
Asynchronous Arbitration Primitives
for New Generation of Circuits and Systems

Andrey Mokhov∗, Danil Sokolov, Victor Khomenko, Alex Yakovlev
Newcastle University, Newcastle upon Tyne, United Kingdom

∗Corresponding author: andrey.mokhov@ncl.ac.uk

Abstract—This paper presents an overview of a family of
asynchronous arbitration primitives designed to increase the
resilience and efficiency of the new generation of circuits and
systems. We cover primitives for synchronisation and decision-
making with an emphasis on interfacing analogue and digital
worlds, sampling of non-persistent signals, and efficient handling
of correlated sensor events.

I. INTRODUCTION

The new generation of circuits and systems is breaking
conventional walls between different timing, power and tech-
nology domains. Modern ‘synchronous’ and ‘digital’ systems
are emphatically asynchronous-at-large and analogue-at-heart:
they contain tens to hundreds of timing and voltage domains,
some even thousands [1]. Asynchronous arbitration primitives
are now used both to orchestrate the communication between
different clock domains [2] and to control the analogue-digital
interfaces in on-chip power regulators [3].

This paper presents an overview of the recently developed
asynchronous arbitration primitives that address the problem
of interfacing between hazardous and/or analogue worlds and
hazard-free asynchronous circuits in a safe way. The primitives
are also useful in purely digital settings, as they increase the
robustness of event-driven asynchronous circuits by shortening
their event sensitivity interval, where an unexpected event, e.g.
caused by a particle strike, can corrupt the state of the system.

We cover synchronisation and decision-making primitives
in Sections II and III, respectively. All of the presented circuit
specifications and implementations have beed developed using
the open-source asynchronous design tool WORKCRAFT [4]
and are publicly available under the MIT license [5].

Formal specification of asynchronous circuits

Signal Transition Graphs (STGs) are commonly used for
the specification, verification and synthesis of asynchronous
circuits. See a comprehensive background on STGs in [6].

As a brief introduction, let us examine the STG specification
shown in Fig. 1(left-middle). The STG specifies the behaviour
of a circuit with the inputs {sig, ctrl} and the output san.
Rising and falling signal transitions are depicted by text nodes,
e.g. sig+ corresponds to the signal sig switching from 0 to 1.
There are also dummy transitions, such as e, which do not
correspond to changes of signal values (think of them as
abstract events). Input, output and dummy transitions are con-
ventionally shown in red, blue and black colour, respectively.

Directed arcs express the precedence relation between tran-
sitions, e.g. the arc san+ −→ ctrl- indicates that the input

Fig. 1. WAIT and WAIT0: block diagram, specification and implementation.

ctrl goes low only after the output san goes high. An arc can
be marked with a token, shown as a black dot, to specify the
initial state of the circuit: the tokens before the transitions sig+
and ctrl+ imply the initial state sig=ctrl=san=0.

A transition is enabled to occur if it has tokens on each of
its incoming arcs, otherwise it is disabled, e.g. ctrl+ is enabled
and san- is disabled. When a transition occurs, it consumes the
tokens on its incoming arcs are produces them on its outgoing
arcs, e.g. ctrl+ moves the token to the arc ctrl+ −→ e.
Undirected arcs, called read arcs, are used to test the existence
of a token in a place, shown as a circle (think of it as just a
placeholder for a token), e.g. the read arc sig1 e allows the
dummy e to occur only if the place is marked, i.e. if sig=1.

A transition is persistent if, once enabled, it will occur
without first becoming disabled. The dummy e is the only
non-persistent transition in the example: sig- can disable it by
consuming the token from sig1. Non-persistence can manifest
itself as a hazard in the circuit, whereby a gate starts switching
but is stopped midway resulting in a short analogue pulse.

II. SYNCHRONISATION PRIMITIVES

This section covers the primitives for the synchronisation
of hazard-free signal transitions in asynchronous circuits with
potentially hazardous signals coming from the environment.

WAIT and WAIT0
The WAIT element [7], shown in Fig. 1(left), synchronises

the asynchronous handshake ctrl/san with the non-persistent



Fig. 2. RWAIT: block diagram, specification and implementation.

input sig. According to the STG specification, sig is uncon-
strained and is allowed to switch between 0 and 1 values with
no regard to the output handshake – this is captured by the loop
with signal transitions sig+ and sig-. Initially ctrl=0 and the
input is isolated from the output san. By raising the ctrl input,
the element can be switched into the waiting mode, where it
stays until sig becomes high and enables the dummy e. The
output san=1 is then produced and persistently held1 until
WAIT is reset by releasing the ctrl input (the transition ctrl-).

Note that an input spike (sig+ followed by sig-) in the
waiting mode can be too short fot the WAIT element to register
it, in which case the spike is ignored. The non-persistent
behaviour and the associated metastability is fully contained
within the element, guaranteeing a clean hazard-free output.
This is achieved using the mutual-exclusion ME element [8].

WAIT is a fundamental synchronisation primitive that is
used for implementing other, more sophisticated components
presented in this paper. The symmetric version of the element
that waits for the input to become low is called WAIT0;
its top-level block diagram, the STG specification and the
implementation are shown in Fig. 1(right).

RWAIT and RWAIT0
RWAIT and RWAIT0 are modifications of the WAIT and

WAIT0 elements, respectively, with a possibility to persistently
cancel the waiting request. This is useful when the input is
no longer expected to change or the change is no longer
relevant for the asynchronous controller, and hence the output
handshake needs to be released.

See the block diagram of RWAIT in Fig. 2. The additional
input frc can be used to force the reset of the output handshake
in the waiting mode. The STG specifies that the output
transition san+ can be caused either by sig+ (the top branch)
or by frc+ (the bottom branch). The implementation reflects
the resulting OR-causality [9]: the inputs sig and frc are simply
combined via a NOR gate, whose output is synchronised with
the handshake ctrl/san using the WAIT0 element.

WAIT01 and WAIT10
WAIT01 and WAIT10 elements wait for a rising or falling

edge of the input signal, respectively. Note that this is subtly
different from waiting for a high or low input value, e.g. a
signal can be initially low, and to generate a falling edge event
it must first go high. The WAIT01 specification in Fig. 3(left-
middle) tracks the input changes via two dummy transitions

1Here and further on, the output san is the ‘sanitised’ (persistent) version
of the ‘dirty’ (non-persistent) input sig.

Fig. 3. WAIT01 and WAIT2: block diagram, specification, implementation.

that are enabled in sequence when sig=0 and sig=1 hold.
This can be implemented by connecting WAIT0 and WAIT in
sequence, as shown in Fig. 3(left-bottom).

An element waiting for an arbitrary fixed pattern of alter-
nating 0s and 1s, e.g. the symmetric WAIT10 element, can be
implemented analogously.

WAIT2
WAIT2 is another combination of WAIT and WAIT0: it uses

a 2-phase output handshake, waiting for high and low input
values, one after the other, see Fig. 3(right). One can think
of WAIT2 as a 2-phase version of the WAIT element, or as a
C-element whose input sig is hardened against hazards.

The STG contains two loops: the inner sig loop, which is
unconstrained, and the outer handshake loop that synchronises
the rising (ctrl+ −→ san+) and the falling (ctrl- −→ san-)
phases with conditions sig=1 and sig=0, respectively.

The implementation uses a toggle-like controller to steer the
rising and falling edges of ctrl to the inputs of the WAIT and
WAIT0 elements, in sequence, and take care of their appropri-
ate reset. The controller was developed in WORKCRAFT [4]
using conventional asynchronous design flow (we omit further
details due to the lack of space).



Fig. 4. WAITX: block diagram, specification and implementation.

III. DECISION-MAKING PRIMITIVES

This section presents a family of decision-making compo-
nents that perform non-trivial event coordination and rely on
the previously introduced synchronisation primitives.

WAITX

The WAITX element [10] arbitrates between two non-
persistent inputs {sig1, sig2}, producing a clean asynchronous
dual-rail handshake: depending on which of the two signals
arrives first, exactly one of the grant signals {g1,g2} is
issued, see Fig. 4. The place me with two consuming arcs
represents the arbitration decision that needs to be made: if
the inputs arrive very close to each other, both of the two
dummy transitions can become enabled but only one of them
can occur, since me can have at most one token. In the reset
phase both branches are merged in the place mrg.

WAITX isolates the outputs both from the metastability
associated with non-persistent inputs, as well as from the
metastability associated with making the decision of which
input signal arrives first. The implementation relies on RWAIT
elements for synchronisation with non-persistent signals, and
uses an ME element to make the decision on their arrival
order. See [10] for further implementation details and for a
generalisation to more than 2 input signals.

WAITX2

WAITX2 behaves as WAITX in the rising phase and as
WAIT0 in the falling phase, i.e. it does not release the
output asynchronous handshake until the winning input signal
goes low. It uses a 2-phase output handshake similarly to
WAIT2, and the specification, shown in Fig. 5, is therefore
a combination of the STGs for WAITX and WAIT2.

The implementation comprises WAITX and two WAIT0
elements controlled by toggle-like asynchronous logic, which
activates the right WAIT0 element in the reset phase. The
synthesis and technology mapping of the control was per-
formed using conventional asynchronous design approaches
automated in WORKCRAFT [4].

Fig. 5. WAITX2: block diagram, specification and implementation.

SAMPLE
The purpose of the SAMPLE element is to check whether

the voltage on the input sig is above the threshold, see Fig. 6.
The specification is similar to that of WAITX but the two
dummy transitions are controlled by conditions corresponding
to the state of the same input sig.

The implementation is based on WAITX that decides which
of the two inputs, sig or its inverted version, becomes high
first. Note that both inputs of WAITX may be high at the same
time, e.g. during a transition of sig, in which case SAMPLE is
allowed to make an arbitrary decision. However, if the input
signal is stable, no metastability resolution is required and
SAMPLE can therefore quickly produce the correct output.



Fig. 6. SAMPLE: block diagram, specification and implementation.

Opportunistic Merge

The opportunistic merge OM element [11] merges two
request-acknowledgement channels {r1/a1, r2/a2} into one
r/a and can opportunistically bundle requests from different
input channels if they arrive sufficiently close to each other.

Fig. 7(middle) clarifies the difference between the standard
merge element [12] and OM. The conceptual state graph of
the merge element is shown on the left. Note that the bottom
state of the graph is not persistent: outputs a1 and a2 disable
each other, hence this is a decision-making element. The
state graph for OM, shown on the right, has an additional
‘opportunistic bundle’ transition labelled by {a1,a2} that
sends acknowledgements to both input channels.

The intended application of OM is to handle concurrent (and
potentially correlated) requests from several clients to a kind of
service that benefits all the clients simultaneously. Examples
include triggering an alarm by (any of) several sensors, re-
charging of a shared DRAM, and various kinds of power
management [3]. All these use cases benefit from serving
multiple requests in bundles. The STG specification of OM,
as well as further implementation details can be found in [11].

The input channels of OM are assumed to be hazard-
free, but one can use the synchronisation primitives presented
in Section II to generate clean hazard-free handshakes from
hazardous input signals, e.g. produced by analogue sensors.

IV. CONCLUSIONS

The paper presented an overview of asynchronous arbitra-
tion primitives that can be used as basic building blocks for
the new generation of circuits and systems, where resilient and
efficient synchronisation between multiple clock and voltage
domains is an important challenge. The primitives were de-
veloped using formal methods and are publicly available [5].
Our current research is focused on providing support for their
automated insertion into asynchronous controllers operating
on the boundary with hazardous environment.

Fig. 7. OM: block diagram, conceptual state graphs, implementation.

ACKNOWLEDGEMENTS

This research was supported by EPSRC grant EP/L025507/1
“A4A: Asynchronous design for Analogue electronics”.

REFERENCES

[1] B. Bohnenstiehl, A. Stillmaker, J. J. Pimentel, T. Andreas, B. Liu, A. T.
Tran, E. Adeagbo, and B. M Baas. KiloCore: A 32-nm 1000-Processor
Computational Array. IEEE Journal of Solid-State Circuits, 2017.

[2] W. Jiang, D. Bertozzi, G. Miorandi, S. Nowick, W. Burleson, and
G. Sadowski. An asynchronous NoC router in a 14nm FinFET library:
Comparison to an industrial synchronous counterpart. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[3] D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and
A. Yakovlev. Benefits of asynchronous control for analog electronics:
Multiphase buck case study. In Design, Automation & Test in Europe
Conference (DATE), 2017.

[4] WORKCRAFT website. www.workcraft.org.
[5] Open-source library of asynchronous arbitration primitivies. GitHub

repository: https://github.com/workcraft/arbitration-primitives.
[6] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and

A. Yakovlev. Logic Synthesis for Asynchronous Controllers and In-
terfaces. Springer, 2002.

[7] D. Sokolov, V. Khomenko, A. Mokhov, A. Yakovlev, and D. Lloyd.
Design and verification of speed-independent multiphase buck controller.
In Proceedings of the IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), 2015.

[8] D. J. Kinniment. Synchronization and Arbitration in Digital Systems.
John Wiley and Sons, 2008.

[9] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
M. Pietkiewicz-Koutny. On the models for asynchronous circuit be-
haviour with OR causality. Formal Methods in System Design, 9(3):189–
233, 1996.

[10] V. Khomenko, D. Sokolov, A. Mokhov, and A. Yakovlev. WAITX: An
Arbiter for Non-Persistent Signals. In IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC), 2017. IEEE, 2017.

[11] A. Mokhov, V. Khomenko, D. Sokolov, and A. Yakovlev. Opportunistic
merge element. In IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), 2015. IEEE, 2015.

[12] M. Greenstreet. Real-time merging. In Proceedings of International
Symposium on Advanced Research in Asynchronous Circuits and Sys-
tems (ASYNC), pages 186–198. IEEE, 1999.


