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Abstract
Synthesis of asynchronous circuits from Signal Trans-

ition Graphs (STGs) involves resolution of state encoding
conflicts by means of refining the STG specification. In this
paper, a fully automatic technique for resolving such con-
flicts by means of insertion of new signals is proposed. It
is based on conflict cores, i.e., sets of transitions causing
encoding conflicts, which are represented at the level of fi-
nite and complete unfolding prefixes, and a SAT solver is
used to find where in the STG the transitions of new signals
should be inserted. The experimental results show signific-
ant improvements over the state space based approach in
terms of runtime and memory consumption, as well as some
improvements in the quality of the resulting circuits.

1. Introduction

Asynchronous circuits are a promising type of digital
circuits. They have lower power consumption and electro-
magnetic emission, no problems with clock skew and re-
lated subtle issues, and are fundamentally more tolerant of
voltage, temperature and manufacturing process variations.
The International Technology Roadmap for Semiconduct-
ors report on Design [1] predicts that 22% of the designs
will be driven by handshake clocking (i.e., asynchronous)
in 2013, and this percentage will raise up to 40% in 2020.

PETRIFY [7, 9] is one of the commonly used tools for
synthesis of asynchronous circuits. As a specification it ac-
cepts a Signal Transition Graph (STG) [6] — a class of in-
terpreted Petri nets in which transitions are labelled with
the rising and falling edges of circuit signals. For synthesis,
PETRIFY employs the state space of the STG, and so it suf-
fers from the combinatorial state space explosion problem.
That is, even a relatively small system specification may
(and often does) yield a very large state space. This puts
practical bounds on the size of control circuits that can be
synthesised using such techniques, which are often restrict-
ive, especially if the specification is not constructed manu-
ally by a designer but rather generated automatically from
high-level hardware descriptions. (For example, design-
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ing a control circuit with more than 20–30 signals with
PETRIFY is often impossible.) Hence, this approach does
not scale. Moreover, PETRIFY cannot guarantee a solution
which can be mapped to the gate library at hand.

One way to cope with the state space explosion problem
is to use syntax-directed translation of the specification to a
circuit, avoiding thus building the state space. This is essen-
tially the idea behind BALSA [10] and TANGRAM [2]. This
technique, although computationally efficient, often yields
circuits with large area and performance overheads com-
pared with synchronous counterparts. This is because the
resulting circuits are highly over-encoded, i.e., they contain
many unnecessary state-holding elements.

For asynchronous circuits to be competitive, one has
somehow to combine the advantages of logic synthesis
(high quality of circuits) and syntax-directed translation
(guarantee of a solution, efficiency) while compensating for
their disadvantages. A natural way of doing this is to ap-
ply logic synthesis to the control path extracted from, e.g., a
BALSA specification. This control path can be partitioned
into smaller clusters which can be handled by logic syn-
thesis, and the clusters on which it fails (because of either
inability to find a solution in the given gate library or ex-
ceeding memory or time constraints) are implemented us-
ing the syntax-directed translation. The initial experiments
conducted in [5] showed that this combined approach can
half the area devoted to control flow and improve its latency,
compared with the traditional syntax-directed translation, as
long as the size of clusters which can be confidently handled
by logic syntax is sufficiently large.

Arguably, one of the most difficult tasks in logic syn-
thesis is resolution of Complete State Coding (CSC) con-
flicts, arising when semantically different (i.e., enabling dif-
ferent sets of outputs) reachable states of an STG have the
same encoding, i.e., the binary vector representing the value
of all the signals in a given state, as illustrated in Fig. 1(a,b).
To resolve a CSC conflict, new internal signals helping to
distinguish between these states must be inserted into the
specification in such a way that its ‘external’ behaviour does
not change. (Intuitively, insertion of a signal elongates the
encoding, introducing thus additional memory into the cir-
cuit, helping to trace the current state.) The quality of the



resulting circuit (in terms of area and latency) depends to a
large extent on the way the new signals were inserted.

The design flow advocated in [5] is as follows. Given a
(potentially large) STG, the CSC conflicts are resolved us-
ing an integer linear programming (ILP) technique to ap-
proximate the state space of an STG. Then the resulting
STG (free from CSC conflicts) is decomposed into smaller
components in such a way that they are also free from CSC
conflicts, as described in [3]. (Typically, each component is
responsible for producing a single signal.) Then these com-
ponents are synthesised one-by-one using PETRIFY. This
approach can handle much larger specifications than PET-
RIFY alone, but its scalability is still limited since ILP is an
NP-complete problem. For example, [5] reports that it took
28.3 minutes to resolve CSC conflicts in an STG with 436
places, 398 transitions and 199 signals, followed by 44.7
minutes of synthesis. Moreover, an ILP approximation of
the state space may work poorly for some STGs, e.g., those
containing many self-loops (i.e., pairs of arcs (p, t), (t, p)
going in opposite directions).

In this paper, we follow a more scalable approach, which
avoids performing expensive operations (such as resolving
CSC conflicts) on the original STG. It works by proceeding
with decomposition immediately, without resolving CSC
conflicts. Hence, the resulting components, unlike ones in
the technique described above, are not free from CSC con-
flicts. If a component has a CSC conflict, it can happen due
to one of the following two reasons: (i) this conflict was
present already in the original STG; or (ii) this conflict was
introduced because some of the signals preventing it in the
original STG are not present in the component. The tech-
nique described in [20] allows one to check which of these
two reasons applies, and in case (ii) to find signals which
need to be added to the component to prevent such CSC
conflicts. Finally, the remaining CSC conflicts are resolved
in each component, and the resulting STGs are synthesised.

Although this approach is quite scalable, it can be suc-
cessful only if resolution of CSC conflicts and logic syn-
thesis can be efficiently performed for all components, since
a failure to synthesise even one of them means that the
whole STG is not synthesised. In particular, PETRIFY may
be inadequate for this task because of its rather restrictive
limitations on the size of components. A more promising
approach is to employ STG unfolding prefixes [12, 14, 22].

A finite and complete unfolding prefix of an STG is a fi-
nite acyclic net which implicitly represents all the reachable
states of this STG together with transitions enabled at those
states. Intuitively, it can be obtained through unfolding the
STG, by successive firing of transitions, under the follow-
ing assumptions: (i) for each new firing a fresh transition
(called an event) is generated; (ii) for each newly produced
token a fresh place (called a condition) is generated.

Due to its structural properties (such as acyclicity), the

reachable states of an STG can be represented using config-
urations of its unfolding. A configuration C is a downward-
closed set of events (being downward-closed means that if
e ∈ C and f is a causal predecessor of e then f ∈ C)
without choices (i.e., for all distinct events e, f ∈ C, there
is no condition c in the unfolding such that the arcs (c, e)
and (c, f) are in the unfolding). Intuitively, a configuration
is a partial-order execution, i.e., an execution where the or-
der of firing of some of its events (viz. concurrent ones) is
not important. We will denote by [e] the local configuration
of an event e, i.e., the smallest (w.r.t. ⊂) configuration con-
taining e (it is comprised of e and its causal predecessors).

The unfolding is infinite whenever the original STG has
an infinite run; however, if the STG has finitely many reach-
able states then the unfolding eventually starts to repeat it-
self and can be truncated (by identifying a set of cut-off
events) without loss of information, yielding a finite and
complete prefix. Intuitively, an event e can be declared cut-
off if the already built part of the prefix contains a configur-
ation Ce (called the corresponding configuration of e) such
that its final marking and encoding coincide with those of
[e] [24] and Ce is smaller than [e] w.r.t. some well-founded
partial order on the configurations of the unfolding, called
an adequate order [12]. Fig. 1(c) shows a finite and com-
plete unfolding prefix of the STG shown in Fig. 1(a); the
only cut-off event depicted as a double box, and its corres-
ponding configuration is {e1, e2}.

Efficient algorithms exist for building such prefixes [12,
14], which ensure that the number of non-cut-off events in
a complete prefix can never exceed the number of reachable
states of the STG. Moreover, complete prefixes are often
exponentially smaller than the corresponding state graphs,
especially for highly concurrent STGs, because they rep-
resent concurrency directly rather than by multidimensional
‘diamonds’ as it is done in state graphs. For example, if the
original STG consists of 100 transitions which can fire once
in parallel, the state graph will be a 100-dimensional hyper-
cube with 2100 vertices, whereas the complete prefix will
coincide with the net itself. Since STGs usually exhibit a
lot of concurrency, but have rather few choice points, their
unfolding prefixes are often exponentially smaller than the
corresponding state graphs; in fact, in many of the exper-
iments conducted in [17] they are just slightly bigger than
the original STGs themselves. Thus, unfolding prefixes are
well-suited for alleviating the state space explosion.

In [17] the unfolding technique was applied to detec-
tion of CSC conflicts between reachable states of an STG.
Moreover, in [18] the problem of complex-gate logic syn-
thesis from an STG free from CSC conflicts was solved.
The experiments in [17, 18] showed that unfolding-based
approach can handle much bigger STGs then PETRIFY.

The visualisation method presented in [21] is aimed at
facilitating a manual refinement of an STG with CSC con-
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Figure 1. An STG modelling the read cycle
of the VME bus controller (a), its state graph
showing a CSC conflict between the reach-
able states M1 and M2 (b), and its unfolding
prefix showing the conflict core correspond-
ing to this CSC conflict and a way to resolve
it by insertion of a new internal signal csc (c).

flicts, and works on the level of unfolding prefixes. In order
to avoid the explicit enumeration of CSC conflicts, they are
visualised as cores, i.e., sets of transitions ‘causing’ one or
more of them. (A core can be computed as the difference of
two configurations whose final states are in CSC conflict.)
All such cores must eventually be eliminated by adding new
internal signals that resolve the CSC conflicts to yield an
STG satisfying the CSC property. This approach is illus-
trated in Fig. 1(c). One can see that the encodings at the
beginning and at the end of the core are the same. This sug-
gests that a core can be eliminated by the introduction of a
new signal, csc, in such a way that one of its transitions is
inserted into the core, as this would violate the stated prop-
erty. Note that at least two transitions, viz. the falling and
the rising edges of the signal, have to be inserted into the
STG in order to preserve the consistency [6, 9] — a neces-
sary condition for implementability of an STG as a circuit,
ensuring that all the state encodings are binary; in partic-
ular, for every signal s, the following two properties must
hold: (i) in all executions of the STG, the first occurrence of
a transition of s has the same sign (either rising of falling);
(ii) the rising and falling transitions of s alternate in every
execution. In this example, the new transitions were inser-
ted concurrently to existing ones in order to minimise the
latency of the circuit. After transferring them into the STG,
no more CSC conflicts remain in it, and so one can proceed
with logic synthesis. (Other ways of inserting a signal in
this example are also possible — see Section 5.)

The semi-automatic approach of [21] is only feasible
for synthesis of relatively small ‘handcrafted’ blocks. In

this paper, we present a technique which is also based on
cores in the STG unfolding prefix, but is fully automatic
and can handle much larger STGs than PETRIFY, while de-
livering high-quality circuits. Together with [15, 17, 18], it
essentially completes the design cycle for synthesis of asyn-
chronous circuits from STGs that does not involve building
reachability graphs at any stage and yet is a fully fledged
logic synthesis. The conducted experiments show that the
proposed method has significant advantage both in memory
consumption and in runtime compared with the existing
state space based methods, while delivering somewhat bet-
ter circuits compared with those produced PETRIFY and the
ILP method of [5]. Combined with the decomposition ap-
proach of [20, 26, 27], this design cycle can be applied for
control re-synthesis of BALSA or TANGRAM specifications
as described above.

The full version of this paper can be found in the tech-
nical report [16] (available on-line), where also the differ-
ences of the proposed approach from other existing tech-
niques are discussed.

2. Transformations

In this paper, we are primarily interested in SB-preser-
ving transformations, i.e., ones preserving safeness and be-
haviour (in the sense that the original and the transformed
STGs are weakly bisimilar, provided that the newly inserted
transitions are considered silent) of the STG. Below we de-
scribe several kinds of transition insertions, which we will
use for CSC conflict resolution, and the algorithms presen-
ted in [15] allow to check their validity.

Building an unfolding prefix of an STG can be a time-
consuming operation. However, in most practical cases
the approach described in [15] allows to avoid a poten-
tially expensive re-unfolding after each transition insertion,
by introducing local modifications in the existing prefix in-
stead. Moreover, it yields a prefix similar to the original
one, which is advantageous for visualisation and allows one
to transfer some information (e.g., the yet unresolved CSC
cores) from the original prefix to the modified one.

Sequential pre-insertion A sequential pre-insertion is es-
sentially a generalised transition splitting, and is defined as
follows. Given a transition t and a set of places S ⊆ •t, the
sequential pre-insertion S � t is the transformation inserting
a new transition u (with an additional place) ‘splitting off’
the places in S from t. The picture below illustrates the
sequential pre-insertion {p1, p2} � t.
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One can easily show that sequential pre-insertions al-
ways preserve safeness and traces (i.e., firing sequences
with the silent transitions removed). However, in general,
the behaviour is not preserved, and so a sequential pre-
insertion is not guaranteed to be SB-preserving (in fact, it
can introduce deadlocks) [15]. Given an unfolding pre-
fix, it is quite easy to check whether a pre-insertion is SB-
preserving [15].

If a sequential pre-insertion S � t is applied to an STG,
the inserted transition should not ‘delay’ an input (as this
would impose a constraint on the environment which was
not present in the original specification), and so t must not
be an input transition. Moreover, one should take care that
the semi-modularity is not violated. ([15] presents an al-
gorithm allowing one to check that the newly inserted trans-
ition will not be in a dynamic choice relation with any other
transition, which ensures semi-modularity.)

Sequential post-insertion Similarly to sequential pre-
insertion, sequential post-insertion is also a generalisation
of transition splitting, and is defined as follows. Given a
transition t and a set of places S ⊆ t•, the sequential post-
insertion t � S is the transformation inserting a new trans-
ition u (with an additional place) ‘splitting off’ the places
in S from t. The picture below illustrates the sequential
post-insertion t � {q1, q2}.
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One can easily show that sequential post-insertions are
always SB-preserving.

If a sequential post-insertion is applied to the STG, the
semi-modularity is guaranteed to be preserved. However,
one still has to ensure that the inserted transition does not
‘delay’ any input transitions.

Concurrent insertion Concurrent transition insertion can
be advantageous for performance, since the inserted trans-
ition can fire in parallel with the existing ones. It is defined
as follows. Given two distinct transitions, t′ and t′′, and an
n ∈ {0, 1}, the concurrent insertion t′n|−→t′′ is the trans-
formation inserting a new transition u (with a couple of
additional places) between t′ and t′′, and putting n tokens
in the place in its preset. We will write t′ |−→t′′ instead of
t′0|−→t′′ and t′•|−→t′′ instead of t′1|−→t′′. The picture be-
low illustrates the concurrent insertion t1

•|−→t3 (note that
the token in p is needed to prevent a deadlock).

t1 t2 t3 ⇒ t1 t2 t3

p u q

In general, concurrent insertions preserve neither safe-
ness nor behaviour. In fact, safeness is not preserved even
if n = 0 (e.g., when in the original net t′ can fire twice
without t′′ firing), and deadlocks can be introduced even if
n = 1 (e.g., when in the original net t′′ should fire twice
before t′ can become enabled). In [15], an efficient test
whether a concurrent insertion is SB-preserving, working
on an unfolding prefix, has been developed.

If a concurrent insertion t′n|−→t′′ is applied to the STG,
the semi-modularity is guaranteed to be preserved, but the
inserted transition should not ‘delay’ an input, and so t′′

must not be an input transition.

Equivalent transformations It can happen that a sequen-
tial post-insertion t � S yields essentially the same net as a
sequential pre-insertion S′ � t′, where t ∈ ••t′; in particular,
this happens if S ∪S′ ⊆ t• ∩ •t′ and |•p| = |p•| = 1 for all
p ∈ S ∪ S′. In such a case there is no reason to distinguish
between these two transformations, e.g., one can convert
a post-insertion into an equivalent pre-insertion whenever
possible. Moreover, since post-insertions are always SB-
preserving, there is no need to check the validity of the res-
ulting transformation.

Commutative transformations A pair of transforma-
tions commute if the result of their application does not de-
pend on the order they are applied. (Note that a transform-
ation can become ill-defined after applying another trans-
formation, e.g., t � {p, q} becomes ill-defined after applying
t � {p}.) One can observe that:
• a concurrent insertion always commutes with any other

transition insertion;
• a sequential pre-insertion and a sequential post-inser-

tion always commute;
• two sequential pre-insertions S � t and S′ � t′ commute

iff t 	= t′ or S ∩ S′ = ∅;
• two sequential post-insertions t �S and t′ �S′ commute

iff t 	= t′ or S ∩ S′ = ∅.
It is important to note that an SB-preserving transition

insertion remains SB-preserving if another commuting SB-
preserving transition insertion is applied first. Hence trans-
formations whose validity has been checked can be cached,
and after some transformation has been applied, the non-
commuting transformations are removed from the cache
and the new transformations that became possible in the
modified STG are computed, checked for validity and added
to the cache. (In particular, in the proposed CSC conflict
resolution procedure, there is no need to check the validity
of a particular transformation if it was checked in a preced-
ing iteration.)

A composite transition insertion is a transformation de-
fined as the composition of several pairwise commutative
transition insertions. Clearly, if a composite transition inser-
tion consists of SB-preserving transition insertions then it is



SB-preserving, i.e., one can freely combine SB-preserving
transition insertions, as long as they are pairwise commut-
ative. This property is useful for conflict resolution: typic-
ally, several transitions of a new internal signal have to be
inserted in each iteration of the algorithm, in order to pre-
serve the consistency of the STG. For example, in Fig. 1(c)
a composite transformation comprising two commuting SB-
preserving concurrent insertions (adding the new transitions
csc+ and csc−) has been applied in order to resolve the
CSC conflict while preserving the consistency of the STG.

3. Resolution of CSC conflicts

On each iteration of the proposed CSC conflict resolu-
tion procedure, a consistency-preserving composite inser-
tion I resolving some of the conflict cores is chosen.

Given a finite and complete prefix of the STG unfolding,
one can compute a set I of valid (i.e., SB-preserving, semi-
modularity-preserving, not delaying an input, etc.) inser-
tions as described in the previous section. (There is only a
polynomial in the size of the STG number of such signal in-
sertions if max

⋃
t∈T {|•t|, |t•|} is bounded by a constant.)

Then we formulate a SAT problem as follows.
For each insertion I ∈ I we create a Boolean variable,

also denoted by I , indicating whether I ∈ I. The con-
straints below ensure that for any satisfying assignment of a
SAT instance to be built, the corresponding composite inser-
tion I (obtained by taking the insertions whose correspond-
ing variables are assigned 1) is valid (i.e., that it preserves
the consistency of the STG, the chosen individual insertions
commute and introduce no auto-conflicts or self-triggering)
and that some of the conflict cores are resolved (i.e., some
progress is made). This SAT instance will be the conjunc-
tion of the constraints described below.

MUT EX constraint Two signal insertions, I and I ′, are
called mutually exclusive if they are non-commuting, or the
inserted transitions are either concurrent or in auto-conflict
or one of them can trigger the other.

All these conditions can be checked statically on the pre-
fix, and one can build an undirected graph G representing
the ‘mutually exclusive’ relation on I. Then, for every edge
{I, I ′} of G, the transformations I and I ′ must not be used
together, which is expressed by the constraint:∧

{I,I′}∈edges(G)

(¬I ∨ ¬I ′) .

The size of this constraint can be quadratic in |I|. A smal-
ler translation can be obtained by heuristically covering the
edges of G by minimum number of cliques (using, e.g., the
heuristic algorithm described in [13]), trying also to min-
imise the sizes of individual cliques, and generating the
constraint

∑
I∈Cl I ≤ 1 for each clique Cl . A linear in

|Cl | translation of this pseudo-Boolean constraint into a
Boolean formula is possible by introducing auxiliary vari-
ables [11, 28].

Sign alternation constraint The chosen SAT encoding
does not carry any information concerning the signs (‘+’
or ‘−’) of the inserted transitions. This is motivated by the
desire to reduce the number of variables in the correspond-
ing SAT instance by exploiting the following symmetry: it
is always possible to flip the signs of all the transitions cor-
responding to a given internal signal without affecting the
correctness (consistency, semi-modularity, etc.) of the STG.
However, one still has to ensure that consistent assignment
of signs to each signal insertion within the composite sig-
nal insertion is possible; given such a composite insertion,
one can statically compute the assignment using a prefix,
by arbitrarily choosing the initial value (0 or 1) of the newly
inserted signal. Hence, without loss of generality, one can
assume that this value is 0 (it can be easily changed to 1
by flipping the signs of all the transitions corresponding to
the newly inserted signal after the CSC conflict resolution
process is completed).

In part, this condition is ensured by the MUT EX con-
straint, which guarantees that the instances of the newly in-
serted signals are not concurrent. The purpose of the sign
alternation constraint SA is to ensure that the signs of the
instances of the newly inserted signal alternate in each con-
figuration of the prefix.

Given a configuration C of the prefix and a compos-
ite insertion I, we denote by CodeI(C) the encoding of
the newly inserted signal at the final state of C. (Recall
that we assume that the initial value of this signal is 0,
i.e., CodeI(∅) df= 0.)

Let J0, . . . , Jk be the instances of I in the prefix, i.e., the
I-labelled events which would be added to the prefix if the
insertion I is applied to the STG. (They can be computed
statically on the prefix [15].) We extend the usual notation
for presets and postsets to transformation instances; but note
that, depending on the type of insertion, •Ji or J•

i (or both)
may be not in the prefix (until the transformation is applied).
However, the events in ••Ji are in the prefix even before the
transformation is applied.

For a configuration C, let #IC be the number of in-
stances of I which would be inserted by the transformation
I into C; it can be computed statically as follows:

#IC
df=




#t′′C if I is t′n|−→t′′

#tC if I is S � t
#tC − m if I is t � S,

where #tC denotes the number of t-labelled events in C,
and m = 1 if C can be extended by some instance of I and
m = 0 otherwise.

Assuming that the instances of the new signal within C
can be assigned signs in a consistent way, CodeI(C) can be
expressed as follows:

CodeI(C) ⇐⇒
⊕

I : #IC is odd

I .



(An auxiliary Boolean variable, also denoted CodeI(C),
together with the above constraint defining its value, is in-
troduced in the SAT instance being built if CodeI(C) ap-
pears in the formulae below.)

The sign alternation constraint SA needs to ensure that
if I ∈ I then all its instances J0, . . . , Jk can be assigned
the same sign in a consistent way, i.e., that the values
of CodeI([••J0]), . . . ,CodeI([••Jk]) are the same, where
[X] denotes the minimal (w.r.t. ⊂) configuration containing
all the events in X . This can be accomplished, for each
I ∈ I, by the following constraint:

I ⇒ SAME(CodeI([••J0]), . . . ,CodeI([••Jk])) ,

where

SAME(x0, . . . , xk) df=
k∧

i=0

(xi ⇒ xi+1 mod (k+1)) .

Since for a given t, all insertions of the form t � · and
tn|−→· have the same ••J0, . . . ,

••Jk, the sign alternation
constraints for a group G of such insertions can be com-
bined as follows:( ∨

I∈G

I

)
⇒SAME(CodeI([••J0]), . . . ,CodeI([••Jk])) .

Note that the SA constraint is defined via CodeI([••J ]) for
all instances J of all the insertions I ∈ I, and the definition
of CodeI(C) assumes that the instances of the new signal
within C can be assigned signs in a consistent way, i.e., they
are not concurrent (which is ensured by MUT EX ) and
their signs alternate, which has to be ensured by SA. This
mutual dependency of CodeI(C) and SA does not cause
problems, though, due to the following inductive argument.
Suppose SA is incorrect for some configuration C of the
prefix. Since CodeI(X) is computed correctly whenever
SA is correct on X , and due to MUT EX no two instances
of the new signal can be concurrent, SA must be incorrect
already for the configuration [••J ] ⊂ C for some instance J
of I ∈ I. Since ⊂ is a well-founded order and SA is correct
for the empty configuration, we have a contradiction.

CUT OFF constraint The sign alternation constraint en-
sures that the signs of instances of the newly inserted signal
will alternate in any configuration of the prefix. However,
to guarantee consistency, one still has to add a constraint
CUT OFF ensuring that this is also the case for the con-
figurations of the full unfolding beyond the cut-off events of
the prefix. For this, it is enough to ensure for each cut-off
event e that after I is applied, the value of the newly inser-
ted signal is the same in the final states of [e] and its cut-off
corresponding configuration.

One may be tempted to express this constraint as

CodeI([e]) ⇐⇒ CodeI(Ce) ,

for each cut-off event e with a corresponding configuration
Ce. However, it does not take into account the following

subtlety. It can happen that some instance J of a post-
insertion I ∈ I is such that Ce can be extended by J . The
definition of CodeI does not take J into account (since J
will not be in Ce after the transformation is applied), even
though it may become a part of the corresponding configur-
ation of e after I is applied. To capture this, a post-insertion
I is called e/Ce-mismatching if some instance J of I is
such that Ce can be extended by J and [e] cannot be exten-
ded by J . Now such additional instances of post-insertions
can be taken into account as follows:

CodeI([e]) ⇐⇒ CodeI(Ce) ⊕
⊕

I∈MMe

I ,

for each cut-off event e with a corresponding configuration
Ce, where MMe is the set of e/Ce-mismatching post-
insertions.

As an optimisation, this constraint can be represented as

¬
(

CodeI([e]) ⊕ CodeI(Ce) ⊕
⊕

I∈MMe

I

)
,

and ⊕-sums can be optimised, as described at the end of
this section. Alternatively, one can observe that if two
post-insertions are commutative and non-concurrent then no
configuration can be extended by both of them. Hence at
most one of the variables in

⊕
I∈MMe I can be assigned 1,

i.e., one can replace this sub-expression by
∨

I∈MMe I .
This can improve the runtime of SAT solver and shorten
the formula, and the ⊕-sums can still be optimised for
CodeI([e]) ⊕ CodeI(Ce).

CORE constraint To ensure progress, a constraint con-
veying that at least one of the conflict cores is resolved, is
added. Let CS be a core. A signal insertion I is called
hanging w.r.t. CS if, after it is applied, it directly precedes or
succeeds CS. A composite transition insertion I is hanging
w.r.t. CS if some I ∈ I is hanging w.r.t. CS.

One can observe that if I is hanging w.r.t. CS then CS is
not resolved by I. In the transformed prefix, this core will
resurface as a core CS ′, as one can always ensure that the
encodings at the beginning and at the end of CS ′ coincide
by adding, if needed, a hanging instance of I ∈ I to the
core.

CS is resolved by a composite signal insertion I if an odd
number of signal instances is inserted into it, and none of the
inserted signal instances is hanging w.r.t. CS. By introdu-
cing new auxiliary variables HangingCS and ResolvedCS
for each core CS, the CORE constraint is defined as fol-
lows:(∨

CS
ResolvedCS

)
∧
∧
CS

(
HangingCS ⇐⇒

∨
I∈HCS

I

)
∧



∧
CS


ResolvedCS ⇐⇒

(
¬HangingCS ∧

⊕
I /∈HCS∧

#ICS is odd

I

) ,

where HCS is the set of hanging w.r.t. CS transition inser-
tions.

Computation of ⊕-sums One can notice that the con-
structed formulae contain many ⊕-sums over the same set
of variables I. There is typically a lot of sharing between
them, and so these sums can be optimised by computing
common sub-sums only once.

The problem can be abstractly formulated as follows.
Given m ⊕-sums over the variables x1, . . . , xn, build a
small acyclic Boolean circuit1 with n inputs and m out-
puts computing these ⊕-sums. (Such a circuit can then be
converted into a Boolean formula in the conjunctive normal
form, whose size is linear in the size of the circuit.)

This problem can be solved in a number of ways. The
method described in [28, Chapter 4.7], [23] divides the vari-
ables into n/ log n groups of log n variables each, computes
all the possible sums in each group, and forms the circuit
from these sums. For this, at most n2+mn

log n − m binary ⊕-
gates are needed. In the actual implementation, a method
based on preset trees [14, Chapter 4] was used. Experiments
show that it works quite well in practice.

Another optimisation is to use xi ∨ xj instead of xi ⊕
xj for variables which are known to be mutually ex-
clusive (e.g., those corresponding to concurrent or non-
commutative transformations).

4. Cost function

On each iteration of the method, a heuristic cost function
is used to guide the search towards ‘good’ solutions with
small area and/or performance overhead. The constructed
SAT instance is solved several times, with constraints on the
value of the cost function appended to the formula, so that a
solution minimising the value of the cost function is eventu-
ally computed. (The process resembles a binary search on
the value of the cost function.) The cost function we used is
a weighted sum of the following components:

• the estimated number of unresolved CSC cores;

• the estimated number of unresolved Universal State
Coding (USC) cores, i.e., cores corresponding to dif-
ferent states which have the same encoding (though
USC cores which are not CSC cores are not harmful,
they can become CSC cores once new signals are ad-
ded to the STG);

• the estimated delay introduced by the insertion;
1This Boolean circuit is an abstract construction needed for building a

part of the SAT instance, and should not be confused with the circuit being
synthesised from the STG.

1 �lds+, �dtack+

2 �d−, �lds+

3 �lds+, dtack+ |−→d−

4 ldtack−�, �dtack+

5 �lds+, �dtack−

6 �d−, ldtack−�
7 ldtack−�, dtack+ |−→d−

8 �d−, �lds+, �dtack+, �dtack−

9 d+ |−→d−, �lds+

10 d+ |−→d−, ldtack−�
11 lds− |−→lds+, �dtack+

12 �d−, lds− |−→lds+

13 �lds+, dsr− |−→dtack−

14 lds− |−→lds+, dtack+ |−→d−

15 �lds+, dtack+ |−→dtack−

16 d+ |−→d−, lds− |−→lds+

17 d+ |−→dtack−, �lds+

Table 1. The composite transition insertions
resolving the CSC conflict shown in Fig. 1.

• the total number of syntactic triggers of all output and
internal signals;

• the number of inserted transitions of a signal;
• the number of input signals which are not ‘locked’2

with the newly inserted signal;
• the number of output and internal signals which are not

‘locked’ with the newly inserted signal.
The user can choose the relative weights of the components
of the cost function to guide the resolution process towards
solutions with the desired area/latency trade-off. The imple-
mentation details can be found in the technical report [16].

5. Case studies and experimental results

The CSC conflict resolution method described in this
paper has been implemented in the MPSAT tool. In this
section we present a number of case studies demonstrating
some interesting features of the proposed approach, as well
as the results of running it on a number of benchmarks. To
solve the arising SAT instances, the MINISAT2 solver3 has
been used. All the experiments were conducted on a PC
with a PentiumTM IV/3.4GHz processor and 2G RAM.

VME bus controller. The specification of the read cycle
of VME bus controller is shown in Fig. 1. Although it is
a very small benchmark containing a single conflict core,

2Two signals are in the ‘lock’ relation [25] if their instances (i) cannot
be concurrent, and (ii) alternate in every execution sequence. ‘Locking’
the newly inserted signal with as many other signals as possible is a good
heuristics for logic simplification [4].

3Available from www.cs.chalmers.se/Cs/Research/For-
malMethods/MiniSat/Main.html.



−

a− y+

b−

y−

b+ b+a+

x+

x

(a)

+ csc
3
+

csc
1
−

csc
2
+csc

3
+

+a

+x

−x

+a

+y

−b

−y

+b +b

csc
1
+

csc
3
−

csc
2
−

csc
1
+

csc
2

(b)

inputs: a, b; outputs: x, y; internal: csc1, csc2, csc3

Figure 2. An STG from [5] (a) and a way to re-
solve the CSC conflicts in it by inserting three
signals without restructuring (b).

MPSAT was able to find 17 possible ways to resolve it, lis-
ted in Table 1. This shows that the proposed method ex-
plores a fairly large design space, including quite an unintu-
itive solution 8 with two set and two reset transitions, which
resolves the core by inserting three transitions of csc into it.
Many of these solutions cannot be computed by the method
of [5], as the class of transformations it uses is limited to
transition splitting.

An ‘unresolvable’ conflict. The STG in Fig. 2(a) was
presented in [5]. PETRIFY can resolve all the CSC con-
flicts in it by restructuring the net and inserting two signals,
and it was claimed that it is impossible to resolve CSC con-
flicts without such a restructuring. However, MPSAT has
found a solution with three signals requiring no restructur-
ing, shown in Fig. 2(b). (When this was reported to the
authors of [5], they amended their ILP tool and it was able
to resolve the conflicts by inserting four signals.)

An 8-way sequencer. Sequencers are among the standard
‘building blocks’ of circuits produced from hardware de-
scription languages like BALSA and TANGRAM. The ‘par-
ent’ handshake at port a initiates eight sequentially ordered
‘child’ handshakes at ports b, . . . , i. Then the parent hand-
shake completes, and the cycle continues. (The completion
of the last ‘child’ handshake is reshuffled with the comple-
tion of the ‘parent’ handshake for an early acknowledge-
ment at port a.) Fig. 3 shows the unfolding prefix of the
STG specifying an 8-way sequencer with seven conflict
cores.

Intuitively, at least three bits of additional memory are
needed to implement this specification (by counting how
many of the eight ‘child’ handshakes have been executed so

STG Signals Literals
Example |P |/|T | In/Out Pfy ILP SAT Pfy ILP SAT

ADFAST 15/12 3/3 2 2 2 14 17 21
IRCV-BM 55/46 5/4 2 4 1 38 46 28
MMU 20/16 4/4 3 3 3 29 27 27
MMU0 20/16 4/4 3 5 3 29 33 27
MMU1 24/16 4/4 3 2 2 32 25 25
MR0 31/22 5/6 3 4 3 45 34 29
MR1 25/18 4/5 4 4 3 35 29 27
NAK-PA 22/18 4/5 1 1 1 18 18 18
NOWICK 19/14 3/2 1 1 1 14 13 14
PAR(4) 23/20 5/5 4 4 4 32 32 32
SEQ(8) 36/36 9/9 4 6 3 47 43 44
TSEND-BM 45/39 5/4 2 3 1 39 40 27
ALLOC-OUTBOUND 17/18 4/3 2 2 2 16 16 15
DUPLICATOR 14/12 2/2 2 3 2 19 16 13
MOD4 COUNTER 16/16 1/2 2 4 2 25 28 25
RAM-READ-SBUF 26/20 5/5 1 1 1 18 19 19
SBUF-RAM-WRITE 29/20 5/5 2 2 2 22 29 29
SBUF-READ-CTL 14/12 2/4 1 1 1 15 15 15
MASTER 1882 38/26 6/7 1 1 1 38 38 39
TRCV-BM 53/44 5/4 2 4 2 36 41 34
SEQ MIX 20/20 4/4 3 2 2 20 20 20
SPEC SEQ(4) 20/20 5/5 3 3 2 20 20 20
Total 51 62 44 601 599 548

Table 2. Experimental results: assorted small
STGs.

far), so the CSC conflicts cannot be resolved by insertion of
fewer than three signals. However, it is not trivial to find a
solution using only three additional signals — in fact, PET-
RIFY’s solutions contains four new signals. MPSAT was
able to find a fully concurrent solution with three signals
shown in Fig. 3 by dotted lines. Note that to accomplish
this the signal csc1 is set and reset twice in each cycle.

Finding a solution with three signals is only possible by
analysing multiple cores; the method of [5] cannot find such
a solution because it analyses just a single violation trace on
each iteration — in fact, it needs six signals to resolve the
CSC conflicts in this case study.

Assorted small benchmarks Table 2 compares the three
methods for resolving CSC conflicts: the state-space based
approach implemented in PETRIFY, the ILP approach of [5]
and the one proposed in this paper, on a number of assorted
small benchmarks from [5]. The meaning of the columns
in the table is as follows (from left to right): the name of
the problem; the number of places, transitions, and input
and output signals in the original STG; the number of sig-
nals inserted by PETRIFY, the ILP approach of [5] and the
approach proposed in this paper; and the number of liter-
als in the final complex-gate implementations produced by
the three approaches (the smallest numbers are highlighted).
The numbers in the ‘Pfy’ and ‘ILP’ columns are as reported
in [5], and, for consistency with [5], PETRIFY was used to
synthesise the STGs after the CSC conflicts were resolved.

It should be noted that different sets of weights in the
cost function were used to produce the numbers in the two
‘SAT’ columns: in the former the cost function was aimed
at minimising the number of inserted signals, whereas in the
latter it was aimed at minimising the number of literals in
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Figure 3. The unfolding prefix of an STG modelling an 8-way sequencer, showing 7 cores and a fully
concurrent solution with 3 new signals.

STG Prefix Signals Literals Time, [s]
Example |P |/|T | In/Out |B|/|E| Pfy SAT Pfy SAT Pfy SATs SATl

Marked Graphs
PPWK(2,3) 23/14 0/7 41/24 1 1 35 34 <1 <1 <1
PPWK(2,6) 47/26 0/13 119/63 1 1 71 70 5 <1 <1
PPWK(2,9) 71/38 0/19 233/120 1 1 107 106 34 <1 6
PPWK(2,12) 95/50 0/25 383/195 1 1 142 142 368 <1 18
PPWK(3,3) 34/20 0/10 63/36 2 2 59 54 4 <1 <1
PPWK(3,6) 70/38 0/19 183/96 2 2 112 108 105 <1 6
PPWK(3,9) 106/56 0/28 357/183 2 2 163 162 1838 4 55
PPWK(3,12) 142/74 0/37 585/297 — 2 — 216 mem 5 175

STGs with Arbitration
PPARB(2,3) 48/32 2/13 110/66 2 2 81 81 35 <1 2
PPARB(2,6) 72/44 2/19 218/120 2 3 117 116 118 1 17
PPARB(2,9) 96/56 2/25 362/192 2 2 153 152 1041 2 50
PPARB(2,12) 120/68 2/31 542/282 — 3 — 188 mem 8 159
PPARB(3,3) 71/48 3/19 188/114 3 3 136 131 620 <1 14
PPARB(3,6) 107/66 3/28 368/204 3 3 190 184 5043 2 117
PPARB(3,9) 143/84 3/37 602/321 3 4 244 238 12307 7 354
PPARB(3,12) 179/102 3/46 890/465 — 5 — 292 mem 24 839

Table 3. Experimental results: scalable pipe-
lines.

the final implementation.
One can see that in all cases the number of inserted by

MPSAT signals was smaller or the same compared with the
other methods, and also it produced in average 8.5–8.8%
smaller implementations. This may seem not particularly
spectacular, but such an improvement over PETRIFY on
small benchmarks is noteworthy.

Scalable benchmarks We also compared the described
method with PETRIFY (the ILP tool of [5] was not available
from the authors) on two groups of scalable benchmarks
modelling m pipelines weakly synchronised without arbit-
ration (PPWK(m,n)) and with arbitration (PPARB(m,n)).
They are the benchmarks from the corresponding series
used in [17], with the latter series modified by ‘factor-

ing out’ the arbiter into the environment to ensure semi-
modularity. In these two series of benchmarks all the signals
except the arbiter’s grants in PPARB(m,n) are considered
outputs, i.e., the control logic is designed as a closed circuit.
The inputs are inserted after the synthesis is completed, by
breaking up some outputs and inserting the environment
into the breaks, thus forming handshakes (sometimes with
an inverter attached to the output if the environment acts as
an active port).

The results for these two groups are summarised in
Table 3, where the meaning of the columns is the same
as in Table 2, except that the sizes of the corresponding
finite and complete prefixes (in terms of the numbers of
conditions and events) are given in the forth column and
the runtimes (in seconds) are now reported for each of the
methods in the last four columns (for MPSAT, the runtimes
for signal and literal optimisation are reported separately).
We use ‘mem’ if there was a memory overflow. It also
should be noted that since PETRIFY was not able to synthes-
ise some of the resulting STGs, they were synthesised with
the unfolding-based tool described in [18], which currently
does not support multi-level Boolean minimisation and out-
puts the equations in the minimised disjunctive normal form
(DNF).

One can see that on these benchmarks PETRIFY and
MPSAT were very close in terms of the number of inser-
ted signals and the number of literals. However, in terms
of runtime and memory consumption MPSAT was clearly
superior: in some cases the runtime differed by orders of
magnitude, and the cases which were intractable for PET-
RIFY due to memory overflow were solved by MPSAT rel-
atively easily.

It should be noted that, depending on whether signals or
literals are minimised, MPSAT’s runtimes can differ signi-



ficantly on the same benchmark. This can be explained by
the fact that in the former case many of the parameters of
the cost function (viz. the estimated delay, the total number
of syntactic triggers of all output and internal signals, the
number of inserted transitions, the numbers of inputs and
outputs which are not ‘locked’ with the newly inserted sig-
nal) are not taken into account (resulting in a considerable
shortening of the SAT instance), whereas in the latter case
only the estimated delay is not taken into account.

6. Conclusions and future work

This paper proposes a new method for resolution of CSC
conflicts based on STG unfoldings. The problem is re-
formulated in terms of Boolean satisfiability, and a tunable
heuristic cost function is used to guide the design space ex-
ploration towards good solutions.

The presented case studies demonstrate that the proposed
approach explores a large design space and is able to find in-
teresting solutions which could not be found by other meth-
ods; moreover, the experimental results show that it is quite
fast and results in high quality circuits.

As it was mentioned in the introduction, the proposed
approach is intended for use in conjunction with the decom-
position method of [20, 26, 27]. This work is finished now,
and the results are very encouraging [20].

In future work, we intend to extend the method to other
transformations, in particular concurrency reduction [8,19].
Moreover, there is still a scope to improve the cost function,
e.g., using the ideas described in [25].
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