
Laboratoire Spécification & Vérification
École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Contextual Merged Processes

César Rodríguez, Stefan Schwoon, and
Victor Khomenko

April 7, 2013

Research report LSV-13-06

Contextual Merged Processes∗

César Rodríguez1, Stefan Schwoon1, and Victor Khomenko2

Email frens-cachan.lsv.cesar.rodriguez@
Address 1 LSV, ENS Cachan & CNRS, INRIA Saclay, France

2 School of Computing Science, Newcastle University, U.K.

Abstract We integrate two compact data structuresfor representing state spaces of Petri nets:
merged processes and contextual prefixes. The resulting data structure, called con-
textual merged processes (CMP), combines the advantages of the original ones and
copes with several important sources of state space explosion: concurrency, se-
quences of choices, and concurrent read accesses to shared resources. In particular,
we demonstrate on a number of benchmarks that CMPs are more compact than ei-
ther of the original data structures. Moreover, we sketch a polynomial (in the CMP
size) encoding into SAT of the model-checking problem for reachability properties.

1 Introduction

Model checking of concurrent systems is an important and practical way of ensuring their
correctness. However, the main drawback of model checking is that it suffers from the state-
space explosion (SSE) problem [Val98]. That is, even a relatively small system specification
can (and often does) yield a very large state space. To alleviate SSE, many model-checking
techniques use a condensed representation of the full state space of the system. Among them,
a prominent technique are McMillan’s Petri net unfoldings (see, e.g. [McM92,ERV02,Kho03]).
They rely on the partial-order view of concurrent computation and represent system states
implicitly, using an acyclic unfolding prefix.

There are several common sources of SSE. One of them is concurrency, and the unfolding
techniques were primarily designed for efficient verification of highly concurrent systems. In-
deed, complete prefixes are often exponentially smaller than the corresponding reachability
graphs because they represent concurrency directly rather than by multidimensional ‘dia-
monds’ as it is done in reachability graphs. For example, if the original Petri net consists of
100 transitions that can fire once in parallel, the reachability graph will be a 100-dimensional
hypercube with 2100 vertices, whereas the complete prefix will be isomorphic to the net itself.
However, unfoldings do not cope well with some other important sources of SSE, and in
what follows, we consider two such sources.

One important source of SSE are sequences of choices. For example, the smallest com-
plete prefix of the Petri net in Fig. 1 is exponential in its size since no event can be declared
a cutoff — intuitively, each reachable marking ‘remembers’ its past, and so different runs
cannot lead to the same marking.

Another important source of SSE are concurrent read accesses, that is, multiple actions
requiring non-exclusive access to a shared resource. Contextual nets (c-nets) are an extension

∗This research was supported by the Epsrc grant EP/K001698/1 (Uncover).

. . .

Figure 1: A Petri net with exponentially large unfolding prefix.

of Petri nets where such read accesses are modelled by a special type of arcs, called read arcs
and denoted by lines (in contrast to arrows for the traditional consuming and producing
arcs). Read arcs allow a transition to check for the presence of a token without consuming it.
As concurrent read access to a shared resource is a natural operation in many concurrent sys-
tems, c-nets are often the formalism of choice for a wide variety of applications, e.g. to model
concurrent database access [Ris94], concurrent constraint programs [MR94], priorities [JK91],
and asynchronous circuits [VSY98].

The usual way of modelling c-nets using traditional Petri nets is by replacing read arcs by
“consume-reproduce loops”: a transition consumes a token from a place and immediately
puts a token back, see Fig. 2 (a,b). Unfortunately, this makes the unfolding technique ineffi-
cient: concurrent transitions of a c-net reading the same place are sequentialised by this en-
coding, and thus all their interleavings are represented in the unfolding, see Fig. 3 (b). This
problem can be mitigated using the place-replication (PR) encoding proposed in [VSY98],
which replicates each place that is read by several transitions so that each of them obtains a
“private” copy of the place and accesses it using a consume-reproduce loop, see Fig. 2 (a,c).
However, the resulting unfolding may still be large, see Fig. 3 (c). Moreover, the PR encod-
ing can significantly increase the sizes of presets of some transitions, considerably slowing
down the unfolding algorithm, because (with some reasonable assumptions) the problem
of checking if the currently built part of the prefix can be extended by a new instance of a
transition t is NP-complete in the prefix size and |•t| [Hel99a, Sect. 4.4].

Recently, techniques addressing these sources of SSE emerged. In [KKKV06], a new
condensed representation of Petri net behaviour called merged processes (MPs) was proposed,
which copes not only with concurrency, but also with sequences of choices. Moreover, this
representation is sufficiently similar to the traditional unfoldings so that a large body of
results developed for unfoldings can be re-used. The main idea behind MPs is to fuse some
nodes in the unfolding prefix, and use the resulting net as the basis for verification. For
example, the unfolding of the net shown in Fig. 1 will collapse back to the original net after
the fusion. It turns out that for a safe Petri net, model checking of a reachability-like property
(i.e. the existence of a reachable state satisfying a predicate given by a Boolean expression)
can be efficiently performed on its MP, and [KKKV06] provides a polynomial reduction of
this problem to SAT. Furthermore, an efficient unravelling algorithm that builds a complete
MP of a given safe PN has been proposed in [KM11]. The experimental results in [KKKV06]
indicate that this method is quite practical. Unfortunately, MPs do not cope well with read
arcs, as illustrated in Fig. 4.

An extension of the unfolding technique to c-nets was proposed in [BCM01,VSY98], and a
practical unfolding algorithm and SAT-based model checking for reachability-like properties

2

(a)

p1
b

a
p c

d

b

a
p

d

c b

a
p2

c

d

(c)(b)

Figure 2: (a) A c-net; (b) its plain encoding; (c) and its place-replication encoding.

p2

a

b

d

p
c

(b) (c)(a)

p
a

b c

b c

ddd dd

p p

pp

a
p2

cb

p1

dddd

p1

Figure 3: Unfoldings of (a), (b), and (c) in Fig. 2

have been developed in [BBC+12,RS12]. The idea is to allow read arcs also in the unfolding,
which allows for significant compression in some cases — see Fig. 3(a). The experimental
results in [BBC+12, RS12] demonstrate that the performance of this method is comparable
to the traditional unfoldings when c-nets have no read arcs (i.e. can be directly interpreted
as Petri nets), and can be much better (in terms of both the runtime and the size of the
generated prefix) than traditional unfolding of plain and PR encodings of c-nets with many
read arcs. Unfortunately, this method does not cope with SSE resulting from sequences of
choices, e.g. it does not offer any improvement for the Petri net in Fig. 1, as it contains no
read arcs.

In this paper we observe that the described techniques for compressing the unfolding
prefix are in fact orthogonal, and can be combined into one that copes with all the mentioned
sources of SSE, viz. concurrency, sequences of choices and concurrent read accesses to a
shared resource. Moreover, there are striking similarities between the main complications
that had to be overcome in the theories of MPs and c-net unfoldings: events have multiple
local configurations (which causes difficulties in detection of cutoff events), and certain cycles
(in the flow relation in case of MPs and in the asymmetric conflict relation in case of c-net
unfoldings) have to be prohibited in valid configurations. Hence, the combination of the two

3

techniques is not only possible, but also is very natural.
The paper is organised as follows. In Section 2 we provide the necessary definitions

related to c-nets and unfoldings. Section 3 — the main contribution of this paper — intro-
duces the notion of a contextual merged process (CMP) and provides results to characterise the
configurations of CMPs of safe c-nets. We use these results in Section 4 to discuss the con-
struction and SAT-based model checking of CMPs. In Section 5 we experimentally evaluate
the proposed approach on a number of benchmark examples. In Section 6 we conclude and
outline the directions for future research.

This report is an extended version of [RSK13].

2 Basic Notions

In this section, we set our basic definitions and recall previous results (see [BCKS08,RSB11]).
A multiset over a set S is a function M : S → N. The support of M is the set M̄ := {x ∈

S | M(x) > 0} of elements in S occurring at least once in M. We write x ∈ M if x is
in the support of M. We say that M is finite iff its support is. Given multisets M and
N over S, their sum and difference are (M + N)(x) := M(x) + N(x) and (M − N)(x) :=
max (0, M(x)− N(x)). We write M ≤ N iff M(x) ≤ N(x) for all x ∈ S. Any function
f : S → T can be lifted to multisets by letting f (M)(x) := ∑y∈ f−1(x) M(y); note that this sum
is well-defined iff finitely many of its summands are non-zero, which is always the case if,
for instance, M has a finite support. Any set can be interpreted as a multiset in the natural
way.

A contextual net (c-net) is a tuple N = 〈P, T, F, C, m0〉, where P and T are disjoint sets
of places and transitions, F ⊆ (P× T) ∪ (T × P) is the flow relation, C ⊆ P× T is the context
relation, and the initial marking m0 is a multiset over P. A pair (p, t) ∈ C is called read arc. A
Petri net is a c-net without read arcs. N is called finite if P and T are finite sets. Places and
transitions together are called nodes. Fig. 2 (a) depicts a c-net, where read arcs are drawn as
undirected lines, e.g. between p and c.

For x ∈ P ∪ T, •x := { y ∈ P ∪ T | (y, x) ∈ F } is the preset of x, x• := { y ∈ P ∪ T | (x, y) ∈

pn

. . . tn

qnq1

t1

(b)(a)

q1

t1
. . .

t

t t t t

p1
pn

tn

qn

p1 pn p1

Figure 4: A c-net (a) whose contextual unfolding is isomorphic to the c-net itself, but
whose plain encoding into a Petri net has exponentially large merged process, since no place
instances in its unfolding (b) can be merged, and so there are 2n mp-events corresponding
to transition t. (For this c-net the PR encoding coincides with the plain one, and so has the
same unfolding and MP.)

4

c3

e1

c1

e2

c2

e3

Figure 5: An occurrence net illustrating circular asymmetric conflict.

F } is the postset of x, and x := { y ∈ P ∪ T | (y, x) ∈ C ∪ C−1 } is the context of x. We assume
that for each node x ∈ P ∪ T the sets •x, x•, and x are pairwise disjoint.

A marking of N is a multiset m over P. A transition t is enabled at m if m(p) ≥ 1 for all
p ∈ t ∪ •t. Such t can fire, leading to the well-defined marking m′ := m− •t + t•. The tuple
〈m, t, m′〉 is called a step. A marking m is reachable if it can be obtained by a finite sequence
of firings starting at m0. N is k-bounded if m(p) ≤ k for all reachable m and all p ∈ P, and
safe if it is 1-bounded. For safe nets, we treat markings as sets of places.

Two distinct transitions t and t′ are in symmetric conflict, denoted t # t′, if •t∩ •t′ 6= ∅, and
in asymmetric conflict, written t ↗ t′, if (i) t• ∩ (•t′ ∪ t′) 6= ∅, or (ii) t ∩ •t′ 6= ∅, or (iii) t # t′.
Intuitively, when t↗ t′, then if both t, t′ fire in a run, t fires before t′. Note that t and t′ may
not fire together in any run, e.g. if t # t′, where we have t ↗ t′ and t′ ↗ t — corresponding
to the intuition that t has to fire before t′ and vice versa. In Fig. 6 (b) we have e3 ↗ e5 due
to (i); in Fig. 5 we have e1 ↗ e2 due to (ii). For a set of transitions X ⊆ T, we write ↗X to
denote the relation↗∩ (X× X).

Let N′ = 〈P′, T′, F′, C′, m′0〉 be a c-net. A homomorphism [VSY98] from N to N′ is a function
h : P ∪ T → P′ ∪ T′ satisfying: h(P) ⊆ P′, h(T) ⊆ T′, h(m0) = m′0, and h restricted to •t, t•, t
for all t ∈ T is a bijection to •h(t), h(t)• and h(t), respectively. Such a homomorphism is a
specialisation of Definition 4.20 in [BCM01].

For two nodes x and y we write x <i y if either (x, y) ∈ F or x, y ∈ T and x• ∩ y 6= ∅. We
write < for the transitive closure of <i, and ≤ for the reflexive closure of <. For a node x,
we define its set of causes as [x] := { t ∈ T | t ≤ x }. A set X ⊆ T is causally closed if [t] ⊆ X
for all t ∈ X.

An occurrence net is a c-net O = 〈B, E, G, D, m̃0〉 if (i) O is safe and for any b ∈ B, we
have |•b| ≤ 1; (ii) < is a strict partial order for O; (iii) for all e ∈ E, [e] is finite and ↗[e]
acyclic; (iv) m̃0 = { b ∈ B | •b = ∅ }. As per tradition, we call the elements of B conditions,
and those of E events. A configuration of O is a finite, causally closed set of events C such
that ↗C is acyclic; Conf (O) denotes the set of all configurations. For a configuration C, let
cut(C) := (m̃0 ∪ C•) \ •C. A prefix of O is a c-net P = 〈B′, E′, G′, D′, m̃0〉 such that E′ ⊆ E is
causally closed, B′ = m̃0 ∪ E′•, and G′ and D′ are the restrictions of G and D to B′ ∪ E′; in
such a case we write P v O.

Fig. 5 shows an occurrence net illustrating why it is necessary to restrict configurations
to sets without cycles in ↗. There are three events, and each pair of them can fire, but not
all three. Indeed, e1 ↗ e2 ↗ e3 ↗ e1 is a cycle of asymmetric conflicts.

A branching process of N is a pair P = 〈O, h〉, where O is an occurrence net and h is a

5

homomorphism from O to N with the property that h(e) = h(e′) ∧ •e = •e′ ∧ e = e′ implies
e = e′ for all events e, e′ ∈ O. For every N, there is a unique (up to isomorphism) maximal
(wrt. v) branching process UN = 〈U, h′〉 that we call the unfolding of N [BCKS08]. Thus,
any branching processes 〈O, h〉 is characterised by a prefix O of U and the restriction h of
h′ to the elements of O. For convenience, we shall often equate a branching process with
its underlying net and call it an unfolding prefix. As usual, for C ∈ Conf (UN), we define
mark(C) := h(cut(C)).

An unfolding prefix P is called marking-complete if for any marking m reachable in N
there exists a marking m̃ reachable in P with h(m̃) = m. For example, UN is marking-
complete but in general infinite. For bounded N, it is however possible to compute a finite
marking-complete prefix PN [BCKS08, RSB11].

The key notion in computing marking-complete prefixes is a history. Given a configu-
ration C ∈ Conf (U) and some event e ∈ C, the history of e in C is defined as C[[e]] := { e′ ∈
C | e′ ↗∗C e }. For e ∈ E, Hist(e) := { C[[e]] | C ∈ Conf (U) } is the set of all histories of e.
The construction of a complete prefix discovers events that do not contribute to reaching
new markings of N in the prefix: an event e is declared cutoff if for every history H of e
there exists a configuration C in P such that mark(C) = mark(H) and C ≺ H, where ≺ is a
so-called adequate order on configurations.1 The construction then excludes events that are
causal successors of e, thereby ensuring the finiteness of P while guaranteeing its marking-
completeness: for every reachable marking m of N there is a configuration C of P such that
mark(C) = m and C does not include any cutoffs.

3 Contextual Merged Processes

In this section, we introduce the notion of contextual merged processes (CMP) and discuss
some of their properties. These results generalise those of [KKKV06], in particular it turns
out that the notions of mp-configuration, defined in [KKKV06] for Petri nets, and the notion
of a c-net configuration from [BCKS08], both of which introduce acyclicity constraints, can
be seamlessly integrated into a common framework.

We first show that asymmetric conflict, causality, and steps are, among other notions,
preserved by homomorphisms.

Lemma 1. Let N and N′ be c-nets, and h be a homomorphism from N to N′. If 〈m, t, m̂〉 is a step of
N and h(m) is well-defined,2 then

〈h(m), h(t), h(m̂)〉 is a step of N′.

Furthermore, for any nodes x, y and transitions t, u of N,

x < y implies h(x) < h(y)

1. Actually, [BCKS08] defines pairs 〈e, H〉 as cutoffs; above, we chose an equivalent presentation that will be
more convenient for defining CMPs. Also, only histories are considered for C in [BCKS08]; we come back to this
point in Section 4.
2. That is, h(m) is a well-defined multiset.

6

and3

t↗ u implies either h(t)↗ h(u) or h(t) = h(u).

Proof. That c-net homomorphisms preserve steps, the first part of the Lemma, is already
stated by Proposition 4.1 in [BCM01], since our definition of homomorphism is a specialisa-
tion of theirs – we enforce h to be total and h(p) is a place instead of a multiset of places. At
any rate, the second part of our lemma is new, and what follows is a proof of both parts.

Let P, T be the places and transitions of N and likewise P′, T′ for N′. Let 〈m, t, m̂〉 be step
of N such that m′ := h(m) is a well-defined marking of N′. Let t′ := h(t).

We first show that t′ is enabled at m′. Let p′ ∈ •t′. Because h restricted to •t is a bijection
between •t and •t′, there is a single p ∈ •t such that h(p) = p′. Because t is enabled at m,
m(p) ≥ 1. Recall that m′(p′) = ∑ p̂∈h−1(p′) m(p̂). Then m′(p′) ≥ 1 because p ∈ h−1(p′). An
analogous argument shows that m′(p′) ≥ 1 if p′ ∈ t′.

Since t′ is enabled at m′, let 〈m′, t′, m̂′〉 be a step of N′. We now show that h(m̂) = m̂′. For
any p′ ∈ P′, we show that h(m̂)(p′) = m̂′(p′). We make the following developments:

h(m̂)(p′) = ∑
p∈h−1(p′)

m̂(p)

= ∑
p∈h−1(p′)

(m(p)− |{p} ∩ •t|+ |{p} ∩ t•|)

=

 ∑
p∈h−1(p′)

m(p)

−
 ∑

p∈h−1(p′)

|{p} ∩ •t|

+

 ∑
p∈h−1(p′)

|{p} ∩ t•|


=

 ∑
p∈h−1(p′)

m(p)

− |h−1(p′) ∩ •t|+ |h−1(p′) ∩ t•|

As for m̂′(p′), we have:

m̂′(p′) = h(m)(p′)− |{p′} ∩ •t′|+ |{p′} ∩ t′•|

=

 ∑
p∈h−1(p′)

m(p)

− |{p′} ∩ •t′|+ |{p′} ∩ t′•|

Therefore, to show that h(m̂)(p′) = m̂′(p′) it suffices to show that

|{p′} ∩ •t′| = |h−1(p′) ∩ •t|
and that

|{p′} ∩ t′•| = |h−1(p′) ∩ t•|.
Either p′ ∈ •t′ holds or not. If it holds, there is a single p ∈ •t such that h(p) = p′, since
otherwise h restricted to •t would not be a bijection between •t and •t′. Then |h−1(p′)∩ •t| =
1. If p′ /∈ •t′, then no p ∈ •t is such that h(p) = p′, again because h is a homomorphism.
Then |h−1(p′)∩ •t| = 0. This proves that |{p′} ∩ •t′| = |h−1(p′)∩ •t|; an analogous argument
shows that |{p′} ∩ t′•| = |h−1(p′) ∩ t•|.

3. In [RSK13], the fragment ‘or h(t) = h(u)’ of the following statement was missing. This is inconsequential for
any other result presented in [RSK13].

7

We now show why x <i y implies h(x) <i h(y), for x, y ∈ P ∪ T. That x < y implies
h(x) < h(y) is basically a consequence of the previous fact. Three cases are possible:

– x ∈ P and x ∈ •y. Since y ∈ T, we know that h restricted to •y is a bijection to •h(y).
So h(x) ∈ •h(y) and h(x) <i h(y).

– x ∈ T and x ∈ •y. Analogous.

– x, y ∈ T and x• ∩ y 6= ∅. Then let p ∈ x• be such that p ∈ y. Again, h(p) is in h(x)•

and in h(y), and so h(x) <i h(y).

We now show that t ↗ u implies either h(t) ↗ h(u) or h(t) = h(u). Assume the
hypothesis and assume that h(t) 6= h(u), we show that h(t)↗ h(u). Three cases are possible:

– t• ∩ (•u ∪ u) contains some place p. Then, by the properties of homomorphisms, h(p)
is contained in h(t)•, and in •h(u) or in h(u). In any case, h(t)↗ h(u).

– t ∩ •u contains some place p. Analogous argument.

– •t ∩ •u contains some place p. Analogous argument.

As usual, homomorphisms preserve runs and reachable markings: if σ is a run of N that
reaches m, then h(σ) is a run of N′ that reaches h(m), because h(m0) = m′0 is a well-defined
marking and due to Lemma 1.

The first step to define CMPs is the notion of occurrence depth.

Definition 1 (occurrence depth). Let x be a node of a branching process 〈O, h〉. The occurrence
depth of x, denoted od(x), is the maximum number of h(x)-labelled nodes in any path in the directed
graph (m̃0 ∪ [x] ∪ [x]•,<i) starting at any initial condition and ending in x.

Recall that the cone [x] is finite and <i is a partial order, so there is only a finite number
of paths to evaluate, and the definition is well-given.

A CMP is obtained from a branching process in two steps. First, all conditions that have
the same label and occurrence depth are fused together (their initial markings are totalled);
then all events that have the same label and environment (after fusing conditions) are merged.
Conditions in the initial marking will have, by definition, occurrence depth 1. If n of them
share the same label, they will be fused together, and the resulting condition will be initially
marked with n tokens. This is formalised as follows:

Definition 2 (Contextual Merged Process). Let N = 〈P, T, F, C, m0〉 be a c-net and let P =

〈〈B, E, G, D, m̃0〉, h〉 be a branching process of N. Define a c-net Q = 〈B̂, Ê, Ĝ, D̂, m̂0〉, where
B̂ ⊆ P×N, Ê ⊆ T × 2B̂ × 2B̂ × 2B̂, and a homomorphism h̄ from P to Q as follows:

– for b ∈ B, h̄(b) := 〈h(b), od(b)〉; set B̂ := h̄(B);

– for e ∈ E, h̄(e) := 〈h(e), h̄(•e), h̄(e), h̄(e•)〉; set Ê := h̄(E);

– Ĝ, D̂ are such that for every ê = 〈t, Pre, Cont, Post〉 ∈ Ê we have • ê := Pre, ê := Cont, ê• :=
Post;

– m̂0(〈p, d〉) := |m̃0 ∩ { b ∈ B : h(b) = p, od(b) = d }|.

8

p5

e3(t3)

e5(t4)

c8(p2)

c6(p3)

(b) c1(p1)

c2(p4)

e1(t1) e2(t2)

c3(p5)

c9(p3)

e6(t3)

e4(t4)

c7(p2)

c5(p3)c4(p2)
t1 t2

p3

(a)

p2p4

v5(t3) v6(t4)

p1
1

v1(t1) v2(t2)

v3(t3) v4(t4)

p1
3

p2
2p2

3

(c)

t3 t4

p1
2p1

4 p1
5

p1

Figure 6: (a) A net; (b) its unfolding; (c) its unravelling.

Moreover, let ĥ be the homomorphism from Q to N given by projecting the nodes of Q to their
first components. We call Merge(P) := 〈Q, ĥ〉 the merged process of P . The merged process
MN :=Merge(UN) of the unfolding of N is called the unravelling of N.

Fig. 6 shows a 1-safe net (taken from [KKKV06]), its unfolding, and its unravelling. For
the rest of this section, let N = 〈P, T, F, C, m0〉 be a bounded c-net, UN be its unfolding, PN

= 〈〈B, E, G, D, m̃0〉, h〉 be a branching process of N, and QN = 〈〈Ê, B̂, Ĝ, D̂, m̂0〉, ĥ〉 be the
corresponding merged process, i.e. Merge(PN). The places of QN are called mp-conditions
and its transitions mp-events. We shall write pd for an mp-condition 〈p, d〉. Note that m̂0(pd)

equals m0(p) if d = 1 and is 0 otherwise. An mp-event ê is an mp-cutoff if all events in h̄−1(ê)
are cutoffs. We denote these mp-events by Êcut.

We call a run t1t2 . . . of a c-net repetition-free if no transition occurs more than once in it.
Some properties of contextual merged processes follow.

Remark 1. The following properties hold for CMPs or c-net unfoldings:

1. In general,MN is not acyclic; see Fig. 6 (c).

2. There can be mp-events consuming conditions in the postset of an mp-cutoff.

3. There is at most one mp-condition pk resulting from fusing occurrences of place p at depth
k ≥ 1.

4. For two mp-conditions pk and pk+1, there is a directed path in the <i relation from the former
to the latter.

5. Two different conditions c1 and c2 having the same label and occurrence depth are not causally
related. Hence, if the original c-net is safe, then↗[c1]∪[c2] contains a cycle.

6. h = ĥ ◦ h̄.

9

7. h̄ and ĥ are homomorphisms.

8. A sequence of transitions σ is a run of N iff there exists a run σ̂ ofMN such that σ = ĥ(σ̂).

Additionally, if N is safe, we have:

9. h̄ is injective when restricted to the events of a configuration.

10. Property 8 is true if we additionally require σ̂ to be repetition-free.

Proof. Properties 1 and 2 are already true for merged processes of Petri nets; 3 and 4 are
immediate after the definition.

5 If the original c-net is safe, and c1, c2 have the same label and occurrence depth, then
[c1] ∪ [c2] is not a configuration, since otherwise they would be concurrent, producing
two occurrences of the associated place (they cannot be causally related). Since [c1] ∪
[c2] is finite, it contains a cycle in↗.

6 Any mp-event inherits the label associated to the events that were merged to produce
it, so for any e ∈ E, we have h(e) = ĥ(h̄(e)).

7 By construction h̄(E) ⊆ Ê, h̄(B) ⊆ B̂, ĥ(E) ⊆ T, and ĥ(B) ⊆ P. Trivially h̄(m̃0) = m̂0,
because the initial marking m̂0(ĉ) of ĉ is defined as the number of conditions c ∈ h̄−1(ĉ).
Similarly, ĥ(m̂0) = m0, because m0 = h(m̃0) = h(h̄(m̂0)) = ĥ(m̂0).
For the rest of the proof, let ê ∈ Ê be an mp-event, e ∈ E any event such that h̄(e) = ê,
and t = h(e) = ĥ(ê).
We now show that h̄ restricted to •e is a bijection. Recall that • ê is defined as h̄(•e),
so we only need to show that h̄ restricted to •e is injective. Let c, c′ ∈ •e. If c 6= c′

then h(c) 6= h(c′), because h is a homomorphism. Then c and c′ cannot be merged and
h̄(c) 6= h̄(c′). Analogous arguments prove that h̄ restricted to e• or e is also bijective.
Finally, we show that ĥ restricted to • ê is bijective. The proof for ê• or ê is similar. Let
ĉ, ĉ′ ∈ • ê, and let c, c′ ∈ •e such that h̄(c) = ĉ and h̄(c′) = ĉ′. Because h is a homo-
morphism, h(c) 6= h(c′). Then h(c) = ĥ(ĉ) 6= h(c′) = ĥ(ĉ′). Hence ĥ restricted to • ê is
injective. To see why it is surjective, let p ∈ •t. Again, because h is a homomorphism,
there is a single c ∈ •e such that h(c) = p. Let ĉ = h̄(c). Recall that h(c) = ĥ(ĉ) = p.
Because h̄ is a homomorphism, ĉ ∈ • ê, and so ĥ restricted to • ê is surjective.

8 For any run σ̂ ofMN , ĥ(σ̂) is a run of N, by Lemma 1. For any run σ of N, there is, by
the properties of UN (see [BCKS08]), a run σ̃ in UN such that h(σ̃) = σ. Then σ̂ := h̄(σ̃)
is a run ofMN that satisfies ĥ(σ̂) = h(σ̃) = σ.

9 Let C be a configuration of PN . We prove that e 6= e′ implies h̄(e) 6= h̄(e′) for all
e, e′ ∈ C. For an argument by contradiction, assume h̄(e) = h̄(e′). Events e and e′ have
been merged into the same mp-event, so h(e) = h(e′). Since e 6= e′, either •e 6= •e′ or
e 6= e′, which implies that there exists some c ∈ •e ∪ e and c′ ∈ •e′ ∪ e′ such that c 6= c′

but both c and c′ are labelled by p and have occurrence depth k. By property 5, [c]∪ [c′]
contains a cycle in relation↗, but [c] ∪ [c′] ⊆ C. This is a contradiction.

10 Any repetition-free run σ̂ of MN is, by property 8, such that ĥ(σ̂) is a run of N. Now,
let σ be a run of N. We know (cf. proof of property 8) that there is a run σ̃ of UN with

10

h(σ̃) = σ and that there is a run σ̂ of MN verifying h̄(σ̃) = σ̂ and ĥ(σ̂) = σ. We now
prove that σ̂ is repetition-free. Recall that the set {e ∈ E | e fires in σ̃} is a configuration
of UN , and that σ̃ is repetition-free. If σ̂ was not repetition-free, some mp-event ê would
fire two times, implying that there is two different events e, e′ that fire in σ̃ such that
h̄(e) = h̄(e′). This contradicts property 9.

Note that Property 9 is still true when h̄ is restricted to the elements of m̃0 ∪ C ∪ C•.
Indeed, h̄ is bijective when restricted to m̃0, because m̂0 is safe, and two conditions c, c′ ∈ C•
cannot be merged because↗[c]∪[c′] would have cycles and [c] ∪ [c′] ⊆ C.

Definition 3 (mp-configuration). A multiset of mp-events Ĉ is an mp-configuration of QN if
there exists a configuration C of UN verifying h̄(C) = Ĉ.

As it is the case for configurations of branching processes, any mp-configuration of a
merged process represents a (concurrent) run of its mp-events, i.e. there exists at least one
linear ordering of the mp-events of Ĉ that is a run of the merged process. This is because
the same is true for configurations of the associated branching process and because h̄ is a
homomorphism.

Every finite firing sequence of UN consists of a set of events that form a configuration
C, which, due to Definition 3, corresponds to an mp-configuration Ĉ of MN . However, the
inverse statement is not true: a firing sequence ofMN may consist of a multiset of events X
that is not an mp-configuration since no C ∈ Conf (UN) satisfies h̄(C) = X. This already holds
for nets without read arcs, as the example in Fig. 6 shows: v1v5 is a valid firing sequence of
MN corresponding to events e1 and e6 of UN (i.e. h̄(e1) = v1 and h̄(e6) = v5) which do not
form a configuration. However, ĥ applied to v1v5 still gives a valid firing sequence t1t3 of N
thanks to Remark 1 (8). Below we formalise these observations.

Definition 4 (marking-complete CMP). Let X be a finite multiset of mp-events. The cut and
marking of X are respectively defined as the multisets

cut(X) := (m̂0 + X•)− •X
mark(X) := ĥ(cut(X)).

We call QN marking-complete if for each reachable marking m of N there exists a cutoff-free mp-
configuration Ĉ in QN satisfying mark(Ĉ) = m.

The intuition behind these definitions is as follows. If X is the multiset of mp-events
associated to a finite run (i.e. the multiset M such that M(ê) = n if ê fires n times) then
cut(X) is the marking reached by this run in the CMP, and mark(X) is the ĥ-image of cut(X),
i.e. the corresponding marking of N.

Observe that in the definition of a marking-complete CMP, one could ask for a finite run
(rather than a configuration) that reaches a marking m. The resulting definition would be
equivalent, but we preferred the current variant because it (i) mimics the analogous defini-
tion for unfoldings and (ii) avoids some unpleasant properties of runs: e.g. finite CMPs can
have infinite runs and therefore infinitely many finite runs, which is impossible for configu-
rations.

11

We now focus on the practically relevant class of safe c-nets. Here, the mapping h̄ lifted
to configurations establishes an injective correspondence between the configurations of the
unfolding and the mp-configurations of the unravelling. For each mp-configuration Ĉ there
exists a unique configuration C such that Ĉ = h̄(C).

We give, for safe nets, characterisations of sets of mp-events that correspond to reachable
markings of N (Proposition 1) and to configurations of UN (Proposition 2). They serve to aid
CMP-based model-checking, as well as the direct construction of CMPs, see Section 4. We
note that the problem of generalising these approaches to bounded, but not safe, nets is still
open even for merged processes without read arcs [KKKV06].

Proposition 1. LetQN be a marking-complete CMP of a safe c-net N. Then a marking m is reachable
in N iff there exists a cutoff-free set X of mp-events of QN satisfying:

1. ∀ê ∈ X : ∀ĉ ∈ • ê ∪ ê : (ĉ ∈ m̂0 ∨ ∃ê′ ∈ • ĉ : ê′ ∈ X), and

2. ↗X is acyclic, and

3. m = mark(X).

Proof. Let m be a reachable marking of N. We prove the existence of such X. Since m is
reachable in N, there exists a cutoff-free mp-configuration X of QN such that mark(X) = m.
So X satisfies condition 3. It also satisfies conditions 1 and 2 because they are the same as in
Proposition 2 (see the proof).

To prove the opposite direction, let X be a set of mp-events satisfying the three conditions.
We show that m is reachable. Because X satisfies 2, there exists a linear order ê1, . . . , ên on
the mp-events of X that is compatible with ↗, i.e., such that êi ↗ êj implies i < j for all
1 ≤ i, j ≤ n. We prove that such ordering is a run of QN . In such case, condition 3 implies
that m̂ = cut(X) is the marking reached by the run and m = ĥ(m̂) is a reachable marking of
N, because ĥ is a homomorphism.

Consider ê1. Condition 1 establishes that all ĉ ∈ • ê1 ∪ ê1 are initially marked or generated
by some other mp-event in X. Because ê1 is ↗-minimal, no event êj satisfies êj < ê1, so ĉ is
initially marked and ê1 is enabled at the initial marking.

We now prove the following claim: if ê1, . . . , êk is a run, then ê1, . . . , êk, êk+1 is a run too,
for 1 ≤ k < n. Assume the hypothesis. Let Ĉk := {ê1, . . . , êk} and let m̂ := cut(Ĉk) be the cut
reached after firing ê1, . . . , êk. We prove that any ĉ ∈ • êk+1 ∪ êk+1 verifies ĉ ∈ m̂. By condition
1, we know that ĉ ∈ m̂0 or ĉ ∈ X•. Since any mp-event êj in the preset of ĉ is such that êj ↗ êi,
we know that êj ∈ Ĉk, and ĉ ∈ Ĉ•k . So ĉ ∈ Ĉ•k ∪ m̂0. It remains to prove that ĉ /∈ •Ĉk. If this
was not the case, then some êl ∈ Ĉk would be such that ĉ ∈ • êl , and also such that êi ↗ êl ,
since either • êi ∩ • êl 6= ∅ or êi ∩ • êl 6= ∅. But then i < l, and êl /∈ Ĉk, a contradiction.

So ĉ ∈ (Ĉ•k ∪ m̂0) \ •Ĉk = cut(Ĉk), and ê1, . . . , êk, êk+1 is a run.

Note that the conditions in Proposition 1 do not ensure that X is an mp-configuration;
however, they do guarantee that X corresponds to a repetition-free run of QN , and thus are
sufficient to check reachability (see the comment before Definition 4 for an example). Finally,
observe that not every repetition-free run satisfies the first two conditions of Proposition 1:
v1v3v4 is a repetition-free run of Fig. 6 but {v1, v3, v4} violates the second condition. This

12

means that Proposition 1 characterizes a strict subset of repetition-free runs that are enough
for representing all reachable markings of N.

Proposition 2. If N is safe, a set of mp-events Ĉ is an mp-configuration of QN iff it satisfies the
following conditions:

1. ∀ê ∈ Ĉ : ∀ĉ ∈ • ê ∪ ê : (ĉ ∈ m̂0 ∨ ∃ê′ ∈ • ĉ : ê′ ∈ Ĉ), and

2. ↗Ĉ is acyclic, and

3. for k ≥ 1, pk+1 ∈ Ĉ• implies pk ∈ m̂0 ∪ Ĉ• and there exists a path in the directed graph
(m̂0 ∪ Ĉ ∪ Ĉ•,<i) between pk and pk+1.

Proof. Assume that Ĉ is an mp-configuration. We prove it satisfies all the three conditions.
Let C be the such that h̄(C) = Ĉ. Note that m̂0, Ĉ, and Ĉ• are sets rather than general
multisets, essentially because N is safe and h̄ restricted to C is injective.

1. Since Ĉ is an mp-configuration, there exists a linear order ê1, . . . , ên on the mp-events
of Ĉ that is a run of QN . Let êi be any mp-event of Ĉ, and let ĉ ∈ • êi ∪ êi be any mp-
condition on its preset or context. We prove that either ĉ ∈ m̂0 or • ĉ ∩ Ĉ 6= ∅. This is
trivially true for ê1, since it is enabled at the initial marking, so assume that i ≥ 2. The
sequence ê1, . . . , êi−1 is a run. Let m̂ be the marking it reaches. Then êi is enabled at m̂,
so ĉ ∈ m̂. So either ĉ is initially marked or there is some mp-event êj ∈ Ĉ, 1 ≤ j < i,
such that êj ∈ • ĉ, which is what we wanted to prove.

2. Since h̄ restricted to C is injective, h̄−1 restricted to Ĉ is an injective function; further-
more, it is a homomorphism. The absence of cycles in↗Ĉ follows from the properties
of homomorphisms. Specifically, if, by contradiction, it was possible to find a cycle
ê1 ↗ . . .↗ ên ↗ ê1 in Ĉ, then we could also find the cycle h̄−1(ê1)↗ . . .↗ h̄−1(ên)↗
h̄−1(ê1) in C by Lemma 1.

3. Finally, condition 3 holds as a consequence of the properties of h̄. Assume that pk+1 ∈
Ĉ•, and let c ∈ B be the single condition in m̃0 ∪ C• such that h̄(c) = pk+1. Condition c
exists and is unique by (9) in Remark 1. Since c has occurrence depth k + 1, there exists
c′ with occurrence depth k and label p, such that c′ < c, and therefore c′ ∈ m̃0 ∪ C•.
Then h̄(c′) = pk, and pk ∈ m̂0 ∪ Ĉ•. Let e1, . . . , el be events verifying c′ <i e1, el <i c,
and e•i ∩ (•ei+1 ∪ ei+1) 6= ∅ for 1 ≤ i < l. They exists because c′ < c, and they identify a
path from c′ to c in (m̃0 ∪ C ∪ C•,<i), that h̄ maps to a path identified by h̄(e1), . . . , h̄(el)

from pk and pk+1 in (m̂0 ∪ Ĉ ∪ Ĉ•,<i).

We now prove by induction the opposite direction. Let Ĉ be a set of mp-events satisfying
the three conditions. We show that it is an mp-configuration.

Base Case. Ĉ = ∅. Clearly, ∅ is a configuration of UN , and h̄(∅) = ∅.

Inductive Case. Assume that the statement is true if Ĉ has at most n ≥ 0 mp-events, and let
Ĉ be a set of n + 1 mp-events. Let ê be any↗-maximal mp-event in Ĉ, which exists because
↗ is acyclic, and let Ĉ ′ := Ĉ \ {ê}. Recall that no mp-event ê′ ∈ Ĉ ′ satisfies ê < ê′ because ê is
↗-maximal. We prove that Ĉ ′ satisfies all the three conditions above.

13

1. Assume that Ĉ ′ violates condition 1. Then there exists some ê′ ∈ Ĉ ′ such that ê• ∩ (• ê′ ∪
ê′) 6= ∅. But this is not possible because ê < ê′, a contradiction.

2. Trivially,↗ is acyclic in Ĉ ′, it already was in Ĉ.

3. For some k ≥ 0 and place p ∈ P, assume that pk+1 ∈ Ĉ ′• but pk /∈ m̂0 ∪ Ĉ ′•. Then pk ∈ ê•

because pk ∈ m̂0 ∪ Ĉ•. There is a path in (m̂0 ∪ Ĉ ∪ Ĉ•,<i) from pk to pk+1, so there
exists some ê′ ∈ Ĉ with pk < ê′ < pk+1. But then, ê < ê′, a contradiction, so pk ∈ Ĉ ′•.
To prove that there is a path in (m̂0 ∪ Ĉ ′ ∪ Ĉ ′•,<i) from pk to pk+1, let ê1, . . . , êl ∈ Ĉ
be mp-events satisfying pk <i ê1 < . . . < êl <i pk+1, and ê•i ∩ (• êi+1 ∩ êi+1) 6= ∅ for
1 ≤ i < l and for some l ≥ 1. We prove that ê 6= êi, for any 1 ≤ i ≤ l, and therefore
êi ∈ Ĉ ′. Obviously ê 6= êi for 1 ≤ i < l, since êi+1 ∈ Ĉ is such that ê < êi+1. So we
only have to check that ê 6= êl . Assume, for a proof by contradiction, that e = êl . Then,
pk+1 ∈ ê•. Since pk+1 ∈ Ĉ ′•, by assumption, and ê /∈ Ĉ ′, by definition, there is some
ê′ ∈ Ĉ ′ such that pk+1 ∈ ê′•. So pk+1 has at least two different mp-events in its preset.
Because Ĉ satisfies conditions 1 and 2, all its mp-events can be ordered to form a run
(see proof of Proposition 1). Then, since N is safe, there exists some mp-event ê′′ ∈ Ĉ
that consumes pk+1. Such ê′′ is different than ê because ↗Ĉ is acyclic, and therefore
ê′′ ∈ Ĉ holds, a contradiction, because ê < ê′′ also holds.

Since Ĉ ′ satisfies all the three conditions, by induction hypothesis, there exists some
configuration C ′ of UN such that h̄(C ′) = Ĉ ′. In the sequel, we prove that there exists some
event e enabled at cut(C ′) such that h̄(e) = ê, and therefore h̄(C ′ ∪ {e}) = Ĉ ′ ∪ {ê} = Ĉ. Then
Ĉ is an mp-configuration because C ′ ∪ {e} is a configuration.

Let m := cut(C ′) be the cut of C ′, and m̂ := cut(Ĉ ′) be the cut of Ĉ ′. Recall that h̄(m) = m̂,
because h̄ is a homomorphism. The mp-event ê is enabled at m̂, because Ĉ satisfies conditions
1 and 2 and ê ∈ Ĉ. Then some transition ĥ(ê) is enabled at the marking ĥ(m̂) = h(m) of N,
and therefore, some event e exists in UN such that h(e) = ĥ(ê). Note that e is unique, by
definition of UN . We now show that h̄(•e) = • ê, and h̄(e) = ê, and h̄(e•) = ê•, which implies
that h̄(e) = ê.

– We prove that h̄(•e) = • ê; the case for h̄(e) = ê is analogous. Let c ∈ •e be a condition
in the preset of e. We show that h̄(c) ∈ • ê. Since e is enabled at m, then c ∈ m, and
h̄(c) := pk ∈ m̂. Since h(e) = ĥ(ê), there exists some mp-condition pk′ ∈ • ê. Also,
pk′ ∈ m̂, because ê is enabled at m̂. But pk = pk′ , since otherwise ĥ(m̂) would not be
safe. This proves that h̄(•e) ⊆ • ê. Recall that |•e| = |• ê|, so necessarily h̄(•e) = • ê.

– We prove that h̄(e•) = ê•. Since |e•| = |ê•|, because h(e) = ĥ(ê), and since h̄ is injective
when restricted to e•, we only need to prove that h̄(e•) ⊆ ê•. Let c ∈ e• be such that
h̄(e) = pk. We know that some mp-condition pk′ is present in ê•. We prove that (1)
k ≥ k′ and (2) k′ ≥ k, and therefore k = k′.

1. Because Ĉ satisfies condition 3, there is a path σ̂ in the directed graph (m̂0 ∪
Ĉ ∪ Ĉ•,<i) from some initial condition to pk′ that visits p1, . . . , pk′ . The last two
elements of σ̂ are ê and pk′ , and when removed from σ̂, the resulting path σ̂′ is also
a path in the graph (m̂0 ∪ Ĉ ′ ∪ Ĉ ′•,<i). Since C ′ is a configuration, h̄ restricted to
it is a bijection from C ′ to Ĉ ′, and therefore σ′ := h̄−1(σ̂′), where h̄−1 denotes now

14

the inverse of such restriction, is a path in the graph (m̃0 ∪ C ′ ∪ C ′•,<i) from some
initial condition of m0 to some element of •(e∪ e). But this means that σ′ followed
by e, c is a path in (m̃0 ∪ [c]∪ [c]•,<i) from the initial conditions to c where at least
k′ occurrences of p happen, so the occurrence depth of c is at least k′, and thus
k ≥ k′.

2. For an argument by contradiction, assume that k > k′, and that therefore some
condition c′ < e is such that h̄(c′) = pk′ . Then pk′ < ê < pk′ because Ĉ satisfies
condition 3. This is a contradiction.

A key detail in both results is that acyclicity of↗ prohibits, at the same time, asymmetric
conflicts inherent to c-net unfoldings (Fig. 5) and cycles in the flow relation introduced by
merging (Fig. 6 (c)).

4 Computing and Analysing Complete CMPs

In this section, we discuss various algorithmic aspects of CMPs, in particular how to con-
struct a complete CMPs from a given safe Petri net N, and how to use the resulting CMP to
check properties of N.

4.1 CMP Construction

Recall that a marking-complete CMP is one in which every reachable marking m of N is
the image (through ĥ) of the cut of some cutoff-free mp-configuration. We wish to construct
such a CMP in order to analyse properties of N such as reachability or deadlock.

Indirect Methods. It follows from Section 3 that one can achieve this goal by (i) constructing
a marking-complete unfolding prefix P and (ii) applying the construction from Definition 2
to P . Available options for step (i) are:

1. Directly construct P from N. This approach is implemented in the tool Cunf [Rod],
which is based on the results from [RSB11].

2. Replace all read arcs by consume-produce loops (cf. Fig. 2 (b)) and unfold the resulting
Petri net using, e.g., the tool Punf [Kho], obtaining some complete prefix P ′. We
then apply a “folding” operation to P ′ in which we repeatedly carry out the following
steps: (i) all conditions that were created due to a consume-produce loop are merged
and their flow arcs replaced by a read arc; (ii) all events with the same label and the
same preset after (i) are merged, and so are their postsets. The resulting c-net prefix
P has the same reachable markings as P ′ and is therefore marking-complete. Indeed,
applying this operation to the prefix in Fig. 3 (b), which is the unfolding of Fig. 2 (b),
would yield the c-net unfolding from Fig. 3 (a).

3. A similar approach as before, but using the place-replication (PR) encoding and adapt-
ing the folding operation accordingly (see Fig. 2 (c) and Fig. 3 (c)).

15

While the first approach is usually more efficient than the others [RSB11], certain aspects
of the currently available tool support make options 2 and 3 interesting for the purposes
of comparing the resulting CMP sizes. For instance, as pointed out in Footnote 1, Cunf

declares a pair 〈e, H〉, where H is a history of e, a cutoff if it finds another pair 〈e′, H′〉
with mark(H′) = mark(H) and H′ ≺ H; this was motivated by the approach from Petri net
unfolding [ERV02], where an event is declared cutoff if its local configuration leads to the
same marking as the local configuration of another event. However, Punf implements an
approach for Petri nets in which more general configurations are considered for the role of
H′ [Hel99b], leading to smaller unfolding sizes.

Direct Method. Another option is to construct a CMP directly from the c-net N. A similar
approach for nets without read arcs was presented in [KM11]. No such implementation
currently exists for CMPs; in the following we describe some key elements that are required
for extending [KM11] to CMPs.

A procedure for directly constructing the CMP would start with a CMP containing only
the mp-conditions that represent the initial marking of N and extend it one mp-event at a
time. To know whether the current CMP Q can be extended by an mp-event ê, one has to
identify an mp-configuration Ĉ of Q and check (i) whether Ĉ ∪ {ê} is an mp-configuration
ofMN and (ii) whether ê constitutes a cutoff.

Problem (i) can be formulated as a variant of the model-checking algorithm based on
Proposition 2 that can be encoded in SAT, see Section 4.2. For (ii), observe that an mp-
configuration Ĥ corresponds to some history H of an event e of UN with h̄(e) = ê iff ê is the
maximal element of the relation ↗Ĥ. The problem then corresponds to asking whether for
all such Ĥ there exists another mp-configuration Ĉ such that mark(Ĉ) = mark(Ĥ) and Ĉ ≺ Ĥ.
For Ĉ, Ĥ in Q, this problem can be encoded in 2QBF, which is more complicated than SAT
but less so than QBF in general, and for which specialised solutions exist [RTM04].

However, as Q grows, the number of possible candidates for Ĥ may increase. In gen-
eral ê cannot be designated a cutoff until the construction has been terminated, instead the
possibility of adding ê may have to be re-checked periodically.

To summarise, the basic structure of the algorithm from [KM11] would remain un-
changed, however one needs to use the characterisation 2 of mp-configurations rather than
the non-contextual one in [KM11].

4.2 Model Checking CMPs

Let Q be a CMP. We briefly discuss a possible encoding for runs and mp-configurations of
Q into SAT, using Propositions 1 and 2. Note that [KKKV06] discusses the corresponding
problems for non-contextual MPs and [RS12] for contextual unfoldings. Remarkably, both
problems require to encode acyclicity for different purposes, which are united into a single
acyclicity constraint in our case.

Proposition 1 says that every reachable marking m of N is represented by some↗-acyclic
run X of Q. Reachability of m reduces, then, to the satisfiability of a SAT formula that has
variables c, e, p for mp-conditions, mp-events, and places, respectively, such that e is true iff
ê ∈ X, c iff ĉ ∈ cut(X) and p iff p ∈ mark(X).

16

t

p′

r0 r1

q0 q1

t′0

t0 t1

t′1

p

v1

v3

v0

v2

p′′

Figure 7: The c-net 2-Gen.

Condition 1 of Proposition 1 demands that every event needs a causal predecessor for
all non-initial mp-conditions in its preset or context. Condition 3 imposes that the variables
for mp-conditions and places be correctly related and that the place variables correspond
to m. Both these conditions can easily be encoded in linear size wrt. |Q|. For the acyclicity
constraint (Condition 2) there are multiple encodings of polynomial size. We refer the reader
to [KKKV06, RS12], where such encodings are discussed and experimentally evaluated.

Proposition 2, used for constructing CMPs, differs from Proposition 1 in having a more
restrictive third condition. This constraint and its encoding is very similar to the “no-gap”
constraint from [KKKV06] to which we refer the reader for details.

5 Experiments and Case Studies

In this section, we experimentally4 compare the sizes of CMPs, MPs, and unfoldings for a
number of families of c-nets. In Section 5.1, we discuss an artificial family of examples that
allows one to study the effects of read arcs and choice for the various methods in isolation.
Section 5.2 presents a case study on Dijkstra’s mutual exclusion protocol. Finally, Section 5.3
shows how our methods behave on assorted practical benchmarks.

5.1 Interplay Between Read-Arcs and Choice

We study a family of c-net examples called n-Gen, shown for n = 2 in Fig. 7. The net
represents n processes that concurrently generate resources ri. Once all ris are produced,
an action t consumes them all. Resource ri can be produced if one of two conditions is
fulfilled, symbolised by transitions ti or t′i. Thus, ti, t′i share context with transitions tj and t′j,
respectively, whenever j 6= i.

4. All the benchmarks and tools referenced in this section are publicly available from
http://www.lsv.ens-cachan.fr/~rodriguez/experiments/pn2013/.

17

http://www.lsv.ens-cachan.fr/~rodriguez/experiments/pn2013/

Table 1: Growth of unfoldings and MPs of the n-Gen c-nets and their encodings.

Merged Processes Unfoldings
Ctx Plain PR Ctx Plain PR

O(n) O(n2) O(2n) O(2n) O(2n) O(2n)

For some n ≥ 1, let Nc be the c-net n-Gen, Np its plain encoding, and Nr its PR encoding.
The unfoldings of the three nets and the MPs of Np and Nr blow up due to at least one of
the following reasons, which we explain in the sequel: (1) choices between ti and t′i or (2)
sequentialised read access to p and p′.

For (1), notice that process i can produce ri in two different ways. At least two occurrences
of each ri are thus present in the unfolding of any of the three nets. Hence there are at least
2n ways of choosing t’s preset, i.e. at least 2n occurrences of t and p′′ in any of the three
unfoldings.

Roughly speaking, (2) refers to the same phenomena that were demonstrated in Fig. 2
and Fig. 3. While all ti are concurrent in Nc, they are sequentialised in Np: they all consume
and produce the same p. This creates conflicts between them, and as a result all their expo-
nentially many interleavings are explicitely present in UNp . Importantly, any occurrence of ti

that consumes an occurrence of p at depth d, produces an occurrence of p at depth d + 1.
In Nr, even if all ti are still concurrent to each other, their occurrences produce two

conditions with occurrence depths 1 and 2, each labelled by their respective private copy of
p. For UNr , this again has the consequence of producing 2n ways of choosing v3’s preset, and
2n events labelled by v3. More importantly, the private copies of ti cannot be merged with
those of tj and they remain in QNr . As a result, all 2n occurrences of v3 are also present in the
MP of Nr. This suggests that MPs of PR unfoldings may not yield, in general, much gain.

While the size of the contextual unfolding of Nc explodes due to (1), it is unaffected
by (2). On the other hand, the MP of Np effectively deals with (1), but only partially with
(2). We now see why. Notice that there are O(2n) conditions labelled by p in UNp , all
with occurrence depths between 1 and n + 1. In the MP, they are merged into the n + 1
mp-conditions p1, . . . , pn+1. Since all instances of qi and ri have occurrence-depth 1, all the
exponentially many events labelled by ti are merged into n mp-events, each consuming some
pj and producing pj+1, for 1 ≤ j ≤ n. This yields an MP of size O(n2).

Finally, the CMP of Nc deals effectively with both (1) and (2); it is, in fact, isomorphic to
N. Roughly speaking, this is because the unfolding of Nc already deals with (2), as we said,
and the ‘merging’ solves (1). Thus, the CMP is polynomially more compact than the MP of
Np and exponentially more than the MP of Nr, or the unfoldings of Nc, Np, or Nr. See Table 1
for a summary.

While this example in itself is artificial, the underlying structures are quite simple and
commonly occur in more complex c-nets, which explains some of the experimental results
below.

18

b0 := t; c0 := t

k=1

b0=t

b1=t

k = 0 c1 = f ?
c1= f

l1,0 l4,0

l2,0

b0 := f k = 0? c0 := f

l5,0 l6,0c0=t

c0= f

c0 := tl3,0 k = 1? k := 0k = 1, bk = t?

c1=tb0= f

l0,0

∀j 6= 0, cj = t?

Figure 8: The fragment of 2-Dijkstra that encodes thread 0. Note that arrows from transition
b0 := t; c0 := t are only partially depicted.

5.2 Dijkstra’s Mutual Exclusion Algorithm

In this section we analyse the performance of CMPs on a well-known concurrent algorithm
for mutual exclusion due to Dijkstra [Dij65]. What follows is a condensed technical explana-
tion of the algorithm, see [Dij65] for more details.

Dijkstra’s algorithm allows n threads to ensure that no two of them are simultaneously in
a critical section. Two Boolean arrays b and c of size n, and one integer variable k, satisfying
1 ≤ k ≤ n, are employed. All the entries of both arrays are initialised to true, and k’s initial
value is irrelevant. All threads use the same algorithm, which runs in two phases. During
the first, thread i sets b[i] := false, and repeatedly checks the value of b[k], setting k := i if b[k]
is true, until k = i holds. At this point, thread i starts phase 2, where it sets c[i] := false, and
enters the critical section if c[j] holds for all j 6= i. If the check fails, it sets c[i] := true and
restarts in phase 1. After the critical section, b[i] and c[i] are set to true. Note that more than
one thread could pass phase 1, and phase 2 is thus necessary.

We encoded Dijkstra’s algorithm into a c-net as follows. The entries of arrays b, c are
represented by two places, e.g. bi=t and bi= f . Variable k is encoded by n places k=0, . . . ,
k=n−1. Places l0,i, . . . , l6,i encode thread i’s instruction pointer. Fig. 8 shows the fragment of
2-Dijkstra that encodes thread 0. Roughly, each transition encodes one instruction of the
original algorithm [Dij65], updating the instruction pointer and the variables affected by the
instruction. Transitions encoding conditional instructions, like k = 0?, or ∀j 6= 0, cj = t?
employ read arcs to the places coding the variables involved in the predicate.

MPs of n-Dijkstra, and in particular CMPs, exhibit a very good growth with respect to
n. Table 2 shows the figures, obtained under the same setting as in Section 5.3. While all
unfoldings are exponential in n and |T|, all the MPs are of polynomial size. The sizes of
the plain and PR unfoldings seem to increase by a factor of 5 for each process added. The
contextual unfolding reduces this factor down to 3. The plain and PR MPs seems to fit a
polynomial curve of degree close to 3. The CMP seems to grow linearly with n2, i.e. linear
with |T|, the number of transitions in the net. As it was the case for n-Gen, PR MPs seem to
be less efficient than plain MPs on n-Dijkstra.

We note that this example exhibits some of the features explained in Section 5.1. For
instance, process 0 can transition from l5,0 to l2,0 if there exists another process i with ci = f .
Thus, for n ≥ 3 there would be a choice between multiple (i.e. n− 1) transitions in parallel

19

Table 2: Unfolding and MP sizes of n-Dijkstra, its plain, and PR encodings. Last row
obtained through regression analysis, see the text.

Net Merged Processes Unfoldings

n |T| Ctx Plain PR Ctx Plain PR

2 18 31 42 40 35 54 54
3 36 64 113 121 131 371 364
4 60 105 220 278 406 2080 1998
5 90 155 375 582 1139 10463 9822
6 126 214 589 1198 3000 49331 44993

O(n2) O(n2) O(n3) O(n3) O(3n) O(5n) O(5n)

to implement the check, a structure also found in the n-Gen example. We note that such
structures would also naturally ensue from other mutual exclusion algorithms that typically
involve checking for the presence of some other event with a certain property.

5.3 Assorted Benchmarks

In this section we present experimental results for a number of benchmark examples circu-
lating in the PN community (collected mostly by Corbett [Cor96]). The following consistent
setup was used to produce them:

– The total adequate order proposed in [KM11] was used.

– All configurations were allowed as cutoff correspondents.

– The cutoff (mp-)events and post-cutoff (mp-)conditions were not counted.

The plain and PR unfolding prefixes were constructed using Punf [Kho], and the con-
textual unfolding prefixes were computed by compressing the PR ones with PRCompress

5.
The plain and PR MPs have been merged from the corresponding unfolding prefixes with
Mci2mp, and the CMPs were merged from the corresponding contextual unfolding prefixes
using Cmerge. Note that the direct construction of contextual unfoldings and MPs would
yield the same results [KM11, BBC+12].

Recall the following theoretical guarantees:

– The contextual unfolding prefix is never larger than the PR prefix.

– The plain/PR/contextual MP is never larger than the corresponding unfolding prefix.

Table 3 compares the sizes of plain, PR and contextual unfolding prefixes and MPs. The
4th and 5th columns from the left are, respectively, the number of read arcs in the net and
place replicas in its PR encoding.6 The number of conditions and events for the plain and PR

5. All tools available from the URL indicated in Footnote 4.
6. More precisely, ∑p∈P,|p|>1(|p| − 1).

20

Ta
bl

e
3:

Ex
pe

ri
m

en
ta

lr
es

ul
ts

,s
ee

th
e

te
xt

fo
r

m
or

e
in

fo
rm

at
io

n.

Be
nc

hm
ar

k
U

nf
ol

di
ng

M
er

ge
d

pr
oc

es
s

G
ai

ns

N
am

e
N

et
St

at
s.

Pl
ai

n
PR

C
tx

Pl
ai

n
PR

C
tx

|P
|
|T
|

|C
|

R
ep

l.
|B
|
|E
|(a

)
|B
|
|E
|

|B
|

|E
|(b

)
|B̂
|
|Ê
|(c

)
|B̂
|
|Ê
|

|B̂
|
|Ê
|(d

)
a/

d
b/

d
a/

c

Bd
s

53
59

24
15

4.
50

3.
79

2.
60

2.
14

42
4

25
2

1.
11

1.
14

1.
36

1.
07

70
44

21
.7

3
5.

73
19

.1
2

Br
u

j
i
n

86
16

5
15

8
14

2
2.

84
1.

97
7.

00
1.

70
28

6
20

8
1.

33
1.

44
3.

83
1.

31
11

5
12

7
3.

22
1.

64
2.

23
By

z
50

4
40

9
37

6
28

4
2.

38
1.

80
1.

41
1.

00
17

01
9

77
48

1.
23

1.
03

1.
85

1.
22

52
9

30
3

46
.1

1
25

.5
7

44
.7

8
Ei

s
e

n
b

a
h

n
44

44
6

3
2.

19
2.

15
2.

22
2.

04
99

53
1.

13
1.

30
1.

22
1.

19
69

43
2.

65
1.

23
2.

04
Ft

p
17

6
52

9
39

33
1.

06
1.

04
1.

02
1.

00
73

51
6

37
54

0
1.

02
1.

05
1.

19
1.

00
25

4
45

5
85

.7
4

82
.5

1
81

.6
1

K
n

u
t

h
78

13
7

11
4

98
2.

62
1.

81
5.

42
1.

62
24

7
17

8
1.

32
1.

31
3.

25
1.

27
10

2
11

2
2.

88
1.

59
2.

20
M

u
t

u
a

l
49

41
12

4
1.

41
1.

23
1.

51
1.

23
18

7
12

1
1.

12
1.

26
1.

23
1.

27
92

73
2.

04
1.

66
1.

62

D
m

e
(2

)
13

5
98

13
2

0
1.

61
1.

00
1.

61
1.

00
29

3
11

8
1.

55
1.

04
1.

55
1.

04
19

5
90

1.
31

1.
31

1.
26

D
m

e
(4

)
26

9
19

6
26

4
0

1.
73

1.
00

1.
73

1.
00

13
37

63
6

1.
56

1.
04

1.
56

1.
04

38
9

18
0

3.
53

3.
53

3.
38

D
m

e
(6

)
40

3
29

4
39

6
0

1.
79

1.
00

1.
79

1.
00

35
17

17
94

1.
56

1.
04

1.
56

1.
04

58
3

27
0

6.
64

6.
64

6.
36

D
m

e
(8

)
53

7
39

2
52

8
0

1.
83

1.
00

1.
83

1.
00

72
17

38
32

1.
56

1.
04

1.
56

1.
04

77
7

36
0

10
.6

4
10

.6
4

10
.1

9
D

m
e

(1
0)

67
1

49
0

66
0

0
1.

86
1.

00
1.

86
1.

00
12

82
1

69
90

1.
56

1.
04

1.
56

1.
04

97
1

45
0

15
.5

3
15

.5
3

14
.8

7

El
e

v
(1

)
63

99
18

11
1.

02
1.

00
1.

34
1.

00
15

2
85

1.
02

1.
00

1.
38

1.
00

56
46

1.
85

1.
85

1.
85

El
e

v
(2

)
14

6
29

9
59

47
1.

03
1.

00
1.

85
1.

00
85

8
47

7
1.

01
1.

00
2.

02
1.

00
12

5
13

5
3.

53
3.

53
3.

53
El

e
v

(3
)

32
7

78
3

16
0

14
1

1.
03

1.
00

2.
66

1.
00

40
50

22
41

1.
00

1.
00

2.
90

1.
00

26
3

34
6

6.
48

6.
48

6.
48

El
e

v
(4

)
73

6
19

39
40

5
37

5
1.

04
1.

00
4.

08
1.

00
17

36
0

95
67

1.
00

1.
00

3.
98

1.
00

55
6

84
1

11
.3

8
11

.3
8

11
.3

8

Fu
r

n
(1

)
27

37
9

5
1.

12
1.

04
1.

18
1.

00
13

0
72

1.
09

1.
03

1.
23

1.
00

43
33

2.
27

2.
18

2.
21

Fu
r

n
(2

)
40

65
11

6
1.

14
1.

06
1.

14
1.

00
58

2
32

4
1.

07
1.

05
1.

19
1.

02
75

94
3.

66
3.

45
3.

47
Fu

r
n

(3
)

53
99

13
7

1.
14

1.
08

1.
12

1.
00

22
65

12
50

1.
07

1.
02

1.
17

1.
01

10
6

22
1

6.
09

5.
66

5.
95

K
e

y
(2

)
94

92
32

31
2.

74
2.

16
1.

72
1.

27
30

2
19

1
1.

22
2.

50
1.

59
1.

17
11

2
10

5
3.

92
1.

82
1.

57
K

e
y
(3

)
12

9
13

3
48

47
5.

81
4.

60
2.

81
2.

19
12

76
80

6
1.

21
4.

13
1.

64
2.

34
15

1
18

6
19

.9
3

4.
33

4.
83

K
e

y
(4

)
16

4
17

4
64

63
11

.3
7

9.
08

5.
56

4.
43

58
06

36
37

1.
21

5.
26

1.
67

9.
92

19
0

29
0

11
3.

82
12

.5
4

21
.6

3

M
m

g
t
(1

)
50

58
1

0
1.

00
1.

00
1.

00
1.

00
79

38
1.

00
1.

00
1.

00
1.

00
57

38
1.

00
1.

00
1.

00
M

m
g

t
(2

)
86

11
4

2
0

1.
00

1.
00

1.
00

1.
00

50
2

25
0

1.
00

1.
00

1.
00

1.
00

99
15

5
1.

61
1.

61
1.

61
M

m
g

t
(3

)
12

2
17

2
3

0
1.

00
1.

00
1.

00
1.

00
28

49
14

24
1.

00
1.

00
1.

00
1.

00
14

1
35

5
4.

01
4.

01
4.

01
M

m
g

t
(4

)
15

8
23

2
4

0
1.

00
1.

00
1.

00
1.

00
14

90
0

74
50

1.
00

1.
00

1.
00

1.
00

18
3

63
8

11
.6

8
11

.6
8

11
.6

8

R
W

(1
,1

)
84

20
8

12
3

75
1.

23
1.

00
1.

78
1.

00
14

2
94

1.
26

1.
00

2.
03

1.
00

77
65

1.
45

1.
45

1.
45

R
W

(2
,1

)
72

88
27

16
1.

19
1.

01
1.

30
1.

00
84

5
55

4
1.

26
1.

01
1.

45
1.

00
11

3
16

5
3.

39
3.

36
3.

37
R

W
(3

,1
)

10
6

27
0

12
9

81
1.

19
1.

04
1.

60
1.

00
51

00
33

76
1.

24
1.

02
1.

93
1.

00
16

0
36

8
9.

54
9.

17
9.

39
R

W
(1

,2
)

20
9

14
82

11
32

71
7

1.
21

1.
00

3.
36

1.
00

28
36

18
38

1.
35

1.
01

4.
76

0.
99

15
9

37
1

4.
95

4.
95

4.
90

Se
n

t
e

s
t

(2
5)

10
4

55
8

5
1.

32
1.

29
1.

35
1.

29
18

8
10

4
1.

06
1.

11
1.

10
1.

11
10

7
55

2.
44

1.
89

2.
20

Se
n

t
e

s
t

(5
0)

17
9

80
8

5
1.

23
1.

23
1.

25
1.

23
26

3
12

9
1.

03
1.

08
1.

06
1.

08
18

2
80

1.
99

1.
61

1.
85

Se
n

t
e

s
t

(7
5)

25
4

10
5

8
5

1.
18

1.
19

1.
19

1.
19

33
8

15
4

1.
02

1.
06

1.
04

1.
06

25
7

10
5

1.
75

1.
47

1.
66

Se
n

t
e

s
t

(1
00

)
32

9
13

0
8

5
1.

15
1.

17
1.

16
1.

17
41

3
17

9
1.

02
1.

05
1.

03
1.

05
33

2
13

0
1.

61
1.

38
1.

54

21

unfoldings is normalised wrt. that of the contextual unfolding. Similarly, mp-conditions and
mp-events of the plain and PR MPs are normalised wrt. those of the CMPs. The last three
columns show the compression gains of CMPs wrt. plain and contextual unfolding prefixes,
and the gain of plain MPs wrt. plain unfolding prefixes.

One can see that CMPs are the most compact of all the considered representations.7

Furthermore, on some benchmarks, notably Key(4), it has significant advantages over both
plain and PR MPs. Interestingly, in this case the PR MP is significantly larger than even the
plain MP, which seems to be due to place replication making the subsequent merging much
less efficient. As CMPs do not suffer from this problem, they come as a clear winner in such
cases.

6 Conclusions and Future Work

We have developed a new condensed representation of the state space of a contextual Petri
net, called contextual merged processes. This representation combines the advantages of
merged processes and contextual unfoldings, and copes with several important sources of
state space explosion: concurrency, sequences of choices, and concurrent read accesses to
shared resources. The experimental results demonstrate that this representation is signifi-
cantly more compact than either merged processes or contextual unfoldings.

We also proved a number of results which lay the foundation for model checking of
reachability-like properties of safe c-nets based on CMPs. In particular, given a CMP, they al-
low one to reduce (in polynomial time) such a model checking problem to SAT. Furthermore,
since the algorithm for direct construction of merged processes of safe Petri nets proposed
in [KM11] is based on model checking, it can be transferred to the contextual case, which
would complete the verification flow based on CMPs.

We currently work on implementing the proposed model checking algorithm and on
porting the algorithm for direct construction of MPs proposed in [KM11] to the contextual
case. (While the high-level structure of the latter algorithm remains the same, moving from
Petri nets to c-nets entails several low-level changes in the nets representation, which pervade
the whole code; thus, this porting requires significant implementation effort.)

Another possible direction of future work is to generalise our approach. Normal Petri
net unfoldings work very well when systems are entirely concurrent and independent of
one another, but many sources of state-space explosion appear when they interact. The
approaches that we have combined in this work tackle two such sources; they compress
the unfolding and have further commonalities. While Petri net unfoldings are structurally
acyclic, c-net unfoldings and merged processes have structural cycles but could be said to
be semantically acyclic: every marking can still be reached by a repetition-free execution and
hence one retains the NP-completeness of reachability problem (which is PSPACE-complete
for safe Petri nets). This poses the question whether our solutions are a part of a more
general phenomenon. The following example suggests that this might be the case. Consider
Fig. 9 (a). The token on place p acts as a lock ensuring mutual exclusion between two critical
sections represented by places b1 and b2.

7. Though the PR MP of RW(1,2) has four mp-events fewer, it has many more mp-conditions.

22

Pa
p

b1 b2

(a) (b)

t2t1

u2u1 Va Va

Pa

Figure 9: Two processes competing for lock p: (a) a Petri net (b) a net where lock operations
are annotated on transitions.

The two processes are independent of one another, except for the temporal restriction
that they cannot possess the lock p at the same time. This imposes a truly semantic sequen-
tialisation constraint (unlike the sequentialisation in Fig. 3 (b), which is merely due to an
inadequate semantics-changing encoding). The traditional unfolding techniques cannot take
advantage of the fact that the processes are otherwise independent. Indeed, when the exam-
ple from Fig. 9 is scaled to n processes, a complete unfolding prefix is of size O(2n) and a
complete MP is still of size O(n2) when produced by the tool Punf.

It is conceivable that this case could be handled by treating locks explicitly and annotating
transitions with locking (P) and unlocking (V) actions, like in Fig. 9 (b). When multiple locks
are involved, their use may introduce circular precedence constraints that can be captured
with, e.g. the Lock Causality Graphs of [Kah09]. A suitably defined unfolding for such a
case would then unfold both processes independently, only demanding that configurations
do not include circular lock constraints. One easily observes that in such a setting, like
in ours, an event may have multiple histories that would need to be taken into account to
determine cutoffs. In Fig. 9 (b), for instance, t2 may occur either individually or in a context
in which t1, u1 must have occurred before it. It is therefore quite conceivable that locks could
be seamlessly integrated with CMPs as they once again exhibit similar characteristics. To
conclude, an interesting perspective for the future research would be to develop a generic
framework that handles such effects.

References

[BBC+12] Paolo Baldan, Alessandro Bruni, Andrea Corradini, Barbara König, César Ro-
dríguez, and Stefan Schwoon. Efficient unfolding of contextual Petri nets. TCS,
449:2–22, 2012.

[BCKS08] Paolo Baldan, Andrea Corradini, Barbara König, and Stefan Schwoon. McMil-
lan’s complete prefix for contextual nets. ToPNoC, 1:199–220, 2008. LNCS 5100.

[BCM01] Paolo Baldan, Andrea Corradini, and Ugo Montanari. Contextual Petri nets,
asymmetric event structures, and processes. Inf. Comput., 171(1):1–49, 2001.

23

[Cor96] James C. Corbett. Evaluating deadlock detection methods for concurrent soft-
ware. IEEE Transactions on Software Engineering, 22:161–180, 1996.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control. Com-
mun. ACM, 8(9):569ff, September 1965.

[ERV02] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan’s
unfolding algorithm. Formal Methods in System Design, 20:285–310, 2002.

[Hel99a] Keijo Heljanko. Deadlock and reachability checking with finite complete prefixes. Li-
centiate’s thesis, Helsinki University of Technology, 1999.

[Hel99b] Keijo Heljanko. Minimizing finite complete prefixes. In Proc. CS&P, pages 83–95,
1999.

[JK91] Ryszard Janicki and Maciej Koutny. Invariant semantics of nets with inhibitor
arcs. In Proc. CONCUR, volume 527 of LNCS, pages 317–331, 1991.

[Kah09] Vineet Kahlon. Boundedness vs. unboundedness of lock chains: Characterizing
decidability of CFL-reachability for threads communicating via locks. In Proc.
LICS, pages 27–36, 2009.

[Kho] Victor Khomenko. Punf. http://homepages.cs.ncl.ac.uk/victor.khomenko/
tools/punf/.

[Kho03] Victor Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
thesis, School of Computing Science, Newcastle University, 2003.

[KKKV06] Victor Khomenko, Alex Kondratyev, Maciej Koutny, and Walter Vogler. Merged
processes – a new condensed representation of Petri net behaviour. Act. Inf.,
43(5):307–330, 2006.

[KM11] V. Khomenko and A. Mokhov. An algorithm for direct construction of complete
merged processes. In Proc. Petri Nets, LNCS 6709, pages 89–108, 2011.

[McM92] Kenneth L. McMillan. Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits. In Proc. CAV, LNCS 663, pages 164–177,
1992.

[MR94] Ugo Montanari and Francesca Rossi. Contextual occurrence nets and concurrent
constraint programming. In Dagstuhl Seminar 9301, volume 776 of LNCS, pages
280–295, 1994.

[Ris94] Gioia Ristori. Modelling Systems with Shared Resources via Petri Nets. PhD thesis,
Department of Computer Science, University of Pisa, 1994.

[Rod] César Rodríguez. Cunf. http://www.lsv.ens-cachan.fr/~rodriguez/tools/
cunf/.

24

http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/

[RS12] César Rodríguez and Stefan Schwoon. Verification of Petri Nets with Read Arcs.
In Proc. CONCUR, volume 7454 of LNCS, pages 471–485, September 2012.

[RSB11] César Rodríguez, Stefan Schwoon, and Paolo Baldan. Efficient contextual unfold-
ing. In Proc. CONCUR, volume 6901 of LNCS, pages 342–357, September 2011.

[RSK13] César Rodríguez, Stefan Schwoon, and Victor Khomenko. Contextual merged
processes. In Proc. ICATPN, volume 7927 of LNCS, pages 29–48, June 2013.

[RTM04] Darsh P. Ranjan, Daijue Tang, and Sharad Malik. A comparative study of 2QBF
algorithms. In Proc. SAT, 2004.

[Val98] Antti Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic
Models, volume 1491 of LNCS, pages 429–528. Springer, Berlin Heidelberg, 1998.

[VSY98] Walter Vogler, Alexei L. Semenov, and Alexandre Yakovlev. Unfolding and finite
prefix for nets with read arcs. In Proc. CONCUR, volume 1466 of LNCS, pages
501–516, 1998.

25

	1 Introduction
	2 Basic Notions
	3 Contextual Merged Processes
	4 Computing and Analysing Complete CMPs
	4.1 CMP Construction
	4.2 Model Checking CMPs

	5 Experiments and Case Studies
	5.1 Interplay Between Read-Arcs and Choice
	5.2 Dijkstra's Mutual Exclusion Algorithm
	5.3 Assorted Benchmarks

	6 Conclusions and Future Work

