · εj < 0

Figure 7.2: An outline of CDA (breadth-first version).

Figure 7.3(a) illustrates the process of solving the homogeneous system of
linear equations

{
− x1 + x2 + 2x3 − 3x4 = 0
− x1 + 3x2 − 2x3 − x4 = 0 ,

considered in [69]. The example shows redundancies, as some vectors were com-
puted more than once. This can be remedied by using frozen components , defined

CHAPTER 7. PREFIX-BASED MODEL CHECKING 81

(a)

1000
−1
−1

0100
1
3

0010
2

−2
0001

−3
−1

1100
0
2

0110
3
1

0101
−2

2
0011

−1
−3

2100
−1

1
1110

2
0

1101
−3

1
0111

0
0 = x′

2110
1

−1
1111

−1
−1

> x′

2210
2
2

2111
−2
−2

> x′

3210
1
1

2211
−1

1
> x′

4210
0
0x′′ = 3211

0
−2

> x′

(b)

1000
−1
−1

∗

0100
1
3

0010
2

−2
0001

−3
−1

1100
0
2

0110
3
1

0101
−2

2

∗

0011
−1
−3

2100
−1

1

∗

1110
2
0

0111
0
0 = x′

2110
1

−1

2210
2
2

3210
1
1

4210
0
0x′′ =

Figure 7.3: Search graphs constructed by the breadth-first (a) and ordered (b)
versions of CDA. Inside each box, the current value of A · x is represented by a
column on the right, and is preceded by the current value of x. In the latter graph,
frozen components are underlined, and the *s indicate the nodes which cannot be
developed due to branching condition (7.3) and/or the frozen components rule.
Note that x′ = (0, 1, 1, 1) and x′′ = (4, 2, 1, 0) are two minimal solutions.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 82

thus. Assume that there is a total ordering ≺x on the sons of each node2 x of
the search graph constructed by CDA.

Frozen Components 1. If x + εi and x + εj are two distinct sons of a node x
such that x + εi ≺x x + εj, then the j-th component is frozen in the sub-graph
rooted at x + εi and cannot be incremented even if (7.3) is satisfied. 3

The modified algorithm is still complete (see [18]), and builds a forest which
is a sub-graph of the original search graph. By defining3 the ordering ≺x as
x + εi ≺x x + εj ⇔ i < j we obtain, for the system in the above example, the
graph shown in Figure 7.3(b) (see [69]).

The ordered version of CDA can easily handle bounds imposed on variables:

• x′ ≤ x. Then, instead of starting with the vectors ε1, . . . , εq, the algorithm
starts with x′. The rest of the operation remains the same, but the minimal
elements of the set S ′ = {x | A·x = 0∧x′ ≤ x} do not give all the solutions
of {

A · x = 0
x′ ≤ x .

However, any solution of the above system can be represented as a sum of
a minimal element of S ′ and an N-linear combination of minimal solutions
of the original system.

• x ≤ x′′ where x′′ ∈ (N∪{∞})q. Then the algorithm works in the standard
way except that the j-th component of a vector becomes frozen as soon as
it reaches the j-th component of x′′.

• x′ ≤ x ≤ x′′. Then a combination of the two previous techniques is used.

With the above extensions, CDA allows one to solve non-homogeneous dio-
phantine systems





A11x1 + · · · + A1qxq = α1

A21x1 + · · · + A2qxq = α2
...

...
...

Ap1x1 + · · · + Apqxq = αp .

(7.4)

By introducing a new variable, x0, one can transform (7.4) into a homogeneous
system 




−α1x0 + A11x1 + · · · + A1qxq = 0
−α2x0 + A21x1 + · · · + A2qxq = 0

...
...

...
...

−αpx0 + Ap1x1 + · · · + Apqxq = 0 .

2Including the virtual node 0.
3The ordering ≺x may be defined in other ways as well (see [18]).

CHAPTER 7. PREFIX-BASED MODEL CHECKING 83

Let BSk (k = 0, 1) be the set of all minimal solutions x = (x0, x1, . . . , xq) of this
system with x0 = k. Then any solution of (7.4) can be represented as

x = y +
∑

z∈BS0

cz z ,

where y ∈ BS1 and each cz belongs to N. Thus, to solve (7.4), it suffices to add
just one variable which becomes frozen as soon as it reaches the value 1.

The task of solving a system of linear inequalities





B11x1 + · · · + B1qxq ≤ β1

B21x1 + · · · + B2qxq ≤ β2
...

...
...

Bp1x1 + · · · + Bpqxq ≤ βp

(7.5)

is more complicated. In general, not all the solutions of (7.5) can be represented
as N-linear combinations of minimal solutions, even if the system of inequalities
is homogeneous. As an example, [2] considers the inequality x1 − x2 ≤ 0. Its
only non-trivial minimal solution is (0, 1), which is not enough to generate the
set of all solutions, {(n, n+m) | n,m ∈ N}. To generate the whole set one needs
also to take a non-minimal solution (1, 1) > (0, 1).

The standard linear programming approach is to reduce (7.5) to a system of
equations





B11x1 + · · · + B1qxq + y1 = β1

B21x1 + · · · + B2qxq + y2 = β2
...

...
. . .

...
Bp1x1 + · · · + Bpqxq + yp = βp

by introducing slack variables yi ∈ N, but this transformation increases the
number of variables from q to q + p. Consequently, as the computation time can
grow exponentially in the number of variables, such an approach is not efficient.
Moreover, the slack variables may assume arbitrary values in N, even if all the
variables in the original problem are binary as in (7.1); as a result, the search
space can grow very rapidly.

Another approach is to deal with the inequalities (7.5) directly. It was de-
veloped in [1,2], where CDA has been generalized to solve homogeneous systems
of inequalities. The approach uses the notion of a non-decomposable solution,
i.e., one which cannot be represented as an N-linear combination of other solu-
tions; one can see that the non-decomposable solutions form a basis of the set of
all the solutions. For a system of linear constraints A · x = 0 ∧ B · x ≤ 0, the
branching condition (7.3) is modified in the following way.

Branching Condition 2. Given a vector x = (x1, . . . , xq), increment by 1
an element xj for which there exist y1, . . . , yp such that the vector (x1, . . . , xq,

CHAPTER 7. PREFIX-BASED MODEL CHECKING 84

y1, . . . , yp) can be incremented on its j-th component according to (7.3) applied
to the system A · x = 0 ∧ B · x + y = 0, where p is the number of rows in B
and y = (y1, . . . , yp). 3

As shown in [1, 2], this condition can be expressed as

(A · x)� (A · εj) +

p∑

i=1

min

{
(Bi � x)(Bi � εj),
max{0,Bi � x}(Bi � εj)

}
< 0 , (7.6)

where Bi is the i-th row of B. To ensure termination in the general case, [1, 2]
add one more condition, but if all the variables are bounded (which is the case
for all applications considered in this chapter) then this is not necessary.

7.3 Integer programming verification algorithm

In this section we start by reformulating the deadlock detection problem — one
of the fundamental verification problems for Petri nets — in terms of integer
programming. We then describe how solving the obtained system of constraints
can be improved by taking into account partial-order dependencies between the
variables derived from the unfolding. After that we develop an extension of CDA
aimed at combining these dependencies with the original algorithm.

7.3.1 Reduction to a pure integer problem

The problem recalled in Section 7.1 can be reduced to a pure integer one, by
substituting the expression for M given by the marking equation into the other
constraints. Each equation in M = Min + IΣΘ · x has the form

M(b) = Min(b) +
∑

f∈•b

x(f)−
∑

f∈b•

x(f) , (7.7)

where b ∈ B. After substituting these into (7.1) we obtain the system





∑

b∈•e

(
∑

f∈•b

x(f)−
∑

f∈b•

x(f)

)
≤ |•e| − 1−

∑

b∈•e

Min(b) for all e ∈ E

Min + IΣΘ · x ≥ 0

x(e) = 0 for all e ∈ Ecut

x ∈ {0, 1}q .

(7.8)

Usually, each inequality in (7.8) contains relatively few variables, so it does make
sense to use a sparse-matrix representation of this system.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 85

Remark 7.3. For efficiency reasons, inequalities can be first generated with-
out paying attention to possible repetitions of the same variable in its left-hand
side, and then sorted and transformed into the normal form. But one should
be careful when choosing the sorting algorithm: the sequence of monomials ob-
tained after generating the inequalities is often nearly sorted, and QuickSort

performs rather poorly, i.e., in quadratic time. Experiments conducted at the
initial stage of this work showed that in this case the process of sorting mono-
mials can be much more time consuming than the process of solving the system;
it is therefore better to use a sorting algorithm with O(n log n) worst case exe-
cution time. In the final implementation, we obtained satisfactory results with
HeapSort, which has an additional advantage that it does not require auxiliary
arrays. Alternatively, one can generate the equations on-the-fly, as described in
Section 7.9.

As (7.8) is a pure integer problem, the usual integer programming algorithms
are in principle directly applicable. However, since the number of variables is
usually large even for moderate sized net systems, a further refinement is needed.

7.3.2 Partial-order dependencies between variables

In [77], ΣΘ is used only for building a system of constraints, and the latter is then
passed to an LP-solver without any additional information. Yet, while solving
the system, one can use dependencies between variables implied by the causal
order on events, which can easily be derived from ΣΘ. For example, if we set
x(e) = 1 then each x(f) such that f is a predecessor (in the causal order) of e
must be equal to 1, and each x(g) such that g is in conflict with e, must be
equal to 0. Similarly, if we set x(e) = 0 then no causal successor f of e can be
executed in the same run, and so x(f) must be equal to 0. These observations
can be formalized by considering ΣΘ-compatible vectors (see Section 1.4 for the
definition), and the following result provides a basis for such an approach.

Proposition 7.4. A vector x ∈ {0, 1}q is ΣΘ-compatible iff for all distinct events
e, f ∈ E such that x(e) = 1, we have:

f ≺ e⇒ x(f) = 1 and f#e⇒ x(f) = 0 . (7.9)

Note: ΣΘ-compatible vectors are binary, since each event in the unfolding of Σ
can occur at most once in an execution sequence.

Proof. (⇒) Let σ be an execution sequence starting from Min , such that xσ = x.
For e ∈ E to be executed, it is necessary for all f ∈ E satisfying f ≺ e to
occur before e. Moreover, if f#e then f cannot happen in the same execution
sequence. Hence (7.9) holds.

(⇐) We will show that for each vector x ∈ {0, 1}q satisfying (7.9), it is
possible to build an execution sequence σ whose Parikh vector xσ = x.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 86

As shown in [77,78], for acyclic nets the feasibility of the marking equation is
a sufficient condition for a marking to be reachable. Moreover, the proof of this
result presented in [77,78] implies that any solution of this equation corresponds
to at least one execution sequence σ. Hence, if for a given vector x ∈ {0, 1}q,
M = Min + IΣΘ · x ≥ 0 then M is reachable and there is an execution sequence
leading to M whose Parikh vector is x. Therefore, it is enough to show that for
every x ∈ {0, 1}q satisfying (7.9), Min +IΣΘ ·x ≥ 0, i.e., that the following holds:

Min(b) +
∑

f∈•b

x(f)−
∑

f∈b•

x(f) ≥ 0 for all b ∈ B . (7.10)

Since for all b ∈ B, |•b| ≤ 1,

∑

f∈•b

x(f) =

{
0 if •b = ∅
x(f ′) if •b = {f ′} ,

and in what follows we consider two cases:
Case 1: •b = ∅. Then b is an initial condition and so Min(b) = 1. In this

case, (7.10) has the form
∑

f∈b• x(f) ≤ 1, and it holds due to the second part
of (7.9) and the fact that all the events in b• are in conflict.

Case 2: •b = {f ′} for some f ′ ∈ E. Then Min(b) = 0, and so (7.10) has the
form

∑
f∈b• x(f) ≤ x(f ′), and it holds by (7.9), since all the events in b• are in

conflict, and f ′ is a predecessor for all of them.

Corollary 7.5. For each reachable marking M of Σ, there exists an execution
sequence of ΣΘ leading to a marking representing M , whose Parikh vector x
satisfies (7.9), and for every e ∈ Ecut , x(e) = 0.

Proof. Since the prefix used to build ΣΘ was complete, each reachable marking M
of Σ is represented in ΣΘ by a marking M ′ which can be reached from Min

through an execution sequence σ without cut-off events. Proposition 7.4 implies
that the Parikh vector of σ satisfies (7.9).

There exists a one-to-one correspondence between ΣΘ-compatible vectors and
configurations of the finite and complete prefix which was taken as the basis
of ΣΘ. In view of the last result, it is sufficient for a deadlock detection algorithm
to check only ΣΘ-compatible vectors whose components corresponding to cut-off
events are equal to zero. This can be done by freezing all x(e) such that e ∈ Ecut

at the beginning of the algorithm and constructing the minimal ΣΘ-compatible
closure (defined below) of the current vector in each step of the algorithm.

7.3.3 Compatible closures

A ΣΘ-compatible vector y ∈ {0, 1}q is a ΣΘ-compatible closure of a vector
x ∈ {0, 1}q if x ≤ y. Moreover, y is the minimal ΣΘ-compatible closure of x,

CHAPTER 7. PREFIX-BASED MODEL CHECKING 87

denoted by MCC (x), if it is minimal with respect to ≤ among all possible ΣΘ-
compatible closures of x. Note that MCC (x) can be undefined for some x’s, but
it is unambiguous whenever it is defined, due to Proposition 7.6 below.

As an example, let us consider the causal ordering e1 ≺ e2 ≺ e3, e2 ≺ e4

and e3 co e4 (see Figure 7.4), and x = (1, 0, 1, 0). Then y = (1, 1, 1, 0) and
z = (1, 1, 1, 1) are ΣΘ-compatible closures of x, and MCC (x) = y.

e1 e2

e3

e4

Figure 7.4: An occurrence net.

Proposition 7.6. A vector x ∈ {0, 1}q has a ΣΘ-compatible closure iff for all
e, f ∈ E, x(e) = x(f) = 1 implies ¬(e#f). If x has a ΣΘ-compatible closure
then its minimal ΣΘ-compatible closure exists and is unique. Moreover, in such
a case if x has zero components for all cut-off events, then the same is true for
MCC (x).

Proof. Straightforward. We just point out that in order to build the minimal
ΣΘ-compatible closure of x, when it does exist, it is enough to set to 1 all the
components x(f) for which there is e such that f ≺ e and x(e) = 1, i.e., to
‘downclose’ the set of events corresponding to x, producing a configuration.

From the implementation point of view, it may happen that a vector x has a
ΣΘ-compatible closure according to Proposition 7.6, but it cannot be computed
because some of the zero components of x to be set to 1 have been frozen during
the search process (see Section 7.2). In such a case, the algorithm should behave
as if such a closure cannot be built.

7.3.4 Removal of redundant constraints

One can see that the inequalities in the middle of (7.8) are not essential for an
algorithm checking only ΣΘ-compatible vectors. Indeed, they are just the result
of the substitution of M = Min + IΣΘ · x into the constraint M ≥ 0 and hold
for any ΣΘ-compatible vector x (see the proof of Proposition 7.4). Consequently,
these inequalities may be left out without adding any ΣΘ-compatible solution.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 88

This gives the following reduced system of constraints:




∑

b∈•e

(
∑

f∈•b

x(f)−
∑

f∈b•

x(f)

)
≤ |•e| − 1−

∑

b∈•e

Min(b) for all e ∈ E

x(e) = 0 for all e ∈ Ecut

x ∈ {0, 1}q is ΣΘ-compatible .

(7.11)

7.3.5 Extending CDA (intuition)

Each step of CDA can be seen as moving from a point A·x along a default vector
A· εj such that A·x�A· εj < 0, which is interpreted as ‘returning to the origin’
(see Figure 7.1). However, for an algorithm checking ΣΘ-compatible vectors only,
each step consists in moving along a vector which may be represented as a sum of
several default vectors, and this branching condition is no longer valid. Indeed,
let us consider the same ordering as in Figure 7.4, and the equation

A · x
df
= x1 + 5x2 − 3x3 − 3x4 = 0

(which has a solution x = (1, 1, 1, 1)) with an initial constraint x1 = 1. Then
the algorithm starts from the vector x = (1, 0, 0, 0), and the sequence of steps
should begin from either ε2 or ε2 + ε3 or ε2 + ε4. But (A · x)� (A · ε2) = 5 6< 0,
(A · x) � (A · (ε2 + ε3)) = 2 6< 0, and (A · x) � (A · (ε2 + ε4)) = 2 6< 0,
so we cannot choose a vector to make the first step! A possible solution is to
interpret each step εi1 + · · ·+ εik as a sequence of smaller steps εi1 , . . . , εik where
we choose only the first element εi1 for which A · εi1 does return to the origin,
and then build the minimal ΣΘ-compatible closure x + εi1 + · · · + εik of x + εi1

without worrying where the vector εi1 + · · · + εik actually leads (if there is no
ΣΘ-compatible closure of x+ εi1 then εi1 cannot be chosen). This means that we
check the condition (A·x)�(A·εi1) < 0 which coincides with the original CDA’s
branching condition, though we are moving along a possibly different vector. The
geometric interpretation of the new branching condition is shown in Figure 7.5.
We will now cast the above idea in a formal setting.

7.3.6 Developing an extension of CDA

In this section, we will obtain a general result extending that in [18]. Consider
the following homogeneous system of linear constraints:





A · x = 0
B · x ≤ 0

x ∈ D
df
= D1 × · · · ×Dq ,

(7.12)

where Di
df
= {ki, ki + 1, . . . , ki + li} and ki, li ≥ 0, for every i ≤ q. Below we

assume that 0 /∈ D.4

4From the point of view of this chapter, such an assumption is unproblematic. The case
0 ∈ D is discussed in Remark 7.12, at the end of this section.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 89

0

. . .

A · vi+1

A · vi
A · εi1

A · εi2
A · εik

A · (εi1 + · · ·+ εik)

Figure 7.5: Geometric interpretation of the new branching condition: A · εi1 is
‘returning to the origin’, although A · (εi1 + · · ·+ εik) does not necessarily posses
this property; here vi+1 = vi+εi1 + · · ·+εik is the minimal ΣΘ-compatible closure
of vi + εi1 .

Let ξ : D → D be a partial function5 with the domain domξ such that

xmin
df
= (k1, . . . , kq) ∈ domξ, and codomξ

df
= ξ(domξ). A ξ-minimal solution

of (7.12) is any solution x ∈ codomξ for which there is no solution y ∈ codomξ

satisfying y < x. We will denote this by x ∈ minξ, and assume that:

y ∈ domξ =⇒ y ≤ ξ(y)
y ≤ x ∈ minξ =⇒ y ∈ domξ ∧ ξ(y) ≤ x .

(7.13)

The aim is to develop an algorithm enumerating the ξ-minimal solutions
and, in what follows, we present an extension of CDA achieving this. First, we
introduce a new branching condition.

Branching Condition 3. A vector x ∈ codomξ which is not a solution of (7.12)
can be extended to ξ(x + εj) if x + εj ∈ domξ and

(A · x)� (A · εj) +
m∑

i=1

min

{
max{0,Bi � x}(Bi � εj),

(Bi � x)(Bi � εj)

}
< 0 , (7.14)

where m is the number of rows in B, and Bi is the i-th row of B. 3

The above rule determines a search space which can be represented by a
labelled directed graph Gξ

df
= (X,A), where X ⊆ codomξ is a set of vertices and

A ⊆ X × CB ×X is a set of arcs. It is defined as the smallest graph such that
X contains a distinguished vertex xroot

df
= ξ(xmin) and, for every x ∈ X which

is not a solution of (7.12), if εj ∈ CB satisfies x + εj ∈ domξ and (7.14), then
(x, εj, ξ(x + εj)) ∈ A. Directly from the definitions we obtain

Proposition 7.7. Gξ is finite and acyclic.

5In Section 7.3.7 we will take ξ to be the MCC function.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 90

Proof. From the first part of (7.13) it follows that y < x, for every (y, εj, x) ∈ A.
Thus a directed path in Gξ can have at most |D| vertices. The result follows
from this and |X| ≤ |D| <∞.

The next proposition states a crucial property of the new branching condition.

Proposition 7.8. If a vertex y of Gξ and x ∈ minξ are satisfying y < x, then
there is an arc (y, εj, z) in Gξ such that z ≤ x.

Proof. (Adapted from [2].) We have x − y =
∑

j∈J εj, for some non-empty
multiset J . Suppose that the desired arc does not exist. We observe that, for
every j ∈ J , by the second part of (7.13), y + εj ∈ domξ and ξ(y + εj) ≤ x.
Thus, for all j ∈ J

(A · y)� (A · εj) +
m∑

i=1

min

{
max{0,Bi � y}(Bi � εj),

(Bi � y)(Bi � εj)

}
≥ 0 ,

and after summing these inequalities for all j ∈ J , we obtain

(A · y)� (A · (x− y))

+
∑

j∈J

m∑

i=1

min

{
max{0,Bi � y}(Bi � εj),

(Bi � y)(Bi � εj)

}
≥ 0 . (7.15)

Let K>0 and K≤0 be the sets of all i ≤ m such that Bi � y > 0 and Bi � y ≤ 0,
respectively. Since A · x = 0,

∑

j∈J

∑

i∈K>0

(Bi � y)(Bi � εj)

≥ ||A · y||2 −
∑

j∈J

∑

i∈K≤0

min{(Bi � y)(Bi � εj), 0} ≥ 0 .

We are now going to show that K>0 = ∅. Indeed, by the last inequality,
∑

j∈J

∑

i∈K>0

(Bi � y)(Bi � εj) =
∑

i∈K>0

(Bi � y)(Bi � (x− y)) ≥ 0 .

This, and the fact that for all i ∈ K>0, (Bi � y)(Bi � x) ≤ 0 (which follows from
B · x ≤ 0 and the definition of K>0), yields

0 ≥
∑

i∈K>0

(Bi � y)(Bi � x) ≥
∑

i∈K>0

(Bi � y)2 ≥ 0 .

Hence Bi � y = 0, for all i ∈ K>0. This, however, means that K>0 = ∅. As a
result, B · y ≤ 0.

From K>0 = ∅ it further follows that max{Bi�y, 0} = 0, for all i ≤ m, which
together with (7.15) and A · x = 0 leads to

∑

j∈J

m∑

i=1

min{(Bi � y)(Bi � εj), 0} ≥ ||A · y||
2 ≥ 0 .

CHAPTER 7. PREFIX-BASED MODEL CHECKING 91

Thus, since min{(Bi � y)(Bi � εj), 0} ≤ 0, for every i ≤ m, we obtain that
A·y = 0. Hence y ∈ codomξ is a solution of (7.12) satisfying y < x, contradicting
x ∈ minξ.

Corollary 7.9. All ξ-minimal solutions are vertices of Gξ.

Proof. Let x ∈ minξ. We first observe that xroot ≤ x which follows from the
second part of (7.13). Hence x ∈ X, by Propositions 7.7 and 7.8.

Although the above corollary and Proposition 7.7 imply that Gξ could be
used to solve the problem at hand,6 it may contain a large number of redundant
paths. We will now adapt the frozen components method of [2, 18] to cope with
this problem. Below, for any node x of Gξ we denote by out(x) the set of all
the εj’s which label the arcs outgoing from x.

Frozen Components 2. We assume that, for each node x of Gξ, there is a
total ordering ≺x on the set out(x). And, if εi ≺x εj, then εj is frozen along all
the directed paths in Gξ beginning with the arc (x, εi, ξ(x + εi)). 3

To capture the above rule through a suitable modification of Gξ, we associate
sets of frozen components with the arcs of directed paths originating at xroot .
Let σ = a1a2 . . . ak be a sequence of arcs in Gξ forming a directed path starting
at xroot . For every arc ai = (x, εj, y) in σ, we denote by Froz σ(ai) a subset of CB
such that

Froz σ(ai)
df
= {εm ∈ out(x) | εj ≺x εm} ∪

{
∅ if i = 1
Froz σ(ai−1) if i > 1 .

We then say that σ is non-frozen if, for every arc ai = (x, εj, y) in σ, Supp(y −

x) ∩ Froz σ(ai) = ∅, where Supp(x)
df
= {εj | εj ≤ x}.

With the above notation, Frozen Components 2 determines a search space
which can be represented by the smallest subgraph Tξ of Gξ containing xroot and
all the non-frozen directed paths of Gξ.

Proposition 7.10. Tξ is a tree rooted at xroot whose set of vertices contains all
ξ-minimal solutions.

Proof. We first observe that the orderings associated with the vertices of Gξ

induce, for every vertex x, a total order�x on all the directed paths leading from
xroot to x in such a way that, σ �x σ′ iff σ = σ1(y, εi, z)σ2, σ′ = σ1(y, εj, z

′)σ3

and εi ≺x εj (note that since Gξ is acyclic, a directed path leading from xroot

to x cannot be a prefix of another directed path from xroot to x).
Suppose that Tξ is not a tree. Then there are two different non-frozen directed

paths, σ �x σ′, leading from xroot to some node x 6= xroot . We can represent them
as σ = σ1(y, εi, z)σ2 and σ′ = σ1(y, εj, z

′)σ3, where εi 6= εj. Then εj ∈ Froz σ(a),

6For example, Gξ could be searched in the breadth-first or depth-first manner.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 92

for every arc in (y, εi, z)σ2. Moreover, by the first part of (7.13), εj ≤ x− y and
so σ is not non-frozen, a contradiction.

Suppose now that x ∈ minξ. Since Gξ is finite, and there is at least one
directed path from xroot to x, there is a unique directed path σ = a1 . . . ak

from xroot to x which is maximal w.r.t. �x. Suppose that such a σ is not non-
frozen. Then there are m ∈ {1, . . . , k} and a ∈ A such that am = (y, εj, ξ(y+εj)),
a = (y, εi, ξ(y + εi)), εj ≺y εi and εi ∈ Supp(x−y). By the second part of (7.13),
ξ(y + εi) ≤ x. Hence, by Propositions 7.7 and 7.8, there is a directed path
σ′ = aa′

1 . . . a′
l from ξ(y + εi) to x. Thus σ′′ = a1 . . . am−1σ

′ is a directed path
in Gξ such that σ �x σ′′, contradicting the choice of σ. Hence x is a vertex
of Tξ.

We observe that since Tξ is a tree, in the notation Froz σ(a) we can drop the
index σ (see the definition of Froz σ).

The above frozen components rule allows for further improvement, which can
be given in the form of an additional function froz .

Frozen Components 3. We assume that, for every arc a of Tξ, froz (a) is a
subset of CB such that if a and a′ form two consecutive arcs then froz (a) ⊆
froz (a′). Moreover, if a1 . . . ak is a directed path in Tξ leading from xroot to
y ∈ minξ, then for every i ≤ k, froz (ai) ∩ Supp(y − xi) = ∅, where xi is the
origin of ai. 3

Proposition 7.11. Let Sξ be the minimal subtree of Tξ which contains xroot

and all the directed paths non-frozen w.r.t. froz . Then the set of vertices of Sξ

comprises all ξ-minimal solutions.

Proof. Follows directly from the definitions and (7.13).

To summarize, Branching Condition 3 and Frozen Components 2 and 3 define
the search tree which can be traversed7 to find all ξ-minimal solutions of (7.12)
in a finite number of steps (as Gξ is finite, see Proposition 7.7).

The resulting approach can then be applied to deal with a non-homogeneous
system of linear constraints 



A · x = α
B · x ≤ β
x ∈ D

(7.16)

where we do not assume that 0 /∈ D, and all the notions and assumptions relating
to ξ are as those for (7.12).

The problem of finding all ξ-minimal solutions of (7.16) can be reduced to
an instance of the problem considered earlier in this section. To this end, we

7Using the depth-first search as the breadth-first search would be inefficient due to the need
of recording frozen components.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 93

introduce an auxiliary variable z and two matrices, A′ df
= (A,−α) and B′ df

=
(B,−β). Then (7.16) can be rewritten as





A′ · (x, z) = 0
B′ · (x, z) ≤ 0

(x, z) ∈ D′ df
= D × {1} .

(7.17)

Moreover, after setting dom ′
ξ

df
= domξ × {1} and ξ′(x, z)

df
= (ξ(x), 1), we obtain

an instance of (7.12) (note that 0 /∈ D′). We now observe that x is a ξ-minimal
solution of (7.16) iff (x, 1) is a ξ ′-minimal solution of (7.17). As a result, we can
render the branching condition derived for (7.17), directly in terms of (7.16).

Branching Condition 4. A vector x ∈ codomξ which is not a solution of (7.16)
can be extended to ξ(x + εj) if x + εj ∈ domξ and

(A · x− α)� (A · εj) +
m∑

i=1

ri < 0 , (7.18)

where, for every i ∈ {1, . . . ,m},

ri
df
=

{
0 if Bi � x ≤ βi ∧ Bi � εj ≤ 0

(Bi � x− βi)(Bi � εj) otherwise .

3

Remark 7.12. We assume that xmin ∈ domξ since otherwise there are no ξ-
minimal solutions at all.

To obtain a full extension of CDA, we still need to consider (7.12) when 0 ∈ D
(note that 0 is a trivial solution and has to be excluded from the search). The
discussion can easily be adapted, as follows:

• We assume that 0 /∈ codomξ.

• xroot
df
= 0, and if εj ∈ domξ then (0, εj, ξ(εj)) ∈ A.

Then all the results developed earlier in this section still hold, in particular,
Propositions 7.10 and 7.11.

Allowing infinite ranges Di
df
= {ki, ki + 1, . . .} leads to termination problems;

in other words, the search graph Gξ may be infinite. In such a case, one needs to
develop conditions for bounding ξ-minimal solutions. Such a problem depends on
the actual definition of the function ξ, and so we expect that it will be addressed
on an individual basis. Here, we assume that the domain is finite and so the
termination is always guaranteed. 3

CHAPTER 7. PREFIX-BASED MODEL CHECKING 94

7.3.7 Applying the method for ΣΘ-compatible vectors

We will now apply the theory developed in the previous section to check only
ΣΘ-compatible vectors. This can be done due to the fact that the MCC function
satisfies (7.13). Indeed, if y ∈ domMCC then y ≤ MCC (y) by the definition
of a ΣΘ-compatible closure; moreover, if y ≤ x ∈ minMCC then x is one of
the compatible closures of y, and thus y ∈ domMCC by Proposition 7.6, and
MCC (y) ≤ x by the definition of the minimal ΣΘ-compatible closure.

Referring to the notation introduced above, we shall assume that the system
of constraints to be solved is a non-homogeneous one, and:

• Di
df
= {0} if ei ∈ Ecut , and Di = {0, 1} otherwise.

• domξ is the set of all vectors of D having a ΣΘ-compatible closure, and

ξ(x)
df
= MCC (x).

• For an arc a = (x, εj, y), froz (a)
df
= {εi | ∃εk ∈ Supp(y) : ek#ei}.

It is straightforward to show that all the properties required for dom ξ, ξ and froz
are then satisfied, and so after ignoring the auxiliary variable z, the search tree
Sξ contains all minimal ΣΘ-compatible solutions.

7.4 Implementation of the algorithm

The idea of the algorithm in Figure 7.6 is very similar to that of CDA modified
to solve non-homogeneous systems of linear constraints and checking only ΣΘ-
compatible vectors, such that x(e) = 0 for all e ∈ Ecut .

In general case, the maximal depth of the search tree is O(q) (recall that q
is the number of events in the prefix), so CDA would need to store O(q) vectors
of length q. The proposed algorithm uses just two arrays, X and Fixed , both of
length q:

X : array [1 ..q] of {0, 1} To construct a solution.

Fixed : array [1 ..q] of integers To keep the information about the levels of fixing
the components of X.

The interpretation of these arrays is as follows:

Fixed [i] = 0 Then X[i] must be 0 and this means that X[i] has not yet been
considered, and may later be set to 1 or frozen.

Fixed [i] = k > 0 ∧X[i] = 0 Then X[i] has been frozen at some node on level k
whose subtree the algorithm is developing. It cannot be unfrozen until the
algorithm backtracks to level k.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 95

input :
Cons — a system of constraints
ΣΘ — a net system built from Unf Θ

Σ

output :
X — a ΣΘ-compatible solution of Cons, if there is one

initialization
depth ← 1
X ← (0, . . . , 0)

for i ∈ {1, . . . , q}: Fixed [i]←

{
1 if ei ∈ Ecut

0 otherwise
procedure solve

if X is a solution of Cons then stop
for all i ∈ {1, . . . , q} such that (7.18) holds do

if Fixed [i] = 0 then
depth ← depth + 1
freeze(i)
solve
clear
depth ← depth − 1
fix vars(i)

Figure 7.6: Integer programming verification algorithm.

Fixed [i] = k > 0 ∧X[i] = 1 Then X[i] has been set to 1 at some node on level
k whose subtree the algorithm is developing. This value is fixed for the
entire subtree.

Notice that storing the levels of fixing the elements of X allows one to undo
changes during backtracking, without keeping all the intermediate values of X.
We also use the following auxiliary variables and procedures (see Figure 7.7):

depth : integer The current depth in the search tree.

freeze(i : integer) Freezes all X[k]’s such that ei � ek. The corresponding ele-
ments of Fixed are set to the current value of depth.

fix vars(i : integer) Sets all X[j]’s such that ej � ei to 1 and uses freeze to
freeze all X[k]’s such that ei#ek. The current value of depth is written in
the elements of Fixed , corresponding to the components being fixed.

clear Resets all X[j]’s and Fixed [j]’s which have been fixed on depth depth.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 96

procedure freeze(i : integer)
if Fixed [i] = 0 then

Fixed [i]← depth
for all ek ∈ (e•i)

• do freeze(k)

procedure fix vars(i : integer)
if Fixed [i] = 0 then

X[i]← 1
Fixed [i]← depth
for all b ∈ •ei do

for all ek ∈
•b do fix vars(k) /* |•b| ≤ 1 */

for all ek ∈ b• \ {ei} do freeze(k)

procedure clear
for all i ∈ {1 . . . q} such that Fixed [i] = depth do

X[i]← 0
Fixed [i]← 0

Figure 7.7: Auxiliary functions.

7.4.1 Retrieving a solution

What we often want to see as a solution is an execution sequence of the orig-
inal net system, rather than a configuration of its unfolding. To derive such a
sequence, it is enough to topologically sort the constructed configuration accord-
ing to the causal order on the set of the events, and replace the events by their
labels in the constructed sequence. An observation one can make is that the un-
folders add events one-by-one to the unfolding being constructed, in such a way
that for all non-cut-off events ei and ej, ei ≺ ej implies i < j. Therefore, we can
avoid sorting the events and find a sequence of transitions in a straightforward
way if the natural numbering of the components of the vector x, xi

df
= x(ei), is

used.

7.4.2 Shortest trail

Finding a shortest path leading, e.g., to a deadlock can facilitate the debugging
of a reactive system modelled by a Petri net. In such a case, we need to solve an
optimization problem with the same system of constraints, and ‖x‖ = x1+· · ·+xq

as the cost function to be minimized.
The algorithm can easily be adopted for this task. We do not stop after the

first solution has been found, but keep the current optimal solution together with
the corresponding value of the function ‖ · ‖. As this function is non-decreasing,
we may prune a branch of the search tree as soon as the value of ‖ · ‖ becomes

CHAPTER 7. PREFIX-BASED MODEL CHECKING 97

greater than, or equal to, the current optimal value. This strategy speeds up
the search and saves us from keeping all ξ-minimal solutions found so far. It
is easy to see that this strategy does not affect the completeness, in the sense
that a ξ-minimal solution minimizing ‖ ·‖ will always be found by the algorithm.
Indeed, the strategy builds the same search tree up to the cutting of some of
the subtrees rooted in nodes with the sum of the components not less than the
optimal value of ‖·‖. But all the descendants of such nodes have even greater sum
of the components, and so these subtrees cannot contain an optimal solution. To
allow more pruning and, therefore, to reduce the search space, it makes sense to
organize the search process in such a way that the first found solutions give the
value of ‖ · ‖ ‘close’ to the optimal one. This can be done by choosing in each
step of the algorithm the ‘most promising’ branches. Since the orderings ≺x used
by the algorithm are arbitrary, we may exploit the information about the value
of ‖ · ‖ on them, and check successors with smaller values first (see, e.g., the ≺‖·‖

ordering in [18]). Such an algorithm can be seen as a version of the ‘branch
and bound’ method which considers only ΣΘ-compatible vectors and uses frozen
components and branching condition to reduce the search space.

7.5 Optimizations

Various heuristics used by general purpose integer programming solvers can be
implemented to reduce the search effort. For example, one can look one step
ahead and choose the branch which is in some sense the ‘most promising’ one.
This can be done by choosing an ordering on the sons of each node of the search
tree, depending on the current value of x (e.g., the ≺‖·‖ ordering in [18]).

Moreover, if the algorithm, having fixed some of the variables,8 finds out that
some of the inequalities have become infeasible, then it may prune the current
branch of the search tree. Alternatively, it is sometimes possible to determine
the values of some variables which have not yet been fixed, or to find out that
some of the constraints have become redundant.

We now introduce some simple yet useful heuristics of this sort. Let us
consider the inequality

Bi1x1 + · · ·+ Biqxq ≤ βi (7.19)

in the context of generating the search tree at the current node and calculate

fix =
∑

xj is fixed

Bijxj max =
∑

Bij>0

xj is not fixed

Bij min =
∑

Bij<0

xj is not fixed

Bij .

Note that since x ∈ {0, 1}q, min and max are the bounds for the minimal
and maximal possible values of the non-fixed part of the left hand side of the
inequality in the subtree rooted in the current node, and one can show the
following:

8xi is fixed if it is equal to the highest value in Di, or if εi has been frozen.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 98

• If min > βi − fix then (7.19) (and so the whole system) is infeasible and
the current subtree of the search tree may be pruned.

• If max ≤ βi − fix then (7.19) is redundant and may be ignored in the
subtree rooted at the current node of the search tree.

• If min = βi−fix then (7.19) can only be satisfied if all its non-fixed variables
with negative coefficients are equal to 1, and all its non-fixed variables
with positive coefficients are equal to 0. After fixing these variables (7.19)
becomes redundant.

• If min + Bik > βi − fix for a non-fixed variable xk (in this case Bik > 0),
then (7.19) forces xk to be 0.

• If min − Bik > βi − fix for a non-fixed variable xk (in this case Bik < 0),
then (7.19) forces xk to be 1.

After fixing the value of a variable, it is necessary to build the minimal ΣΘ-
compatible closure of the current vector. As new variables can become fixed
during this process, the above tests can be applied iteratively. If the minimal ΣΘ-
compatible closure cannot be built due to frozen components, then the current
subtree of the search tree contains no ΣΘ-compatible solution and may be pruned.

As an example, let us consider the following system of inequalities:




−x1 − 2x2 + 2x3 + 2x4 + x5 ≤ 1

x1 + 2x2 + x4 − x5 ≤ 2
2x1 + 3x2 + x3 − 3x6 + 2x7 + x8 ≤ 3 ,

where the variables x1 and x2 are fixed to 1, and x3 is fixed to 0. For the first
inequality, fix = −3 , min = 0, and max = 3, and so it is redundant due to
max ≤ 1−fix . For the second inequality, fix = 3, min = −1, and max = 1. Due
to min = 2−fix , one can fix x4 = 0 and x5 = 1. For the third inequality, fix = 5,
min = −3, and max = 3, and one can fix x6 = 1 (due to min − (−3) > 3− fix)
and x7 = 0 (due to min +2 > 3−fix). After fixing these variables, the inequality
becomes redundant.

Suppose now that we added another constraint, x1 + x2 − 2x3 + x9 ≤ 1, for
which fix = 2, min = 0 and max = 1. Then the system becomes infeasible due
to min > 1− fix .

Such optimization rules can formally be justified in the following way. Let
opt : D → D be a partial function9 with the domain domopt , corresponding to
applying the heuristics described above, satisfying:

x ∈ domopt =⇒ x ≤ opt(x)
x ≤ y ∈ minξ =⇒ x ∈ domopt ∧ opt(x) ≤ y .

(7.20)

9Intuitively, opt(x) is undefined if, during the application of the optimization rules, the
algorithm finds out that the system has no ξ-minimal solution y ≥ x.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 99

We then define a partial function ξo : D → D such that ξo(x)
df
= ξ(opt(ξ(x))), for

every x in domξo
which is the largest subset of domξ for which this expression is

well-defined. We denote codomξo

df
= ξo(domξo

), and then observe that, by (7.13)
and (7.20):

x ∈ domξo
=⇒ x ≤ ξo(x)

x ≤ y ∈ minξo
=⇒ x ∈ domξo

∧ ξo(x) ≤ y .
(7.21)

Proposition 7.13. minξ = minξo
.

Proof. Suppose that x ∈ minξ. Then, by x ≤ x and (7.21), we have x ≤ ξo(x) ≤
x. Hence ξo(x) = x and so x ∈ codomξo

. If x /∈ minξo
, then there is y ∈ minξo

such that y < x. Hence, since codomξo
⊆ codomξ, we obtain a contradiction with

x ∈ minξ.
Suppose that y ∈ minξo

. If y /∈ minξ then, by codomξo
⊆ codomξ, there is

z ∈ minξ such that z < y. By the first part of the proof, z ∈ min ξo
, contradicting

y ∈ minξ.

From Proposition 7.13 and (7.21) it follows that the counterpart of (7.13)
holds for ξo as well. Thus, in view of minξ = minξo

, the search for ξ-minimal
solutions can be based on the tree Sξo

, which can often be much more efficient
than using Sξ. As to the frozen components given by the function froz o, it must
satisfy Frozen Condition 3. We only note that, when solving (7.11), it is always
possible to include into froz o(a) the set {εi | ∃εk ∈ Supp(y) : ek#ei}, for every
arc a = (x, εj, y).

In order to avoid calculations related to redundant constraints, we can re-
member for each of them the depth in the search tree at which it was marked as
redundant, and unmark it during the backtracking. Clearly, they do not need to
be considered when checking whether the system is satisfied or performing the
described optimizations.

7.6 Extended reachability analysis

The algorithm described in Section 7.4 is applicable to any system of linear
constraints which are supposed to be solved in ΣΘ-compatible vectors. The
theory of verifying co-linear properties using unfoldings was developed in [76].
It can easily be generalized to arbitrary reachability properties, although solving
(sometimes very large) non-linear systems obtained in this case is usually a hard
task for general-purpose solvers. An algorithm checking only ΣΘ-compatible
vectors can do this more efficiently. Indeed, the only reason why the algorithm
in Section 7.4 accepts only systems of linear constraints is that in order to reduce
the search space it employs the branching condition (7.18). In principle, it can
deal with arbitrary constraints, if one switches off this heuristic.

The approach we will now describe is similar to the one described in [76],
generalized to deal with non-linear constraints. In addition, we use the ideas

CHAPTER 7. PREFIX-BASED MODEL CHECKING 100

from Section 7.3 to re-formulate the resulting integer programming problem in
terms of ΣΘ-compatible vectors.

Let us consider a property Prop(M1, . . . ,Mk) specified on markings of a net
system Σ. We can transform it into a corresponding property Prop ′(x1, . . . , xk)
specified on ΣΘ-compatible vectors x1, . . . , xk in such a way that if there ex-
ist markings M̂1, . . . , M̂k ∈ RM(Σ) such that Prop(M̂1, . . . , M̂k) holds then
Prop ′(x̂1, . . . , x̂k) holds for some ΣΘ-compatible vectors x̂1, . . . , x̂k, and vice versa.

Indeed, let M
df
= Mark(Cx) be the final marking of the configuration Cx given

by a ΣΘ-compatible vector x. Then M ′ df
= Cut(Cx) is a corresponding marking

of ΣΘ. For every p ∈ P , M(p) can be expressed as

M(p) =
∑

h(b)=p

M ′(b) ,

where M ′(b) can be found from the marking equation

M ′(b) = Min(b) +
∑

f∈•b

x(f)−
∑

f∈b•

x(f) .

Therefore,

M(p) =
∑

h(b)=p

(
Min(b) +

∑

f∈•b

x(f)−
∑

f∈b•

x(f)

)
. (7.22)

Denoting by Mark p(x) the linear function in the right hand side of (7.22),
we can express the final marking of the configuration Cx given by its Parikh-
vector x as Mark(x)

df
= (Mark p1

(x), . . . ,Mark pm
(x)), where m = |P |. Thus

Prop(M1, . . . ,Mk) can be rendered as a predicate

Prop ′(x1, . . . , xk)
df
= Prop(Mark(x1), . . . ,Mark(xk))

specified on ΣΘ-compatible vectors. What is more, if Prop is initially expressed
as a system of linear constraints then Prop ′ will possess this property as well.

7.6.1 Deadlock checking in safe case

Applying the technique described in the previous section one can generate an
alternative system of constraints for deadlock checking safe Petri nets (a similar
idea was used in [76] to obtain a translation of this problem into a MIP problem).
To begin with, we have the following condition for safe nets, stating that no
transition is enabled:

∑

p∈•t

M(p) ≤ |•t| − 1 for all t ∈ T \ Tdead , (7.23)

where Tdead is the set of transitions which are dead in Σ. Rendering it in terms
of ΣΘ-compatible vectors yields the following system of linear constraints (all

CHAPTER 7. PREFIX-BASED MODEL CHECKING 101

non-dead transitions needed for constructing this system can easily be found, as
we have a finite and complete prefix):





∑

p∈•t

Mark p(x) ≤ |•t| − 1 for all t ∈ T \ Tdead

x(e) = 0 for all e ∈ Ecut

x ∈ {0, 1}q is ΣΘ-compatible .

(7.24)

In contrast to the method based on (7.11), one now has to keep in memory
|T \ Tdead | rather than |E| constraints. Though the constraints are now longer,
the overall size of the whole system (in terms of the number of monomials) is
often much smaller (see Section 7.12).

Note that this method is in some sense more general than the one described in
Section 7.1. In the latter, the cut-off events played an essential role in separating
real deadlocks from the false ones, introduced by truncating the unfolding. But,
in order to save some memory, one can omit cut-off events when generating
a prefix. The approach proposed in this section, unlike the one based on the
system (7.11), will work with such a ‘stripped’ prefix.

To apply this approach to non-safe net systems, one can use instead of (7.23)
the following constraints:

∑

p∈•t

sg(M(p)) ≤ |•t| − 1 for all t ∈ T \ Tdead ,

where sg(0) = 0 and sg(n) = 1 for every n > 0; or, alternatively,
∏

p∈•t

M(p) = 0 for all t in T \ Tdead .

Although the resulting system is non-linear, it can be dealt with by the algorithm
in Section 7.4 with the branching condition (7.18) switched off.

7.6.2 Terminal markings

Some reactive systems can have states corresponding to a proper termination,
which are considered to be different from deadlocks, even though they may enable
no transitions. For example, the Pep tool (see, e.g., [6, 7]) works with a class of
labelled nets, called boxes (see, e.g., [67]), which are essentially safe Petri nets
with distinguished disjoint sets of entry and exit places, denoted by Pin and Pout

respectively. The proper terminal marking of a box is defined as one that puts a
token on each of the exit places and no tokens elsewhere. Such a false deadlock
can be eliminated from the set of solutions by adding a new constraint, which
holds for all but the terminal marking. As the relevant property Prop(M) one
can take ∑

p∈Pout

M(p)−
∑

p∈P\Pout

M(p) ≤ |Pout | − 1

CHAPTER 7. PREFIX-BASED MODEL CHECKING 102

and, using the approach described earlier in this section, render this constraint
in terms of ΣΘ-compatible vectors and add it to (7.11) or (7.24).

One could slightly relax the notion of a terminal marking of a box, allowing
dead tokens on internal (i.e., different from the entry and exit) places. Such a
situation can be handled in a similar way using the constraint

∑

p∈Pout

M(p)−
∑

p∈Pin

M(p) ≤ |Pout | − 1 .

7.7 Other verification problems

In this section we consider checking mutual exclusion of places, and marking
reachability and coverability problems. Since all these properties are either linear
or co-linear, they can be verified using the approach proposed in [76]. We refine
the technique proposed there by reducing the problems to purely integer ones
and checking only ΣΘ-compatible vectors.

7.7.1 Mutual exclusion

Suppose, one has to check whether two places, p and p′, of Σ are mutually
exclusive. This is the case if, for any M ∈ RM(Σ), at least one of them is empty,
or, in other words, M(p) ≥ 1 and M(p′) ≥ 1 cannot hold simultaneously. Using
the technique described earlier in this section, one can state that a necessary and
sufficient condition for p and p′ to be mutually exclusive is the infeasibility of the
following system of linear constraints:





Mark p(x) ≥ 1

Mark p′(x) ≥ 1

x(e) = 0 for all e ∈ Ecut

x ∈ {0, 1}q is ΣΘ-compatible .

In the safe case, one can check the pairwise mutual exclusion of more than two
places simultaneously, and still remain within the domain of linear constraints.
Indeed, let PME ⊆ P be a set of places whose mutual exclusion is to be checked.
Then

∑
p∈PME

M(p) ≥ 2 must not hold for any M ∈ RM(Σ), and so the cor-
responding necessary and sufficient condition is the infeasibility of the following
system: 




∑

p∈PME

Mark p(x) ≥ 2

x(e) = 0 for all e ∈ Ecut

x ∈ {0, 1}q is ΣΘ-compatible .

(7.25)

CHAPTER 7. PREFIX-BASED MODEL CHECKING 103

7.7.2 Reachability and coverability

Since it is trivial to express the standard reachability and coverability problems
in terms of extended reachability, we give the translation directly. A marking M
of Σ is reachable (coverable) iff the following system of linear constraints is
feasible: 




Mark p(x)
(≥)
= M(p) for all p ∈ P

x(e) = 0 for all e ∈ Ecut

x ∈ {0, 1}q is ΣΘ-compatible .

This system can be simplified as follows: for the coverability problem one can
leave out the constraints for which M(p) = 0 as they always hold, and for the
reachability problem one can replace all such constraints by their sum. In the safe
case, M should be a safe marking, i.e., for all p ∈ P , M(p) ∈ {0, 1} (otherwise
it is neither reachable, nor coverable), and further simplifications are possible.
In particular, one can replace the constraints for which M(p) = 1 by their sum,
reducing thus the system to a single constraint in the case of the coverability
problem, and to a system of two constraints for the reachability problem. What
is more, it is possible to replace ≥ by = when checking coverability.

7.8 Further optimization for deadlock detection

The deadlock detection problem (7.11), has a very special structure, which can
be further exploited. In particular, the maximal value of the left hand side of
the inequality

∑

b∈•e

(
Min(b) +

∑

f∈•b

x(f)−
∑

f∈b•

x(f)

)
≤ |•e| − 1

is |•e|, even if we allow x to be non-ΣΘ-compatible. Therefore, the i-th inequality
in (7.11) can be falsified iff all the variables from Pos i are equal to 1, and all
the variables from Neg i are equal to 0, where by Pos i and Neg i we denote the
sets of the variables with respectively positive and negative coefficients. This
means that we may mark the i-th inequality as redundant as soon as any of the
variables from Pos i becomes frozen at 0, or if any of the variables from Neg i is
set to 1. In addition to this simple redundancy test, one can apply on each step
an infeasibility test for each non-redundant inequality of (7.11). Indeed, if for
the inequality all the variables from Pos i are set to 1, and all the variables from
Neg i are frozen at 0, then this inequality (and, thus, the whole system) cannot be
satisfied, and the algorithm may stop developing the current branch of the search
tree. Apart from this, if all but one variable from Pos i are set to 1, and all the
variables from Neg i are frozen at 0, then the only way to prevent a contradiction
is to freeze at 0 the remaining variable from Pos i. And, similarly, if all the
variables in Pos i are set to 1, and all but one variable in Neg i are frozen at 0,

CHAPTER 7. PREFIX-BASED MODEL CHECKING 104

then we may deterministically set the remaining variable to 1. In both cases, the
constraint becomes redundant. Notice that these rules can be formally justified
by choosing appropriate opt and froz o functions (see Section 7.4).

According to experiments, the above problem-specific heuristics turned out
to be much more efficient than the general ones described in Section 7.5.

The safe case

Unfortunately, the above heuristics do not work for (7.24), where the inequalities
are more complex. But one still can derive some problem-specific optimization
rules.

The maximal value of the left-hand side of the inequality for a transition t
on any ΣΘ-compatible vector x is bounded by |•t|, since Mark p(x) ≤ 1 for safe
net systems. Therefore, if for some inequality, say the i-th one, the value of its
left-hand side is |•t|, then we can state the following:

• If all the variables from Neg i are frozen at 0, then this inequality (and,
thus, the whole system) can never be satisfied. Hence the algorithm may
stop developing the current branch of the search tree.

• If all the variables in Pos i are set to 1, and all but one variable in Neg i are
frozen, then we may deterministically set the remaining non-fixed variable
to 1. After this the constraint becomes redundant.

Moreover, if the value of the left-hand side is |•t| − 1, and all the variables from
Neg i are frozen at 0, then the only way to prevent a contradiction is to freeze all
the non-fixed variables from Pos i. After this the constraint becomes redundant.
Again, the correctness of these heuristics can be justified by choosing appropriate
opt and froz o functions (see Section 7.4).

The problem-specific redundancy tests we obtained for (7.24) are relatively
complex, and not as efficient as the test described above for (7.11). The reason
is that the inequalities of (7.24) do not become redundant as often as those
of (7.11), and we used the general min/max-tests developed in Section 7.5. In
Section 7.12, we will discuss how this new method compares with other deadlock
detection algorithms.

7.9 On-the-fly deadlock detection

Experimental results demonstrated that the algorithm outlined in Section 7.4 is
usually fast, but the treated systems of constraints can be very large, even if
the sparse matrix representation is used (see Table 7.4 in Section 7.12). This, in
turn, can lead to page swapping when the prefix is large (see, e.g., the Lamp(4)
example, where page swapping led to significant slowdown). Therefore, it is
clearly desirable to find a way to reduce the memory demand, provided that this
results in an increase of the running time only by a small factor.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 105

One can notice that the structure of each constraint in (7.11) is rather simple,
and it can be generated ‘on-the-fly’, at the moment it is needed. Indeed, the
algorithm refers to the system of constraints when checking whether the system
is satisfied, when computing the branching condition,10 and when applying the
optimization rules described in Section 7.8. All these can be efficiently done
without explicitly generating the system of constraints, by exploring the sets
•(•e) and (•e)• for all e ∈ E. An observation one can make here is that for
any event e ∈ E, •(•e) ∩ (•e)• = ∅ (since e′ ∈ •(•e) ∩ (•e)• would mean that
simultaneously e′ ≺ e, and either e′ = e or e′# e). Therefore, the positive and
negative coefficients for each constraint in (7.11) can be efficiently separated, and
this can be exploited by the algorithm.

The Lamp(4) example shows that the effect of the described approach can
be very significant for large prefixes: due to economical memory usage it avoided
page swapping and as a result was faster by more than an order of magnitude.

The on-the-fly approach can, in fact, be applied to other verification problems
considered in this chapter. However, the resulting gains would be less significant,
as the corresponding systems of constraints are usually of moderate size.

7.10 Efficiency of the branching condition

As it was mentioned in Section 7.6, the branching condition can be switched off
in order to make the algorithm applicable to non-linear systems of constraints.
That is, the purpose of the branching condition is to speedup solving linear
systems. Therefore, it is interesting to investigate how efficient this heuristic is.

The answer to this question turns out to be problem specific. Experimentally
we found out that if one solves a deadlock detection problem using (7.11) or (7.24)
then the branching condition (7.18) should be switched off as it has little or no
effect on the choices made by the algorithm.

On the other hand, it is quite efficient for solving other model checking prob-
lems, in particular those mentioned in Section 7.7. Indeed, trying to speedup
coverability analysis one might be tempted to use the following problem-specific
branching condition:

Branching Condition 5. Increment only those x(e), for which the transition
h(e) produces a token in a place p ∈M . 3

But in some cases the standard branching condition (7.18) is ‘clever enough’
to choose only such x(e)! Let us show that this indeed is the case for safe net
systems. The constraints have the form

Mark p(x) ≥ 1 for all p ∈M ,

10As explained in Chapter 7.10, this is not strictly necessary, since the branching condition
is better to be switched off when checking the deadlock freeness.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 106

where M is the marking one wants to cover. They can be rewritten as


 ∑

h(b)=p

Min(b)


−Mark p(x) ≤


 ∑

h(b)=p

Min(b)


− 1 for all p ∈M .

If (7.18) holds for some εj then ri < 0 for some i, i.e., (Bi� x− βi)(Bi� εj) < 0.
Since Mark p(x) ≤ 1 for safe nets, Bi � x ≥ βi always holds, and so Bi � εj < 0,
i.e., Bij is negative. But this means that xj is x(e) for some event e such that
h(e)• ∩M 6= ∅.

Note that the above argument can easily be modified for the cases when the
constraints are added up and/or ≤ is replaced by =.

Moreover, experimentally we have found out that the branching condition is
quite efficient for checking the mutual exclusion property. Table 7.1 presents the
performance measurements for the Lamp(n) series of benchmarks (see Chapter 6)
based on (7.25). The meaning of the columns in the table is as follows (from
left to right): the name of the problem; the number of places which need to be
checked for mutual exclusion; the number of explored compatible vectors and
the time taken by the algorithm with the branching condition switched off; the
number of explored compatible vectors and the time taken by the algorithm with
the branching condition switched on. One can see that the speedups gained by
using the branching condition can be quite substantial.

Problem No BC BC
|PME | vec time [s] vec time [s]

Lamp(2) 4 46 <0.01 16 <0.01
Lamp(3) 6 2260 0.95 505 0.78
Lamp(4) 8 74588 1311.71 12395 445.23

Table 7.1: Verifying the mutual exclusion property of Lamport’s mutual exclusion
algorithm.

7.11 Parallelization issues

The integer programming algorithm described in this chapter can easily be imple-
mented on a set of parallel processing nodes. It is enough to unfold one or more
steps of the recursion and distribute the for all loop (see Figure 7.6) between
the processors.11

The algorithm is appropriate for both shared and distributed memory archi-
tectures. In the former case, each processor must have its own copy of the arrays

11For a balanced distribution of tasks, it is better to create a queue of unprocessed recursive
calls.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 107

Problem Unfolding Time [s]
|B| |E| |Ecut | time [s] McM MIP SM CLP

(7.11) o-t-fly (7.24)

Q 16123 8417 1188 6 mem 78549 0.31 0.06 0.06 0.06
Speed 4929 2882 1219 1 23.84 35 0.08 0.03 0.02 <0.01
Dac(6) 92 53 0 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Dac(9) 167 95 0 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Dac(12) 260 146 0 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Dac(15) 371 206 0 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Dp(6) 204 96 30 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Dp(8) 368 176 56 <1 <0.01 1 0.02 <0.01 <0.01 <0.01
Dp(10) 580 280 90 <1 0.02 2 0.02 <0.01 <0.01 <0.01
Dp(12) 840 408 132 <1 0.06 3 0.02 <0.01 <0.01 <0.01
Elev(1) 296 157 59 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Elev(2) 1562 827 331 <1 0.67 8 0.03 <0.01 <0.01 <0.01
Elev(3) 7398 3895 1629 1+1 98.78 311 0.13 0.03 0.01 <0.01
Elev(4) 32354 16935 7337 28+12 mem 8355 0.58 0.20 0.13 0.06
Hart(25) 179 102 1 <1 <0.01 <1 0.02 <0.01 <0.01 <0.01
Hart(50) 354 202 1 <1 <0.01 <1 0.02 <0.01 <0.01 0.01
Hart(75) 529 302 1 <1 <0.01 <1 0.02 <0.01 <0.01 0.01
Hart(100) 704 402 1 <1 <0.01 1 0.02 <0.01 0.01 0.02
Key(2) 1310 653 199 <1 0.25 19 0.03 <0.01 0.01 <0.01
Key(3) 13941 6968 2911 0+1 mem 3008 0.33 0.28 0.24 0.05
Key(4) 135914 67954 32049 0+403 mem time 3.45 2.98 4.81 0.30
Mmgt(1) 118 58 20 <1 0.02 <1 <0.01 <0.01 <0.01 <0.01
Mmgt(2) 1280 645 260 <1 0.25 109 0.02 <0.01 <0.01 <0.01
Mmgt(3) 11575 5841 2529 0+1 mem 24436 0.19 0.05 0.06 0.06
Mmgt(4) 92940 46902 20957 1+222 mem mem 22.19 29.42 29.81 64.26
Sent(25) 383 216 40 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Sent(50) 458 241 40 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Sent(75) 533 266 40 <1 <0.01 1 <0.01 <0.01 <0.01 <0.01
Sent(100) 608 291 40 <1 <0.01 1 <0.01 <0.01 <0.01 <0.01

Table 7.2: Experimental results for deadlocked net systems.

X and Fixed . In the latter case, each node must have its own copies of all arrays,
the system of constraints, and the prefix. Such a strategy requires relatively low
amount of message passing.

If the algorithm is used for finding a shortest path, then each computing node
should broadcast the value of the function ‖·‖ as soon as it finds a solutions which
is better then the earlier ones. This allows the other nodes take this information
into account and reduce their search spaces.

Though the algorithm does admit efficient parallelization, it might be too
hasty an idea to invest effort in doing it. Indeed, the experiments in Section 7.12
show that, at least for deadlock detection, the bottleneck is generating the pre-
fix rather than model checking it. Thus the development of efficient unfolding
algorithms is a more pressing issue (see Chapters 4–6).

Having said that, the possibility of parallelization of this algorithm still may
be important, e.g., for the model checking problem described in Chapter 8.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 108

7.12 Experimental results

For testing the performance of the proposed algorithm we used the benchmarks
described in Chapter 3 and the Lamp(n) series of examples described in Chap-
ter 6. The results of experiments are summarized in Tables 7.2–7.4.

The meaning of the columns in the Tables 7.2 and 7.3 is as follows (from left
to right): the name of the problem; the number of conditions, events and cut-off
events in the canonical prefix; the time spent by the unfolding algorithm de-
scribed in Chapters 2, 4, and 5 to generate the canonical prefixes;12 the time taken
by the Dlcheck deadlock checker based on McMillan’s method (see [74,77]), the
Pep2lp tool based on the MIP algorithm (see [77]), and the Mcsmodels tool
based on computing stable models of a logic program (see [40–42,44]); the time
taken by the standard and the on-the-fly versions of the new algorithm based
on (7.11), and the time taken by the new algorithm based on (7.24). We use
‘time’ to indicate that the test had not stopped after 15 hours,13 ‘mem’ to indi-
cate that the test terminated because of memory overflow, and ‘inst’ to indicate
that the test gave an incorrect result or terminated because of numerical insta-
bility. Dlcheck, Pep2lp, and Mcsmodels were taken from the distribution
of the Pep tool.

Clearly, the performance of the MIP algorithm highly depends on the perfor-
mance of the tool used to solve the system of constraints.14 In the experiments,
we used the Lp-solve general purpose LP-solver by M.R.C.M.Berkelaar, since
the CplexTM tool used in [77] is commercial. As CplexTM is considered to be
more powerful than Lp-solve, the results in the MIP column could be better.

Table 7.4 contains the results of executing the algorithm in Section 7.4 us-
ing (7.11) and (7.24) as systems of constraints for deadlock detection. The mean-
ing of the columns is as follows (from left to right): the name of the problem;
the number of constraints and monomials in the system of constraints (7.11); the
number of explored ΣΘ-compatible vectors and the time spent by the algorithm
while solving (7.11); the time spent by the on-the-fly version of the algorithm
while solving (7.11); the number of constraints and monomials in the system of
constraints (7.24); the number of explored ΣΘ-compatible vectors and the time
spent by the algorithm while solving (7.24). Note that for the on-the-fly method
only time is given, since it does not explicitly generate the system of constraints
and the number of explored ΣΘ-compatible vectors is exactly the same as for the
standard version of the algorithm.

One can see that the search space is usually (but not always!) greater
for (7.24), because it does not allow as efficient optimizations as (7.11), but

12In all cases there was only one thread created, so no parallelism was used. The concurrency
relation was abandoned after first 20000 generated events.

13Some of the experiments were run over a weekend, so the time shown in the tables can
actually be greater.

14In fact, the proposed algorithm can be considered as a specialized solver for (7.8), since the
partial order and the conflict relation can be reconstructed from the constraints Min +IΣΘ ·x ≥
0.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 109

since the size of the system (7.24) is often smaller, the actual running time of the
algorithm is still acceptable. Moreover, memory savings for some of the examples
are very significant. In view of the results in Table 7.4, the on-the-fly approach
has a clear advantage, since it is not much slower than the standard method, but
uses much less memory and is easier to implement.

Although the performed testing was limited in scope, it appears that the
algorithm proposed in this chapter is fast, even for large prefixes. In [77], it has
been pointed out that the MIP approach is good for ‘wide’ prefixes with a high
number of cut-off events, whereas for prefixes with a small percentage of cut-off
events, McMillan’s approach is better. It turns out that the proposed approach
works well for both ‘wide’ prefixes with a high number of cut-off events and
conflicts and ‘narrow’ ones with a high number of causal dependencies. The worst
case is a prefix with a small number of conflicts and partial order dependencies
(i.e., when nearly all pairs of events are in the co relation), combined with a small
percentage of cut-off events. As the deadlock detection problem is NP-complete
in the size of prefix, such examples can be artificially constructed (see, e.g., [75],
where a reduction from the 3-SAT problem is given), but we expect that the
new algorithm should work well for practical verification problems.

Among the tested algorithms, the only comparable method was that based
on the translation of a deadlock detection problem into a problem of finding
a stable model of a logic program, proposed in [40–42, 44]; the problem was
then solved using the Smodels tool (see [79]). After discussing this approach
with its author, we concluded that if the logic solver used is powerful enough
to model ‘downclosing’ of configurations and freezing conflicting events in linear
time (and this is the case for Smodels) then the timing results of the SM method
and the new algorithm applied to the system (7.11) should be of the same order
of magnitude. Indeed, the experimental results confirm that both methods are
comparable, though they are based on different principles.

7.13 Conclusions

Experimental results indicate that the algorithm we proposed in this chapter
can easily solve problems with hundreds of thousands of variables (see, e.g., the
Lamp(4) example). This overcomes the existing limitations, as MIP problems
with even a few hundreds of integer variables are often a hard task for general
purpose solvers. It is worth emphasizing that earlier the limitation was not the
size of computer memory, but rather the time to solve an NP-complete problem.
With the proposed method, the main limitation was rather the size of memory to
store the system of constraints, but the on-the-fly approach overcomes this prob-
lem. Therefore, building prefixes becomes the bottleneck for the verification of
deadlock freeness of Petri nets (see Tables 7.2 and 7.3), and in future research we
will aim at developing more efficient algorithms for constructing large unfoldings.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 110

Problem Unfolding Time [s]
|B| |E| |Ecut | time [s] McM MIP SM CLP

(7.11) o-t-fly (7.24)

Abp 337 167 56 <1 0.06 2 <0.01 <0.01 <0.01 <0.01
Bds 12310 6330 3701 1 mem 4240 0.25 0.13 0.13 0.06
Buf(100) 10101 5051 1 6 0.02 mem 0.05 0.01 0.01 0.02
Byz 42276 14724 752 85 mem 6802 8.08 4.58 5.33 1.14
Ftp 178085 89046 35197 1336 mem mem 4.28 5.22 7.28 10.75
Cyclic(3) 52 23 4 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Cyclic(6) 112 50 7 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Cyclic(9) 172 77 10 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Cyclic(12) 232 104 13 <1 0.02 1 <0.01 <0.01 <0.01 <0.01
Dme(2) 487 122 4 <1 0.03 5 <0.01 <0.01 <0.01 <0.01
Dme(3) 1210 321 9 <1 0.52 197 0.03 <0.01 <0.01 0.01
Dme(4) 2381 652 16 <1 3.98 40 0.09 0.02 0.01 0.01
Dme(5) 4096 1145 25 1 30.58 114 0.20 0.05 0.05 0.05
Dme(6) 6451 1830 36 1 203 inst 0.58 0.11 0.13 0.13
Dme(7) 9542 2737 49 3 1000 inst 1.50 0.30 0.33 0.34
Dme(8) 13465 3896 64 8 3960 inst 4.06 0.67 0.80 0.91
Dme(9) 18316 5337 81 17 13090 inst 10.64 1.56 1.89 2.34
Dme(10) 24191 7090 100 33 37770 inst 27.59 3.66 4.44 6.09
Dme(11) 31186 9185 121 61 97550 inst 69.11 8.42 10.27 15.30
Dpd(4) 594 296 81 <1 0.39 7 0.02 <0.01 0.01 <0.01
Dpd(5) 1582 790 211 <1 21.97 59 0.05 0.02 0.01 0.01
Dpd(6) 3786 1892 499 <1 546 823 0.17 0.06 0.03 0.03
Dpd(7) 8630 4314 1129 1 11702 12032 0.52 0.27 0.17 0.14
Dpfm(2) 12 5 2 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Dpfm(5) 67 31 20 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Dpfm(8) 426 209 162 <1 0.05 1 <0.01 <0.01 <0.01 0.01
Dpfm(11) 2433 1211 1012 1 5.33 727 0.03 <0.01 0.01 <0.01
Dph(4) 680 336 117 <1 0.42 5 0.02 <0.01 <0.01 <0.01
Dph(5) 2712 1351 547 <1 66.48 221 0.06 0.03 0.02 0.02
Dph(6) 14590 7289 3407 1 mem 28941 0.78 0.44 0.41 0.47
Dph(7) 74558 37272 19207 40 mem time 8.53 5.33 7.08 13.33
Furn(1) 535 326 189 <1 0.11 1 <0.01 <0.01 <0.01 <0.01
Furn(2) 4573 2767 1750 1 174 410 0.06 0.03 0.03 0.06
Furn(3) 30820 18563 12207 4 mem 139371 0.66 0.36 0.39 1.58
Gasnq(2) 338 169 46 <1 0.08 3 <0.01 <0.01 <0.01 <0.01
Gasnq(3) 2409 1205 401 <1 62.70 1119 0.08 0.03 0.05 0.05
Gasnq(4) 15928 7965 2876 3 mem time 1.42 0.94 1.36 1.39
Gasnq(5) 100527 50265 18751 389 mem mem 34.83 39.76 64.40 80.12
Gasq(1) 43 21 4 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Gasq(2) 346 173 54 <1 0.09 3 0.02 <0.01 <0.01 <0.01
Gasq(3) 2593 1297 490 <1 94.59 1085 0.08 0.03 0.05 0.03
Gasq(4) 19864 9933 4060 6 mem time 1.48 1.19 1.72 1.59
Lamp(2) 711 368 102 <1 0.75 19 0.02 <0.01 <0.01 <0.01
Lamp(3) 23424 12026 4562 6 mem time 2.19 0.77 1.08 1.25
Lamp(4) 736507 375983 167780 28243 time mem 322 10122 811 1257
Over(2) 83 41 10 <1 <0.01 0 <0.01 <0.01 <0.01 <0.01
Over(3) 369 187 53 <1 0.05 3 <0.01 <0.01 <0.01 <0.01
Over(4) 1536 783 237 <1 11.72 151 0.02 <0.01 0.01 0.02
Over(5) 7266 3697 1232 1 1386 16934 0.14 0.06 0.05 0.22
Ring(3) 97 47 11 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01
Ring(5) 339 167 37 <1 0.05 5 <0.01 <0.01 <0.01 <0.01
Ring(7) 813 403 79 <1 0.83 120 0.02 <0.01 0.01 0.01
Ring(9) 1599 795 137 <1 13.17 4696 0.08 0.03 0.01 0.06
Rw(6) 806 397 327 <1 0.12 1 0.02 <0.01 <0.01 <0.01
Rw(9) 9272 4627 4106 <1 172 37142 0.11 0.01 0.05 0.03
Rw(12) 98378 49177 45069 5 mem mem 1.28 0.80 3.66 0.48
Sync(2) 3884 2091 474 <1 237 2846 0.08 0.05 0.06 0.11
Sync(3) 28138 15401 5210 8 mem time 1.36 1.47 1.69 3.53

Table 7.3: Experimental results for deadlock-free net systems.

CHAPTER 7. PREFIX-BASED MODEL CHECKING 111

Problem CLP – (7.11) CLP – (7.24)
System size Performance System size Performance

cons mono
vec
exp

t[s]
o-t-fly
t[s]

cons mono
vec
exp

t[s]

Bds 6330 89036 32 0.13 0.13 59 10633 91 0.06
Buf(100) 5051 14951 1 0.01 0.01 101 14951 1 0.02
Byz 14724 1609871 2240 4.58 5.33 274 48761 176 1.14
Ftp 89046 5325083 123 5.22 7.28 228 326279 291 10.75
Q 8417 153828 8 0.06 0.06 134 24776 16 0.06
Speed 2882 56712 12 0.03 0.02 39 8006 17 <0.01
Dme(2) 122 528 3 <0.01 <0.01 78 434 5 <0.01
Dme(3) 321 1890 11 <0.01 <0.01 117 1119 18 0.01
Dme(4) 652 5536 31 0.02 0.01 156 2228 52 0.01
Dme(5) 1145 14250 74 0.05 0.05 195 3845 131 0.05
Dme(6) 1830 32832 160 0.11 0.13 234 6054 305 0.13
Dme(7) 2737 68698 334 0.30 0.33 273 8939 687 0.34
Dme(8) 3896 132480 684 0.67 0.80 312 12584 1517 0.91
Dme(9) 5337 238626 1386 1.56 1.89 351 17073 3307 2.34
Dme(10) 7090 406000 2792 3.66 4.44 390 22490 7145 6.09
Dme(11) 9185 658482 5606 8.42 10.27 429 28919 15335 15.30
Dpd(4) 296 1630 23 <0.01 0.01 36 800 26 <0.01
Dpd(5) 790 6028 38 0.02 0.01 45 2142 43 0.01
Dpd(6) 1892 21970 62 0.06 0.03 54 5148 71 0.03
Dpd(7) 4314 84318 114 0.27 0.17 63 11758 130 0.14
Dph(4) 336 1739 21 <0.01 <0.01 41 849 37 <0.01
Dph(5) 1351 10456 48 0.03 0.02 61 3423 107 0.02
Dph(6) 7289 104719 134 0.44 0.41 85 18851 405 0.47
Dph(7) 37272 1275219 377 5.33 7.08 113 98002 1533 13.33
Elev(1) 157 770 3 <0.01 <0.01 67 572 3 <0.01
Elev(2) 827 7725 5 <0.01 <0.01 191 3729 5 <0.01
Elev(3) 3895 78040 5 0.03 0.01 484 21958 5 <0.01
Elev(4) 16935 815397 6 0.20 0.13 1173 123035 6 0.06
Furn(1) 326 1453 8 <0.01 <0.01 37 766 17 <0.01
Furn(2) 2767 16369 38 0.03 0.03 63 7618 91 0.06
Furn(3) 18563 168732 147 0.36 0.39 93 59258 294 1.58
Gasnq(2) 169 689 19 <0.01 <0.01 77 565 23 <0.01
Gasnq(3) 1205 11594 205 0.03 0.05 205 5076 264 0.05
Gasnq(4) 7965 256089 1792 0.94 1.36 433 41425 2496 1.39
Gasnq(5) 50265 7014616 15684 39.76 64.40 791 316717 23537 80.12
Gasq(1) 21 53 1 <0.01 <0.01 19 53 2 <0.01
Gasq(2) 173 729 18 <0.01 <0.01 85 608 20 <0.01
Gasq(3) 1297 14371 197 0.03 0.05 409 8408 215 0.03
Gasq(4) 9933 480899 1541 1.19 1.72 2313 181926 1811 1.59
Key(2) 653 3487 18 <0.01 0.01 82 1335 16 <0.01
Key(3) 6968 109416 35 0.28 0.24 119 12612 31 0.05
Key(4) 67954 4918109 9 2.98 4.81 156 119926 15 0.30
Lamp(2) 368 1795 34 <0.01 <0.01 56 907 42 <0.01
Lamp(3) 12026 164024 779 0.77 1.08 104 27314 794 1.25
Lamp(4) 375983 24761671 15421 10122 811 166 803074 15325 1257
Mmgt(1) 58 172 2 <0.01 <0.01 58 172 2 <0.01
Mmgt(2) 645 5591 7 <0.01 <0.01 114 2375 11 <0.01
Mmgt(3) 5841 224779 88 0.05 0.06 172 25350 138 0.06
Mmgt(4) 46902 9178373 6360 29.42 29.81 232 234258 10818 64.26
Rw(6) 397 2965 1 <0.01 <0.01 85 1255 12 <0.01
Rw(9) 4627 141567 1 0.01 0.05 181 14059 18 0.03
Rw(12) 49177 8501695 1 0.80 3.66 313 147877 24 0.48
Sync(2) 2091 15321 117 0.05 0.06 88 6301 248 0.11
Sync(3) 15401 488170 684 1.47 1.69 141 48239 1060 3.53

Table 7.4: Comparison of the deadlock detection methods based on (7.11)
and (7.24).

Chapter 8

Detecting State Coding Conflicts
in STGs

In this chapter, we apply the technique described in Chapter 7 to a specific
problem arising in synthesis of asynchronous circuits, namely detecting state
coding conflicts in their specifications.

Signal Transition Graphs (STGs) is a formalism widely used for describing
the behaviour of asynchronous control circuits. Typically, they are used as a
specification language for the synthesis of such circuits (see, e.g., [11,92]). STGs
are a form of interpreted Petri nets, in which transitions are labelled with the
names of rising and falling edges of circuit signals. Circuit synthesis based on
STGs involves: (i) checking the necessary and sufficient conditions for an STG’s
implementability as a logic circuit; (ii) modifying, if necessary, the initial STG
to make it implementable; and (iii) finding appropriate boolean covers for the
next-state functions of output and internal signals and obtaining them in the
form of boolean equations for the logic gates of the circuit. One of the com-
monly used STG-based synthesis tools, Petrify (see [21]), performs all of these
steps automatically, after first constructing the reachability graph of the initial
STG specification. A vivid example of its use is the design of many circuits for
the Amulet-3 microprocessor (see, e.g., [36]). Since popularity of this tool is
steadily growing, it is very likely that STGs and Petri nets will increasingly be
seen as an intermediate (back-end) notation for the design of large controllers.

In order to increase efficiency, Petrify uses symbolic (BDD-based) tech-
niques to represent the reachable state space and to capture important relation-
ships (e.g., excitation and quiescent regions, concurrency and conflict relations).
While this purely state-based approach is very convenient for finding good syn-
thesis solutions, the issue of computational complexity for highly concurrent
STGs is quite serious due to the state space explosion problem. This puts prac-
tical bounds on the size of control circuits, which are often restrictive, especially
if the STG models are not constructed by a human designer but rather generated
automatically from high-level hardware descriptions.

In order to alleviate this problem, Petri net analysis techniques based on

112

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 113

causal partial order semantics, in the form of Petri net unfoldings, were applied
for circuit synthesis in [86, 87]. The idea behind the approach described there
was to work with approximate boolean covers obtained for structural elements
of the unfolding, namely conditions and events, as opposed to the use of exact
boolean covers for markings and excitation regions extracted from the reacha-
bility graph. Although the results were still preliminary, they demonstrated, for
some examples, a clear superiority — in terms of memory and time efficiency —
of the unfolding-based approach. The main shortcoming of the work described
in [86,87] was that its approximation and refinement strategy was fairly straight-
forward and could not cope well with the ‘don’t care’ state subsets, i.e., sets of
states which would have been unreachable if the exact reachability analysis was
applied (see [65]). Bearing this in mind, there is a clear need for further advance-
ment of the unfolding-based methods, both in theory and algorithms, for solving
the above mentioned synthesis tasks. In this chapter, we propose a solution for
one of the subproblems, central to the implementability analysis in step (i), viz.
checking the Complete State Coding (CSC) and the Unique State Coding (USC)
conditions (see, e.g., [11]). In essence, this problem consists in detecting the state
coding conflicts, which occur when semantically different reachable states have
the same binary encoding.

The CSC (and USC) problem is often seen as one which consists of two parts:
the detection of coding conflicts, and the elimination of such conflicts. The
second part may be addressed, for example, by means of changing the causality
or ordering constraints (i.e., adding extra places and arcs in the STGs to make
implicit timing assumptions explicit), or by introducing ‘additional memory’ into
the system in the form of internal signals, which can be done on the level of
complete prefix, without building the reachability graph (see [73]). The latter
approach typically requires behaviour-preserving (with respect to the original
set of events) transformations, which are more difficult than simply adding new
ordering constraints. A number of methods for solving the CSC problem are
available (see, e.g., [22], for a brief review). Most of them work in the state
graph framework and are general in terms of applicability to the widest possible
class of STGs (with bounded underlying Petri Nets). Some, such as [91], operate
directly on the STG level, but they restrict the class of the underlying Petri nets
to, e.g., marked graphs.

The application of Petri Net unfoldings to the detection of state conflicts
in an STG was first attempted in [65]. That work has advanced the ideas of
slices and cover approximations of [86,87], and presented theory and algorithms
for ‘fast’ and ‘refined’ detection of coding conflicts. However, those algorithms
have not yet been implemented and proved efficient in experiments, and in their
‘refinement’ part they still require the construction of the (partial) state space
for the subsets of unfolding cuts that evaluate a given boolean cover to true.

In this chapter, we investigate another kind of unfolding-based approach.
We show that the notion of a state conflict can be characterized in terms of
a system of integer constraints, and the technique developed in Chapter 7 can

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 114

then be used to efficiently solve it. In addition to the CSC and USC problems,
the integer programming approach can easily be modified to check the normalcy
property of STGs, which is a necessary condition for their implementability using
logic gates whose characteristic functions are monotonic.

The proposed new approach to state coding conflict detection is in some sense
opposite to the state graph based one, and exploits only the characteristics of
the unfolding structure itself. Unlike [65], this method is not concerned with
boolean covers for parts of the unfolding.

The initial motivation for applying this technique to the problem of CSC (and
USC) comes from its success in speeding up deadlock detection, which has subse-
quently been extended to solving other model checking problems (see Chapter 7).
The results of initial experiments demonstrate that the proposed algorithm is not
only memory-efficient, but also can in many cases achieve significant speedups.
It is also worth pointing out that the method allows one not only to find conflict-
ing reachable states, but also to derive execution paths leading to them without
performing a reachability analysis.

This chapter is based on the results developed in [62,63].

8.1 Basic definitions

In this section, we present basic definitions concerning STGs and their unfoldings
(see also [21,22,64,65,86,87,89,92]).

8.1.1 Signal Transition Graphs

A Signal Transition Graph (STG) is a quadruple Γ
df
= (Σ, Z, λ, v0) such that

Σ = (N,M0) is a net system, Z
df
= {z1, . . . , zk} is a finite set of signals which

generate a finite alphabet Z± df
= Z × {+,−} of signal transition labels , λ : T →

Z± ∪ {τ} is a labelling function, and v0 ∈ {0, 1}k is a vector of initial signal
values . Here τ /∈ Z± is a label indicating a ‘dummy’ transition, which does not
change the value of any signal. The signal transition labels are of the form z+

or z−, and denote the transitions of a signal z ∈ Z from 0 to 1 (rising edge),
or from 1 to 0 (falling edge), respectively. Signal transitions are associated with
the actions which change the value of a particular signal. We will also use the
notation z± to denote a transition of signal z if we are not particularly interested
in its direction. The labelling function λ can be generalized to (finite or infinite)
sequences of transitions as follows: λ(t1t2 . . . ti[. . .]) = λ(t1)λ(t2) . . . λ(ti)[. . .]. Γ
inherits the operational semantics of its underlying net system Σ, including the
notions of transition enabling and execution, and firing sequences.

With a finite sequence of transitions σ we associate an integer signal change
vector vσ df

= (vσ
1 , vσ

2 , . . . , vσ
k) ∈ Zk, so that each vσ

i is the difference between
the number of the occurrences of z+

i -labelled and z−
i -labelled transitions in σ.

A state of Γ is a pair (M, v), where M is a marking of Σ and v ∈ Zk. We

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 115

t

t′

is equivalent to

t

t′

t

t′

is equivalent to

t

t′

Figure 8.1: The interpretation of transition-transition arcs in figures.

denote by S(Γ)
df
= M(N) × Zk the set of possible states of Γ, where M(N) is

the set of possible markings of the net underlying Γ. The transition relation on

S(Γ)×T ×S(Γ) is defined as (M ′, v′) t−−−→(M ′′, v′′) iff M ′[t〉M ′′ and v′′ = v′+vt.
For a finite sequence of transitions σ = t1 . . . ti, we write s′ σ−−−→s′′ if there

are states s1, . . . , si+1 such that s1 = s′, si+1 = s′′, and sj

tj
−−−→sj+1, for all

j ∈ {1, . . . , i}. If the identity of s′′ is irrelevant, we write s′ σ−−−→ to denote that
s′ σ−−−→s′′ for some s′′ ∈ S(Γ). In these definitions, we allow σ to be not only
a sequence of transitions, but also a sequence of elements of Z± ∪ {τ}; in such

a case, s′ σ−−−→s′′ means that s′ σ′
−−−→s′′ for some sequence of transitions σ′ such

that λ(σ′) = σ.

The state graph of Γ is a triple SGΓ
df
= (S,A, s0) such that the set of reachable

states S is the smallest (w.r.t. ⊆) closed under the transition relation set contain-

ing the initial state s0
df
= (M0, v

0), and the set of arcs A is the restriction of the
transition relation to S × T × S. The state assignment function Code : S → Zk

is defined as Code((M, v))
df
= v.

Γ is consistent if, for every reachable state s ∈ S, Code(s) ∈ {0, 1}k, i.e., for
every finite execution sequence σ of Σ starting at the initial state, v0 + vσ ∈
{0, 1}k. Such a property guarantees that, for every signal z ∈ Z, the STG
satisfies the following two conditions: (i) the first occurrence of z in the labelling
of any firing sequence of Γ starting from M0 has always the same sign (either
rising or falling); and (ii) the rising and falling labels z alternate in any firing
sequence of Γ. In this chapter it is assumed that all the considered STGs are
consistent. (The consistency of an STG can easily be checked during the process
of building its finite and complete prefix, e.g., as described in [86].)

In addition to the drawing conventions described in Section 1.3, we use the
following one. When an arc in a figure connects two transitions, it is assumed
that there is a place ‘in the middle’ of the arc. Moreover, an arc with a token on
it is interpreted similarly, but the place contains a token. Figure 8.1 illustrates
these conventions.

Two distinct states s′ and s′′ of SGΓ are in USC conflict if Code(s′) =
Code(s′′). Γ satisfies the Unique State Coding (USC) property if no two states
of SGΓ are in USC conflict.

It is often the case that an STG’s signals are partitioned into input signals,
ZI , and output signals, ZO (the latter may also include internal signals). Input

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 116

dtack− dsr+ lds+

d− lds− ldtack−

ldtack+

dsr− dtack+ d+

(a)

01000
00000

10000

01010
00010

10010 10100

01110

00110 10110
s′′ 10110s′

01111 11111 10111

dtack− dsr+

ldtack− ldtack− ldtack− lds+

dtack− dsr+

lds− lds− lds−

dtack− dsr+

ldtack+

d−

dsr− dtack+

d+

(b)

Figure 8.2: An STG modelling a simplified VME bus controller (a) and its state
graph with a CSC conflict between two states (b). The order of signals in the
binary codes is: dsr , dtack , lds , ldtack , d .

signals are assumed to be generated by the environment, while output signals
are produced by the logical gates in the circuit. The problem of logic synthesis
consists in deriving boolean equations for the output signals, which requires the
conditions for enabling output signal transitions in the state graph of the STG
to be defined without ambiguity by the encoding of each reachable state.

To capture this, we define the set of enabled output signals at a state s as

Out(s)
df
= {z ∈ ZO | s

τ∗z±−−−→}. Two distinct states s′ and s′′ of SGΓ are in CSC
conflict if Code(s′) = Code(s′′) and Out(s′) 6= Out(s′′). Γ satisfies the Complete
State Coding (CSC) property if no two states of SGΓ are in CSC conflict. Clearly,
if Γ has USC then it also has CSC.

An example of an STG for a data read operation in a simple VME bus
controller (a standard STG benchmark) is shown in Figure 8.2(a). Part (b) of
this figure illustrates CSC conflict between two different states, s′ and s′′, that
have the same code, 10110, but Out(s′) = {d} 6= Out(s′′) = {lds}.

8.1.2 STG branching processes

A branching process of an STG Γ = (Σ, Z, λ, v0) is a branching process of Σ
augmented with an additional labelling of its events, λ ◦ h : E → Z± ∪ {τ}.
With any finite set of events E ′ ⊆ E, we associate an integer signal change
vector vE′ df

= (vE′

1 , . . . , vE′

k) ∈ Zk, such that each vE′

i is the difference between the
number of z+

i -labelled and z−
i -labelled events in E ′. One can easily prove that

vE′
= vσ, where σ is an arbitrary linearization of h{|E ′|}. The function Code

is then extended to finite configurations of the branching process of Γ through
Code(C)

df
= v0 + vC . Note that Code(C) = v0 + vσ, for any linearization σ

of h{|C|}, i.e., this definition is consistent with the definition of Code for SGΓ

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 117

p1

a+ b+

c+ c+

p2

d+

d−

(a)

p1

e1 a+ e2 b+

e3 c+ e4 c+

p2e5 d+

e6 d−

p2

(b)

Figure 8.3: A consistent STG (a) and its canonical (w.r.t. ΘERV) prefix (b).
Note that e4 is a cut-off event and a reachable state with the code {a 7→ 0, b 7→
1, c 7→ 1, d 7→ 1} is not represented in it.

in the sense that the pair (Mark(C),Code(C)) is a state of SGΓ, and for any
state s of SGΓ there exists a configuration C in the unfolding of Γ such that
s = (Mark(C),Code(C)).

It is important to note that, since the states of an STG do not necessarily
correspond to its reachable markings, some of the states may be not represented
in the prefixes built using the cutting context ΘERV (see Figure 8.3). It was
suggested in [86] to restrict the cut-off criterion by requiring that not only fi-
nal markings of the two configurations should be equal, but also their codes.
This idea can be formalized by choosing the equivalence relation ≈code rather
than ≈mar in the cutting context (see Chapter 2).

8.2 State coding conflict detection using integer

programming

In the rest of this chapter, we assume that Θ is a dense cutting context with
the equivalence relation ≈code , Γ = (Σ, Z, λ) is a consistent and bounded STG,

and ΓΘ df
= (B,E,G,Min) is the safe net system built from the canonical prefix

Unf Θ
Γ = (B,E,G, h) of the unfolding of Γ, where Min is the canonical initial

marking of ΓΘ which places a single token in each of the minimal conditions and

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 118

e1

dsr+

e2

lds+

e3

ldtack+

e4

d+

e5

dtack+

e6

dsr−

e7

d−

e8

dtack−

e9

lds−

e10

dsr+

e11

ldtack−

e12

lds+

C ′ C ′′

x′ = 111000000000
x′′ = 111111110100
Code(C ′) = Code(C ′′) = 10110

Figure 8.4: Unfolding prefix for the VME bus example and CSC conflict between
configurations C ′ and C ′′ (encoded by the vectors x′ and x′′) corresponding to
the states s′ and s′′ in Figure 8.2(b). The order of signals in the binary codes is:
dsr , dtack , lds , ldtack , d .

no token elsewhere.1 The set of cut-off events of Unf Θ
Γ will be denoted by Ecut .

Until Section 8.5, we assume that Γ contains no τ -labelled transitions.
Suppose that two distinct reachable states (M ′, v′) and (M ′′, v′′) of Γ are

in CSC (or USC) conflict. Then these markings are represented in Unf Θ
Γ as

some configurations C ′ and C ′′ without cut-off events such that (M ′, v′) =
(Mark(C ′),Code(C ′)) and (M ′′, v′′) = (Mark(C ′′),Code(C ′′)). Let x′ and x′′

be respectively the Parikh vectors of C ′ and C ′′. Using the theory developed in
Chapter 7, we will now transform the problem of checking the CSC (or USC)
property into an integer programming problem expressed in terms of x′ and x′′.
Note that since these variables denote Parikh vectors of configurations, they are
from the domain {0, 1}|E|. The constraints constituting the system to be solved
are described below.

8.2.1 Encoding constraint

As described in the previous section, for a configuration C, its signal encoding
vector Code(C) is defined as

Code(C)
df
= v0 + vC .

The above expression is a linear function of the Parikh vector xC of C; we will
denote it by Code(xC). With this notation, the condition that the final encodings
of two configurations given by their Parikh vectors x′ and x′′ are the same can

1We will often identify ΓΘ and Unf Θ

Γ , provided that this does not create an ambiguity.

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 119

be expressed as the linear constraint

Code(x′) = Code(x′′) . (8.1)

Note that the value of v0 is not needed to build it.
Figure 8.4 illustrates a CSC conflict in the unfolding prefix of the STG shown

in Figure 8.2. Constraint (8.1) has the form:




x′
1 − x′

6 + x′
10 = x′′

1 − x′′
6 + x′′

10 (dsr)
x′

5 − x′
8 = x′′

5 − x′′
8 (dtack)

x′
2 − x′

9 + x′
12 = x′′

2 − x′′
9 + x′′

12 (lds)
x′

3 − x′
11 = x′′

3 − x′′
11 (ldtack)

x′
4 − x′

7 = x′′
4 − x′′

7 (d)

8.2.2 USC separating constraint

We are not interested in solutions with M ′ = M ′′, and so the separating con-
straint M ′ 6= M ′′ has to be added to the system. Section 7.6 provides a way
of rendering it as a constraint Mark(x′) 6= Mark(x′′) specified on ΓΘ-compatible
vectors. At this point, the straightforward application of the theory developed in
Chapter 7 yields a full formulation of the USC conflict detection problem using
the integer programming framework, together with an algorithm for solving it.
The system of constraints has the form





Code(x′) = Code(x′′)

Mark(x′) 6= Mark(x′′)

x′(e) = x′′(e) = 0 for all e ∈ Ecut

x′, x′′ ∈ {0, 1}|E| are ΓΘ-compatible .

(8.2)

Note that since the second constraint in this system is not linear, the branch-
ing condition (7.18) cannot be applied. To make it linear, we can replace it by
Mark(x′)<lex Mark(x′′), where <lex is the lexicographical order on integer vec-
tors. Since Γ is a bounded STG, this constraint is linear in x′ and x′′. Indeed, if
every place of the STG can hold at most i tokens then this constraint is equivalent
to

|P |∑

j=1

ij−1Mark pj
(x′) <

|P |∑

j=1

ij−1Mark pj
(x′′)

and is very similar to the comparison of two i-ary numbers; in particular, when Γ
is safe, Mark(x′) and Mark(x′′) can be seen as two binary numbers.

8.2.3 CSC separating constraint

The separating constraint is more complicated if we verify the CSC rather than
USC property. In order to exclude the solutions for which the sets of the en-
abled outputs are the same, one should add to the system (8.2) the separat-
ing constraint Out(x′) 6= Out(x′′), where Out(x) is a function computing the

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 120

enabled outputs of the state represented by the configuration given by a ΓΘ-
compatible vector x. (Note that we do not necessarily have to remove the
constraint Mark(x′) 6= Mark(x′′), since it holds whenever Out(x′) 6= Out(x′′)
does.) To check whether Out(x′) 6= Out(x′′) holds for particular Parikh vectors x′

and x′′ one can compute M ′ = Mark(x′) and M ′′ = Mark(x′′). If M ′ = M ′′ then
Out(x′) 6= Out(x′′) cannot hold, and thus no further computation is needed.
Otherwise, the outputs enabled by markings M ′ and M ′′ can be found directly
from the STG.

Since the constraint Out(x′) 6= Out(x′′) is, in general, not linear, one has
to deal with a non-linear integer programming problem. Though the branch-
ing condition (7.18) cannot be applied in this case, the algorithm described in
Chapter 7 often terminates in reasonable time.

8.2.4 Retrieving a solution

What one often wants to see as a solution is two execution sequences of the
original STG, leading to states which are in CSC (or USC) conflict. BDD-based
methods (see, e.g., [64, 84]) compute the characteristic function of the set of all
solutions, but do not provide the information about execution sequences. There-
fore, in order to retrieve them, one has to either perform a separate reachability
analysis or do some kind of bookkeeping while building a BDD. With the new
algorithm this information is easily available (see Chapter 7).

8.3 Verifying the normalcy property

The property of normalcy is a necessary condition for an STG to be imple-
mentable as a logic circuit built of gates whose characteristic functions are mono-
tonic. The latter in turn guarantees that the circuit is speed-independent (i.e., it
correctly operates irrespectively of delays in the gates) without the necessity to
neglect (quite unrealistically) the delays in input inverters (see [89]).

Let Γ = (Σ, Z, λ) be an STG. Normalcy is specified with respect to an output
signal z ∈ ZO, and can be given in terms of boolean next-state function Nxt z

defined for the reachable states. If s = (M, v) is a reachable state of Γ then:

Nxtz(s)
df
= 0 if vz = 0 and no z+-labelled transition is enabled at s, or vz = 1 and

a z−-labelled transition is enabled at s; and Nxt z(s)
df
= 1 if vz = 1 and no z−-

labelled transition is enabled at s, or vz = 0 a z+-labelled transition is enabled
at s.

Γ satisfies the positive normalcy (or p-normalcy) condition w.r.t. an output
signal z if for every pair of reachable states s′ and s′′, Code(s′) ≥ Code(s′′)
implies Nxtz(s

′) ≥ Nxtz(s
′′). Similarly, Γ satisfies the negative normalcy (or n-

normalcy) condition w.r.t. an output signal z if for every pair of reachable states
s′ and s′′, Code(s′) ≥ Code(s′′) implies Nxtz(s

′) ≤ Nxtz(s
′′). Finally, Γ is normal

if each output signal is either p-normal or n-normal. It turns out that normalcy

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 121

010000
000000

s′

100000

s

100001

010100
000100

s′′

100100 101001

011100

001100 101100

101101

011110 011111 111111 101111

dtack− dsr+ csc+

ldtack− ldtack− ldtack− lds+

dtack− dsr+

lds− lds− lds−

dtack− dsr+

ldtack+

d−

csc− dsr− dtack+

d+

Figure 8.5: State graph which is free from CSC conflicts but shows normalcy
violations (for signal csc) between states s, s′, and s′′. The order of signals in
the binary codes is: dsr , dtack , lds , ldtack , d , csc.

implies CSC (see [89]).
An example of normalcy violation is illustrated in Figure 8.5. This is a

state graph obtained after the CSC conflict has been resolved in the STG of
Figure 8.2(a) by means of a new state signal, csc. The resulting model, free
from CSC conflicts, is implementable — the next-state functions for all output
signals are as follows: lds = d ∨ csc, dtack = d , d = ldtack ∧ csc, and csc =
dsr ∧ (csc ∨ ldtack). Nonetheless, normalcy is violated for signal csc. Indeed,
Code(s) > Code(s′), Nxtcsc(s) > Nxtcsc(s

′) but Code(s) < Code(s′′), Nxtcsc(s) >
Nxtcsc(s

′′), so csc is neither n-normal nor p-normal. This is reflected in the
implementation function for csc, which is non-monotonic: it is positive w.r.t.
dsr and negative w.r.t. ldtack (note that the corresponding gate has an input
inverter).

The verification method described earlier in this chapter can be adopted to
check the normalcy of STGs. Indeed, it is enough to solve in ΓΘ-compatible
vectors x′, x′′ the following (non-linear) system of constraints:





Code(x′) ≥ Code(x′′)

Nxtz(x
′) Rz Nxtz(x

′′) for each z ∈ ZO

x′(e) = x′′(e) = 0 for all e ∈ Ecut

x′, x′′ ∈ {0, 1}|E| are ΓΘ-compatible .

(8.3)

where Rz ∈ {<,>} depending on the type of normalcy of the signal z. If it is not
known in advance, the algorithm can leave Rz undefined until the moment when
the first constraint is satisfied and Nxt z(x

′) 6= Nxtz(x
′′). Then it fixes Rz so that

the constraint does not hold and continues the search. Alternatively, Rz’s can
be determined by looking at the triggers of an event e labelled by z±, defined

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 122

as Trig(e) = max≺〈e〉.
2 With the exception of certain degraded cases, for each

signal z there is an event e labelled by z± such that Trig(e) 6= ∅, and one can
easily show the following:

• If the labels of the events in Trig(e) do not all have the same sign then z
is neither p-normal nor n-normal, and no further computation is required.

• If the labels of the events in Trig(e) have the same sign and this sign
coincides with that of λ(h(e)) then z cannot be n-normal, and thus Rz

should be >.

• If the labels of the events in Trig(e) have the same sign and this sign differs
from that of λ(h(e)) then z cannot be p-normal, and thus Rz should be <.

8.4 The case of conflict-free nets

In many cases the performance of the proposed algorithm can be improved by ex-
ploiting specific properties of the Petri net underlying an STG Γ. For instance, if
Γ is free from dynamic conflicts (in particular, this is the case for marked graphs)
then the union of any two configurations of its unfolding is also a configuration.
This observation can be used to reduce the search space. Indeed, according to
Proposition 8.1 below, it is then enough to look only for those cases when the
configurations C ′ and C ′′ being tested are ordered in the set-theoretical sense.

Proposition 8.1. Let Γ be free from dynamic conflicts, and let C ′ and C ′′ be
two finite configurations of ΓΘ such that C ′ * C ′′ and C ′′ * C ′. If the states s′

and s′′ represented respectively by C ′ and C ′′ are in USC / CSC / p-normalcy /

n-normalcy conflict, then the state s represented by the configuration C
df
= C ′∩C ′′

is in respectively USC / CSC / p-normalcy / n-normalcy conflict with either s′

or s′′.

Proof. We first show that

Code(C ′) ≥ Code(C ′′) =⇒ Code(C ′) ≥ Code(C) ≥ Code(C ′′) . (∗)

Since Γ is conflict-free, C ′, C ′′ and C are all included in the configuration C ′∪C ′′,
and so each event in E ′ df

= C ′\C is concurrent to each event in E ′′ df
= C ′′\C. Now,

due to the consistency of Γ, no two distinct concurrent events in ΓΘ can have the
same signal label. Hence none of the events in E ′ can have the same signal label
(even after ignoring the sign) as an event in E ′′. Consequently, vE′

� vE′′
= 0.

We next observe that Code(C) + vE′
= Code(C ′) ≥ Code(C ′′) = Code(C) + vE′′

implies that vE′
≥ vE′′

. Together with vE′
� vE′′

= 0 and the fact that both
vE′

= vC′
− vC and vE′′

= vC′′
− vC belong to {−1, 0, +1}k, this leads to vE′

≥
0 ≥ vE′′

, and so (∗) holds.

2If the STG contains dummies then Trig(e) = max≺ Strip(〈e〉), where Strip is a function
defined in Section 8.5.

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 123

p1 p2

p3 p4

p5 p6

t1a+ t3 τ

t2c+ t4 b+

(a)

{p1, p2} : 000

{p2, p3} : 100 {p3, p4} : 100

{p5} : 101 {p6} : 110

a+ τa+

c+ τb+ b+

(b)

Figure 8.6: An STG (a) and its state graph (b) with dummies playing a con-
fusing role.

By (∗), we immediately obtain that Code(C ′) = Code(C ′′) implies Code(C ′) =
Code(C) = Code(C ′′). Moreover, if the states represented by C ′ and C ′′ are in
USC (resp. CSC) conflict then their final markings (resp. sets of enabled output
signals) are distinct, and thus the final marking (resp. set of enabled output sig-
nals) of C differs from at least one of them. Hence the proposition holds for USC
and CSC conflicts.

Suppose now that s′ and s′′ are, without loss of generality, in p-normalcy
conflict due to Code(C ′) ≥ Code(C ′′) and Nxtz(C

′) < Nxtz(C
′′), which implies

that Nxtz(C
′) = 0 and Nxtz(C

′′) = 1. Then, by (∗), if Nxt z(C) = 0 then s
and s′′ are in p-normalcy conflict; otherwise, Nxt z(C) = 1 and s and s′ are in
p-normalcy conflict.

In order to make the algorithm consider only ordered configurations, it is
enough to choose an appropriate function ξ̂(x′, x′′)

df
= (MCC (x′),MCC (x′ ∨ x′′))

(see Section 7.3), where ‘∨’ is the bitwise ‘or’ operation on binary vectors. Note
that if we are verifying the normalcy property using this improvement, one cannot
say in advance whether C ′ ⊂ C ′′ or C ′′ ⊂ C ′ is the solution, and so the algorithm
has to check both cases.

8.5 Handling dummy events

So far the proposed approach was applied to STGs without ‘dummies’, i.e., τ -
labelled transitions, which are unrelated to any signal value changes.

The presence of dummy events may sometimes create problems in analyzing
state coding conditions due to the inherent ambiguity involved in their interpre-
tation. Indeed, the binary encodings of two states which are connected only by
dummy transitions are the same and, formally, they are in USC conflict. But

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 124

from the technical point of view, dummies do not correspond to any physical
transition made by a circuit, i.e., do not change the ‘semantical’ state of the
system, and one should not interpret such a situation as a coding conflict. How-
ever, there are STGs for which the interpretation may be not entirely clear. For
example, consider the STG together with a modified state graph shown in Fig-
ure 8.6(a,b), which has been obtained by applying the well-known procedure for
eliminating all the ‘silent’ transitions, described for finite automatons in [48].
This procedure works on SGΓ and produces the ‘essential’ edges that are asso-

ciated with the ‘transitions’ of the form s′ τ∗z±−−−→s′′. Such edges lead to a subset
of states, which are the result of firing a non-dummy signal transition. Then it
removes all τ -labelled transitions and the states which have become unreachable,
together with their incoming and outgoing arcs.

This technique treats the markings {p2, p3} and {p3, p4} as not equivalent,
e.g., because only the former enables a transition labelled by c+. From another
point of view, though, these two states are separated only by a dummy transition,
and {p3, p4} may be considered as a hidden intermediate state when τb+ fires at
{p2, p3}.

We outline another, partial order interpretation of dummies based on the
branching processes of STGs. The idea is, given a configuration, to remove all
its trailing τ -labelled events, yielding what we call an essential configuration.
Other configurations can be seen as ‘intermediate’, and do not correspond to the
‘real’ states of the circuit. Therefore, one may check for coding conflicts involv-
ing only essential configurations. Formally, given a configuration of a branching
process C, we denote by Strip(C) the minimal configuration containing all its
events labelled by signal transition labels. Clearly, Strip(C) is uniquely defined.
In Figure 8.6, the STG coincides with its unfolding, and the only essential con-
figurations are ∅, {t1}, {t1, t2}, and {t1, t3, t4}.

3

The modified algorithm will consider only the configurations of the form
Strip(C) as those which can be in coding conflict. Note that such a semantics
has no obvious interpretation on the state graph level, since whether a state is
essential or not may depend not only on the state itself, but also on the execution
path through which it is reached, and on the causal relationships between the
transitions involved in such a path. Indeed, in the unfolding there may be several
configurations representing the same state s, but some of them have trailing
dummies while the others have not. In such a case we say that s exhibits a
backward signal confusion.

In order to retain only the essential solutions of the system of constraints
described in Section 8.2, we can add the constraints

x(e) ≤
∑

f∈(e•)•\Ecut

x(f), for all τ -labelled events e ∈ E \ Ecut ,

requiring that if a dummy has fired then at least one of its causal descendants

3The initial event ⊥ is not shown here.

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 125

has also fired, and so this dummy is not a trailing one. But this approach is not
entirely satisfactory, since the number of constraints increases, and the algorithm
still has to consider some of the ‘intermediate’ configurations just to find out that
they are not solutions. A better way is to require all the maximal events of a
configuration to be non-dummy. This can be easily achieved by restricting the
condition in the header of the for all loop of the algorithm in Figure 7.6.

Another problem caused by the dummies is that computing the set of enabled
outputs (needed for CSC and normalcy checking) becomes quite complicated. In-
deed, one can compose an STG where it is possible to fire a long (even arbitrary
long) sequence of dummies before any signal transition becomes enabled. Fur-
thermore, in the finite prefix of the net unfolding, the correspondent sequence of
events may lead beyond the cut-off events.

One solution is to (partially) unfold the STG again, starting from Mark(C)
and not generating events beyond any signal event. In order to minimize the
number of times this is done, we can first check if the configurations are in USC
conflict. Assuming that there are not many CSC conflicts which are not USC
conflicts, the performance of the CSC checking algorithm should not suffer much.
But for normalcy, the number of times this is done can still be quite large.

An alternative solution is to build the prefix beyond the cut-offs, so that any
output signal event enabled (possibly, through a sequence of dummies) by any
configuration containing no cut-off events can be reached. The algorithm does
not have to assign new variables to these added events, it keeps them just for
finding the sets of enabled outputs.

What we have described above works for all STGs without states exhibiting
the backward signal confusion. In future work, we intend to clarify the semantics
of such states.

It is important to note that Proposition 8.1 holds in the case of STGs con-
taining dummies as well. In such a case, C ′ and C ′′ must be essential, C

df
=

Strip(C ′∩C ′′), and the adduced proof can be adopted with minor modifications.

8.6 Experimental results

When testing the performance of the proposed algorithm we attempted the CSC
conflict detection problem, i.e., non-linear systems of constraints were solved.

The results of the experiments are summarized in Tables 8.1–8.3. The mean-
ing of the columns is as follows (from left to right): the name of the problem;
the number of places, transitions, and signals in the original STG; the number
of conditions, events and cut-off events in the complete prefix; the time spent
by a special version of the Petrify tool, which did not attempt to resolve the
coding conflicts it had identified; and the time spent by the new algorithm. We
use ‘time’ to indicate that the test had not stopped after 15 hours. We have not
included in the tables the time needed to build complete prefixes, since it did not
exceed 0.1sec for all the attempted STGs. The STGs with names containing the

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 126

x
+
1

x
+
2

x
+
3

x
+
4 z+ y

+
1

y
+
2

y
+
3

y
+
4

x
−

1
x
−

2
x
−

3
x
−

4
y
−

1
y
−

2
y
−

3
y
−

4

z−

(a)

x
+
1

x
+
2

x
+
3

x
+
4 z+ x

+
5

y
+
1

y
+
2

y
+
3

y
+
4z+y

+
5

x
−

1
x
−

2
x
−

3
x
−

4 z− y
−

1
y
−

2
y
−

3
y
−

4z−

x
−

5
y
−

5

(b)

Figure 8.7: STG models of two weakly synchronized pipelines without arbitra-
tion (a) and with arbitration (b).

occurrence of ‘Csc’ satisfy the CSC property, the others exhibit CSC conflicts.
We used several groups of benchmarks. The first group consisted of standard

STG benchmarks, which are relatively small STGs coming from the academic
practice of control circuit synthesis. We used them for testing the correctness of
the implementation of the proposed algorithm, but have not included the timing
results in the tables since all these examples were rather trivial. Another group
of examples came from real design practice. They are as follows:

• LazyRing and Ring — Asynchronous Token Ring Adapters described
in [10,72].

• Dup4ph, Dup4phCsc, Dup4phMtr, Dup4phMtrCsc, DupMtrMod,
DupMtrModUtg, and DupMtrModCsc — control circuits for the
Power-Efficient Duplex Communication System described in [35].

• CfSymCscA, CfSymCscB, CfSymCscC, CfSymCscD, CfAsymC-

scA, and CfAsymCscB — control circuits for the Counterflow Pipeline
Processor described in [93].

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 127

Problem Net Unfolding Time, [s]
|S| |T | |Z| |B| |E| |Ecut| Petrify Clp

LazyRing 35 32 11 87 66 5 2.02 <0.01
Ring 147 127 28 763 498 59 1498 0.01
Dup4ph 133 123 26 144 123 11 35.85 <0.01
Dup4phCsc 135 123 26 146 123 11 34.79 <0.01
Dup4phMtr 109 96 22 117 96 8 25.40 <0.01
Dup4phMtrCsc 114 105 26 122 105 8 25.26 0.02
DupMtrMod 129 100 21 199 132 10 222 <0.01
DupMtrModUtg 116 165 21 344 218 65 623 <0.01
DupMtrModCsc 152 115 27 228 149 13 286 <0.01
CfSymCscA 85 60 22 1341 720 56 357 107
CfSymCscB 55 32 16 160 71 6 15.27 0.06
CfSymCscC 59 36 18 286 137 10 33.24 2.30
CfSymCscD 45 28 14 120 54 6 8.57 0.01
CfAsymCscA 128 112 34 1808 1234 62 3988 2807
CfAsymCscB 128 112 32 1816 1238 62 6144 3280

Table 8.1: Experimental results: real-life STGs.

Some of these STGs, although built by hand, are quite large in size (see Ta-
ble 8.1).

Two other groups, PpWk(m,n) and PpArb(m,n) (see Tables 8.2 and 8.3
respectively), contain scalable examples of STGs modelling m pipelines of size n
weakly synchronized without arbitration (in PpWk(m,n)) and with arbitration
(in PpArb(m,n)). The former offers the possibility of studying the effect of the
optimization described in Section 8.4 (all STGs in the PpWk(m,n) series are
marked graphs, and so are free from dynamic conflicts). Figure 8.7 illustrates
these two types of STGs. The versions of these models without the dashed arcs
exhibit coding conflicts; the dashed arrows are indicating the way how coding
conflicts can be resolved by adding extra causality constraints to the specifica-
tion. These benchmarks allowed us to test the algorithm on almost identical
specifications, which did not contain coding conflicts.

Note that in all cases the size of the complete prefix was relatively small. This
can be explained by the fact that STGs usually contain a lot of concurrency but
rather few conflicts, and thus the prefixes are not much bigger then the STGs
themselves. As a result, the memory requirements of the new algorithm are very
moderate: recall that it uses just O(|E|) memory besides that needed to store
the prefix, which for all the examples shown in the tables means not more than
just few kilobytes (in contrast, Petrify was repeatedly swapping pages to the
disk for some of the examples due to the need to build the whole state spaces of
the STGs).

Although the performed testing was limited in scope, we can draw some con-

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 128

clusions about the performance of the proposed algorithm. If a specification
contained a coding conflict, the new algorithm in most cases was able to find
it very quickly; on the other hand, specifications without coding conflicts were
much harder to deal with. This is because in such a case the algorithm has
to explore the full search space. In the worst case, this may result in explor-
ing all pairs of configurations, which can be much bigger than the number of
reachable states. However, the heuristics we described allowed the algorithm to
considerably reduce the number of considered configurations, and it was quite
competitive.

8.7 Conclusions

Experimental results indicate that the algorithm proposed in this chapter is not
memory-demanding and in most cases time-efficient, though on some of the ex-
amples in Tables 8.2 and 8.3 its performance was not entirely satisfactory. It is
worth emphasizing that the proposed approach overcomes the memory limita-
tions of existing state-based methods, while still offering quite good performance.

In future work, we plan to incorporate more heuristics used by general-
purpose solvers in order to reduce the search space. Also, the algorithm admits
efficient parallelization (see Section 7.11), even for the distributed memory ar-
chitecture. Additional speedups may be gained by using non-local corresponding
configurations, as described in ([43]), for reducing the size of complete prefixes
and thus the search space to be explored by the algorithm. Finally, as we already
mentioned, we intend to extend the method to STGs with markings exhibiting
backward signal confusion.

CHAPTER 8. DETECTING STATE CODING CONFLICTS IN STGS 129

Problem Net Unfolding Time, [s]
|S| |T | |Z| |B| |E| |Ecut| Petrify Clp

PpWk(2,3) 23 14 7 41 23 1 0.55 <0.01
PpWk(2,6) 47 26 13 119 62 1 12.49 <0.01
PpWk(2,9) 71 38 19 233 119 1 103 <0.01
PpWk(2,12) 95 50 25 383 194 1 1140 0.01
PpWkCsc(2,3) 24 14 7 38 20 1 0.43 0.01
PpWkCsc(2,6) 48 26 13 110 56 1 10.73 0.18
PpWkCsc(2,9) 72 38 19 218 110 1 102 16.92
PpWkCsc(2,12) 96 50 25 362 182 1 4806 1411
PpWk(3,3) 34 20 10 63 35 1 2.50 <0.01
PpWk(3,6) 70 38 19 183 95 1 240 0.01
PpWk(3,9) 106 56 28 357 182 1 4952 0.01
PpWk(3,12) 142 74 37 585 296 1 time 0.01
PpWkCsc(3,3) 36 20 10 57 29 1 1.84 0.01
PpWkCsc(3,6) 72 38 19 165 83 1 108 14.10
PpWkCsc(3,9) 108 56 28 327 164 1 18282 11188
PpWkCsc(3,12) 144 74 37 543 272 1 time time

Table 8.2: Experimental results: marked graphs.

Problem Net Unfolding Time, [s]
|S| |T | |Z| |B| |E| |Ecut| Petrify Clp

PpArb(2,3) 38 24 11 94 52 2 3.24 <0.01
PpArb(2,6) 62 36 17 202 106 2 37.77 0.47
PpArb(2,9) 86 48 23 346 178 2 884 41.11
PpArb(2,12) 110 60 29 526 268 2 5851 3818
PpArbCsc(2,3) 40 24 11 96 52 2 2.80 0.03
PpArbCsc(2,6) 64 36 17 204 106 2 45.01 2.76
PpArbCsc(2,9) 88 48 23 348 178 2 410 231
PpArbCsc(2,12) 112 60 29 528 268 2 time 19618
PpArb(3,3) 56 36 16 161 90 3 18.49 0.02
PpArb(3,6) 92 54 25 341 180 3 1042 19.71
PpArb(3,9) 128 72 34 575 297 3 8302 14903
PpArb(3,12) 164 90 43 863 441 3 time time
PpArbCsc(3,3) 59 36 16 164 90 3 15.38 0.51
PpArbCsc(3,6) 95 54 25 344 180 3 450 348
PpArbCsc(3,9) 131 72 34 578 297 3 16300 time
PpArbCsc(3,12) 167 90 43 866 441 3 time time

Table 8.3: Experimental results: STGs with arbitration.

Conclusions

In this thesis, we presented a framework for model checking based on prefixes of
Petri net unfoldings. In Chapter 2, the theory of canonical prefixes is proposed.
It provides a powerful tool for dealing with different variants of the unfolding
technique, in a flexible and uniform way. A fundamental result of that chapter
is the existence of ‘special’ canonical prefix of the unfolding of a Petri net, which
can be defined without resorting to any algorithmic argument.

Chapters 4 and 5 address the issue of efficient construction of canonical pre-
fixes. The former describes an efficient method of generating the possible ex-
tensions of a branching process — the most time-consuming part of unfolding
algorithms. The latter proposes a new unfolding algorithm, which admits an
efficient parallelization and allows for additional optimizations.

In Chapter 6, the theory of canonical prefixes presented in Chapter 2 and the
unfolding algorithms developed in Chapters 4 and 5 are generalized to a class of
high-level Petri nets. This is done by establishing an important relation between
the branching processes of a high-level net and those of its low-level expansion,
which allows for importing results proven for branching processes of low-level
nets into the theory of high-level nets. The proposed approach is conservative
in the sense that all the verification tools employing the traditional unfolding
prefixes can be reused.

Chapter 7 develops a new integer programming technique for efficient model
checking employing unfolding prefixes. The conducted experiments indicate that
problems with more than a hundred of thousands of variables can be solved. The
technique can be used, e.g., for detecting deadlocks in Petri nets, checking the
mutual exclusion of places, and various kinds of reachability analysis. Moreover,
in Chapter 8, this technique is applied to check the Unique State Coding (USC),
Complete State Coding (CSC), and normalcy properties of Signal Transition
Graphs (STGs), used for specifying asynchronous circuits.

As a result of this work, several model checking tools have been developed,
viz. the Punf tool (see [50]) for unfolding low-level and high-level Petri nets and
STGs, and the Clp tool (see [51]) for model checking various properties of Petri
nets and STGs. They are available for download from the following URL:

http://www.cs.ncl.ac.uk/people/victor.khomenko/home.formal/tools/tools.html

We believe that the results contained in this thesis, on one hand, will help
to understand better the issues relating to prefixes of Petri net unfoldings, and,

130

CONCLUSIONS 131

on the other hand, will facilitate the design of efficient model checking tools
employing them. Moreover, they will contribute to a long term goal of our
research, which is the development of techniques and methods for the analysis
and verification of concurrent reactive systems based on structures representing
causality and concurrency in a system’s behaviour, rather than on the global
state-space view of it. And, as a consequence, to make the unfoldings as usable
as the state graphs, in order to allow flexible goal-oriented model checking to
be performed for complex concurrent reactive systems at early stages of their
development, with greater efficiency than what could be achieved with state
traversal techniques. The specific objectives are:

(a) To further improve the efficiency of unfolding algorithms.

(b) To extend the unfolding based techniques to new classes of Petri nets,
including time and priority nets, and nets with inhibitor and/or read arcs.
Such extensions would allow a further leap to more complicated system
models, e.g., Promela or π–calculus.

(c) To improve the efficiency of verification of linear time temporal logic prop-
erties through the development of a suitable parallel model checker, and to
investigate the applicability of unfoldings to model checking of a branching
time temporal logic formulae.

(d) To extend the applicability of the unfolding based techniques in the area
of VLSI circuits design.

This would make the unfolding approach a truly general method for dealing with
a wide range of key application areas, including both software and hardware.

Bibliography

[1] F. Ajili and E. Contejean: Complete Solving of Linear Diophantine Equa-
tions and Inequations Without Adding Variables. Proc. of 1st Interna-
tional Conference on Principles and Practice of Constraint Programming
(CP’1995), U. Montanari and F. Rossi (Eds.). Springer-Verlag, Lecture
Notes in Computer Science 976 (1995) 1–17.

[2] F. Ajili and E. Contejean: Avoiding Slack Variables in the Solving of Lin-
ear Diophantine Equations and Inequations. Theoretical Computer Science
173(1) (1997) 183–208.

[3] E. Best, R. Devillers, and M. Koutny: Petri Net Algebra. EATCS Mono-
graphs on Theoretical Computer Science, Springer-Verlag (2001).

[4] E. Best, H. Fleischhack, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz: A
Class of Composable High Level Petri Nets. Proc. of Application and Theory
of Petri Nets (ATPN’1995), G. DeMichelis and M. Diaz (Eds.). Springer-
Verlag, Lecture Notes in Computer Science 935 (1995) 103–120.

[5] E. Best, H. Fleischhack, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz: An
M-net Semantics of B(PN)2 . Proc. of International Workshop on Structures
in Concurrency Theory (STRICT’1995), J. Desel (Ed.). Berlin (1995) 85–
100.

[6] E. Best and B. Grahlmann: PEP. Documentation and User Guide. Version
1.4. Manual (1995).

[7] E. Best and B. Grahlmann: PEP — More Than a Petri Net Tool. Proc.
of International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’1996), T. Margaria and B. Steffen (Eds.).
Springer-Verlag, Lecture Notes in Computer Science 1055 (1996) 397–401.

[8] R. E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers C-35-8 (1986) 677–691.

[9] A. Bystrov, D. J. Kinniment, and A. Yakovlev: Priority Arbiters. Proc. of
6th IEEE International Symposium on Advanced Research in Asynchronous
Circuits and Systems (ASYNC’2000), IEEE Computer Society Press (2000)
128–137.

132

BIBLIOGRAPHY 133

[10] C. Carrion and A. Yakovlev: Design and Evaluation of Two Asynchronous
Token Ring Adapters. Technical Report CS-TR-562, Department of Com-
puting Science, University of Newcastle (1996).

[11] T. -A. Chu: Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD Thesis, Massachusetts Institute of Technology, Labora-
tory for Computer Science, MIT/LCS/TR-393 (1987).

[12] E. M. Clarke, O. Grumberg, and D. E. Long: Model Checking and Abstrac-
tion. ACM Transactions on Programming Languages and Systems 16(5)
(1994) 1512–1542.

[13] E. M. Clarke, O. Grumberg, and D. Peled: Model Checking. MIT Press
(1999).

[14] P. M. Cohn: Algebra, volume 2. John Wiley & sons (1977).

[15] P. M. Cohn: Universal Algebra. Reidel, 2nd edition (1981).

[16] E. Contejean: Solving Linear Diophantine Constraints Incrementally. Proc.
of 10th International Conference on Logic Programming (ICLP’1993),
D. S. Warren (Ed.). MIT Press (1993) 532–549.

[17] E. Contejean and H. Devie: Solving Systems of Linear Diophantine Equa-
tions. Proc. of 3rd Workshop on Unification, University of Keiserlautern
(1989).

[18] E. Contejean and H. Devie: An Efficient Incremental Algorithm for Solving
Systems of Linear Diophantine Equations. Information and Computation
113 (1994) 143–172.

[19] J. C. Corbett: Evaluating Deadlock Detection Methods for Concurrent Soft-
ware. IEEE Transactions on Software Engineering 22(3) (1996) 161–180.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein: Introduction to Al-
gorithms. MIT Press, 2nd edition (2001).

[21] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev:
Petrify: a Tool for Manipulating Concurrent Specifications and Synthe-
sis of Asynchronous Controllers. IEICE Transactions on Information and
Systems E80-D(3) (1997) 315–325.

[22] J. Cortadella, A. Kondratyev, M. Kishinevsky, L. Lavagno, and A. Yakovlev:
Complete State Encoding Based on Theory of Regions. Proc. of 2nd IEEE
International Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC’1996), IEEE Computer Society Press (1996) 36–47.

[23] CPLEX Corporation: CPLEX 3.0. Manual (1995).

BIBLIOGRAPHY 134

[24] J. -M. Couvreur, S. Grivet, and D. Poitrenaud: Unfolding of Products of
Symmetrical Petri Nets. Proc. of International Conference on Application
and Theory of Petri Nets (ICATPN’2001), J. -M. Colom and M. Koutny
(Eds.). Springer-Verlag, Lecture Notes in Computer Science 2075 (2001)
121–143.

[25] M. Davis: The Undecidable. Raven Press (1965).

[26] J. Engelfriet: Branching Processes of Petri Nets. Acta Informatica 28 (1991)
575–591.

[27] A. Edelman: The Mathematics of the Pentium Division Bug. SIAM Review
39(1) (1997) 54–67.

[28] J. Esparza: Decidability and Complexity of Petri Net Problems — an In-
troduction. In: Lectures on Petri Nets I: Basic Models, W. Reisig and
G. Rozenberg (Eds.). Springer-Verlag, Lecture Notes in Computer Science
1491 (1998) 374–428.

[29] J. Esparza and S. Römer: An Unfolding Algorithm for Synchronous Prod-
ucts of Transition Systems. Proc. of International Conference on Concur-
rency Theory (CONCUR’1999), J. C. M. Baeten and S. Mauw (Eds.). Invited
paper, Springer-Verlag, Lecture Notes in Computer Science 1664 (1999) 2–
20.

[30] J. Esparza, S. Römer and W. Vogler: An Improvement of McMillan’s Unfold-
ing Algorithm. Proc. of International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’1996), T. Margaria
and B. Steffen (Eds.). Springer-Verlag, Lecture Notes in Computer Science
1055 (1996) 87–106.

[31] J. Esparza, S. Römer and W. Vogler: An Improvement of McMillan’s Un-
folding Algorithm. Formal Methods in System Design 20(3) (2002) 285–310.

[32] J. Esparza and C. Schröter: Reachability Analysis Using Net Unfold-
ings. Proc. of Workshop on Concurrency, Specification and Programming
(CS&P’2000), H. D. Burkhard, L. Czaja, A. Skowron, and P. Starke (Eds.).
Informatik-Bericht 140(2). Humboldt-Universitat zu Berlin (2000) 255–270.

[33] H. Fleischhack, B. Grahlmann: A Petri Net Semantics for B(PN)2 with
Procedures which Allows Verification. Technical Report 21, Universität
Hildesheim (1996).

[34] H. Fleischhack, B. Grahlmann: A Petri Net Semantics for B(PN)2 with
Procedures. Proc. of 2nd International Workshop on Software Engineering
for Parallel and Distributed Systems (PDSE’1997), IEEE Computer Society
Press (1997) 15–27.

BIBLIOGRAPHY 135

[35] S. B. Furber, A. Efthymiou, and M. Singh: A Power-Efficient Duplex Com-
munication System. Proc. of International Workshop on Asynchronous In-
terfaces: Tools, Techniques and Implementations (AINT’2000), A. Yakovlev
and R. Nouta (Eds.). TU Delft, The Netherlands (2000) 145–150.

[36] J. D. Garside, S. B. Furber, and S. -H. Chung: Amulet-3 Revealed. Proc. of
5th IEEE International Symposium on Advanced Research in Asynchronous
Circuits and Systems (ASYNC’1999), IEEE Computer Society Press (1999)
51–59.

[37] P. Godefroid: Partial-Order Methods for the Verification of Concurrent Sys-
tems: an Approach to the State-Explosion Problem. Springer-Verlag, Lecture
Notes in Computer Science 1032 (1996).

[38] J. Goubault-Larrecq and I. MacKie: Proof Theory and Automated Deduc-
tion. Kluwer Academic Publishers (1997).

[39] K. Gödel: Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I [On Formally Undecidable Propositions of Prin-
cipia Mathematica and Related Systems I]. Monatshefte für Mathematik und
Physik 38 (1931) 173–198. Reprinted in [25, pp. 4–38].

[40] K. Heljanko: Deadlock Checking for Complete Finite Prefixes Using Logic
Programs with Stable Model Semantics (Extended Abstract). Proc. of
Workshop on Concurrency, Specification and Programming (CS&P’1998),
Informatik-Bericht 110. Humboldt-Universitat zu Berlin (1998) 106–115.

[41] K. Heljanko: Using Logic Programs with Stable Model Semantics to Solve
Deadlock and Reachability Problems for 1-Safe Petri Nets. Proc. of Interna-
tional Conference on Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS’1999), Springer-Verlag, Lecture Notes in Computer
Science 1579 (1999) 240–254.

[42] K. Heljanko: Deadlock and Reachability Checking with Finite Complete
Prefixes. Technical Report A56, Laboratory for Theoretical Computer Sci-
ence, HUT, Espoo, Finland (1999).

[43] K. Heljanko: Minimizing Finite Complete Prefixes. Proc. of Workshop on
Concurrency, Specification and Programming (CS&P’1999), Informatik-
Bericht, Humboldt-Universitat zu Berlin (1999) 83–95.

[44] K. Heljanko: Using Logic Programs with Stable Model Semantics to Solve
Deadlock and Reachability Problems for 1-Safe Petri Nets. Fundamentae
Informaticae 37(3) (1999) 247–268.

[45] K. Heljanko, V. Khomenko, and M. Koutny: Parallelization of the Petri Net
Unfolding Algorithm. Technical Report CS-TR-733, Department of Com-
puting Science, University of Newcastle (2001).

BIBLIOGRAPHY 136

[46] K. Heljanko, V. Khomenko, and M. Koutny: Parallelization of the Petri Net
Unfolding Algorithm. Proc. of International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’2002), J. -P.
Katoen and P. Stevens (Eds.). Springer-Verlag, Lecture Notes in Computer
Science 2280 (2002) 371–385.

[47] G. D. Holzmann: Software Analysis and Model Checking. Proc. of Interna-
tional Conference on Computer Aided Verification (CAV’2002), E. Brinksma
and K. G. Larsen (Eds.). Springer-Verlag, Lecture Notes in Computer Sci-
ence 2404 (2002) 1–16.

[48] J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley (1979).

[49] K. Jensen: Colored Petri Nets. Basic Concepts, Analysis Methods and Prac-
tical Use. EATCS Monographs on Theoretical Computer Science, Springer-
Verlag (1992).

[50] V. Khomenko: Punf Documentation and User Guide. Version 6.01. Manual
(2002).

[51] V. Khomenko: Clp Documentation and User Guide. Version 3.01β. Manual
(2002).

[52] V. Khomenko and M. Koutny: Deadlock Checking Using Liner Program-
ming and Partial Order Dependencies. Technical Report CS-TR-695, De-
partment of Computing Science, University of Newcastle (2000).

[53] V. Khomenko and M. Koutny: Verification of Bounded Petri Nets Using
Integer Programming. Technical Report CS-TR-711, Department of Com-
puting Science, University of Newcastle (2000).

[54] V. Khomenko and M. Koutny: LP Deadlock Checking Using Partial Order
Dependencies. Proc. of International Conference on Concurrency Theory
(CONCUR’2000), C. Palamidessi (Ed.). Springer-Verlag, Lecture Notes in
Computer Science 1877 (2000) 410–425.

[55] V. Khomenko and M. Koutny: Verification of Bounded Petri Nets Using
Integer Programming. Formal Methods in System Design (2002) submitted
paper.

[56] V. Khomenko and M. Koutny: An Efficient Algorithm for Unfolding Petri
Nets. Technical Report CS-TR-726, Department of Computing Science, Uni-
versity of Newcastle (2001).

[57] V. Khomenko and M. Koutny: Towards An Efficient Algorithm for Unfold-
ing Petri Nets. Proc. of International Conference on Concurrency Theory

BIBLIOGRAPHY 137

(CONCUR’2001), P. G. Larsen and M. Nielsen (Eds.). Springer-Verlag, Lec-
ture Notes in Computer Science 2154 (2001) 366–380.

[58] V. Khomenko and M. Koutny: Branching Processes of High-Level Petri
Nets. Technical Report CS-TR-763, Department of Computing Science, Uni-
versity of Newcastle (2002).

[59] V. Khomenko and M. Koutny: Branching Processes of High-Level Petri
Nets. Proc. of International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’2003), H. Garavel and
J. Hatcliff (Eds.). Springer-Verlag, Lecture Notes in Computer Science
(2003) to appear.

[60] V. Khomenko, M. Koutny, and V. Vogler: Canonical Prefixes of Petri Net
Unfoldings. Technical Report CS-TR-741, Department of Computing Sci-
ence, University of Newcastle (2001).

[61] V. Khomenko, M. Koutny, and V. Vogler: Canonical Prefixes of Petri Net
Unfoldings. Proc. of International Conference on Computer Aided Verifi-
cation (CAV’2002), E. Brinksma and K. G. Larsen (Eds.). Springer-Verlag,
Lecture Notes in Computer Science 2404 (2002) 582–595.

[62] V. Khomenko, M. Koutny, and A. Yakovlev: Detecting State Coding Con-
flicts in STGs Using Integer Programming. Technical Report CS-TR-736,
Department of Computing Science, University of Newcastle (2001).

[63] V. Khomenko, M. Koutny, and A. Yakovlev: Detecting State Coding Con-
flicts in STGs Using Integer Programming. Proc. of International Conference
on Design, Automation and Test in Europe (DATE’2002), C. D. Kloos and
J. Franca (Eds.). IEEE Computer Society Press (2002) 338–345.

[64] A. Kondratyev, J. Cortadella, M. Kishinevsky, E. Pastor, O. Roig, and A. Ya-
kovlev: Checking Signal Transition Graph Implementability by Symbolic
BDD Traversal. Proc. of International Conference on Design, Automation
and Test in Europe (DATE’1995), IEEE Computer Society Press (1995)
325–332.

[65] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, A. Taubin, and
A. Yakovlev: Identifying State Coding Conflicts in Asynchronous System
Specifications Using Petri Net Unfoldings. Proc. of International Confer-
ence on Application of Concurrency to Sysytem Design (ICACSD’98), IEEE
Computer Society Press (1998) 152–163.

[66] D. König: Über eine Schlußweise aus dem Endlichen ins Unendliche. Acta
Litt. ac. sci. Szeged 3 (1927) 121–130. Bibliography in: Theorie der endlichen
und unendlichen Graphen. Teubner, Leipzig (1936, reprinted 1986).

BIBLIOGRAPHY 138

[67] M. Koutny and E. Best: Fundamental Study: Operational and Denotational
Semantics for the Box Algebra. Theoretical Computer Science 211 (1999) 1–
83.

[68] V. E. Kozura: Unfolding of Colored Petri Nets. Technical Report 80,
A. P. Ershov Institute of Informatics Systems (2000).

[69] S. Krivoy: About Some Methods of Solving and a Feasibility Criteria of Lin-
ear Diophantine Equations over the Natural Numbers Domain (in Russian).
Cybernetics and System Analysis 4 (1999) 12–36.

[70] L. Lamport: A Fast Mutual Exclusion Algorithm. ACM Transactions on
Computer Systems 5(1) (1987) 1–11.

[71] R. Langerak and E. Brinksma: A Complete Finite Prefix for Process Al-
gebra. Proc. of International Conference on Computer Aided Verification
(CAV’1999), N. Halbwachs and D. Peled (Eds.). Springer-Verlag, Lecture
Notes in Computer Science 1633 (1999) 184–195.

[72] K. S. Low and A. Yakovlev: Token Ring Arbiters: an Exercise in Asyn-
chronous Logic Design with Petri Nets. Technical Report CS-TR-537, De-
partment of Computing Science, University of Newcastle (1995).

[73] A. Madalinski, A. Bystrov, V. Khomenko, and A. Yakovlev: Visualization
and Resolution of Coding Conflicts in Asynchronous Circuit Design. Proc.
of International Conference on Design, Automation and Test in Europe
(DATE’2003), IEEE Computer Society Press (2003) to appear.

[74] K. L. McMillan: Using Unfoldings to Avoid State Explosion Problem in
the Verification of Asynchronous Circuits. Proc. of International Confer-
ence on Computer Aided Verification (CAV’1992), G. von Bochmann and
D. K. Probst (Eds.). Springer-Verlag, Lecture Notes in Computer Science
663 (1992) 164–174.

[75] K. L. McMillan: Symbolic Model Checking: an approach to the state explo-
sion problem. PhD thesis, CMU-CS-92-131 (1992).

[76] S. Melzer: Verifikation Verteilter Systeme mit Linearer — und Constraint-
Programmierung. PhD Thesis. Technische Universität München, Utz Verlag
(1998).

[77] S. Melzer and S. Römer: Deadlock Checking Using Net Unfoldings. Proc.
of International Conference on Computer Aided Verification (CAV’1997),
O. Grumberg (Ed.). Springer-Verlag, Lecture Notes in Computer Science
1254 (1997) 352–363.

[78] T. Murata: Petri Nets: Properties, Analysis and Applications. Proc. of the
IEEE 77(4) (1989) 541–580.

BIBLIOGRAPHY 139

[79] I. Niemelä and P. Simons: Smodels — An Implementation of the Stable
Model and Well-founded Semantics for Normal Logic Programs. Proc. of 4th
International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR’1997), Springer-Verlag, Lecture Notes in Artificial Intelli-
gence 1265 (1997) 420–429.

[80] M. A. Peña and J. Cortadella: Combining Process Algebras and Petri Nets
for the Specification and Synthesis of Asynchronous Circuits. Proc. of 2nd
IEEE International Symposium on Advanced Research in Asynchronous Cir-
cuits and Systems (ASYNC’1996), IEEE Computer Society Press (1996)
222–232.

[81] A. Pnueli: The Temporal Logic of Programs. Proc. of 18th Annual Sympo-
sium on Foundations of Computer Science, IEEE Computer Society Press
(1977) 46–57.

[82] A. Pnueli: Applications of Temporal Logic to the Specification and Verifi-
cation of Reactive Systems: A Survey of Current Trends. Proc. of Advanced
School on Current Trends in Concurrency, J. de Bakker, W. -P. de Roever,
and G. Rozenberg (Eds.). Springer-Verlag, Lecture Notes in Computer Sci-
ence 224 (1994) 510–584.

[83] E. Post: Recursively Enumearable Sets of Positive Integers and Their Deci-
sion Problems. American Mathematical Society Bulletin 50 (1944) 284–316.
Reprinted in [25, pp. 304–337].

[84] R. K. Ranjan, J. V. Sanghavi, R. K. Brayton, and A. Sangiovanni-Vincentelli:
Binary Decision Diagrams on Network of Workstation. Proc. of Interna-
tional Conference on Computer Design (ICCD’1996), IEEE Computer So-
ciety Press (1996) 358–364.

[85] S. Römer: Entwicklung und Implementierung von Verifikationstechniken
auf der Basis von Netzentfaltungen. PhD thesis, Technische Universitat
Munchen (2000).

[86] A. Semenov: Verification and Synthesis of Asynchronous Control Circuits
Using Petri Net Unfoldings. PhD Thesis, University of Newcastle upon Tyne
(1997).

[87] A. Semenov, A. Yakovlev, E. Pastor, M. Peña, J. Cortadella, and L. Lavagno:
Partial Order Approach to Synthesis of Speed-Independent Circuits. Proc. of
3rd IEEE International Symposium on Advanced Research in Asynchronous
Circuits and Systems (ASYNC’1997), IEEE Computer Society Press (1997)
254–265.

[88] M. Silva, E. Teruel, and J. -M. Colom: Linear Algebraic and Linear Pro-
gramming Techniques for the Analysis of Place/Transition Net Systems. In:

BIBLIOGRAPHY 140

Lectures on Petri Nets I: Basic Models, W. Reisig and G. Rozenberg (Eds.).
Springer-Verlag (1998) 309–373.

[89] N. Starodoubtsev, S. Bystrov, M. Goncharov, I. Klotchkov, and A. Smirnov:
Towards Synthesis of Monotonic Asynchronous Circuits from Signal Tran-
sition Graphs. Proc. of International Conference on Application of Concur-
rency to Sysytem Design (ICACSD’2001), IEEE Computer Society Press
(2001) 179–188.

[90] A. Turing: On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 2(42) (1936)
230–265. Reprinted in [25, pp. 115-154].

[91] P. Vanbekbergen, F. Catthoor, G. Goossens, and H. De Man: Optimized
Synthesis of Asynchronous Control Circuits form Graph-Theoretic Specifi-
cations. Proc. of International Conference on Computer-Aided Design (IC-
CAD’1990), IEEE Computer Society Press (1990) 184–187.

[92] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli: A Unified Signal
Transition Graph Model for Asynchronous Control Circuit Synthesis. For-
mal Methods in System Design 9(3) (1996) 139–188.

[93] A. Yakovlev: Designing Control Logic for Counterflow Pipeline Processor
Using Petri nets. Formal Methods in System Design 12(1) (1998) 39–71.

Index

(π, e)-extension, 8
Σ-compatible, 5
�-chain, 2
≺-chain, 6
ξ-minimal solution, 89
j-th basic default vector, 79
k-bounded M-net system, 66
k-bounded net system, 3
t-labelled, 6
ΣΘ-compatible closure, 86

adequate order, 14
arcs, 115

backward signal confusion, 124
basic algorithm, 23
bounded M-net system, 66
bounded net system, 3
branching condition, 79, 83, 89, 93,

105
branching process, 6, 69, 116

canonical prefix, 19
cardinality of a multiset, 1
causal predecessors, 8
causality relation, 6
CDA, 79
cluster, 60
co-set, 8
complete branching process, 16
Complete State Coding (CSC), 116
concurrent, 6
conditions, 6
configuration, 8
conflict, 5
consistent STG, 115
Contejean and Devie’s algorithm, 79
corresponding configuration, 18

coverable marking, 3
CSC conflict, 116
cut, 8
cut-off events, 18
cutting context, 14

dead transition, 3
deadlock-free, 3
deadlocked marking, 3
dense cutting context, 15
depth of an event, 6
descending �-chain, 2
difference of two multisets, 1
downward-closed, 8

empty multiset, 1
enabled transition, 3
events, 6
expansion of an M-net, 68
extension, 8

feasible events, 18
final marking, 8
finite multiset, 1
firing mode, 65
firing of a transition, 3
flow relation, 2
frozen components, 80, 82, 91, 92

guard of a transition, 65

homomorphism from an occurrence
net to a net system, 6

homomorphism from an occurrence
net to an M-net system, 69

incidence matrix, 4
induces, 8
initial marking, 3, 66

141

INDEX 142

initial state, 115
interleaving semantics, vii
intersection of two multisets, 1

labelling function, 114
legal firings, 65
legal place instances, 65
local configuration, 8

M-net, 65
M-net system, 66
marking, 2, 66
marking change vector, 60
marking equation, 5
minimal ΣΘ-compatible closure, 86
multiset, 1
mutually exclusive, 3

n-normalcy, 120
negative normalcy, 120
net (with weighted arcs), 2
net system, 3
next-state function, 120
Noetherian induction, 2
normal STG, 120

occurrence net, 6
ordinary net, 2

p-normalcy, 120
Parikh vector, 5
place, 2, 65
positive normalcy, 120
possible extension, 8, 70
postset, 3
prefix of a branching process, 6
preset, 3
preset tree, 38

reachable markings, 3, 66
reachable states, 115
reactive systems, vii
represented, 8

safe M-net system, 66
safe net system, 3

saturated cutting context, 15
self-conflict, 6
separated, 6
separating constraint, 119
signal change vector, 114, 116
Signal Transition Graph (STG), 114
signal transition labels, 114
signals, 114
slack variables, 83
slice, 24
slicing algorithm, 24
speed-independent, 120
state assignment function, 115
state graph, 115
state of an STG, 114
state space explosion, v, viii
static cut-off events, 18
strictly k-bounded M-net system, 66
strictly safe M-net system, 66
suffix, 8
sum of two multisets, 1

transition, 2, 65
transition relation, 66
triggers, 121
true concurrency semantics, vii
type of a place, 65

unfolding, 6
Unique State Coding (USC), 115
USC conflict, 115

vector of initial signal values, 114

weight function, 2
weight of a preset tree, 39
well-founded order, 2

