A Usable Reachability Analyser

Victor Khomenkd

Abstract—Reachability analysis consists in checking if a state
satisfying some property is reachable. In this paper a solution
to the problem of generating formulae expressing reachability
properties for concrete models is suggested. The traditional
methods either require the user to input the formula manually,
which can be very tedious and error-prone, or automatically
generate formulae for some fixed set of common properties, which R
does not allow one to check custom properties. The proposed .,
approach allows the user to write a concise abstract specification Lr‘
of the property in a specially developed language RACH, which
is then automatically expanded into a formula for a concrete *~-°
model. Its usefulness is demonstrated on several case studies.

Index Terms—Reachability analysis, model checking, Petri

Fig. 1. A Petri net modelling two dining philosophers. Here and pg
are the ‘thinking’ states of the philosophegs; and ps are the forks,to,

nets, STG. ts3, t7 and tg model taking the forks{s andtg9 model eating, ands and
t10 model returning the forks. The elements shown in dashed lineteh®
. |. INTRODUCTION proper termination of the system.
A reachability propertyof a system can be formulated as o
follows: The other alternative is to generate such a property auto-
Check if there is a reachable state matically, which most of reachability analysers can do for

deadlocks. However, this has a disadvantage: only a fixed
48t of properties can be implemented in this way, and if the

never be reached in a correct system, and the result Ripperty th? user wants to check is not in this set, the tool
checking such a property is either a trace leading to a st COMES either useless, or the user 'has t‘.) resorF tp manually
satisfying this predicate or a message that no reachahke Stﬁé)emfylng the property. This is especially disappointigen

satisfies it. Reachability properties play a crucial roléimal N uliers propeirty IS just a rrr]unor va_rl_atlon oLS(l)me stah;igjar .
verification; in particular, deadlock freeness, mutuall@sion one. or example, suppose the transmons.an places smown |
and assertions are examples of reachability properties. dashed lines in Fig. 1 are added to the net in order to model the

In this paper we assume that the system is specified as a %ﬂaoerr:ermir;ationhof the philr?sophers (i.e. they are f?('b'""?'
(i.e. 1-bounded) Petri net, but the main ideas are stilliapple eave the table). The state when bpil andp,; are marked is

to other formalisms. see Sect. V. Hende is a Boolean considered a proper terminal state, and should be disshgdi
formula built upon the elementéry .predica‘qels »,, that from deadlocks. One can see that this is just a minor vanatio

correspond to the places of the Petri net (a predipats true of the deadlock @pertiin particular it vyould be enough
iff there is a token in the™ place of the Petri net at the statd® @dd the clausépis v pie) to the automatically generated
to be reached) deadlock formula; however, this is usually impossiblecsin

Traditionally, the predicate is either provided by the userthe formul.a generation is hardwired |nt0. the tool.
or is generated automatically by the tool for some fixed set!n practice, users are often forced to implement generators

of common properties, like deadlocks or mutual exclusiofP" their custom properties. While simple in theory, such ge-

Unfortunately, both these approaches are of limited use }§rat0rs require a considerable implementation efforpan

practice. Consider for example the Petri net modelling twfular they need data structures and methods for repiegent
dining philosophers shown in Fig. 1 (the elements shown ﬁ_,pd accessing Petrl_ nets, a parser for reading a net from the
dashed lines should not be considered for the moment). THE @nd. in all but simple cases, data structures and raaitine
specification of the deadlock condition for it is as follows: T/f/)(;ullgc?ct))lsapr;ef));%zszcrmesvenrzaggl)ga}tthJOLTﬁ d?:?t\glgel:siz,c :le\ajlvn‘;les;feorrt
df — — — —_— — — —_ .
R 775}\/(\#93/\%7))/\/\(%%\/%)) //\\ ((%\/Vp%/;]i‘j]% (1) _ In this paper we describe an idea which ;olves the aforemen-
Intuitively, this formula contains one clause per trawsifi tioned problem. It allows the user to specify complex custom

which is true iff this transition cannot fire because Some@lapropertles of large nets with little effort. In fact, in masses

in its preset contains no token. From this rather small e>tam;5t is no harder for the user than mathematically defining the

one can see that manual specification of even the simplgg?aer?'”) thi be found in th hnical
properties for more realistic nets can easily get extremeIgT e full version of this paper can be found in the technica

tedious and error-prone. réport [1].
lin this particular example one can use a trick of adding yetttamo
*V. Khomenko is a Royal Academy of Engineeringd&Rkc Post-Doctoral transition to the net, which takes the tokens frprg andpi¢ and immediately
Research Fellow. He is affiliated with School of ComputingeBice, New- puts them back. This makes the state corresponding to theptepnination
castle University, UK. E-mailVictor.Khomenko@ncl.ac.uk . non-deadlocked, and so one can use the usual deadlock whetiowever,
This research was supported by the Royal Academy of Engimg#€RSRC such tricks cannot always be applied, and in general it iscaidkea to force
post-doctoral research fellowship EP/C53400X/1a(EC). the user to modify the model or invent tricks.

satisfying a given predicat®&(s).
Typically R specifies some undesirable states which sho

Il. PROPERTY SPECIFICATION LANGUAGE /f*bs”al‘“ %xpansio} Efxpa”‘:ed {j\ad}a@'@g Result
In this section we outline the main idea of how to cope™2™m4+@ ; ormu'a Naysts

with the problem described in the previous section. Namely,

. i . Net
we design a language HAcH for specifying reachability
properties’ This approach has the following adyantages: _Fig. 2. Reachability analysis flow.

o custom properties can be easily and concisely specified;

« the user does not have to modify the model in any walg a reachability analyser. The developed tool MP $nple-
in particular the model does not have to be translated inteenting the described idea uses an efficient technique based
an input language of some model checker; on unfolding prefixes and SAT as the back-end reachability

« almost any general-purpose reachability analyser (egpgine. However, many other reachability analysers would fi
MCSMoDELS[3] or PROD [4]) can be used as the back-nto the described flow.

end. _ [1l. CASE STUDIES
For example, the deadlock property can be mathematicallyn this section we present a number of case studies.
defined as follows: They come mostly from the domain of asynchronous circuits
/\ \/ D, (ACs)> which, intuitively, are circuits without clocks. ACs
teT pest have been getting more and more attention in the last few

where T' is the set of transitions of the Petri net. The toql'ears, as they often have lower power consumption and
would take as an input the following HACH description of electro-magnetic emission, no problems with clock skew and
this property:) related subtle issues, and are fundamentally more tolefant
forall t in TRANSITIONS { voltage, temperature and manufacturing process variation
exists p in pre t { "$p } Though the listed advantages look rather attractive in the
} view of the current and anticipated microelectronics desig
The other input of the tool is the Petri net, and the tool if"?abl:hallenges, correct and efficient ACs are notoriously diffic

into a concrete Boolean formula for this particular net, &g \hich subsequently turned out to be incorrect).

deadlock formula (1) is generated for the net in Fig. 1. Note \we focus on an important subclass of ACs, caltated-
that theforall ~ andexists ~ operators are expanded into andependent(Sl) circuits; this model follows the classical
conjunction and disjunction, respectivel/RANSITIONS is approach of Muller [5] and regards each gate as an atomic
substituted by the set of transitions of the net, the operaiQajuator of a Boolean function, with a delay element as-
pre computes the presét of a transition,” is the Boolean gociated with its output. In the SI framework this delay is
negation, and th& operator refers to the status of the placgnpounded, i.e. the circuit must work correctly regardtsfsts

(i.e. whether it has a token) in the marking to be reached. date delays (the wires are assumed to have negligible delays

fact, the above property can be re-written as Signal Transition Graph¢STGs) [6] are a Petri net based
forall t in TRANSITIONS { "@t } formalism which is widely used for specifying asynchronous
where the operato@refers to the enabledness status of eircuits. STGs associate a set of Boolean variables, exferr
transition in the marking to be reachéd. to assignals with a Petri net to represent the state of the
This property specification can be easily modified to taksctual digital signals (i.e. wires) within a circuit. ThetRe
into account the proper termination: net’s transitions are then labelled to represent changdisein
forall t in TRANSITIONS { "@t } state of these signals; a transition label has the form rithe
& a+ to indicate a signat goes from O to 1, on— to indicate
("$P"p15" | "$P"p16") the signal goes from 1 to 0. In general, several transiti@ms ¢

where & and | denote the Boolean conjunction and dishave the same label, e.g+; in such a case, these transitions
junction, respectively, and the operatBrindicates that the gre namedi+, a+/1, a+/2, etc. Thus, the underlying Petri
following string should be interpreted as a place ndnfiéie net specifies the causal relationship between signal cange
REACH language contains a few more operators and construgifd is intended to capture the behaviour of a circuit.
for accessing the net and iterating through it, some of theman STG can be represented graphically as a labelled Petri
are demonstrated in Sect. Ill. net. However, a short-hand notation is often used, in which
The proposed reachability analysis flow is illustrated igansitions are simply represented by their labels, andegla
Fig. 2. The main novelty is thexpansionstage that pre- with one incoming and one outgoing arc are contracted (if
cedes the analysis. Given a net and BABH property, the sych a place contained a token, it is drawn directly on the
tool automaticallyexpandsthis abstract Specification into aresu|ting arc)_ Moreover, Sing]e grey lines without arreats
concrete Boolean expression, which is then optimised athd fgill be used to represemead arcs i.e. pairs of arcgp, ¢) and

o . _ . (t,p) with the same end nodes and opposite directions. Such
The idea is somewhat similar to the one behindPheperty Specification

Language(PSL) [2], which allows the user to augment HDL code with asselar_cs are used t_o te_St for the presence of a token in a place
tions that can be checked using simulation or formal verificatHowever, Without consuming it.
PSL is not well suited for non-textual specifications likerPeets.
SNote that@t is ‘syntax sugar’ forforall p in pre t { % } 5ACs are one of the author’s primary research fields. In faetettperience
4There are also the corresponding operalofsr transitions ands for STG gathered when implementing tools for analysis and synthdsiCs led to
signals, see Sect. lll. the development of RACH.

The signals of an STG are partitioned inbgput, outputand that once a signal becomes enabled, its voltage startstoe.g.
internal signals; the output and internal signals are collectivelyse from 0 to 1. If the signal is disabled during this process
referred to adocal signals. The inputs are controlled by thehe voltage is suddenly pulled down, resulting in a glitchisT
environment of the STG, and the outputs are controlled by thétch can be interpreted in different ways by the logic gate
circuit itself and are observable by the environment. hmér ‘listening’ this signal, depending on whether the voltage h
signals represent some auxiliary entities needed to pedurossed the threshold between 0 and 1 or not, i.e. the balravio
outputs; like outputs, they are controlled by the circuitf b of the circuit becomes non-deterministic and non-digital.
are not observable by the environment. Note that a choice involving only inputs is not a violation

We now explain how to check the basic properties required OP, and simply models a choice in the environment. Since
for an STG to be directly implementable as an SI circuit. Sontlkis choice does not have to be implemented by the circuit, SI
further case studies can be found in the technical report [1¢ircuits can be synthesised for such STGs (provided that all
A. Consistency the other c_onditipns_ necessary for S| are met). N _

One of the basic well-formedness properties of STGs is Visually, if OP is violated then there are two transitiongfwi
consistency,requiring that in each possible execution, thgifferentllabels in.the STG with at least one of them marked by
transitions representing the rising and falling edges @hea? local signal, which share some pre-places and can be enable
signal must be correctly alternated between, always startiSimultaneously (unless both transitions are connectebleiset
from the same edge (either rising or falling). This ensunes t Shared pre-places by read arcs). &AARH specification for
the values of all the signals are always binary. The follgwinOP is as follows:

REACH specification can be used for checking this propertyexists t1 in TRANSITIONS

exists s in SIGNALS { s.t. sig t1 in LOCAL {
let Ts = tran s { @tl &
$s & exists t in Ts exists t2 in TRANSITIONS
sit. is_plus t { @t } s.t. sig t2 1= sig t1 &
| [pre t1 = (pre t2 \ post t2)[!=0 {
"$s & exists t in Ts @t2 &
s.t. is_minus t { @t } forall t3 in tran sig t1 \ {t1}
} s.t. |pre t3 * (pre t2 \ post t2)|=0 {
} exists p in pre t3 \ post t2 { “$p }
Here the operatotet defines a new namé&s to share a }

common subexpressiaman s (note thatTs occurs twice }

in the body of thdet operator), the operatéran computes }

the set of all transitions labelled by a signal, the (‘such Here the operatosig returns the signal of a transition,
that’) clause in arexist operator allows one to restrict itsthe operatorst, \ and |...| denote the set intersection,
index’s domairf the predicatess_plus andis_minus difference and cardinality, respectively, the operati@n
check that the transition is labelled by a rising and fallingeturns a set of transitions labelled by a signal, gnd }
respectively, signal edge, and the oper&applied to a signal (in {t1 }) is a set constructor.

refers to its status, i.e. whether the signal is high or'iéate Intuitively, we are looking for a state enabling some tran-
that if the STG is not consistent and the value of a signial Sition ¢, labelled by a local signal (lines 1-3), which can be
not binary at some reachable state, $heperator will simply disabled by some transition, labelled by a different signal
return that value modulo 2, see [1] for more detail. Howevelines 4-7). The disabling condition is that is enabled and
since all the signal values are binary at the initial stateg 0°t1 N (*t2 \ 3), i.e. £ consumes (not just reads!) some token
can show that if consistency is violated at some state wifom °¢;. The remaining lines specify that aftey fires, no
some signal having a non-binary value, it is also violated @ther transition with the same label asis enabled, i.e. the
some earlier state where all signals had binary values, andségnal of¢; has been disabled.

the REACH specification above is correct. In what follows, we

: C. Complete State Coding (CSC)
assume that all the STGs are consistent. If the STG has two reachable states in which the values

B. Output-persistency) N of all the signals coincide, but the sets of enabled local
The output-persistencyOP) is a correctness condition resjgnals are different, then these two states are said to be in
quiring that if some local signal becomes enabled, it cann@pmplete State CodingCSC) conflict. The STG satisfies the
be disabled by firing some other transition, i.e. there shoutsc propertyif no two of its reachable states are in CSC
be no choices involving local signals. The rationale fostisi conflict. An STG violating the CSC property cannot be dingctl
. : o , implemented as an SI circuit: In practice, to resolve a CSC
6Note that exists x in X s.t. Y { Z } is ‘syntax sugar for P P
exists x in X { Y & Z }, and, similarly,forall x in X s.t. conflict, new internal signals helping to distinguish betwe
Y { Z } can be replaced bforall x in X { Y ->Z } wherethe the conflicting states are inserted into the STG in such a way
- denotes Boolean implication. ite) ; ; it ;
>_operator , : _ that its ‘external’ behaviour does not change (intuitiyehyis
“Similarly, an operato@applied to a signal refers to its enabledness status
i.e. it is true iff some transition labelled by this signal isabled. One can introduces additional memory into the circuit, helping at t
see that@sis just ‘syntax sugar’ foexists t in tran s { @t} trace the current state).

i r‘@gg " @Zﬂg
« i —%h—nh 0 « i — % —nh 0
e
=il
N(N-1)/2 N

elements

“r—g—r—g

2160] uoisioaq

Critical section "

Fig. 3. A specification of anV-way arbiter: the traditional (top-left) and
early (top-right) protocols, together with a model of a dig¢hottom-left);
and the top-level view of the flat arbiter (bottom-right).

Note that in fact the CSC property is not a reachability
property of an STG as defined at the beginning of this paper,
as one has to look fdwo reachable states that are in a certain
relationship. A possible way around this is to put two copies
of an STG side by side, and reformulate the CSC property of
the original STG as a reachability property of this joint STG
However, the approach implemented in our tool is to gersgali

the reachability properties. generalised reachability property inputs: ra, rb, rc, ab, ba, be, b, ac, ca; outputs: ga, gb, gc
is a property that can be formulated as follows: Fig. 4. An STG for the decision logic of an early 3-way flat &hi
Check if there are reachable states, ..., s;
satisfying a given predicat&(s1, ..., sg). however, its disadvantage is that sevetal (V) arbitrations
It is now easy to see that the CSC property can be formulatiedppen sequentially. This can significantly increase ttemty
as a generalised reachability property foe 2: of the arbiter, especially in balanced circuits where thgiests
forall s in SIGNALS { $s <-> $3s } usually arrive almost simultaneously, and so several sele
& ME elements, one after another, can spend long time in their
exists s in LOCAL { @s"@@s } metastable states.

Here the operators-> and” denote Boolean equivalerte |n [9] an alternative way of constructing/-way arbiters

and ‘exclusive or’, respectively, and operat®s and @@re was proposed. The main idea was to perform concurrent

analogous t& and @ but refer to the second stete. arbitrations between all pairs of requests, and then make th
IV. M ODEL CHECKING OF FLAT ARBITERS decision on what grant to issue based on their outcomes, see

Arbiters [7] are basic blocks guarding access to sharddd. 3(bottom-right). Crucially, all the ME elements in $uc
resources and, as such, they play a very important role @A arbiter work in parallel (hence the name ‘flat arbiterfjda
circuit design. The top-level specification of Ahway arbiter the subsequent decision logic has bounded latency. In [9] a 3
is shown in Fig. 3(top-left), and Fig. 3(bottom-left) shoass Way flat arbiter implementing the early protocol was maryuall
STG modelling the behaviour of each client. An alternativdesigned as an STG shown in Fig. 4.
early protocol is shown in Fig. 3(top-right); the difference
here is that oncé®" client lowers the request;, the arbiter A Deadlock checking of a flat arbiter

is allowed to immediately issue a gragt (j 7) to another correct STGs modelling flat arbiters must obviously be
client, in parallel with lowering the granj;. Hence,g; and geadlock free. Unfortunately, the standard deadlock dhgck
g; can be simultaneously high, but this is harmless sifite goes not quite work, as the definition of a deadlock in an
client has already declared (by lowering that it had finished grpjter js slightly different! Indeed, in the situation when only
using the shared resource, and, according to this earlp@bt some requests have arrived, the arbiter is obliged to esitytu

it will not send another request (i.e. raisgagain) until the issye a granteven when the remaining requests never arrive.
arbiter lowersg;. Hence, if some state (except the initial one) does not enable

N-way arbiters are usually constructed using basic 2-w%y]y transitions besides the rising requestst b+ andrc+

mutual exclusiofME) elementsWhen the two requests arrivejy Fig. 4) then it is classified as a deadlock. Another way of
almost simultaneously, an ME element can be slow due to tgtting it is that in the STG the rising request transitions a
need to resolve the arisingetastability not weakly fair,i.e. they may remain enabled forever, without

One of traditional ways of designing/-way arbiters is firing. A REacH specification of this property is as follows:
to combine the basic ME elements in a balanced tree-like

fashion. This design is simple and results in a small circuit 10gome sophisticated tree arbiter designs address this probjeearly
propagation of requests, see [8].

8a <-> b is ‘syntax sugar’ for(@b) . 1Like in the example with proper termination described in theoiduction,

9The operatorss$$ and @@ @fer to the third state, etc. However, thedeadlock freeness of an arbiter is yet another minor variatiba standard

author is not aware of any practical properties that woulflire & > 2. property, rendering the standard deadlock checking esgiireually useless.

let requests = {T"ra+", T"rb+", T'rc+"} { threshold[2] r in SS "rla-z]\+" {

forall t in TRANSITIONS\requests { "@t } $r & $S("g" + (name r1)[1..])
} }
& Here, thename operator returns the name of the entity (place,
exists p in PLACES { $p ~ is_init p } transition or signal) it is applied to, theoperator concatenates

Intutitively, the let operator defines the set of transitionstrings, and thg m.. n] operator extracts a substring from
which are not weakly fait? the subexpression starting witha string, fromm® to n** character, inclusive. Optionally,
the forall keyword is similar to the standard deadloclone of the indices in this operator can be dropped, e.g. in
specification, except that the transitions that are not lyeakhis example thg1..] operator returns the original string
fair are not required to be disabled, and thésts operator without the head character (the numbering of characters in a
eliminates the initial state from consideration by remgrthat string starts from 0). Intuitively, in this example we assum
the marking of some place is different from its initial mangi that the names of the request and grant signals of a client
(the latter is returned by this_init operator). differ only in the head character (it is ‘r’ for requests and *
Thelet statement in the above specification can be maéter grants). Hence, the name of a grant signal can be obtained
more general by using a regular expression to define the #eim the name of the corresponding request signal by drgppin
of all requests: the head character and then pre-pending the result with ‘g’.

let requests =
V. CONCLUSIONS AND FUTURE WORK

TT "rla-z]\++\(/[0-9]\+\)\?" ... - I . .
Here the TT operatol® computes the set of all transitions Existing reachability analysers either require the user to
H ut the formula manually, which can be very tedious and

whose name matches the regular expression given by : :
. 4 " : . error-prone, or automatically generate formulae for somefi
following string:* Intuitively, this regular expression matches

the strings starting with ‘r’, followed by a non-empty seqae set of common properties, which rules out custom properties

of letters, followed by a ‘+', optionally followed by a /' vth In this paper a solution to the problem of generating forraula

a number appended. Note that using a regular expressionEXpressmg custom reachability properties is suggested. T

allows one to use the sameeRcH specification to check prop(_)_sed_approach allows the user to write a concise abstrac
the deadlock freeness of aN-way flat arbiter for anyN specification of the property in a specially developed |augu

. . - REACH, which is then automatically expanded into a formula
provided that the names of rising request transitions (ary o : .
. for a concrete model. The usefulness of this method is demon-
such names) match this pattern.

strated on several case studies.

B. Mutual exclusion checking of a flat arbiter The presented idea can be extended to other formalisms
Another important property of flat arbiters is the mutuah a straightforward way. For example, to extend theaBH

exclusion of the grants. This differs from the standard rautulanguage to general (i.e. unbounded) Petri nets it is enough

exclusion of places, since the property is formulated fognais to change the semantics of the ‘status’ oper&oit should

rather than places. Another difference is that for arbitersturn a non-negative integer (the number of tokens in aeplac

implementing the early protocol (which is the case for th&STrather than a Boolean valde Generally, most formalisms that

in Fig. 4) there are reachable states where several gramts [@ve an explicit notion of state can be adopted.

high (which is correct according to Fig. 3(top-right)). Hen An orthogonal way of extendingEAcH is to use a different

instead of requiring that there is at most one client whosetgr class of properties. As the semantics afA&RH is simply a

is high, one should require that there is at most one client fBoolean expression, one can easily add various modaliies t

which both the request and the grant are high. Again, thistise language, such as LTL or CTL temporal modalities.

a minor variation of the standard mutual exclusion property REFERENCES

which is not straightforward to check with standard tOOl?l] V. Khomenko, “A usable reachability analyser,” School @mp. Sci.,

However, it is easy to capture inHRCH: Newcastle Univ., Tech. Rep. CS-TR-1140, 2009.
threshold[2]($S"ra" & $S"ga", [2] C. Schlenoff, M. Gruninger, F. Tissat al, “The Process Specification
$S"rb" & $S"gh", $S"rc" & $S"gc") Language PSL Overview and Version 1.0 Specification,” 1999.
. l[3] “MCSMODELS tool home page.” [Online]. Available: http://www.tcs.
Here, thethreshold operator evaluates to 1 iff the numbe hut.firkepa/tools/mcsmodels
of its inputs evaluating to 1 is not smaller than the threghoj4] “Prob tool home page.” [Online]. Available: http:/iwww.tcs.HuSoft-

iven in [... . Similarly to the deadlock specification _ Ware/prod —
gg [] .) y ﬁ) HS(} D. Muller and W. Bartky, “A theory of asynchronous cirtsif' in Proc.
or an grblter given abgve, one can use a regular expression|n; symp. of the Theory of Switchint959, pp. 204-243.
to specify the set of signals (with the iterative form of thgs] L. Rosenblum and A. Yakovlev, “Signal graphs: from stiffied to timed
threshold operator): ones,” inProc. Int. Workshop on Timed Petri Nets|IEEE Comp. Soc.
P) Press, 1985, pp. 199-206.
12Recall that theT operator interpretes its operand as a transition name[7] D. Kinniment, Synchronization and Arbitration in Digital Systemsiohn

13The ReacH language has also the analogous operaRffsand SS, Wiley & Sons Ltd., 2007.
computing the set of places and signals, respectively, whesees match [8] M. Josephs and J. Yantchev, “CMOS design of the tree erleiement,”
a given regular expression. IEEE Trans. on VLSIvol. 4, no. 4, pp. 472-476, 1996.

14Currently the basic POSIX regular expressions are supgioNete that [9] A. Mokhov, V. Khomenko, and A. Yakovlev, “Flat arbitersih Proc.
POSIX requires all the regular operators and brackets foumjng to be ACSD'09 IEEE Comp. Soc. Press, 2009, pp. 99-108.
escaped with\; moreover, since the usual C escape sequences are applied
when parsing the string)\\' are used. 160f course, one has to take care of decidability, as some rbiitha

15Recall that the rising transitions of a signalare labelleda+, a+/1, properties of general Petri nets are undecidable. Howeivisr,is a separate
a+/2, etc. issue from the property generation.

