
Detecting State Coding Conflicts in STG Unfoldings Using SAT

Victor Khomenko Maciej Koutny Alex Yakovlev

University of Newcastle upon Tyne, U.K.

{Victor.Khomenko,Maciej.Koutny,Alex.Yakovlev}@ncl.ac.uk

Abstract

The behaviour of asynchronous circuits is often de-
scribed by Signal Transition Graphs (STGs), which are
Petri nets whose transitions are interpreted as rising
and falling edges of signals. One of the crucial prob-
lems in the synthesis of such circuits is that of identify-
ing whether an STG satisfies the Complete State Cod-
ing (CSC) requirement, e.g., by using model checking
based on the state graph of an STG.

In this paper, we avoid constructing the state graph
of an STG, which can lead to state space explosion,
and instead use only the information about causality
and structural conflicts between the events involved in
a finite and complete prefix of its unfolding. The algo-
rithm is derived by adopting the Boolean Satisfiability
(SAT) approach. This technique leads not only to huge
memory savings when compared to methods based on
state graphs, but also to significant speedups.
Keywords: asynchronous circuits, automated synthe-
sis, complete state coding, CSC, Petri nets, signal tran-
sition graphs, STG, SAT, net unfoldings.

1. Introduction

Signal Transition Graphs (STGs) is a specification
language widely used for describing the behaviour of
asynchronous control circuits [3, 26]. They are a form
of interpreted Petri nets, in which transitions are la-
belled with the names of rising and falling edges of
circuit signals. Circuit synthesis based on STGs in-
volves: (i) checking the necessary and sufficient condi-
tions for the STG’s implementability as a logic circuit;
(ii) modifying, if necessary, the initial STG to make
it implementable; and (iii) finding appropriate boolean
covers for the next-state functions of output and inter-

nal signals and obtaining them in the form of boolean
equations for the logic gates of the circuit. One of
the commonly used STG-based synthesis tools, PET-
RIFY [4, 5], performs all of these steps automatically,
after first constructing the state graph of the initial STG
specification. A vivid example of its use is the design
of many circuits for the AMULET-3 microprocessor.
Since popularity of this tool is steadily growing, it is
very likely that STGs and Petri nets will increasingly
be seen as an intermediate (back-end) notation for the
design of large controllers.

In essence, the CSC problem consists in identify-
ing conflicts which occur when semantically different
reachable states have the same binary encoding. It
is often seen as one which consists of two parts: the
detection of coding conflicts, and the elimination of
them. The second part may be addressed, for exam-
ple, by means of changing the causality or ordering
constraints (i.e., adding extra places and arcs in the
STGs to make implicit timing assumptions explicit), or
by introducing ‘additional memory’ into the system in
the form of internal signals. A number of methods for
solving the CSC problem are available (see, e.g., [6],
for a brief review). Moreover, there are methods us-
ing unfoldings rather than state graphs [18]. In this
paper, we focus our attention on the first part, namely
efficient CSC conflict detection. Besides providing the
necessary input for methods resolving CSC conflicts,
it can also be seen as a relatively independent prob-
lem, as underlined in [1]. There, the first step of the
synthesis procedure was to enforce the CSC property
by means of the structural insertion of a memory sig-
nal for every place in the Petri net underlying the STG.
Then a heuristic-driven elimination of those signals
was applied iteratively, while the CSC condition was
true.

Some of CSC conflict detection methods, such

1

as [25], operate directly on the STG level, but they re-
strict the class of underlying Petri nets to, e.g., marked
graphs. Others, such as [4, 5], work in the state graph
framework and are general in terms of applicability to
the widest possible class of STGs (with bounded un-
derlying Petri Nets). In order to increase efficiency,
they often use symbolic (BDD-based) techniques to
represent the reachable state space and to capture im-
portant relationships (e.g., excitation and quiescent re-
gions, concurrency and conflict relations). While this
purely state-based approach is relatively simple and
well-studied [5], the issue of computational complex-
ity for highly concurrent STGs is quite serious due to
state space explosion. This puts practical bounds on
the size of control circuits, which are often restrictive,
especially if the STG models are not constructed by
a human designer but rather generated automatically
from high-level hardware descriptions.

In order to alleviate this problem, Petri net analy-
sis techniques based on causal partial order seman-
tics, in the form of Petri net unfoldings, had been ap-
plied for circuit synthesis [23,24]. The idea behind the
approach described there was to work with approxi-
mate boolean covers obtained for structural elements
of the unfolding, namely conditions and events, as op-
posed to the use of exact boolean covers for mark-
ings and excitation regions extracted from the state
graph. Although the results were still preliminary, they
demonstrated, for some examples, a clear superiority
— in terms of memory and time efficiency — of the
unfolding-based approach. The main shortcoming of
the work described in [23, 24] was that its approxi-
mation and refinement strategy was fairly straightfor-
ward and could not cope well with the ‘don’t care’
state subsets, i.e., sets of states which would have been
unreachable if the exact reachability analysis was ap-
plied. [16] has advanced the ideas of slices and cover
approximations of [23,24], and presented a theory and
algorithms for ‘fast’ and ‘refined’ detection of coding
conflicts. However, those algorithms have not yet been
implemented and proved efficient in experiments, and
in their ‘refinement’ part they still require the construc-
tion of the (partial) state space for the subsets of un-
folding cuts which evaluate a given boolean cover to
true. Bearing this in mind, there is a clear need for
further advancement of the unfolding-based methods,
both in theory and algorithms, for solving the above

mentioned synthesis tasks.
In [11, 13, 14], we proposed a solution for the CSC

conflict detection problem. We showed that the no-
tion of a coding conflict can be characterized in terms
of a system of integer constraints, and developed an
efficient technique for solving such a system. It is
also worth pointing out that the method allows one not
only to find states which are in coding conflict, but
also to derive execution paths leading to them with-
out performing a reachability analysis. That algorithm
provided a foundation for the unfolding-based frame-
work for resolution of coding conflicts (step (ii)) de-
scribed in [18], which used the set of pairs of config-
urations representing coding conflicts produced by the
algorithm. (The method described in this paper is in-
tended to replace that integer programming ‘engine’ in
the framework of [18].)

The integer programming based algorithm in many
cases achieved significant speedups, but on some of
the benchmarks considered in [11, 13, 14] its perfor-
mance was still not entirely satisfactory: on several
large instances the test did not terminate within the
time limit. This is because we used our own special-
ized integer programming solver, which, though be-
ing much more efficient than general-purpose ones due
to certain problem-specific heuristics, was not power-
ful enough to achieve a completely satisfactory run-
ning time for large examples. In this paper, we char-
acterize the CSC problem in terms of boolean satis-
fiability (SAT). Though being more complicated than
the integer programming translation, the SAT one al-
lows more dependencies between the variables to be
exploited. State-of-the-art SAT solvers are quite effi-
cient, and have been for long employed in the model
checking community. In our experiments, we achieved
significant speedups using this method.

The technical report [15] shows how the proposed
translation can be modified to verify the USC and nor-
malcy properties, as well as a generalization of the
method to STGs with dummy transitions and opti-
mizations possible for certain subclasses of STGs.

2. Basic definitions

A net is a triple N
df
= (P,T,F) such that P and T

are disjoint sets of respectively places and transitions
(collectively referred to as nodes), and F ⊆ (P×T)∪

2

(T ×P) is a flow relation. A marking of N is a multiset
M of places, i.e., M : P → N = {0,1,2, . . .}. We adopt
the standard rules about representing nets as directed
graphs, viz. places are represented as circles, transi-
tions as rectangles, the flow relation by arcs, and mark-
ings are shown by placing tokens within circles. As
usual, •z

df
= {y | (y,z)∈ F} and z•

df
= {y | (z,y)∈ F} de-

note, respectively, the preset and the postset of a node
z ∈ P∪T . We will assume that •t 6= /0 6= t•, for every
t ∈ T .

A net system is a pair Σ df
= (N,M0) comprising a fi-

nite net N = (P,T,F) and an (initial) marking M0. A
transition t ∈ T is enabled at a marking M, denoted
M[t〉, if for every s ∈ •t, M(s) ≥ 1. Such a transition
can be executed, leading to a marking M ′ defined by
M′ df

= M − •t + t•, where ‘−’ and ‘+’ stand for the
multiset difference and sum respectively. We denote
this by M[t〉M′ or M[〉M′ if the identity of the transi-
tion is irrelevant. The set of reachable markings of Σ
is the smallest (w.r.t. ⊆) set [M0〉 containing M0 and
such that if M ∈ [M0〉 and M[〉M′ then M′ ∈ [M0〉. For
a finite sequence of transitions σ = t1 . . .tk, we denote
M[σ〉M′ if there are markings M0, . . . ,Mk such that
M0 = M, Mk = M′ and Mi−1[ti〉Mi, for i = 1, . . . ,k.

A Signal Transition Graph (STG) is a triple Γ df
=

(Σ,Z,λ) such that Σ = (N,M0) is a net system, Z is a
finite set of signals, generating a finite alphabet Z± df

=
Z×{+,−} of signal transition labels, and λ : T → Z±

is a labelling function. The signal transition labels are
of the form z+ or z−, and denote a transition of a signal
z ∈ Z from 0 to 1 (rising edge), or from 1 to 0 (falling
edge), respectively. We will also use the notation z± to
denote a transition of signal z if we are not particularly
interested in its direction. Γ inherits the operational se-
mantics of its underlying net system Σ, including the
notions of transition enabling and execution, reachable
markings, and firing sequences.

In addition to the drawing conventions for Petri
nets, we use the following one for STGs. When an
arc in a figure connects two transitions, it is assumed
that there is a place ‘in the middle’ of the arc. More-
over, an arc with a token on it is interpreted similarly,
but the place contains a token.

We associate with the initial marking of Γ a binary
vector v0 df

= (v0
1, . . . ,v

0
|Z|)∈{0,1}|Z|, where v0

i is the ini-
tial value of signal zi ∈ Z. Moreover, with a sequence

of transitions σ we associate an integer signal change
vector vσ df

= (vσ
1 ,vσ

2 , . . . ,vσ
|Z|) ∈ Z

|Z|, so that each vσ
i is

the difference between the number of the occurrences
of z+

i –labelled and z−i –labelled transitions in σ.
Γ is consistentif, for every reachable marking M, all

firing sequences σ from M0 to M have the same en-
coding vector Code(M) equal to v0 + vσ, and this vec-
tor is binary, i.e., Code(M) ∈ {0,1}|Z|. Such a prop-
erty guarantees that, for every signal z ∈ Z, the STG
satisfies the following two conditions: (i) the first oc-
currence of z in the labelling of any firing sequence of
Γ starting from M0 has the same sign (either rising of
falling); and (ii) the transitions corresponding to the
rising and falling edges of z alternate in any firing se-
quence of Γ. In this paper it is assumed that all the
STGs considered are consistent.1 We will denote by
Codez(M) the component of Code(M) corresponding
to a signal z ∈ Z.

The consistency can be enforced syntactically, by
adding to the STG, for each signal z∈ Z, a pair of com-
plementary places, p0

z and p1
z , tracing the value of z as

follows. Each z+–labelled transition has p0
z in its pre-

set and p1
z in its postset, and each z−–labelled transi-

tion has p1
z in its preset and p0

z in its postset. Exactly
one of these two places is marked at the initial state,
accordingly to the initial value of signal z.2 One can
show that at any reachable state of an STG augmented
with such places, p0

z (resp. p1
z) is marked iff the value

of z is 0 (resp. 1). Thus, if a transition labelled by z+

(resp. z−) is enabled then the value of z is 0 (resp. 1),
which in turn guarantees the consistency. Such a trans-
formation can be done completely automatically. For
a consistent STG, it does not restrict the behaviour
and yields an STG with isomorphic state graph, de-
fined below; for a non-consistent STG, this transfor-
mation restricts the behaviour and may lead to (new)
deadlocks. In what follows, we assume such trac-
ing places in the STG, and denote P0

Z
df
= {p0

z | z ∈ Z},

P1
Z

df
= {p1

z | z ∈ Z}, and PZ
df
= P0

Z ∪P1
Z .

The state graph of an STG Γ is a tuple SGΓ
df
=

(S,A,M0,Code) such that: S
df
= [M0〉 is the set of states;

A
df
= {M

t
→ M′ | M ∈ [M0〉∧M[t〉M′} is the set of state

1The consistency of an STG can easily be checked during the
process of building its finite and complete prefix [23].

2In practice, this transformation is performed on the prefix
rather than the original STG, and hence the initial values of all
the signals can easily be computed.

3

transitions; M0 is the initial state; and Code : S →
{0,1}|Z| is the state assignment function, as defined
above for markings.

It is often the case that Z is partitioned into input
signals, ZI , and output signals, ZO (the latter may also
include internal signals). Input signals are assumed to
be generated by the environment, while output signals
are produced by the logical gates of the circuit.

Logic synthesis derives for each output signal z ∈
ZO a boolean next-state function Nxtz defined for ev-
ery reachable state M of Γ as follows: Nxtz(M)

df
= 0

if Codez(M) = 0 and no z+–labelled transition is en-
abled at M, or Codez(M) = 1 and a z−–labelled transi-
tion is enabled at M; and Nxtz(M)

df
= 1 if Codez(M) =

1 and no z−–labelled transition is enabled at M, or
Codez(M) = 0 a z+–labelled transition is enabled at M.
Moreover, the value of this function must be deter-
mined without ambiguity by the encoding of each
reachable state, i.e., Nxtz(M) should be a function of
Code(M): Nxtz(M) = Fz(Code(M)) (Fz will eventu-
ally be implemented as a logic gate). To capture this,
let Out(M)

df
= {z ∈ ZO | ∃t ∈ T : M[t〉 ∧ λ(t) = z±}

be the set of enabled output signals, for every reach-
able state M ∈ S. We also define Outz(M) to be 1 if
z ∈ Out(M) and 0 otherwise. Two states of SGΓ are in
CSC conflict if they have the same encoding but differ-
ent sets of enabled output signals. Γ satisfies the Com-
plete State Coding (CSC) property if no two states of
SGΓ are in CSC conflict.

An example of an STG for a data read operation in
a simple VME bus controller (a standard STG bench-
mark, see, e.g., [5]) is shown in Figure 1(a). Part (b)
of this figure illustrates a CSC conflict between two
different states, M′ and M′′, that have the same code,
10110, but Out(M′) = {d} 6= Out(M′′) = {lds}. This
means that, e.g., the value of Flds(1,0,1,1,0) is ill-
defined (it should be 1 according to the state M ′ and 0
according to the state M′′), and thus lds is not im-
plementable as a logic gate. To cope with this, an
additional signal helping to resolve this CSC conflict
should be added to the STG.

Two nodes of a net N = (P,T,F), y and y′, are in
structural conflict, denoted by y#y′, if there are distinct
transitions t, t ′ ∈ T such that •t ∩ •t ′ 6= /0 and (t,y) and
(t ′,y′) are in the reflexive transitive closure of the flow
relation F , denoted by �. A node y is in structural
self-conflict if y#y.

An occurrence net is a net ON
df
= (B,E,G) where

B is the set of conditions (places) and E is the set of
events (transitions). It is assumed that: ON is acyclic
(i.e., � is a partial order); for every b ∈ B, |•b| ≤ 1; for
every y ∈ B∪E, ¬(y#y) and there are finitely many y′

such that y′ ≺ y, where ≺ denotes the irreflexive tran-
sitive closure of G. Min(ON) will denote the minimal
elements of B∪E with respect to �. The relation ≺
is the causality relation. Two nodes are concurrent,
denoted y co y′, if neither y#y′ nor y � y′ nor y′ � y.

A homomorphism from an occurrence net ON to a
net system Σ is a mapping h : B∪E → P∪T such that:
h(B) ⊆ P and h(E) ⊆ T ; for all e ∈ E, the restriction
of h to •e is a bijection between •e and •h(e); the re-
striction of h to e• is a bijection between e• and h(e)•;
the restriction of h to Min(ON) is a bijection between
Min(ON) and M0; and for all e, f ∈ E, if •e = • f and
h(e) = h(f) then e = f .

A branching process of Σ [7] is a quadruple π df
=

(B,E,G,h) such that (B,E,G) is an occurrence net
and h is a homomorphism from ON to Σ. A branch-
ing process π′ = (B′,E ′,G′,h′) of Σ is a prefix of a
branching process π = (B,E,G,h), denoted π′ v π, if
(B′,E ′,G′) is a subnet of (B,E,G) such that: if e ∈ E ′

and (b,e) ∈ G or (e,b) ∈ G then b ∈ B′; if b ∈ B′ and
(e,b) ∈ G then e ∈ E ′; and h′ is the restriction of h to
B′∪E ′. For each Σ there exists a unique (up to isomor-
phism) maximal (w.r.t. v) branching process, called
the unfolding of Σ.

A configuration of an occurrence net ON is a set
of events C such that for all e, f ∈ C , ¬(e# f) and, for
every e ∈ C , f ≺ e implies f ∈ C . A cut is a maximal
(w.r.t. ⊆) set of conditions B′ such that b co b′, for
all distinct b,b′ ∈ B′. Every marking reachable from
Min(ON) is a cut.

Let C be a finite configuration of a branching pro-
cess π. Then Cut(C)

df
= (Min(ON) ∪ C •) \ •C is a

cut; moreover, the multiset of places h(Cut(C)) is a
reachable marking of Σ, denoted Mark(C). A mark-
ing M of Σ is represented in π if the latter contains a
finite configuration C such that M = Mark(C). Ev-
ery marking represented in π is reachable, and ev-
ery reachable marking is represented in the unfolding
of Σ [11, 12, 19, 20, 23].

A branching process π = (B,E,G,h) of Σ is com-
plete if there is a set Ecut ⊆ E of cut-off events such
that for every reachable marking M of Σ there exist

4

dtack− dsr+ lds+

d− lds− ldtack−

ldtack+

dsr− dtack+ d+

(a)

01000
00000

10000

01010
00010

10010 10100

01110
00110 10110

M′′ 10110M′

01111 11111 10111

dtack− dsr+

ldtack− ldtack− ldtack− lds+

dtack− dsr+

lds− lds− lds−

dtack− dsr+

ldtack+

d−

dsr− dtack+

d+

(b)

e1

dsr+

e2

lds+

e3

ldtack+

e4

d+

e5

dtack+

e6

dsr−

e7

d−

e8

dtack−

e9

lds−

e10

dsr+

e11

ldtack−

e12

lds+

cut-off

C ′ C ′′

(c)

conf
′ = 111000000000 conf

′′ = 111111110100
en

′ = 000100000000 val = 10110 en
′′ = 000000001000

out
′ = 00001 out

′′ = 00100

Figure 1. An STG modelling a simplified VME bus controller (a); its state graph with a CSC conflict
between two states (b); and its unfolding prefix with two configurations corresponding to this CSC
conflict (c). The order of signals in the binary codes is: dsr,dtack, lds, ldtack,d.

a finite configuration C of π such that C ∩ Ecut = /0
and M = Mark(C), and for every transition t enabled
by M, there is an event e 6∈C in π such that h(e) = t and
C ∪{e} is a configuration (e may be a cut-off event).

Although, in general, unfoldings are infinite, for a
bounded net system Σ one can construct a finite com-
plete prefix UnfΣ of the unfolding of Σ, by choosing
an appropriate set Ecut of cut-off events, beyond which
the unfolding is not generated [11, 12, 19, 20, 23].

A branching process of an STG Γ = (Σ,Z,λ) is a
branching process of Σ augmented with an additional
labelling of its events, λ◦h : E → Z±.

We also extend the functions Code and Outz to
finite configurations of branching processes of Γ in
the following way: Code(C)

df
= Code(Mark(C)) and

Outz(C)
df
= Outz(Mark(C)).

The boolean satisfiability problem (SAT) consists in
finding a satisfying assignment, i.e., a mapping Var →
{0,1} defined on the set of variables Var occurring in a
given boolean expression. This expression is often as-
sumed to be given in conjunctive normal form (CNF)∧n

i=1
∨

l∈Li
l , i.e., it should be represented as a conjunc-

tion of clauses, which are disjunctions of literals. Each
literal is either a variable or its negation. It is assumed

5

that no two literals in the same clause correspond to
the same variable.

In order to solve a boolean satisfiability problem,
SAT solvers perform exhaustive search assigning val-
ues 0 or 1 to the variables. To reduce the search space,
they use various heuristics (see, e.g., [28] for a brief
overview). An almost universally used one is the fol-
lowing propagation rule: “If all but one variables oc-
curring in some clause have been assigned a value such
that the corresponding literals in this clause have the
value 0 then in order to satisfy the clause the remaining
variable should be assigned a value such that the cor-
responding literal would have the value 1.” This rule is
applied iteratively, until no more variables can be as-
signed, on each step of the search. If at some point all
the literals of some clause are assigned the value 0 then
the built partial assignment cannot be a part of any sat-
isfying assignment, and the solver should backtrack.

3. State coding conflict detection using SAT

Given a finite complete prefix π = (B,E,G,h) of the
unfolding of an STG, a CSC violation can be repre-
sented as a pair of configurations, C ′ and C ′′, whose
final states are in CSC conflict, as shown Figure 1(c).
The following boolean variables will be used in our
translation of this property into a SAT problem (Fig-
ure 1 shows the values of these variables for the de-
picted CSC conflict):

• For e ∈ E \Ecut, where Ecut are the cut-off events
of the prefix, we have variables conf

′
e and conf

′′
e ,

tracing whether e ∈ C ′ and e ∈ C ′′ respectively.

• For z ∈ Z, we have a variable valz tracing the
value of z. Since the values of all the signals must
match at the final states of C ′ and C ′′, we use the
same set of variables for both configurations.

• For b ∈ B\E•
cut such that h(b)∈ P1

z , we have vari-
ables cut

′
b and cut

′′
b , tracing whether b ∈ Cut(C ′)

and b ∈ Cut(C ′′) respectively.

• For z ∈ ZO, we have variables out
′
z and out

′′
z , trac-

ing whether z ∈ Out(C ′) and z ∈ Out(C ′′) respec-
tively.

• For e ∈ E, we have variables en
′
e and en

′′
e , tracing

whether e is ‘enabled’ by C ′ and C ′′ respectively.

Our aim is to build a boolean formula C SC such
that: (i) C SC is satisfiable iff there is a CSC conflict;
and (ii) for every satisfying assignment, the two sets of
non-cut-off events of the prefix, C ′ df

= {e | conf
′
e = 1}

and C ′′ df
= {e | conf

′′
e = 1}, constitute a pair of configu-

rations representing a CSC violation. C SC will be the
conjunction of constraints described below.

3.1. Configuration constraints

The role of configuration constraints, C ON F ′ and
C ON F ′′, is to ensure that C ′ and C ′′ are both legal
configurations of the prefix. C ON F ′ is defined as the
conjunction of the following formulae:

∧

e∈E\Ecut

∧

f∈•(•e)

(conf
′
e → conf

′
f)

and
∧

e∈E\Ecut

∧

f∈((•e)•\{e})\Ecut

¬(conf
′
e ∧ conf

′
f) .

The former formula ensures that C ′ is downward
closed w.r.t. �, and the latter one ensures that C ′ con-
tains no structural conflicts. C ON F ′′ is defined simi-
larly.

3.2. Encoding constraints

The role of encoding constraints, C ODE ′ and
C ODE ′′, is to ensure that the signal codes of the fi-
nal markings of configurations C ′ and C ′′ are equal.
To build a formula establishing the value valz of each
signal z ∈ Z at the final state of C ′, we observe that
valz = 1 iff p1

z ∈ Mark(C ′), i.e., iff b ∈ Cut(C ′) for
some p1

z –labelled condition b (note that the places in
PZ cannot contain more than one token). The latter can
be captured by the constraint:

∧

z∈Z

(valz ⇐⇒
∨

b∈Bz

cut
′
b) ,

where Bz
df
= {B \ E•

cut | h(b) = p1
z}. We then define

C ODE ′ as the conjunction of the last formula and
∧

z∈Z

∧

b∈Bz

(cut
′
b ⇐⇒

∧

e∈•b

conf
′
e ∧

∧

e∈b•\Ecut

¬conf
′
e) ,

which ensures that b ∈ Cut(C ′) iff the event ‘produc-
ing’ b has fired, but no event ‘consuming’ b has fired.

6

(Note that since |•b| ≤ 1,
∧

e∈•b confe in this formula
is either the constant 1 or a single variable.) One can
see that if C ′ is a configuration and C ODE ′ is satisfied
then the value of the signal z at the final state of C ′ is
given by valz. Code′′ is defined similarly.

Using the same variables valz in both C ODE ′ and
C ODE ′′, ensures that the encodings of the final states
of C ′ and C ′′ are the same, if both constraints are sat-
isfied.

3.3. Separating constraint

The role of the separating constraint SEP is to en-
sure that the sets of output signals enabled at the final
markings of configurations C ′ and C ′′ are different. We
observe that z ∈ ZO is enabled by the final state of C ′

iff there is a z±–labelled event e /∈ C ′ ‘enabled’ by C ′,
i.e., such that C ′ ∪{e} is a configuration (note that e
can be a cut-off event). We then define OUT ′ as the
conjunction of

∧

z∈ZO

(out
′
z ⇐⇒

∨

e∈Ez

en
′
e)

and
∧

z∈ZO

∧

e∈Ez

(en′e ⇐⇒
∧

f∈•(•e)

conf
′
f ∧

∧

f∈(•e)•\Ecut

¬conf
′
f) ,

where Ez
df
= {e ∈ E | λ(h(e)) = z±}. One can see that

OUT ′ is satisfied iff the variables en
′
e show for each

event whether it is enabled by C ′, and the values of the
variables out

′
z correspond to the values of the output

signals enabled by the final state of C ′. OUT ′′ is de-
fined similarly, and so we can express the non-equality
of enabled outputs as the constraint SEP , defined by:

∨

z∈ZO

(out
′
z 6= out

′′
z) .

Intuitively, the formulae OUT ′ and OUT ′′ determine
the sets of output signals enabled by the final states
of C ′ and C ′′, and SEP requires these sets to be dis-
tinct.

3.4. Translation to SAT

Finally, the problem at hand can be formulated as a
SAT problem for the formula

C SC df
= C ON F ′

∧C ON F ′′
∧C ODE ′∧

C ODE ′′∧OUT ′∧OUT ′′∧SEP .

It can be easily translated into the conjunctive normal
form [15] and fed to a SAT solver.

4. Experimental results

We implemented our method using the ZCHAFF

SAT solver [21] which was available from the Inter-
net. For testing the performance of the proposed ap-
proach we used the same benchmarks as in [11,13,14].
The STGs with names containing the occurrence of
‘CSC’ satisfy the CSC property, the others exhibit CSC
conflicts. All the experiments were conducted on a
PC with PentiumT M III/500MHz processor and 384M
RAM.

The first group of examples comes from the real de-
sign practice. They are as follows:

• LAZYRING and RING — Asynchronous Token
Ring Adapters described in [2, 17].

• DUP4PH, DUP4PHCSC, DUP4PHMTR, DUP-
4PHMTRCSC, DUPMTRMOD, DUPMTRMOD-
UTG, and DUPMTRMODCSC — control circuits
for the Power-Efficient Duplex Communication
System described in [9].

• CFSYMCSCA, CFSYMCSCB, CFSYMCSCC,
CFSYMCSCD, CFASYMCSCA, and CFASYM-
CSCB — control circuits for the Counterflow
Pipeline Processor described in [27].

Some of these STGs, although built by hand, are quite
large in size. The results for this group are summa-
rized in the first part of Table 1. Two other groups,
PPWK(m,n) and PPARB(m,n), contain scalable exam-
ples of STGs modelling m pipelines weakly synchro-
nized without arbitration (in PPWK(m,n)) and with
arbitration (in PPARB(m,n)). These two groups of
benchmarks allowed us to test the algorithm on pairs
of almost identical specifications, such that one ele-
ment of each pair contains a coding conflict while the
other satisfies the CSC property (see [11, 15] for more
details). The results for these two groups are summa-
rized in the last two parts of Table 1.

The meaning of the columns is as follows (from
left to right): the name of the problem; the number
of places, transitions, and signals in the original STG;

7

Problem Net Unfolding Formula Time, [s]
|S| |T | |Z| |B| |E| |Ecut | Var Cl Lit PFY CLP SAT

Real-Life STGs
LAZYRING 35 32 11 87 66 5 295 765 1790 2.67 0.01 0.01
RING 147 127 28 763 498 59 2075 6233 14793 1762 0.42 0.41
DUP4PH 133 123 26 144 123 11 576 1469 3455 45.01 <0.01 0.06
DUP4PHCSC 135 123 26 146 123 11 572 1477 3479 43.50 0.03 0.08
DUP4PHMTR 109 96 22 117 96 8 444 1205 2840 30.37 <0.01 0.03
DUP4PHMTRCSC 114 105 26 122 105 8 510 1325 3120 31.85 0.01 0.05
DUPMTRMOD 129 100 21 199 132 10 580 1651 3869 383 <0.01 0.05
DUPMTRMODUTG 116 165 21 344 218 65 862 3097 7361 721 <0.01 0.05
DUPMTRMODCSC 152 115 27 228 149 13 678 1935 4545 387 0.09 0.50
CFSYMCSCA 85 60 22 1341 720 56 2920 10247 24502 494 91.78 16.86
CFSYMCSCB 55 32 16 160 71 6 420 1357 3256 19.28 0.05 0.03
CFSYMCSCC 59 36 18 286 137 10 758 2551 6170 42.15 2.16 0.72
CFSYMCSCD 45 28 14 120 54 6 332 1031 2452 10.56 0.01 0.01
CFASYMCSCA 128 112 34 1808 1234 62 5312 16687 39964 4357 2514 179
CFASYMCSCB 128 112 32 1816 1238 62 5108 15977 38226 8490 2687 129

Marked Graphs
PPWK(2,3) 23 14 7 41 23 1 146 407 967 0.71 <0.01 <0.01
PPWK(2,6) 47 26 13 119 62 1 368 1115 2677 15.82 0.01 0.03
PPWK(2,9) 71 38 19 233 119 1 680 2147 5179 128 0.28 0.08
PPWK(2,12) 95 50 25 383 194 1 1082 3503 8473 1301 3.66 0.34
PPWKCSC(2,3) 24 14 7 38 20 1 130 359 851 0.56 <0.01 0.01
PPWKCSC(2,6) 48 26 13 110 56 1 338 1015 2433 13.56 0.16 0.16
PPWKCSC(2,9) 72 38 19 218 110 1 634 1991 4799 124 12.98 2.13
PPWKCSC(2,12) 96 50 25 362 182 1 1022 3295 7965 5389 1106 6.92
PPWK(3,3) 34 20 10 63 35 1 220 621 1480 3.29 <0.01 <0.01
PPWK(3,6) 70 38 19 183 95 1 560 1709 4109 277 0.56 <0.01
PPWK(3,9) 106 56 28 357 182 1 1036 3285 7930 5555 51.36 0.23
PPWK(3,12) 142 74 37 585 296 1 1646 5345 12935 time 4542 1.83
PPWKCSC(3,3) 36 20 10 57 29 1 188 525 1248 2.40 0.01 0.01
PPWKCSC(3,6) 72 38 19 165 83 1 500 1509 3621 122 11.81 0.25
PPWKCSC(3,9) 108 56 28 327 164 1 944 2973 7170 18568 8990 0.95
PPWKCSC(3,12) 144 74 37 543 272 1 1526 4929 11919 mem time 19.23

STGs with Arbitration
PPARB(2,3) 38 24 11 94 52 2 308 973 2347 4.09 <0.01 0.02
PPARB(2,6) 62 36 17 202 106 2 608 1993 4825 45.42 <0.01 0.03
PPARB(2,9) 86 48 23 346 178 2 992 3325 8071 912 0.02 0.06
PPARB(2,12) 110 60 29 526 268 2 1472 4993 12133 5737 0.03 0.19
PPARBCSC(2,3) 40 24 11 96 52 2 308 973 2343 3.53 0.03 0.05
PPARBCSC(2,6) 64 36 17 204 106 2 608 1993 4821 53.39 2.00 0.59
PPARBCSC(2,9) 88 48 23 348 178 2 992 3325 8067 458 174 2.34
PPARBCSC(2,12) 112 60 29 528 268 2 1472 4993 12129 mem 15158 12.73
PPARB(3,3) 56 36 16 161 90 3 520 1821 4442 25.25 <0.01 0.05
PPARB(3,6) 92 54 25 341 180 3 1018 3627 8855 1158 <0.01 0.27
PPARB(3,9) 128 72 34 575 297 3 1636 5889 14396 8410 0.02 0.67
PPARB(3,12) 164 90 43 863 441 3 2404 8667 21185 mem 0.05 5.73
PPARBCSC(3,3) 59 36 16 164 90 3 520 1821 4436 18.31 0.34 0.16
PPARBCSC(3,6) 95 54 25 344 180 3 1018 3627 8849 510 262 2.22
PPARBCSC(3,9) 131 72 34 578 297 3 1636 5889 14390 11081 time 9.53
PPARBCSC(3,12) 167 90 43 866 441 3 2404 8667 21179 mem time 49.81

Table 1. Experimental results.

the number of conditions, events and cut-off events in
the complete prefix; the number of variables, clauses
and literals in the generated formula; the time spent
by a special version of the PETRIFY tool, which did

not attempt to resolve the coding conflicts it had iden-
tified; the time spent by the integer programming al-
gorithm proposed in [11, 13, 14]; and the time spent
by the method proposed in this paper. We use ‘mem’

8

if there was memory overflow and ‘time’ to indicate
that the test had not stopped after 15 hours. We have
not included in the table the time needed to build com-
plete prefixes, since it did not exceed 0.1sec for all the
attempted STGs.

Note that in all cases the size of the complete pre-
fix was relatively small. This can be explained by the
fact that STGs usually contain a lot of concurrency
but relatively few choices, and thus the prefixes are
often not much bigger then the STGs themselves. As a
result, unfolding-based methods have clear advantage
(in contrast, PETRIFY was repeatedly swapping pages
to the disk for some of the examples due to the need to
build the whole state spaces of the STGs).

Although performed testing was limited in scope,
we can draw some conclusions about the performance
of the proposed algorithm. In all cases the proposed
method solved the problem relatively easily, even
when it was intractable for the other approaches. In
some cases, it was faster by several orders of magni-
tude. The time spent on all of these benchmarks was
quite satisfactory — it took less than 3 minutes to solve
the hardest one. Overall, the proposed approach was
the best, especially for hard problem instances.

Such an efficiency is due to the fact that the clauses
comprising the formula are short (most of them con-
tain only 2 or 3 literals) and thus allow for a good prop-
agation of the variables’ values during the application
of the propagation rule by the SAT solver.

5. Conclusions

According to the experimental results, the new
method can solve quite large problem instances in rela-
tively short time. It should also be emphasized that the
unfolding approach is particularly well-suited for an-
alyzing STGs, because, as it was already noted, STG
unfolding prefixes are much smaller then state graphs
for practical STGs. Therefore, in contrast to state-
space based approaches, the proposed method is not
memory demanding.

We view these results as encouraging. Together
with those of [18] they form a framework for detection
and solving encoding conflicts, which does not require
generating the STG’s state space. In our future work,
we plan to develop a complete design flow for asyn-
chronous circuits based on STG unfolding prefixes.

An important observation one can make is that the
combination ‘unfolder & solver’ is quite powerful. It
has already been used in a number of papers (see,
e.g., [10, 11, 13, 14]). Most of ‘interesting’ problems
for safe Petri nets are P SPAC E-complete [8], and
unfolding such a net allows to reduce this complex-
ity class down to N P (or even P for some problems).
Though the size of a finite and complete unfolding pre-
fix can be exponential in the size of the original Petri
net, in practice it is often relatively small. In particu-
lar, according to our experiments, this is almost always
the case for STGs. A problem formulated for a prefix
can then be translated into some canonical problem,
e.g., an integer programming one [11, 13, 14], a prob-
lem of finding a stable model of a logic program [10],
or a boolean satisfiability problem as in this paper.
Then an appropriate solver can be used for efficiently
solving it.

Acknowledgements

We would like to thank Jordi Cortadella for compiling
a special version of the PETRIFY tool used in our ex-
periments. The first author was supported by an ORS
Awards Scheme grant ORS/C20/4 and by an EPSRC
grant GR/M99293. The other two authors were sup-
ported by an EPSRC grant GR/M94366 (MOVIE).

References

[1] J. Carmona, J. Cortadella, and E. Pastor: A Struc-
tural Encoding Technique for the Synthesis of
Asynchronous Circuits. Proc. of ICACSD’01,
IEEE Comp. Soc. Press (2001) 157–166.

[2] C. Carrion and A. Yakovlev: Design and Evalua-
tion of Two Asynchronous Token Ring Adapters.
Tech. Rep. CS-TR-562, Univ. of Newcastle upon
Tyne (1996).

[3] T. -A. Chu: Synthesis of Self-Timed VLSI Circuits
from Graph-Theoretic Specifications. PhD The-
sis, MIT/LCS/TR-393 (1987).

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A. Yakovlev: PETRIFY: a Tool
for Manipulating Concurrent Specifications and
Synthesis of Asynchronous Controllers. IEICE
Transactions on Information and Systems E80-
D(3) (1997) 315–325.

9

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A. Yakovlev: Logic Synthe-
sis of Asynchronous Controllers and Interfaces.
Springer Verlag (2002).

[6] J. Cortadella, A. Kondratyev, M. Kishinevsky,
L. Lavagno, and A. Yakovlev: Complete State
Encoding Based on Theory of Regions. Proc.
of ASYNC’1996, IEEE Comp. Soc. Press (1996)
36–47.

[7] J. Engelfriet: Branching Processes of Petri Nets.
Acta Informatica 28 (1991) 575–591.

[8] J. Esparza: Decidability and Complexity of Petri
Net Problems — an Introduction. In: Lectures
on Petri Nets I: Basic Models, W. Reisig and
G. Rozenberg (Eds.). LNCS 1491 (1998) 374–
428.

[9] S. B. Furber, A. Efthymiou, and M. Singh: A
Power-Efficient Duplex Communication System.
Proc. of AINT’2000, TU Delft (2000) 145–150.

[10] K. Heljanko: Using Logic Programs with Stable
Model Semantics to Solve Deadlock and Reacha-
bility Problems for 1-Safe Petri Nets. Fundamen-
tae Informaticae 37(3) (1999) 247–268.

[11] V. Khomenko: Model Checking Based on Pre-
fixes of Petri Net Unfoldings. PhD Thesis, Uni-
versity of Newcastle upon Tyne (2003).

[12] V. Khomenko, M. Koutny, and V. Vogler: Cano-
nical Prefixes of Petri Net Unfoldings. Proc. of
CAV’2002, LNCS 2404 (2002) 582–595.

[13] V. Khomenko, M. Koutny, and A. Yakovlev: De-
tecting State Coding Conflicts in STGs Using
Integer Programming. Tech. Rep. CS-TR-736,
Univ. of Newcastle upon Tyne (2001).

[14] V. Khomenko, M. Koutny, and A. Yakovlev: De-
tecting State Coding Conflicts in STGs Using In-
teger Programming. Proc. of DATE’2002, IEEE
Comp. Soc. Press (2002) 338–345.

[15] V. Khomenko, M. Koutny, and A. Yakovlev: De-
tecting State Coding Conflicts in STG Unfold-
ings Using SAT. Tech. Rep. CS-TR-778, Univ.
of Newcastle upon Tyne (2002).

[16] A. Kondratyev, J. Cortadella, M. Kishinevsky,
L. Lavagno, A. Taubin, and A. Yakovlev: Iden-
tifying State Coding Conflicts in Asynchronous
System Specifications Using Petri Net Unfold-
ings. Proc. of ICACSD’98, IEEE Comp. Soc.
Press (1998) 152–163.

[17] K. S. Low and A. Yakovlev: Token Ring Ar-
biters: an Exercise in Asynchronous Logic De-
sign with Petri Nets. Tech. Rep. CS-TR-537,
Univ. of Newcastle upon Tyne (1995).

[18] A. Madalinski, A. Bystrov, V. Khomenko, and
A. Yakovlev: Visualization and Resolution of
Coding Conflicts in Asynchronous Circuit De-
sign. Proc. of DATE’2003, IEEE Comp. Soc.
Press (2003) 926–931.

[19] K. L. McMillan: Using Unfoldings to Avoid
State Explosion Problem in the Verification
of Asynchronous Circuits. Proc. of CAV’1992,
LNCS 663 (1992) 164–174.

[20] K. L. McMillan: Symbolic Model Checking: an
approach to the state explosion problem. PhD
thesis, CMU-CS-92-131 (1992).

[21] S. Moskewicz, C. Madigan, Y. Zhao, L. Zhang,
and S. Malik: CHAFF: Engineering an Efficient
SAT Solver. Proc. of DAC’2001, ASME Tech.
Publishing (2001) 530–535.

[22] E. Pastor, J. Cortadella, and O. Roig: Symbolic
Analysis of Bounded Petri Nets. IEEE Transac-
tions on Computers 50(5) (2001) 432–448.

[23] A. Semenov: Verification and Synthesis of Asyn-
chronous Control Circuits Using Petri Net Un-
folding. PhD Thesis, Univ. of Newcastle upon
Tyne (1997).

[24] A. Semenov, A. Yakovlev, E. Pastor, M. Peña,
J. Cortadella, and L. Lavagno: Partial Order Ap-
proach to Synthesis of Speed-Independent Cir-
cuits. Proc. of ASYNC’1997, IEEE Comp. Soc.
Press (1997) 254–265.

[25] P. Vanbekbergen, F. Catthoor, G. Goossens, and
H. De Man: Optimized Synthesis of Asynch-
ronous Control Circuits form Graph-Theoretic
Specifications. Proc. of ICCAD’1990, IEEE
Comp. Soc. Press (1990) 184–187.

[26] A. Yakovlev, L. Lavagno, and A. Sangiovanni-
Vincentelli: A Unified Signal Transition Graph
Model for Asynchronous Control Circuit Synthe-
sis. FMSD 9(3) (1996) 139–188.

[27] A. Yakovlev: Designing Control Logic for Coun-
terflow Pipeline Processor Using Petri nets.
FMSD 12(1) (1998) 39–71.

[28] L. Zhang and S. Malik: The Quest for Effi-
cient Boolean Satisfiability Solvers. Proc. of
CAV’2002, LNCS 2404 (2002) 582–595.

10

