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A  REWRITING  MACHINE
AND  OPTIMIZATION  OF  STRATEGIES  OF  TERM
REWRITING

A.  A.  Letichevskiia and  V.  V.  Khomenkob UDC  623/518.3/517.5

An algebraic specification of a new rewriting machine for fast rewriting of terms is considered.
Theorems on the correctness of this specification are proved. A method for optimization of a strategy of
iterative  rewriting  is  proposed.
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Currently, the paradigm of algebraic programming becomes one of the most important paradigms of declarative
programming. Algebraic programming is based on methods of term rewriting [1], which are widely used independently and
in programming systems based on other paradigms (in functional, logical, object-oriented, and agent-based programming, in
computer algebra and systems of theorem proving). Among systems of algebraic programming that appeared in recent years,
noteworthy are Maude, Elan, Cafe-obj, and APS [2–7]. The theory of rewriting systems is developed in detail and is
presented,  for  example,  in  [8,  9].

The system of algebraic programming (APS) was created in V. M. Glushkov Cybernetics Institute of the National
Academy of Sciences of Ukraine in the early nineties. The system is a professionally oriented tool for developing applied
systems and is based on algebraic and logic models of object domains. The basic means of programming are systems of
rewriting rules. The algebraic programming language APLAN used in the system integrates fundamental paradigms of
programming and its semantics can be easily extended with the help of metaprogramming, which is also based on rewriting.

Fast term rewriting is conditioned by the use of efficient parallel matching for realization of the rewriting machine
considered in this article. The corresponding program was developed by S. V. Konozenko and was realized in the language C
in  the  first  version  of  APS.

This article deals with a new version of the rewriting machine developed for a new version of the APS system. The
machine is represented in the language APLAN used in the capacity of the language of executable specifications. Such a
representation allows one to construct the proof of correctness of the corresponding program, to quickly develop a reliable
implementation based on the programming language (C++) being used, and to obtain new modifications of the machine that
support  various  special  rewriting  strategies.

1.  THE  ALGEBRAIC  PROGRAMMING  SYSTEM  APS

The main distinctive feature of APS is the fact that the use of systems of rewriting rules can lean upon various
strategies of rewriting. This approach allows one to consider not only canonical (confluent and Noetherian) but also any other
systems of rewriting rules, and algebraic programs can be constructed as combinations of systems of rules with various
strategies  of  using  them.
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Another distinctive feature of APS is the possibility of combining the imperative and algebraic programming
methods. The input language (APLAN) of the system allows one not only to describe an algebraic environment (components,
operations, and identities of a data algebra) but also to write procedures and to call them from algebraic programs (systems of
rewriting rules). Convenient tools for representation of procedures allow the user to manipulate standard strategies and those
developed by him for applying rewriting rules. Considering algebraic expressions (terms) up to some congruence relations,
rewriting strategies can use various properties of a data algebra. To this end, the mechanism of canonical (normal) forms of
algebraic expressions is used. This mechanism operates whenever some rewriting rule is applied. The choice of canonical
forms is determined by the requirements of an object domain and is controlled by the user. A more complete description of
application  of  systems  of  rewriting  rules  and  computational  strategies  can  be  found  in  [5–7].

2.  SYSTEMS  OF  REWRITING  RULES

In  APS,  the  syntax  of  systems  of  rewriting  rules  is  as  follows:

<system  of  rewriting  rules>::  =  rs(<list  of  variables>)
(<list  of  rules  separated  by  points>)

<rule>::=<simple  rule>  |  <conditional  rule>
<simple  rule>::=<algebraic  expression>  =

<algebraic  expression>
<conditional  rule>::=<condition>–>(<simple  rule>)
<variable>::=<identifier>

In APS, rewriting strategies are based on two basic internal proceduresapplr andappls. The operatorapplr( , )t R tries
to apply a rule of a systemR to a termt. If applicable rules are absent, then the variableyes assumes the value 0; otherwise,
the first applicable rule is applied and the variableyes assumes 1. A simple rule is applied as usual, namely, the term is
matched with the left side of the rule and if the result is positive, then the term is replaced by the right side of the rule and the
substitution of its variables is made. Then the term obtained is reduced to its canonical form with the help of rules similar to
the rules of computation of the value of a term but without replacing the values of names. The application of a conditional
rule begins with matching. If the result is positive, then the condition is reduced to its basic canonical form by the canonizing
functionCAN. If the result equals 1, then the rule will continue to be applied as usual; otherwise, the application is canceled.

In the new version of APS, the semantics of application of conditional rewriting rules is changed as follows: in
computing a condition, the variables matched are protected from reduction to canonical forms. The authors’ experience
suggests that this semantics is more convenient, and the compatibility with the previous semantics can be obtained by the
explicit  call  of  the  functionCAN.

3.  STRATEGIES  OF  REWRITING

A strategy can be defined as a set of allowable histories of rewriting for a given set of rules. In order that a rewriting
strategy be constructive, it should be defined with the help of an algorithm that recognizes or generates allowable histories of
rewriting. The possibility of using a wide spectrum of various types of strategies renders the language of algebraic
programming flexible, convenient, and expressive. In practice, of great interest are local computational strategies that can be
defined  with  the  help  of  answers  to  the  questions  given  below.

• What is the order in which the subexpressions of a given expression are observed and the applicability of rules is
checked?

• What  is  the  order  in  which  the  rules  are  observed?
• What  is  the  continuation  of  the  process  after  successful  completion  of  the  preceding  step  of  rewriting?
• What  are  the  conditions  of  termination  of  rewriting?

There are the following two main answers to the first question: the top-down search (the outermost occurrence) and
bottom-up search (the innermost occurrence). These answers correspond to calls by name and by value in functional
programming.

The simplest answer to the second question is the examination of relationships according to some order; the use of the
next relationship depends on the preceding one and on whether it is possible to use it in principle. After successful
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application of some relationship, it can be applied to the same subexpression until it is possible, and then the search is being
continued in the same or opposite direction. Another possibility is to begin with the very outset whenever some rule can be
applied  (as  in  Markov  algorithms).

After completion of the complete traversal of an expression, the rewriting process can be terminated (a single-pass
application) or is continued in the same or opposite direction (a repeated application). An expression is called normalized if
none of the rules is applicable to its subexpressions. A strategy is called normalizing if it comes to an end only after obtaining
a normalized expression. A wide class of local strategies can be defined by the representation of recursive programs in the
APLAN language of APS. Some basic rewriting strategies used in this system (all of them are ultimately reduced to the
repeated  use  of  the  basic  strategyapplr in  various  contexts)  are  as  follows:

appls:=proc(t,  p)loc(Yes)(
applr(t,  p);
Yes:=yes;
while(yes,

applr(t,  p)
);
yes:  =  Yes

);

ntb:=proc(t,  R)loc(s,  i)(
appls(t,  R);
forall(s=arg(t,  i),

ntb  (s,  R)
);
t:=can  (t)

);

nbt:=proc(t,  R)loc  (s,  i)(
forall(s=arg  (t,  i),

nbt  (s,  R)
);
appls(t,  R);
t:=can(t)

);

can_ord:=proc(t,  R1,  R2)loc(s,  i)(
t:=  can(t);
appls(t,  R1);
forall(s=arg(t,  i),

can_ord(s,  R1,  R2)
);   can_up(t,  R2)

);

can_up:=proc(t,  R)loc(s,  i)(
appls(t,  R);
while(yes,

forall(s=arg(t,  i),
can_up(s,  R)

);
appls  (t,  R)

);
t:=can  (t);
merge  (t)

);

The procedureappls applies a systemR to a termt until it is possible and produces the resultyes =1 if the application
is successful;nbt is a single-pass bottom-up strategy andntb is a single-pass top-down strategy. The strategy
can_ ord( , , )t R S traverses the tree representing a term from the top down and from left to right. After the first arrival at a
node in traversing from above, it applies a systemR and, after the complete traversal of all the daughter nodes and return to
the node, a systemS is applied. If the application ofS is successful, thenS is repeatedly applied to all the daughter nodes.
After complete processing of each node, the corresponding terms are ordered with respect to associative-commutative
operations  (the  functionmerge merges  the  terms  that  are  already  ordered).
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4.  A  REWRITING  MACHINE

The rewriting machine (REM) being considered realizes the rewriting strategyapplr. This strategy is fundamental
and, based on it, all the other strategies are specified. Therefore, the efficiency of its realization is of paramount importance.
Substituting the strategyapplr in other strategies and performing appropriate transformations, one can obtain specialized
rewriting  machines  for  these  strategies.

To  obtain  an  efficient  realization  of  the  strategyapplr,  the  considerations  presented  below  are  used.
• If the left sides of several adjacent rules are identical, then they can be matched only once (in some cases, this kind

of optimization can also be used for nonadjacent rules; the conditions under which two rules can be interchanged are
considered  below).

• We need not consider the rules in which the main operation of the left side differs from the main operation of the
term being processed (i.e., rewriting rules can be grouped according to the main operations of their left sides). Similar
considerations  also  hold  for  the  main  operations  of  subterms  of  the  left  sides  of  rules.

For realization of the above considerations, the rewriting machine REM uses a special syntax for representation of
systems  of  rewriting  rules,  namely,  the  input  language  REM.

4.1. The Syntax of the REM Language.The syntax of the language of the rewriting machine is expressed by the
following  parametric  grammar:

<closed  REM-program>::=
<program  heading>  <program  of  rank  1>

<program  heading>::=Rs  array  (<list  of  underlines>)
<list  of  underlines>::  =  _  |  _,  <list  of  underlines>
<REM-program>::=<program  of  rank  k>
<program  of  rank  k>::=<protected  program  of  rank  k>  |

<protected  program  of  rank  k>  +  <program  of  rank  k>
<protected  program  of  rank  0>::=rewrite(<term>)  |

If(<term>, rewrite(<term>))
protected  program  of  rank  n>::=match(<term>)

<program  of  rank  n-1>  |
test(<m-type>)  <program  of  rank  n+m-1>

Here,m nand are positive integers,k is a nonnegative integer, <term> is a term (algebraic expression) of the APLAN
language,< m-type> is a term of the formω((), . . . , ()), whereω is a label of aritym. The terms of the formvar( )i , wherei is
a positive integer that does not exceed the number of underlines in the program heading, and only such terms are considered
as variables of closed programs. Programs of rankk are components of completely generated programs of rank 1. The ranks
of the corresponding components should be balanced just as the components of a term are balanced in a parenthesis-free
notation. As will be shown below, each closed REM-program uniquely specifies some system of rewriting rules of the
APLAN  language  (up  to  variable  renaming).

4.2. Algebra of REM-Programs.Let T ZΩ ( ) be the basic algebra of terms of some algebraic program. A setΩ is the

signature of operations of this algebra, and a setZ is the generating set of terms of arity 0. REM-programs form a multisort
algebraR Rk k N= ∈( ) over T Z VΩ ( )∪ , whereV is the set of variables of these programs. Here,Rk is the set of programs of
rank k.  The  operations  of  the  algebra  being  considered  are  as  follows:

(1) + × → >: , ;R R R kk k k 0
(2) test ART( ((), . . . , ())): , , , , ( )ω ω ωR R m n mn m n+ − → > > ∈ =1 0 0 Ω ;
(3) match( ): , , ( )t R R n t T Z Vn n→ ≥ ∈ ∪+1 0 Ω ;
(4) rewrite( ) , ( )t R t T Z V∈ ∈ ∪0 Ω ;
(5) If rewrite( , ( )) , , ( )u t R u t T Z V∈ ∈ ∪0 Ω .

The operations of the form (4) and (5) have the zero arity and are generating elements of the algebra of
REM-programs. As follows from the definitions, any program of rankk can be represented in the form of an expression of
the  algebra  of  REM-programs.

Definition. We call a REM-program amatch-program if an operation of the formtest( ((), . . . , ()))ω is not used in it

and  anelementary program  if  the  operation  +  is  not  used  in  it.
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Elementary  match-programs  of  rank  1  are  of  the  form

match rewritet t ′

or  of  the  form
match If rewritet s t( , ).′

Let P S Qm=Rs be a closed REM-program, whereSm is an array consisting ofm underlines,Q is an elementary
match-program of rank 1, andV m=( ( ), , ( ))var var1 K . Then the program is a system of the formrs V t t( )= ′ in the first case
and a system of the formrs V s t t( ( ))− > = ′ in the second case. An arbitrary match-program of rank 1 is the “sum” of
elementary programs. IfQ is an arbitrary match-program of rank 1, thenP must be equivalent to the system of rewriting rules
corresponding to the elementary component programs of the programQ. Based on such a correspondence, an arbitrary
system of rewriting rules can be easily translated into a REM-program with the help of the following simple translator (the
program  heading  is  assumed  to  be  already  translated):

equ2match:=rs(u,  s,  t,  p,  q,  r)(
(s  =  t)  =  match(s)rewrite(t),
(u–>(s  =  t))  =  match(s)If(u,  rewrite(t)),
(p,  q)  =  equ2match  p  +  equ2match  q

);
The  expressions

match( )t

rewrite( )t

If rewrite( , ( ))u t

test( ((), ()))ω K

form the system of commands of the rewriting machine. Let us consider the meaning of these commands. The
commandmatch matches the input term with a samplet. The commandrewrite realizes rewriting, andIf is the
command of conditional rewriting of the input term in a new termt. The commandtest checks whether the main
operation  of  the  input  term  is  the  operationω.

4.3. Equivalence of REM-Programs.Let us consider the following system of identities on the set of REM-programs:

( ) ( )p q r p q r+ + = + + (1)

match match match( )( ) ( ) ( )t p q t p t q+ = + (2)

test test test( )( ) ( ) ( )t p q t p t q+ = + (3)

test match match match( ((), . . . ,())) ( ) . . . ( ) ( (ω ωt t p tm1 = 1, . . . )) ,t pm (4)

where p q r, , and are arbitrary programs of the same kind in each identity andm = ART( ( . . . ))ω . Identities (1)-(4)
determine a congruence relation~ on the set of REM-programs, which is called the syntactic equivalence. If identities
(1)-(4) are considered as a system of rewriting rules, then we can see that it has the important properties considered
below.

• In the system, all the rules are left-linear and critical pairs are absent, i.e., the system is regular and, hence, it is
confluent.

• The  system  of  rewriting  rules  is  Noetherian.
These properties and the Knuth-Bendix theorem immediately imply the existence and uniqueness of the canonical

form  of  any  REM-program  with  respect  to  these  identities.  We  can  now  prove  the  following  result.

THEOREM. Let p be some REM-program of rankk, and letp′ be its canonical form. Thenp′ is of the form
i

n

ip
=
∑

1

,

where pi are  elementary  match-programs  of  rankk i n, , . . . ,=1 .
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To prove the theorem, we note that any REM-program can be transformed with the help of equalities (1)–(3) into the
sum of elementary programs. Next, with the help of relationship (4), all the occurrences of the operationtest can be
eliminated from each elementary program, provided that its rank is preserved. In the APLAN language, the algorithm of
reduction  of  a  REM-program  to  its  canonical  form  is  of  the  form

NAMES  t2m_up,  test2match;
test2match:=rs(t,  p,  q)(

match(t)p  =  t2m_up  match(t)  test2match  p,
test(t)p  =  t2m_up  test(t)  test2match  p,
p  +  q  =  t2m_up  (test2match  p  +  test2match  q)

);
NAME  Starg;
t2m_up:=rs(t,  p,  q,  r)(

(p+q)+r  =  t2m_up  p+t2m_up(q  +  r),
match(t)(p  +  q)  =  match(t)p+t2m_up  match(t)q,
test(t)  (p  +  q)  =  Starg(ART(t),  1,  t,  p)+t2m_up  test(t)q,
test(t)  p  =  Starg(ART(t),  1,  t,  p)

);

Starg:=proc(x)(
appls(x, Starg_rs);
return  x

);
Starg_rs:=  rs(m,  i,  t,  p,  q)(

(m,  m,  t,  match(p)q)  =  match(starg(t,  m,  p))q,
(m,  i,  t,  match(p)q)  =  (m,  i  +  1,  starg(t,  i,  p),  q)

);

The  functionstarg( , , )t i p sets  theith  argument  of  the  main  operation  of  a  termt to p.
4.4. The Algorithm of the Rewriting Machine. As follows from the theorem, a system of rewriting rules can be

assigned to each closed REM-program. This implies the following formal requirement on the algorithm of functioning of the
rewriting machine: the algorithm must calculate a function of two arguments. The first argument is the term to be rewritten
and the second argument is a rewriting program (REM-program). The result to be obtained must be the rewriting of the initial
term by application of the corresponding system of rewriting rules to it. In other words, it is required to write a procedure
napplr( , )t p that transforms a termt in the same way asapplr( , )t R , whereR is the rewriting system corresponding to a
program p.  The  upper  level  of  the  programnapplr is  of  the  form

NAME  napplr; NAME  appl;
napplr:=proc(t,p)loc(pr,Yes,s)(

let(p,  Rs  pr  p);
s–>(p,t  Nil,pr)+Nil;
appls(s,  appl);
let(s,1:s);
yes–>t:=  s

);
The basic part is represented by a system of rewriting rulesappl, which is iteratively applied to a states of the

rewriting machine. The initial state contains a programp of rank 1, the initial termt with the constantNil applied to it, and an
array pr consisting of underlines. This is the precondition specifying the requirements on the operatorappls appl( , )s . The
postcondition is as follows. If the systemR corresponding to the programp is applicable to the termt, then, as a result of
rewriting, we haves R t= ( : ( ))1 . Otherwise, we haves =0.

Let  us  consider  the  system  of  rules  appl  given  below.
NAME  perform;
appl:=rs(p,q,r,t,pr)(

(1:  t  )  +  r  =  (1:t),
(p  +  q,  t,  pr)  +  r  =  (p,t,new(pr))  +  (q,t,pr)  +  r,
(p,  t,  pr)  +  r  =  perform(p,t,pr)+  r

);
NAMES  vsc,  do_match,  check_match,  concline;
perform:=rs(p,q,s,t,pr)(

(rewrite(q),  t,pr)  =  (1:vsc(q,pr)),
(match(p)q,  s  t,pr)  =  check_match(q,t,do_match(p,s,pr)),
(test(p)q,  s  t,pr)  =  is_type(p,s)&(q,concline(s,t),pr),
(If(p,q),  t,pr)  =  (vsc(p,pr)==1)&(q,t,pr)
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);
check_match:=rs(p,t)(

(p,  t,  0)  =  0
);

The  algebraic  programappl uses  the  auxiliary  functions  listed  below.
• The function do_ match( , , )p s pr has the following arguments:p is a term that can depend on variables

( ( ), . . . , ( ))var var1 m , s is a constant term, andpr is anm-dimensional array of already determined values of the variables. If
the value of a variable is not determined, then it is assumed to be an underline. We denote bySub p pr( , ) the result of
substitution of already determined values of the variables inp. The termt is matched with the sampleSub p pr( , ). If this
matching  succeeds,  then  a  new  (extended)  value  ofpr is  returned;  otherwise,  the  value  0  is  returned.

• The  functionis_ type( , )p s determines  whether  the  main  operations  of  termsp and s coincide.
• The procedurevsc( , )p pr reduces a termp to its basic canonical form with the help of the functioncan together

with the substitution of the values of variables from the arraypr in it. It realizes the final part of rewriting and, hence, it must
be realized according to the requirements formulated in [7]. In particular, the semantics of the application operation and that
of  the  operation  ‘() that  cancels  the  use  of  canonization  must  be  taken  into  account.

• The  functionconcline( ( , . . . , ), )ω t t tm1 returns  the  term( . . . )t t t tm1 2 .
To  prove  the  correctness  of  the  operatorappls appl( , )s ,  where

s p t pr= ( , , , )Nil

satisfies the precondition for the initial state, we will use the theorem and prove the correctness by induction on the
number  of  rewriting  steps  required  for  the  reduction  of  the  programp to  its  canonical  form.

The basis of induction is easily checked. Letp p~ ′, i.e., p is transformed intop′ in one step, and let, forp′, the
correctness be proved. Considering different cases of rewriting rules and also the cases where the result of computation of the
function do_ match is equal to zero, we obtain that, after a finite number of steps, the result of rewriting the state
s p t pr= ( , , )Nil by the systemappl coincides with the result of rewriting the states p t pr= ′( , , )Nil for which the induction
hypothesis is fulfilled. Noting that this statement also implies the termination of the process of rewriting, we obtain the proof
of  the  complete  correctness  of  the  operatorappls appl( , )s .

The functions that are realized in the APLAN language and are used in the algorithm of the rewriting machine are
presented  below  without  any  substantiation.

NAME  Pr;
Pr:=Nil;
vsc:=proc(t,pr)loc(opr)(

opr:=Pr;
Pr–>new(pr);
t–>vsc_rec(t);
Pr–>opr;
return  (t)

);
vsc_rec:=proc(t)loc(i,j,r,s,pr,p)(

let(t,var(i));
yes–>return  Pr(i);
is_type(t,  ‘(‘(Nil))  )–>(

t–>vs  arg(t,1);
return(t)

);
let(t,p  s);
yes–>(

p–>is_rs(p);
~(equ(p,0))–>(

t–>vsc_rec(s);
napplr(t,p);
return(t)

)
);
t–>new(t);
for(i:=1,i<=ART(t),i:=i+1,

s–>arg(t,i);
let(s,var(j));
yes–>arg(t,i)–>Pr(j)
else  arg(t,i)–>vsc_rec(s)
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);
t–>can(t);
return(t)

);
vs:=proc(p)loc(i,s)(

let(p,var(i));
yes–>return  Pr(i);
p–>new(p);
for(i:=1,  i  <=  ART(p),  i:=i+1,

s–>arg(p,i);
is_var(s)–>

arg(p,i)–>arg(Pr,arg(s,2))
else  arg(p,i)–>vs(s)

);
return(p)

);
is_rs:=proc(t)(

let(t,Rs  _);
yes–>return  t;
isname(t)–>return  is_rs  vl(t);
return  0

);
do_match:=proc(l,t,pr)loc(opr)(

opr:=Pr;
Pr–>new(pr);
match_rec(l,t)–>(

pr–>Pr;
Pr–>opr

)else(
pr–>0;
Pr–>opr

);
return  pr

);
match_rec:=proc(l,t)loc(i,npr)(

let(l,var(i));
yes–>(

equ(Pr(i),  _  )–>(
Pr(i)–>t;
return  1

);
return  equ(Pr(i),t)

);
is_type(t,l)–>(

for(i:=1,i  <=ART(l),i:=i+1,
npr–>match_rec(arg(l,i),arg(t,i));
equ(npr,0)–>return  0

);
return  1

);
return  0

);
NAME  Con;
concline:=proc(s,p)loc(m,i)(

m:=ART(s);
for(i:=m,  i>0,  i:=i-1,

p–>Con(arg(s,i),p)
);
return  p

);
Con:=rs(x,y)(

(x,y)  =  ‘(x  y)
);
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5.  OPTIMIZATION  OF  REM-PROGRAMS

A system of rewriting rules can be represented by many different ways in the form of a REM-program. Therefore, the
problem of improving its code arises, i.e., the problem of construction of a REM-program with the smallest possible
execution  time.

Different programs have different execution times that are equal to the sums of the execution times of their
commands. Note that the time complexity of the commandtest( . . . ) is bounded and the complexity of the commandmatch( )t
is proportional to the size of a termt. Unfortunately, the canonical form of a REM-program is frequently not optimal in the
sense of execution time. As an example, let us consider the following system of rewriting rules that realizes fast
exponentiation:

pw:=rs(x,n)(
x^0=1,
x^1=x,
x^2=x*x,

(isnum(n)&((n  mod  2)==0))–>(
x^n=pw(pw(x^(n/2))^2)

),
isnum(n)–>(

x^n=x*pw(x^(n-1))
)
);

After  translation  with  the  help  ofaplan2rem,  we  obtain  the  following  REM-program:

pw:=Rs  array(_,_)(
match(var(1)^0)rewrite(1)
+match(var(1)^1)rewrite(var(1))
+match(var(1)^2)rewrite(var(1)*var(1))
+match(var(1)^var(2))

If(isint(var(2))&(var(2)  mod  2==0),
rewrite(pw(pw(var(1)^(var(2)/2))^2)))

+match(var(1)^var(2))
If(isint(var(2)),

rewrite(var(1)*pw(var(1)^(var(2)-1))))
);

It is easy to see that this program is in its canonical form (REM-programs that are obtained as a result of functioning
of aplan2rem are always in their canonical forms!). It successively examines (before the first application) all the rules of the
system  and,  hence,  is  inefficient.  An  optimized  version  of  this  program  is  as  follows:

pw:=Rs  array(_,_)(
test(NIL  ^  NIL)

match(var(1))(
match(0)rewrite(1)
+match(1)rewrite(var(1))
+match(2)rewrite(var(1)*var(1))
+match(var(2))(

If(isnum(var(2))&(var(2)  mod  2==0),
rewrite(pw(pw(var(1)^(var(2)/2))^2)))

+If(isnum  var(2),
rewrite(var(1)*pw(var(1)^(var(2)-1))))

)
)

);
To  obtain  optimized  programs,  an  optimizer  realized  in  the  form  of  the  following  APLAN-program  is  used:

NAMES  split_atom,split_type,split_arg,m2t;
match2test:=rs(p,q,i,s)(

match(var(i))p  +  q  =  m2t  split_atom  (match(var(i))p  +  q),
(ART(‘(s))==0)–>(

match(s)p  +  q  =  m2t  split_atom  (match(s)p  +  q)
),

match(s)p  +  q  =  m2t  split_type  (match(s)p  +  q)
);
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m2t:=rs(s,p,q)(
p+q  =  m2t  p  +  match2test  q,
match(s)p  =  match(s)match2test  p,
test  (s)p  =  test  (s)match2test  p

);

split_atom:=rs(p,q,r,s)(
match(s)p  +  match(s)q  +  r  =

split_atom(match(s)turn_right(p  +  q)  +  r),
match(s)p  +  match(s)q  =

match(s)turn_right(p  +  q)
);

NAME  turn_back;
split_type:=rs(p,q,r,s,t,u,v,i)(
/*  match  */

match(s)p  +  match(s)q  +  r  =
split_type(match(s)turn_right(p+q)  +  r),

match(s)p  +  match(s)q  =
split_type(match(s)turn_right(p+q)),

match(s)p  +  match(var(i))q  +  r  =
match(s)p  +  match(var(i))q  +  r,

match(s)p  +  match(var(i))q  =
match(s)p  +  match(var(i))q,

is_type(‘(t),’(s))–>(
match(s)p  +  match(t)q  +  r  =

split_type(test(type(s))split_arg(s,p)+match(t)q  +  r)
),
is_type(‘(t),’(s))–>(

match(s)p  +  match(t)q  =
split_type(test(type(s))split_arg(s,p)+match(t)q)

),

match(s)p  +  match(t)q  +  r  =
turn_back(match(t)q+split_type(match(s)p  +  r)),

/*  test  */
test(s)p  +  match(var(i))q  +  r  =

test(s)p  +  match(var(i))q  +  r,
test(s)p  +  match(var(i))q  =

test(s)p  +  match(var(i))q,
is_type(‘(t),’(s))–>(

test(s)p  +  match(t)q  +  r  =
split_type(test(s)turn_right(p+
split_arg(t,q))+r)

),
is_type(‘(t),’(s))–>(

test(s)p  +  match(t)q  =
test(s)turn_right(p+split_arg  (t,q))

),
test(s)p  +  match(t)q  +  r  =

turn_back(match(t)q  +  split_type(test(s)p  +  r))
);

turn_back:=rs(t,p,q,r,s)(
match(t)p+test(s)q+r  =  test(s)q+match(t)p+r,
match(t)p+test(s)q  =  test(s)q+match(t)p,
match(t)p+match(s)q+r  =  match(s)q+match(t)p+r,
match(t)p+match(s)q  =  match(s)q+match(t)p

);
The  functionsplit_ arg( ( , , ), )f t t pm1 K returnsmatch( )t1 K match( )t pm .
To substantiate the correctness of the optimizer, the identities given below must be added to the relation of the

syntactic  equivalence~ specified  in  Sec.  4.3.
• The  operation  +  is  associative:

( ) ~ ( ) .p p p p p p1 2 3 1 2 3+ + + + (5)
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• match( )t and test( )t are  additive  operations,  i.e.,  we  have

match match match( ) ( ) ~ ( )( )s p s q s p q+ + (6)

test test test( ) ( ) ~ ( )( ) .s p s q s p q+ +

• The  decomposition  rule  is  as  follows:

match test match( ( , . . . , )) ~ ( ((), . . . ,())) ( ) . .ω ωt t p tm1 1 . ( )match t pm , (7)

where ω is  an m-ary  operation  of  the  algebraT ZΩ ( ).
• The  commutativity  rule  is  as  follows:  ift and s cannot  be  unified,  then  we  have

match match match match( ) ( ) ~ ( ) ( )t p s q s q t p+ + (8)

match test test match( ) ( ) ~ ( ) ( )t p s q s q t p+ +

test match match test( ) ( ) ~ ( ) ( )t p s q s q t p+ +

test test test test( ) ( ) ~ ( ) ( )t p s q s q t p+ +

Comment  1. It  follows  from  the  associativity  of  the  operation  +  that

p p p p1 2 1 2+ +~ ( ),turn_right

where  the  functionturn_right (in  this  case)  narrows  the  brackets  for  the  upper  sums  to  the  right.
Comment 2. Relationships (6) and (7) coincide with the rules of syntactic equivalence. They imply the statement

formulated  below.
COROLLARY. If ART( )t ≠ 0,  then  we  have

match test type split_ arg( ) ~ ( ( )) ( , )t p t t p .

Comment 3. In the last three cases of the commutativity rule, the check of the possibility of unification is reduced to
the  call  of  the  functionis_ type that  checks  the  equality  of  the  main  labels  of  its  arguments.

In what follows, to substantiate the correctness of the optimizer, it suffices to show that the resulting program is
syntactically equivalent to the input one. To do this, a simple check of the fact that each rewriting rule retains the syntactic
equivalence.  In  this  case,  it  is  necessary  to  take  into  account  the  following  facts:

• in the right side, the application operation is interpreted only if its first argument is the name of a system of rewriting
rules;

• the  operation + is  nowhere  interpretable.
The proof of finiteness of the algorithm is carried out by induction on the construction of the term of a REM-program

and  presents  no  special  problems.

6.  OPTIMIZATION  OF  THE  STRATEGY appls

The strategyappls consists of iterations of the strategyapplr and can be specified by the following procedure:

appls:=  proc(t,  p)loc  (Yes)(
applr  (t,  p);
Yes:=  yes;
while(yes,

applr(t,  p)
);
yes:  =  Yes

);
The above optimization ofapplr automatically increases the efficiency ofappls, but some additional possibilities of

optimization still remain. In fact, some information on the structure of the term being processed remains after each iteration
and  can  be  used  at  the  succeeding  iterations.
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Example.Simulation of functioning of a finite-state automaton recognizing the representation of a natural number.
The  corresponding  system  of  rewriting  rules  is  of  the  form

AUT:=rs(q,h,t,x)(
(q0,  “+”,  t)  =  (q1,  t),
(q0,  “-”,  t)  =  (q1,  t),

isnum(h)–>
((q0,  h,  t)  =  (q2,  t)),

isnum(h)–>
((q0,  h  )  =  1),

isnum(h)–>
((q1,  h,  t)  =  (q2,  t)),

isnum(h)–>
((q1,  h)  =  1),

isnum(h)–>
((q2,  h,  t)  =  (q2,  t)),

isnum(h)–>
((q2,  h)  =  1),
(q,  x)  =  0

);

If the seventh rule was applied at some iteration, then any of the preceding six rules cannot obviously be applied at the
next iteration. This observation can be generalized as follows: if, at some iteration, a ruler is applied, then, at the next
iteration,  only  the  rules  whose  left  sides  are  unified  (in  finite  terms)  with  the  right  side  ofr can  be  applied.

If the right side ofr contains interpreted operations, then, in general, the form of the resulting term can differ from the
expected form. Therefore, before unification, all the subterms in the right side ofr that are of the formf t tn( , . . . , )1 , where f
is  an  interpreted  operation,  must  be  replaced  by  a  new  (free)  unification  variable.

The  idea  of  optimization  is  as  follows:
(1) a system of rewriting rules is modified so that, after application of a rule, not only the resulting term but also the

number  of  this  rule  is  returned;
(2) systemsRi , i n=1, . . . , , are constructed that consist of exactly the rules that can be applied after using theith rule;
(3) after each iteration, the numberi of the rule applied is determined and, at the next iteration, the corresponding

systemRi is  applied.
For example, for the above-mentioned system that simulates the functioning of the above finite-state automaton, the

collection  of  systems  is  of  the  form

/*  R1,  R2  */
rs(q,h,t,x)(

(q1,h,t)  =  (5,(q2,t)),
isnum(h)–>(

(q1,h)  =  (6,1)
),

(q,x)  =  (9,0)
);

/*  R3,  R5,  R7  */
rs(q,h,t,x)  (
isnum(h)–>

(q2,h,t)  =  (7,(q2,t)),
isnum(h)–>(

(q2,h)  =  (8,1)
),

(q,x)  =  (9,0)
);
/*  R4,  R6,  R8,  R9  */
rs(q,h,t,x)  ();

Next, the procedureappls must first apply the complete system of rewriting rules and then, depending on the number
of  the  last  rule  applied,  it  applies  the  corresponding  reduced  systems.

Comment 4.Many basic strategies (ntb nbt, , etc.) useappls and, hence, their operation speed will also increase.

The strategyntb can be similarly optimized but the subterms of the right sides must be unified instead of the right
sides.

The possibilities of optimization in systems based on rewriting rules are by no means exhausted by the approach considered
in this paper. A deeper optimization can be obtained with the use of the idea of mixed computations, as is done in[10].
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