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Petr Jančar1 and Victor Khomenko2
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Abstract. Output-determinacy is an important soundness notion in the
theory of non-deterministic asynchronous concurrent systems whose al-
phabet is partitioned into input and output actions. Intuitively, it postu-
lates that the set of enabled outputs of a system must be fully determined
by the visible history of its interactions with the environment, as other-
wise the specification is contradictory in the sense that it simultaneously
requires and forbids some output.

In the case of safe or k-bounded Petri nets checking output-determinacy
was known to be PSPACE-complete, but the complexity (and even de-
cidability) of this problem for general Petri nets was open. In this paper
we show that the problem of checking whether output-determinacy is
violated is decidable and equivalent to reachability in general Petri nets.
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1 Introduction

Labelled Petri nets (LPNs) with the alphabet (of transition labels) partitioned
into input and output actions are often used for specifying concurrent systems
(see, e.g., [2, 3, 7–9]). When a specification is deterministic (in the sense of au-
tomata and formal language theory), its semantics could be the set of its possi-
ble traces, i.e. its language. As the final implementation must be deterministic,
it may seem reasonable to confine oneself to deterministic specifications only.
However, often this turns out to be too restrictive in practice. There are several
situations which naturally give rise to non-deterministic specifications which still
can be implemented:

Silent transitions For convenience of modelling, the designers often use silent
transitions, which are not included into visible traces of the system. Such
transitions make the Petri net non-deterministic.

? Devoted to Prof Maciej Koutny on the occasion of his 60th birthday.



OR-causality When a safe LPN is used for modelling a situation where the
system has to respond to any of several possible stimuli in the same way,
non-determinism naturally arises. (OR-causality can also be modelled as a
non-safe (2-bounded) LPN without non-determinism [3, 9], but in practice
safe Petri nets are preferable as they are much easier to analyse.)

Hiding signals Non-determinism naturally arises when in a deterministic LPN
some of the signals are hidden (by turning some visible transitions into silent
ones) – hiding signals is essential in many applications, e.g. the decomposi-
tion algorithm of [2, 7, 8].

It is thus natural to consider a non-deterministic model for which we could
verify that there is a deterministic implementation.

We use the following formal model. An LPN N = (P, T, F, I, O, `,MN ) is a
structure comprising finite disjoint sets P, T of places and transitions, respec-
tively; the flow relation F ⊆ (P ×T )∪(T ×P ); disjoint sets I,O of input actions
and output actions, respectively; the labelling function ` : T → I ∪O∪{ε} map-
ping each transition either to an action or to the empty word ε – such transitions
are called silent ; and the initial marking MN ∈ NP (for N = {0, 1, 2, . . .}).

We use the usual notationM [σ〉 to denote that markingM enables a sequence
of transitions σ, and write M [σ〉M ′ if σ is finite and enabled by M , and firing
σ from M yields marking M ′. We lift this notation to labels as follows, for `
extended to sequences of transitions. For a sequence of actions ν we write M [ν〉〉
(resp. M [ν〉〉M ′) iff M [σ〉 (resp. M [σ〉M ′) for some sequence σ of transitions
such that `(σ) = ν. In particular, a label l is considered enabled by a marking
M , written M [l〉〉, if one can fire a finite sequence of silent transitions to directly
enable a transition labelled by l, i.e. we have M [σ〉M ′[t〉 where σ contains only
silent transitions and `(t) = l.

In our constructions we often use pairs of arcs (p, t) and (t, p) (i.e. (p, t) ∈ F
and (t, p) ∈ F ) for some place p and transition t. Such a pair will be called a
read arc and depicted by a line without arrowheads (between a place-circle and
a transition-box).

An LPN N specifies the behaviour of a system in the sense that the system
must provide all and only the specified outputs and that it must allow at least the
specified inputs. As a consequence, the system must be able to perform at least
all traces of N . In fact, N also describes assumptions about the environment the
system will interact with; namely, the environment will only produce the inputs
specified by N . A correct implementation of N may allow additional input events
(and traces), but these events and subsequent behaviour will never occur in the
envisaged environment. In other words, when the system is running in a proper
environment, only traces of N can occur.

The implementation may actually have fewer input signals than N , keeping
only those that are relevant for producing the required outputs. In this case,
the environment may provide irrelevant inputs, but the implementation simply
ignores them — and in this sense, they are always allowed.
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Fig. 1. The LPN on the left is not output-determinate; the result of determinisation
is shown on the right. The latter LPN, though implementable and having the same
language, is not a correct implementation of the original LPN: it can break the envi-
ronment by producing o when the environment does not expect it.

Intuitively, assuming a deterministic implementation and possibly non-deter-
ministic specification, the correctness of the implementation can be defined as
follows (see [2] for a formal definition):

– the implementation must be able to perform all traces of the specification,
maybe dropping some irrelevant input signals;

– after any trace, all the inputs allowed by the specification must be allowed
(or ignored) by the implementation;

– after any trace, the implementation must enable exactly the specified out-
puts.

A non-deterministic specification can perform the same trace in two differ-
ent ways, reaching different states (markings) M1 and M2. Assuming that the
only information available to the system is the execution history, i.e. the trace
performed, an implementation cannot determine whether its current state cor-
responds to state M1 or M2 of the specification. Hence, a deterministic imple-
mentation must behave consistently with the specification no matter in which
of these states the specification is.

The above definition of correctness requires that the implementation must
allow at least the inputs enabled by M1 and at least the inputs enabled by M2;
this is easy to achieve even if these sets of inputs differ – i.e. the implementation
may allow the union of these sets (or any superset thereof). However, the sit-
uation with outputs is different: The implementation must provide exactly the
outputs enabled by M1 and exactly the outputs enabled by M2. This is only
possible if M1 and M2 enable the same outputs.

This in particular implies that the language is not an adequate semantics
for non-deterministic specifications: M1 and M2 may enable different sets of
outputs, but the language cannot distinguish between such a system and its de-
terminised version, yet the former has no deterministic implementations whereas
the latter has (e.g. itself). For example, Fig. 1 illustrates a dangerous scenario
when determinisation hides an error.

One possibility would be to define semantics based on some notion of bisim-
ulation. However, it turns out that bisimulation is unnecessarily strong – it is
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possible for two non-bisimilar systems to have exactly the same deterministic im-
plementations. This has negative consequences for applications, e.g. some useful
transformations preserving the possible implementations would be rejected if
they do not yield a bisimilar system. For example, the decomposition algorithm
of [8, 7] used semantics based on a variant of bisimulation (called ‘angelic bisim-
ulation’), and the semantics based on the notion of output-determinacy helped
to improve it significantly [2].

In [2] a formal semantics of non-deterministic LPNs was proposed and jus-
tified. For this, the concept of output-determinacy (OD), which is a relaxation
of determinism, was introduced. In particular, it was shown that for OD LPNs
the language is a sufficient semantics, and this also holds in the case of dis-
tributed LPNs. Moreover, it was proved that an LPN cannot have deterministic
implementations unless it is OD.

Definition 1 (Output-Determinacy). An LPN N is called output-determin-
ate (OD) if MN [ν〉〉M1 and MN [ν〉〉M2 implies for every output o that M1[o〉〉
iff M2[o〉〉.

Therefore, OD is a useful correctness property that can be formally veri-
fied. Hence, the questions of decidability and computational complexity of this
verification problem for various PN classes becomes relevant.

2 The complexity of checking output-determinacy

In [2] it was shown that the coverability problem is easily reducible to OD
for safe/k-bounded/general PNs, which immediately yields the PSPACE lower
bound for safe and for k-bounded PNs, as well as the EXPSPACE lower bound
for general PNs. Moreover, for safe and k-bounded PNs an algorithm that runs
in polynomial space was proposed. Hence checking OD is PSPACE-complete for
safe and k-bounded PNs. However, the upper bound and even decidability of
this problem for general PNs were left open.

In this paper we show that finding a violation of OD for general Petri nets
is polynomially equivalent to checking Reachability. Hence:

– The problem is decidable.
– The EXPSPACE lower bound in [2] is likely not tight, as Reachability is

conjectured to be much harder.

We proceed by first establishing the improved lower bound, and then deriving
a matching upper bound. Below, we denote by cOD the complement of OD, i.e.
the problem of checking whether OD is violated.

2.1 The lower bound

We now show that Petri nets Reachability Problem (RP) is easily reducible
to cOD, i.e. cOD is RP-hard. For simplicity, we use the special case of Zero
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Fig. 2. Reduction from ZRP to OD.

Reachability Problem (ZRP), i.e. the reachability of the zero marking 0 = {0}P ,
that is known to be equivalent to RP [1].

Suppose one has to check whether the zero marking is reachable in a given
(unlabelled) PN. We build an LPN as follows: If the initial marking of the PN
is already 0, we return a fixed LPN violating OD. Otherwise we construct the
LPN as follows, see Fig. 2:

– Each transition in the PN is labelled with the same input action i.
– For each place of the PN, a new o-labelled transition is created and connected

to this place with a read arc; hence, o is always enabled in the resulting LPN
as long as the marking is not 0.

– A new isolated transition t̂ labelled with i is created; hence, i is always
enabled in the resulting LPN.

Lemma 1. Marking 0 is reachable in the original PN iff the constructed LPN
violates OD. Moreover, the resulting LPN is safe/k-bounded/general if the orig-
inal PN was safe/k-bounded/general.

Proof. If the initial marking MN of the PN is zero then the result is trivial, so
we assume it is not and consider two cases:

(1) Suppose the zero marking is reachable in the original net via some non-
empty execution σ, MN [σ〉0. The same execution can be performed in the con-
structed LPN yielding the trace terminating at the zero marking, MN [i|σ|〉〉0,
and by construction 0 does not enable o. Moreover, the LPN has another execu-
tion MN [t̂|σ|〉MN yielding the same trace i|σ| but finishing at the initial marking
that is not zero and thus enables o. Hence the LPN is not OD.

(2) Suppose the zero marking is not reachable in the PN, and hence in the
LPN. This means that every reachable marking of LPN enables o, and so OD
cannot be violated.
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Fig. 3. Replacing multiple o-labelled transitions by a single one. Intuitively, the o-
labelled transition is used as a sub-routine, with some silent transitions used to remove
the respective input tokens before performing o, and to produce the respective output
tokens after performing o.

The bound on the number of tokens follows from the fact that executing the
added transitions does not alter the current marking. ut

This result immediately implies that cOD is RP-hard (i.e., RP is polynomially
reducible to cOD) for the corresponding class of PNs (safe/k-bounded/general).

2.2 The upper bound

OD can be checked by considering each output o in isolation, converting the other
output labels to inputs: Indeed, OD holds iff each of these single-output LPNs
is OD. Furthermore, multiple o-labelled transitions can be replaced by a single
one using the transformation shown in Fig. 3. This transformation preserves the
enabledness of o and thus the OD property. Hence, below we assume that the
LPN has a single output o, and a single o-labelled transition to.

We follow the approach of [2] and compute the synchronous product of the
LPN with itself (we thus get two copies of the net that evolve independently,
except that any visible action in one copy can be only performed synchronously
with the same action in the other copy). Then any violation of the OD is wit-
nessed by the following trace of the product net: (MN ,MN )[ν〉〉(M1,M2), with
M1[to〉 (i.e. to is immediately enabled by M1) and ¬M2[o〉〉 in the original LPN.
Unfortunately, this property is difficult to decide for general PNs, since we must
verify that M2 does not enable o even via a very long sequence of silent tran-
sitions (on which we cannot bound the intermediate markings a priori). This is
not a problem for safe and k-bounded Petri nets, as their markings are bounded
and can be represented in polynomial space, but the decidability and complexity
in case of general PNs was left open in [2].
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We observe that the set Eno of markings of the LPN that enable o (perhaps,
via a sequence of silent transitions), i.e.

Eno
df
= {M ∈ NP |M [o〉〉 in the original LPN},

is upward closed, and so can be represented by the finite set of its minimal
elements E1, E2, . . . , Ek ∈ NP :

Eno =
k⋃

i=1

{M ∈ NP |M ≥ Ei}.

Furthermore, the natural numbers constituting vectors Ei are at most double-ex-
ponential in the size of the LPN. Indeed, consider the PN obtained from the LPN
by removing all the non-silent transitions. Then these vectors are the minimal
initial markings of this PN from which it is possible to cover the preset of to.
Due to Rackoff’s famous result [6], it is sufficient to consider firing sequences
of double-exponential length, and they can consume only double-exponential
number of tokens.

Here we need to consider the markings not enabling o (via silent transitions);
hence we are interested in the complement of Eno, i.e. in the set

Diso
df
= Eno = {M ∈ NP | ¬M [o〉〉 in the original LPN}.

Hence Diso is a downward closed set, and it can be represented by the finite set
of its maximal elements D1, D2, . . . , Dk′ in the standard extension of NP to the
set (N ∪ {ω})P of generalised markings; i.e.

Diso =
k′⋃

i=1

{M ∈ NP |M ≤ Di}.

One can observe that the finite (i.e. non-ω) numbers in vectors Di are smaller
than the largest number occurring in vectors Ej . (Suppose some Di contains
x ∈ N that is greater than or equal to the largest number in vectors Ej . For
every Ej we have Di 6≥ Ej , i.e. some component of Di is smaller than the
corresponding component of Ej , which cannot be the component with x. But
then D′

i arising from Di by incrementing x also satisfies D′
i 6≥ Ej for all Ej ,

which contradicts the maximality of Di.)

Hence the non-ω elements of Di are at most double-exponential in the size
of the LPN, and so any Di can be represented in exponential space using (e.g.)
binary encoding of natural numbers, with a special code for ω.

We now define a non-deterministic algorithm that uses Reachability as an
oracle and solves cOD. All operations except Reachability can be performed in
exponential space; since Reachability is EXPSPACE-hard, its complexity will
dominate the overall complexity of the algorithm. The algorithm takes an LPN
with single output o and a single o-labelled transition to and proceeds as follows.
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Fig. 4. Reduction from OD to RP.

– Non-deterministically generate a generalised marking M with either ω or at
most double-exponential number of tokens per place (thus M can be stored
in exponential space).

– Build a PN by removing all the non-silent transitions from the LPN, and
set M as its initial marking while also removing the places corresponding to
the ω-components of M . If the set of places corresponding to the preset of
to (without the removed ones) is coverable in this PN then reject. (If the
algorithm gets past this reject statement, then any finite marking M ′ ≤ M
is in Diso. Moreover, in any finite M ′ ∈ Diso we can possibly turn some com-
ponents to ω and get a generalised M that satisfies the double-exponential
restriction and is not rejected; this follows due to the bound on the size of
maximal elements in D1, . . . , Dk′ derived above.)

– Build the instance of Reachability as follows (see Fig. 4):
• Construct the product of the LPN with itself.
• For each place in the first sub-net of the product, create a ‘drain’ tran-

sition consuming tokens from this place.
• For each place in the second sub-net of the product that corresponds to

an ω component of M , create a ‘drain’ transition consuming tokens from
this place.

• The marking to be reached puts a single token on each place correspond-
ing to the preset of to in the first subnet, no tokens on the other places
of the first subnet, and marking M on the places of the second subnet,
with no tokens on the places corresponding to the ω components of M .

– If the constructed instance of Reachability is positive (as told by the oracle)
then accept else reject.

Lemma 2. The original LPN violates OD iff the above algorithm can accept the
LPN.
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Proof. (1) Suppose the above algorithm has an accepting run; we fix one. Let M
be the respective generalised marking that passed the test (of non-coverability
of the preset of o). We consider an execution in the constructed PN that demon-
strates the positive answer of Reachability; it yields the marking with tokens on
the preset of to and no tokens elsewhere in the first subnet, and some tokens in
the second subnet forming a finite marking M ′ ≤ M . Removing all the ‘drain’
transitions from this execution still yields a valid execution of the PN, as these
transitions can only remove tokens. This modified execution is an execution of
the product net, still marks all the places in the preset of to in the first sub-
net, and in the second subnet yields some finite marking M ′′ that may have
some extra tokens on places corresponding to the ω components of M ; hence
M ′ ≤ M ′′ ≤ M . The execution can thus be projected to two executions of the
original LPN with the same visible trace, where one execution directly enables
to and the other ends in a marking M ′′ ∈ Diso (thus not enabling o even via a
sequence of silent transitions); this constitutes a violation of OD.

(2) Suppose the LPN violates OD. Hence there are two executions with the
same trace, one of them directly enabling to and the other ending in a finite
marking M ′ not enabling o even via a sequence of silent transitions, i.e. M ′ ∈
Diso; thus M ′ ≤ Di for some maximal element Di of the extension of Diso.
Let M be the marking that puts no tokens on places corresponding to the ω-
entries of Di, and coinciding with M ′ on other places. These two executions
yield an execution of the product net leading to a marking enabling to in the
first subnet and coinciding with M ′ in the second subnet of the product. By
executing the ‘drain’ transitions as necessary, one can ensure that the marking
of the first subnet has a single token on each of the places in the preset of to
and no tokens elsewhere and the marking of the second subnet coincides with
M — this marking corresponds to the one whose reachability is checked by
the algorithm. Hence the algorithm can accept by first guessing M (that fits
in exponential space due to the bound on the maximal non-ω elements of the
extension of Diso) and then solving Reachability for the constructed reachable
marking. ut

A problem with the above construction is that the input to the Reachability
sub-routine is large, asM might need exponential space (in the size of the original
LPN) to be represented.

However, this problem can be solved by shifting the computation performed
by the above algorithm into the constructed PN, thus polynomially reducing a
cOD instance to a small instance of Reachability (in fact, to an instance of ZRP).
A crucial ingredient is handled by Lipton’s construction [4] (strengthened in [5])
enabling to simulate an exp-space-bounded automaton by a net of polynomial
size. One can thus construct a polynomial-size PN (w.r.t. the size of the original
LPN) which has the following behaviour (see Fig. 5):

– By a (polynomial-size) “Lipton module” it first non-deterministically gener-
ates a marking M where, moreover, each place p also gets its complementary

place p′ marked so that the sum of tokens in p and p′ is 22
pol(n)

for a suitable
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Fig. 5. Reduction from OD to ZRP.

polynomial pol (where n is the size of the original LPN). The polynomial
pol is chosen so that the finite components in the maximal elements Di of

the extension of Diso are smaller than 22
pol(n)

; such polynomial pol follows

from Rackoff’s results [6]. We can view the value 22
pol(n)

as ω. In fact, the
module creates two copies of M , one copy (with complementary places) for
the following test that M ∈ Diso, and the other copy for later comparing
with the marking reached in the second part of the product net.

– Now another “Lipton module” checks that M ∈ Diso, i.e., the module has
a possibility to get a token on a designated ACCEPT place precisely when
M ∈ Diso. This module is again of polynomial size (it simulates checking if

M can cover the preset of to within 22
pol(n)

moves).

– (If there is a token on ACCEPT, then) an execution of the product net
follows, reaching some marking (M1,M2).

– We want M1 to enable o while M2 to belong to Diso. The former condition
can be handled by the drain transitions and asking that only one token is
left in each place in the preset of to (in the final marking of the constructed
Reachability instance). The other condition is established by comparing M2

with (the stored copy of) M . This is achieved by special transitions consum-
ing tokens from places of M2 and corresponding places of M synchronously,
asking that zero is reached for all of them. The only issue are “ω-places” in

M , i.e. those having 22
pol(n)

tokens. We first let such places (checked by a
“Lipton module”) to be adjusted anyhow by special transitions.
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By adding several transitions and places and providing the possibility to
drain any left over tokens from the “Lipton modules” we construct an instance
of ZRP where the reachability of 0 marking guarantees that:

– the generation of M was successful, i.e. ACCEPT is marked;
– the marking reached in the second subnet equals to M (or to adjusted M

which also belongs to Diso)
– the preset of to is marked.

Furthermore, guessing the output o for which OD is violated can also be
implemented in the constructed PN in a straightforward way. Hence, we have a
polynomial reduction from cOD to ZRP.

3 Conclusion

We have affirmatively answered the question of the decidability of Output-De-
terminacy in general Petri nets, and sketched the proof to determine its com-
plexity: the complement of Output-Determinacy is polynomially interreducible
with Reachability (or ZRP).
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