
A Usable Reachability Analyser
Victor Khomenko∗

Abstract—Reachability analysis consists in checking if a state
satisfying some property is reachable. In this paper a solution
to the problem of generating formulae expressing reachability
properties for concrete models is suggested. The traditional
methods either require the user to input the formula manually,
which can be very tedious and error-prone, or automatically
generate formulae for some fixed set of common properties, which
does not allow one to check custom properties. The proposed
approach allows the user to write a concise abstract specification
of the property in a specially developed language REACH , which
is then automatically expanded into a formula for a concrete
model. Its usefulness is demonstrated on several case studies.

Index Terms—Reachability analysis, model checking, Petri
nets, STG.

I. I NTRODUCTION
A reachability propertyof a system can be formulated as

follows:
Check if there is a reachable states
satisfying a given predicateR(s).

Typically R specifies some undesirable states which should
never be reached in a correct system, and the result of
checking such a property is either a trace leading to a state
satisfying this predicate or a message that no reachable state
satisfies it. Reachability properties play a crucial role informal
verification; in particular, deadlock freeness, mutual exclusion
and assertions are examples of reachability properties.

In this paper we assume that the system is specified as a safe
(i.e. 1-bounded) Petri net, but the main ideas are still applicable
to other formalisms, see Sect. V. HenceR is a Boolean
formula built upon the elementary predicatesp1, . . . , pn that
correspond to the places of the Petri net (a predicatepi is true
iff there is a token in theith place of the Petri net at the state
to be reached).

Traditionally, the predicateR is either provided by the user
or is generated automatically by the tool for some fixed set
of common properties, like deadlocks or mutual exclusion.
Unfortunately, both these approaches are of limited use in
practice. Consider for example the Petri net modelling two
dining philosophers shown in Fig. 1 (the elements shown in
dashed lines should not be considered for the moment). The
specification of the deadlock condition for it is as follows:

R
df
= p1 ∧ (p2 ∨ p7) ∧ (p3 ∨ p8) ∧ (p4 ∨ p5) ∧ p6∧
p9 ∧ (p7 ∨ p10) ∧ (p8 ∨ p11) ∧ (p12 ∨ p13) ∧ p14

(1)

Intuitively, this formula contains one clause per transition,
which is true iff this transition cannot fire because some place
in its preset contains no token. From this rather small example
one can see that manual specification of even the simplest
properties for more realistic nets can easily get extremely
tedious and error-prone.

∗V. Khomenko is a Royal Academy of Engineering/EPSRC Post-Doctoral
Research Fellow. He is affiliated with School of Computing Science, New-
castle University, UK. E-mail:Victor.Khomenko@ncl.ac.uk .

This research was supported by the Royal Academy of Engineering/EPSRC

post-doctoral research fellowship EP/C53400X/1 (DAVAC).

p1

p2

p3

p4

p5

p6t1

t2

t3

t4t5

p7

p8

p9

p10

p11

p12

p13

p14 t6

t7

t8

t9 t10

t11 t12

p15 p16

Fig. 1. A Petri net modelling two dining philosophers. Herep1 and p9
are the ‘thinking’ states of the philosophers,p7 and p8 are the forks,t2,
t3, t7 and t8 model taking the forks,t4 and t9 model eating, andt5 and
t10 model returning the forks. The elements shown in dashed lines model a
proper termination of the system.

The other alternative is to generate such a property auto-
matically, which most of reachability analysers can do for
deadlocks. However, this has a disadvantage: only a fixed
set of properties can be implemented in this way, and if the
property the user wants to check is not in this set, the tool
becomes either useless, or the user has to resort to manually
specifying the property. This is especially disappointingwhen
the user’s property is just a minor variation of some standard
one. For example, suppose the transitions and places shown in
dashed lines in Fig. 1 are added to the net in order to model the
proper termination of the philosophers (i.e. they are full up and
leave the table). The state when bothp15 andp16 are marked is
considered a proper terminal state, and should be distinguished
from deadlocks. One can see that this is just a minor variation
of the deadlock property, in particular it would be enough
to add the clause(p15 ∨ p16) to the automatically generated
deadlock formula; however, this is usually impossible, since
the formula generation is hardwired into the tool.1

In practice, users are often forced to implement generators
for their custom properties. While simple in theory, such ge-
nerators require a considerable implementation effort, inpar-
ticular they need data structures and methods for representing
and accessing Petri nets, a parser for reading a net from the
file and, in all but simple cases, data structures and routines
for Boolean expressions manipulation. Obviously, few users
would be prepared (or even able) to undertake such an effort.

In this paper we describe an idea which solves the aforemen-
tioned problem. It allows the user to specify complex custom
properties of large nets with little effort. In fact, in mostcases
it is no harder for the user than mathematically defining the
property.

The full version of this paper can be found in the technical
report [1].

1In this particular example one can use a trick of adding yet another
transition to the net, which takes the tokens fromp15 andp16 and immediately
puts them back. This makes the state corresponding to the proper termination
non-deadlocked, and so one can use the usual deadlock checking. However,
such tricks cannot always be applied, and in general it is a bad idea to force
the user to modify the model or invent tricks.

II. PROPERTY SPECIFICATION LANGUAGE
In this section we outline the main idea of how to cope

with the problem described in the previous section. Namely,
we design a language REACH for specifying reachability
properties.2 This approach has the following advantages:

∙ custom properties can be easily and concisely specified;
∙ the user does not have to modify the model in any way,

in particular the model does not have to be translated into
an input language of some model checker;

∙ almost any general-purpose reachability analyser (e.g.
MCSMODELS [3] or PROD [4]) can be used as the back-
end.

For example, the deadlock property can be mathematically
defined as follows: ⋀

t∈T

⋁

p∈∙t

p,

where T is the set of transitions of the Petri net. The tool
would take as an input the following REACH description of
this property:

forall t in TRANSITIONS {
exists p in pre t { ˜$p }

}
The other input of the tool is the Petri net, and the tool is able
to automaticallyexpand this abstract property specification
into a concrete Boolean formula for this particular net, e.g. the
deadlock formula (1) is generated for the net in Fig. 1. Note
that theforall andexists operators are expanded into a
conjunction and disjunction, respectively,TRANSITIONS is
substituted by the set of transitions of the net, the operator
pre computes the preset∙t of a transition,̃ is the Boolean
negation, and the$ operator refers to the status of the place
(i.e. whether it has a token) in the marking to be reached. In
fact, the above property can be re-written as

forall t in TRANSITIONS { ˜@t }
where the operator@refers to the enabledness status of a
transition in the marking to be reached.3

This property specification can be easily modified to take
into account the proper termination:

forall t in TRANSITIONS { ˜@t }
&
(˜$P"p15" | ˜$P"p16")

where & and | denote the Boolean conjunction and dis-
junction, respectively, and the operatorP indicates that the
following string should be interpreted as a place name.4 The
REACH language contains a few more operators and constructs
for accessing the net and iterating through it, some of them
are demonstrated in Sect. III.

The proposed reachability analysis flow is illustrated in
Fig. 2. The main novelty is theexpansionstage that pre-
cedes the analysis. Given a net and a REACH property, the
tool automaticallyexpandsthis abstract specification into a
concrete Boolean expression, which is then optimised and fed

2The idea is somewhat similar to the one behind theProperty Specification
Language(PSL) [2], which allows the user to augment HDL code with asser-
tions that can be checked using simulation or formal verification. However,
PSL is not well suited for non-textual specifications like Petri nets.

3Note that@t is ‘syntax sugar’ forforall p in pre t { $p }.
4There are also the corresponding operatorsT for transitions andS for STG

signals, see Sect. III.

Fig. 2. Reachability analysis flow.

to a reachability analyser. The developed tool MPSAT imple-
menting the described idea uses an efficient technique based
on unfolding prefixes and SAT as the back-end reachability
engine. However, many other reachability analysers would fit
into the described flow.

III. C ASE STUDIES
In this section we present a number of case studies.

They come mostly from the domain of asynchronous circuits
(ACs),5 which, intuitively, are circuits without clocks. ACs
have been getting more and more attention in the last few
years, as they often have lower power consumption and
electro-magnetic emission, no problems with clock skew and
related subtle issues, and are fundamentally more tolerantof
voltage, temperature and manufacturing process variations.
Though the listed advantages look rather attractive in the
view of the current and anticipated microelectronics design
challenges, correct and efficient ACs are notoriously difficult
to design (there are a few published asynchronous designs
which subsequently turned out to be incorrect).

We focus on an important subclass of ACs, calledspeed-
independent(SI) circuits; this model follows the classical
approach of Muller [5] and regards each gate as an atomic
evaluator of a Boolean function, with a delay element as-
sociated with its output. In the SI framework this delay is
unbounded, i.e. the circuit must work correctly regardlessof its
gate delays (the wires are assumed to have negligible delays).

Signal Transition Graphs(STGs) [6] are a Petri net based
formalism which is widely used for specifying asynchronous
circuits. STGs associate a set of Boolean variables, referred
to as signals, with a Petri net to represent the state of the
actual digital signals (i.e. wires) within a circuit. The Petri
net’s transitions are then labelled to represent changes inthe
state of these signals; a transition label has the form either
a+ to indicate a signala goes from 0 to 1, ora− to indicate
the signal goes from 1 to 0. In general, several transitions can
have the same label, e.g.a+; in such a case, these transitions
are nameda+, a+/1, a+/2, etc. Thus, the underlying Petri
net specifies the causal relationship between signal changes
and is intended to capture the behaviour of a circuit.

An STG can be represented graphically as a labelled Petri
net. However, a short-hand notation is often used, in which
transitions are simply represented by their labels, and places
with one incoming and one outgoing arc are contracted (if
such a place contained a token, it is drawn directly on the
resulting arc). Moreover, single grey lines without arrowheads
will be used to representread arcs, i.e. pairs of arcs(p, t) and
(t, p) with the same end nodes and opposite directions. Such
arcs are used to test for the presence of a token in a place
without consuming it.

5ACs are one of the author’s primary research fields. In fact, the experience
gathered when implementing tools for analysis and synthesis of ACs led to
the development of REACH.

The signals of an STG are partitioned intoinput, outputand
internal signals; the output and internal signals are collectively
referred to aslocal signals. The inputs are controlled by the
environment of the STG, and the outputs are controlled by the
circuit itself and are observable by the environment. Internal
signals represent some auxiliary entities needed to produce
outputs; like outputs, they are controlled by the circuit, but
are not observable by the environment.

We now explain how to check the basic properties required
for an STG to be directly implementable as an SI circuit. Some
further case studies can be found in the technical report [1].

A. Consistency
One of the basic well-formedness properties of STGs is

consistency,requiring that in each possible execution, the
transitions representing the rising and falling edges of each
signal must be correctly alternated between, always starting
from the same edge (either rising or falling). This ensures that
the values of all the signals are always binary. The following
REACH specification can be used for checking this property:

exists s in SIGNALS {
let Ts = tran s {

$s & exists t in Ts
s.t. is_plus t { @t }

|
˜$s & exists t in Ts

s.t. is_minus t { @t }
}

}
Here the operatorlet defines a new nameTs to share a
common subexpressiontran s (note thatTs occurs twice
in the body of thelet operator), the operatortran computes
the set of all transitions labelled by a signal, thes.t. (‘such
that’) clause in anexist operator allows one to restrict its
index’s domain,6 the predicatesis_plus and is_minus
check that the transition is labelled by a rising and falling,
respectively, signal edge, and the operator$ applied to a signal
refers to its status, i.e. whether the signal is high or not.7 Note
that if the STG is not consistent and the value of a signals is
not binary at some reachable state, the$ operator will simply
return that value modulo 2, see [1] for more detail. However,
since all the signal values are binary at the initial state, one
can show that if consistency is violated at some state with
some signal having a non-binary value, it is also violated at
some earlier state where all signals had binary values, and so
the REACH specification above is correct. In what follows, we
assume that all the STGs are consistent.

B. Output-persistency
The output-persistency(OP) is a correctness condition re-

quiring that if some local signal becomes enabled, it cannot
be disabled by firing some other transition, i.e. there should
be no choices involving local signals. The rationale for this is

6Note that exists x in X s.t. Y { Z } is ‘syntax sugar’ for
exists x in X { Y & Z }, and, similarly, forall x in X s.t.
Y { Z } can be replaced byforall x in X { Y -> Z }, where the
-> operator denotes Boolean implication.

7Similarly, an operator@applied to a signal refers to its enabledness status,
i.e. it is true iff some transition labelled by this signal is enabled. One can
see that@sis just ‘syntax sugar’ forexists t in tran s { @t }.

that once a signal becomes enabled, its voltage starts, e.g.to
rise from 0 to 1. If the signal is disabled during this process,
the voltage is suddenly pulled down, resulting in a glitch. This
glitch can be interpreted in different ways by the logic gates
‘listening’ this signal, depending on whether the voltage has
crossed the threshold between 0 and 1 or not, i.e. the behaviour
of the circuit becomes non-deterministic and non-digital.

Note that a choice involving only inputs is not a violation
of OP, and simply models a choice in the environment. Since
this choice does not have to be implemented by the circuit, SI
circuits can be synthesised for such STGs (provided that all
the other conditions necessary for SI are met).

Visually, if OP is violated then there are two transitions with
different labels in the STG with at least one of them marked by
a local signal, which share some pre-places and can be enabled
simultaneously (unless both transitions are connected to these
shared pre-places by read arcs). A REACH specification for
OP is as follows:
exists t1 in TRANSITIONS
s.t. sig t1 in LOCAL {

@t1 &
exists t2 in TRANSITIONS
s.t. sig t2 != sig t1 &

|pre t1 * (pre t2 \ post t2)|!=0 {
@t2 &
forall t3 in tran sig t1 \ {t1}
s.t. |pre t3 * (pre t2 \ post t2)|=0 {

exists p in pre t3 \ post t2 { ˜$p }
}

}
}

Here the operatorsig returns the signal of a transition,
the operators* , \ and |...| denote the set intersection,
difference and cardinality, respectively, the operatortran
returns a set of transitions labelled by a signal, and{... }
(in {t1 }) is a set constructor.

Intuitively, we are looking for a state enabling some tran-
sition t1 labelled by a local signal (lines 1–3), which can be
disabled by some transitiont2 labelled by a different signal
(lines 4–7). The disabling condition is thatt2 is enabled and
∙t1 ∩ (∙t2 ∖ t

∙

2
), i.e. t2 consumes (not just reads!) some token

from ∙t1. The remaining lines specify that aftert2 fires, no
other transition with the same label ast1 is enabled, i.e. the
signal of t1 has been disabled.

C. Complete State Coding (CSC)
If the STG has two reachable states in which the values

of all the signals coincide, but the sets of enabled local
signals are different, then these two states are said to be in
Complete State Coding(CSC) conflict. The STG satisfies the
CSC propertyif no two of its reachable states are in CSC
conflict. An STG violating the CSC property cannot be directly
implemented as an SI circuit: In practice, to resolve a CSC
conflict, new internal signals helping to distinguish between
the conflicting states are inserted into the STG in such a way
that its ‘external’ behaviour does not change (intuitively, this
introduces additional memory into the circuit, helping it to
trace the current state).

Fig. 3. A specification of anN -way arbiter: the traditional (top-left) and
early (top-right) protocols, together with a model of a client (bottom-left);
and the top-level view of the flat arbiter (bottom-right).

Note that in fact the CSC property is not a reachability
property of an STG as defined at the beginning of this paper,
as one has to look fortwo reachable states that are in a certain
relationship. A possible way around this is to put two copies
of an STG side by side, and reformulate the CSC property of
the original STG as a reachability property of this joint STG.
However, the approach implemented in our tool is to generalise
the reachability properties. Ageneralised reachability property
is a property that can be formulated as follows:

Check if there are reachable statess1, . . . , sk
satisfying a given predicateR(s1, . . . , sk).

It is now easy to see that the CSC property can be formulated
as a generalised reachability property fork = 2:

forall s in SIGNALS { $s <-> $$s }
&
exists s in LOCAL { @sˆ@@s }

Here the operators<-> and ˆ denote Boolean equivalence8

and ‘exclusive or’, respectively, and operators$$ and@@are
analogous to$ and@, but refer to the second state.9

IV. M ODEL CHECKING OF FLAT ARBITERS
Arbiters [7] are basic blocks guarding access to shared

resources and, as such, they play a very important role in
circuit design. The top-level specification of anN -way arbiter
is shown in Fig. 3(top-left), and Fig. 3(bottom-left) showsan
STG modelling the behaviour of each client. An alternative
early protocol is shown in Fig. 3(top-right); the difference
here is that onceith client lowers the requestri, the arbiter
is allowed to immediately issue a grantgj (j ∕= i) to another
client, in parallel with lowering the grantgi. Hence,gi and
gj can be simultaneously high, but this is harmless sinceith

client has already declared (by loweringri) that it had finished
using the shared resource, and, according to this early protocol,
it will not send another request (i.e. raiseri again) until the
arbiter lowersgi.
N -way arbiters are usually constructed using basic 2-way

mutual exclusion(ME) elements.When the two requests arrive
almost simultaneously, an ME element can be slow due to the
need to resolve the arisingmetastability.

One of traditional ways of designingN -way arbiters is
to combine the basic ME elements in a balanced tree-like
fashion. This design is simple and results in a small circuit;

8a <-> b is ‘syntax sugar’ for̃ (aˆb) .
9The operators$$$ and @@@refer to the third state, etc. However, the

author is not aware of any practical properties that would require k > 2.

inputs: ra, rb, rc, ab, ba, bc, cb, ac, ca; outputs: ga, gb, gc

Fig. 4. An STG for the decision logic of an early 3-way flat arbiter.

however, its disadvantage is that several (logN) arbitrations
happen sequentially. This can significantly increase the latency
of the arbiter, especially in balanced circuits where the requests
usually arrive almost simultaneously, and so several sequential
ME elements, one after another, can spend long time in their
metastable states.10

In [9] an alternative way of constructingN -way arbiters
was proposed. The main idea was to perform concurrent
arbitrations between all pairs of requests, and then make the
decision on what grant to issue based on their outcomes, see
Fig. 3(bottom-right). Crucially, all the ME elements in such
an arbiter work in parallel (hence the name ‘flat arbiter’), and
the subsequent decision logic has bounded latency. In [9] a 3-
way flat arbiter implementing the early protocol was manually
designed as an STG shown in Fig. 4.

A. Deadlock checking of a flat arbiter

Correct STGs modelling flat arbiters must obviously be
deadlock free. Unfortunately, the standard deadlock checking
does not quite work, as the definition of a deadlock in an
arbiter is slightly different.11 Indeed, in the situation when only
some requests have arrived, the arbiter is obliged to eventually
issue a grant,even when the remaining requests never arrive.
Hence, if some state (except the initial one) does not enable
any transitions besides the rising requests (ra+, rb+ andrc+
in Fig. 4) then it is classified as a deadlock. Another way of
putting it is that in the STG the rising request transitions are
not weakly fair, i.e. they may remain enabled forever, without
firing. A REACH specification of this property is as follows:

10Some sophisticated tree arbiter designs address this problem by early
propagation of requests, see [8].

11Like in the example with proper termination described in the introduction,
deadlock freeness of an arbiter is yet another minor variation of a standard
property, rendering the standard deadlock checking engines virtually useless.

let requests = {T"ra+", T"rb+", T"rc+"} {
forall t in TRANSITIONS\requests { ˜@t }

}
&
exists p in PLACES { $p ˆ is_init p }
Intutitively, the let operator defines the set of transitions
which are not weakly fair,12 the subexpression starting with
the forall keyword is similar to the standard deadlock
specification, except that the transitions that are not weakly
fair are not required to be disabled, and theexists operator
eliminates the initial state from consideration by requiring that
the marking of some place is different from its initial marking
(the latter is returned by theis_init operator).

The let statement in the above specification can be made
more general by using a regular expression to define the set
of all requests:

let requests =
TT "r[a-z]\\++\\(/[0-9]\\+\\)\\?" ...

Here theTT operator13 computes the set of all transitions
whose name matches the regular expression given by the
following string.14 Intuitively, this regular expression matches
the strings starting with ‘r’, followed by a non-empty sequence
of letters, followed by a ‘+’, optionally followed by a ‘/’ with
a number appended.15 Note that using a regular expression
allows one to use the same REACH specification to check
the deadlock freeness of anN -way flat arbiter for anyN ,
provided that the names of rising request transitions (and only
such names) match this pattern.

B. Mutual exclusion checking of a flat arbiter
Another important property of flat arbiters is the mutual

exclusion of the grants. This differs from the standard mutual
exclusion of places, since the property is formulated for signals
rather than places. Another difference is that for arbiters
implementing the early protocol (which is the case for the STG
in Fig. 4) there are reachable states where several grants are
high (which is correct according to Fig. 3(top-right)). Hence,
instead of requiring that there is at most one client whose grant
is high, one should require that there is at most one client for
which both the request and the grant are high. Again, this is
a minor variation of the standard mutual exclusion property,
which is not straightforward to check with standard tools.
However, it is easy to capture in REACH:

threshold[2]($S"ra" & $S"ga",
$S"rb" & $S"gb", $S"rc" & $S"gc")

Here, thethreshold operator evaluates to 1 iff the number
of its inputs evaluating to 1 is not smaller than the threshold
(given in [...]). Similarly to the deadlock specification
for an arbiter given above, one can use a regular expression
to specify the set of signals (with the iterative form of the
threshold operator):

12Recall that theT operator interpretes its operand as a transition name.
13The REACH language has also the analogous operatorsPP and SS,

computing the set of places and signals, respectively, whosenames match
a given regular expression.

14Currently the basic POSIX regular expressions are supported. Note that
POSIX requires all the regular operators and brackets for grouping to be
escaped with ‘∖’; moreover, since the usual C escape sequences are applied
when parsing the string, ‘∖∖’ are used.

15Recall that the rising transitions of a signala are labelleda+, a+/1,
a+/2, etc.

threshold[2] r in SS "r[a-z]\\+" {
$r & $S("g" + (name r)[1..])

}
Here, thename operator returns the name of the entity (place,
transition or signal) it is applied to, the+ operator concatenates
strings, and the[m.. n] operator extracts a substring from
a string, frommth to nth character, inclusive. Optionally,
one of the indices in this operator can be dropped, e.g. in
this example the[1..] operator returns the original string
without the head character (the numbering of characters in a
string starts from 0). Intuitively, in this example we assume
that the names of the request and grant signals of a client
differ only in the head character (it is ‘r’ for requests and ‘g’
for grants). Hence, the name of a grant signal can be obtained
from the name of the corresponding request signal by dropping
the head character and then pre-pending the result with ‘g’.

V. CONCLUSIONS AND FUTURE WORK

Existing reachability analysers either require the user to
input the formula manually, which can be very tedious and
error-prone, or automatically generate formulae for some fixed
set of common properties, which rules out custom properties.
In this paper a solution to the problem of generating formulae
expressing custom reachability properties is suggested. The
proposed approach allows the user to write a concise abstract
specification of the property in a specially developed language
REACH, which is then automatically expanded into a formula
for a concrete model. The usefulness of this method is demon-
strated on several case studies.

The presented idea can be extended to other formalisms
in a straightforward way. For example, to extend the REACH

language to general (i.e. unbounded) Petri nets it is enough
to change the semantics of the ‘status’ operator$: it should
return a non-negative integer (the number of tokens in a place)
rather than a Boolean value.16 Generally, most formalisms that
have an explicit notion of state can be adopted.

An orthogonal way of extending REACH is to use a different
class of properties. As the semantics of REACH is simply a
Boolean expression, one can easily add various modalities to
the language, such as LTL or CTL temporal modalities.

REFERENCES

[1] V. Khomenko, “A usable reachability analyser,” School ofComp. Sci.,
Newcastle Univ., Tech. Rep. CS-TR-1140, 2009.

[2] C. Schlenoff, M. Gruninger, F. Tissotet al., “The Process Specification
Language PSL Overview and Version 1.0 Specification,” 1999.

[3] “MCSM ODELS tool home page.” [Online]. Available: http://www.tcs.
hut.fi/˜kepa/tools/mcsmodels

[4] “PROD tool home page.” [Online]. Available: http://www.tcs.hut.fi/Soft-
ware/prod

[5] D. Muller and W. Bartky, “A theory of asynchronous circuits,” in Proc.
Int. Symp. of the Theory of Switching, 1959, pp. 204–243.

[6] L. Rosenblum and A. Yakovlev, “Signal graphs: from self-timed to timed
ones,” inProc. Int. Workshop on Timed Petri Nets. IEEE Comp. Soc.
Press, 1985, pp. 199–206.

[7] D. Kinniment,Synchronization and Arbitration in Digital Systems. John
Wiley & Sons Ltd., 2007.

[8] M. Josephs and J. Yantchev, “CMOS design of the tree arbiter element,”
IEEE Trans. on VLSI, vol. 4, no. 4, pp. 472–476, 1996.

[9] A. Mokhov, V. Khomenko, and A. Yakovlev, “Flat arbiters,”in Proc.
ACSD’09. IEEE Comp. Soc. Press, 2009, pp. 99–108.

16Of course, one has to take care of decidability, as some reachability
properties of general Petri nets are undecidable. However,this is a separate
issue from the property generation.

