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Efficient Automatic Resolution of Encoding
Conflicts Using STG Unfoldings

Victor Khomenko

Abstract—Synthesis of asynchronous circuits from Signal Tran- descriptions. (For example, designing a control circuithwi
sition Graphs (STGs) involves resolution of state encoding con- more than 20-30 signals withEPRIFY is often impossible.)
flicts by means of refining the STG specification. In this paper, a Hence, this approach does not scale. MoreoverTRRFY

fully automatic technique for resolving such conflicts by means of ¢ t luti hich b d to the t t
insertion of new signals and concurrency reduction is proposed. It cannot guarantee a solution which can be mapped to the targe

is based onconflict cores i.e., sets of transitions causing encoding gate library.
conflicts, which are represented at the level of finite and complete  One way to cope with the state space explosion problem is

unfolding prefixes, and a SAT solver is used to find where in the to usesyntax-directedranslation of the specification to a cir-
STG the transitions of new signals should be inserted and to cuit, avoiding thus building the state space. This is egsgnt

check the validity of concurrency reductions. The experimental . X . .
results show significant improvements over the state space based!'€ idea behind BLSA [S] and TANGRAM [6]. This technique,

approach in terms of runtime and memory consumption, as well although computationally efficient, often yields circuitsth
as some improvements in the quality of the resulting circuits.  large area and performance overheads compared with syn-

Index Terms—Asynchronous circuits, encoding conflicts, con- chron_ous counterparts. This is because_the resultingitsrcu
currency reduction, STG, Petri net unfoldings, logic synthesis. are highly over-encoded, i.e., they contain many unnecgssa
state-holding elements.
For asynchronous circuits to be competitive, one has some-
|. INTRODUCTION how to combine the advantages of logic synthesis (high tyuali

SYNCHRONOUS circuits are a promising type of dig©f circuits) and syntax-directed translation (guarantea so-
A ital circuits. They have lower power consumption an#ition, efficiency) while compensating for their disad\eges.
electro-magnetic emission, no problems with clock skew aftinatural way of doing this is to apply logic synthesis to the
related subtle issues, and are fundamentally more tolefantcontrol path extracted from, e.g., aBsA specification. This
voltage, temperature and manufacturing process varifign control path can be partitioned into smaller clusters which
The International Technology Roadmap for Semiconductd?gn be handled by logic synthesis, and the clusters on which
report on Design [2] predicts that 22% of the designs will fails (because of either inability to find a solution in the

be driven by handshake clocking (i.e., asynchronous) irs201arget gate library or exceeding memory or time constraints
and this percentage will raise up to 40% in 2020. are implemented using the syntax-directed translatiore Th

PETRIFY [1] is one of the commonly used tools for synexperiments conducted in [7] showed that such a combined

thesis of asynchronous circuits. As a specification it atscap @PProach can halve the area of control path and improve its
Signal Transition Graph (STG}], [4] — a class of interpreted latency, compared with the traditional syntax-directesh$ta-
Petri nets in which transitions are labelled with the risinfiony as long as clusters which can be confidently handled by
and falling edges of circuit signals. For synthesigTRIFy l0gic synthesis are sufficiently large.

employs the state space of the STG, and so it suffers from thé\rguably, one of the most difficult tasks in logic synthesis
combinatorialstate space explosioproblem. That is, even iS resolution oiComplete State Coding (CSE)nflicts, arising

a relatively small system specification can (and often doedfien semantically different (i.e., enabling different ssef
yield a very large state space. This puts practical boun@dtPuts) reachable states of an STG have the sameding

on the size of control circuits that can be synthesised usih§- the binary vector representing the value of all thealg
such techniques, which are often restrictive, especidily i @ given state, as illustrated in Fig. 1(a,b). To resolveS€CC
the specification is not constructed manually by a design@?nﬂiCt: newinternal signals helping to distinguish between

but rather generated automatically from high-level hamwathese states must be inserted into the specification in such a
way that its ‘external’ behaviour does not change. (Intalif,
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The design flow advocated in [7] is as follows. Given alosed set of events (being downward-closed means that if
(potentially large) STG, the CSC conflicts are resolvedgisie € C and f is a causal predecessor efthen f € ()
an integer linear programming (ILP) technique to approxenawithout choices(i.e., for all distinct events, f € C, there
the state space of an STG. Then the resulting STG (free frasmo conditionc in the unfolding such that the ar¢s, ¢) and
CSC conflicts) is decomposed into smaller components in sugh f) are in the unfolding). Intuitively, a configuration is a
a way that they are also free from CSC conflicts, as describeartially ordered execution, i.e., an execution where ttiei0
in [8]. (Typically, each component is responsible for proidg of firing of some of its events (viz. concurrent ones) is not
a single signal.) Then these components are synthesised omportant. We will denote bye] the local configuration of an
by-one using BTRIFY. This approach can handle much largeevente, i.e., the smallest (w.r.t_) configuration containing
specifications than ErrIFy alone, but its scalability is still (it is comprised ofe and its causal predecessors).
limited since ILP is an NP-complete problem. For example, The unfolding is infinite whenever the original STG has an
[7] reports that for the &T(20,9) benchmark with 436 places,infinite run; however, if the STG has finitely many reachable
398 transitions and 199 signals it took over an hour to r&solgtates then the unfolding eventually starts to repeatfitsel
CSC conflicts with area optimisation, and over two hoursnd can be truncated (by identifying a setacuft-off events)
with delay optimisation. Moreover, an ILP approximation ofvithout loss of information, yielding a finite and complete
the state space may work poorly for some STGs, e.g., thgsefix. Intuitively, an event can be declared cut-off if the
containing self-loops (i.e., pairs of ar¢s,t), (t,p) going in already built part of the prefix contains a configuratiofi
opposite directions). (called thecorrespondingconfiguration ofe) such that its final

In this paper, we follow a more scalable approach, whiaharking and encoding coincide with those[ef [13] and C*
avoids performing expensive operations (such as resolvilsgsmaller tharje] w.r.t. some well-founded partial order on the
CSC conflicts) on the original STG. It works by proceedeonfigurations of the unfolding, called alequate ordef10].
ing with decomposition immediately, without resolving CS@ig. 1(c) shows a finite and complete unfolding prefix of the
conflicts. Hence, the resulting components, unlike onetén tSTG shown in Fig. 1(a); the only cut-off event is depicted as
technique described above, are not free from CSC conflictsal double box, and its corresponding configuratioKds, s }.

a component has a CSC conflict, it can happen due to oneEfficient algorithms exist for building such prefixes [10],
of the following two reasons: (i) this conflict was presenfti1], which ensure that the number of non-cut-off events in a
already in the original STG,; or (ii) this conflict was intraskl  complete prefix can never exceed the number of reachable
because some of the signals preventing it in the original STdtates of the STG. Moreover, complete prefixes are often
are not present in the component. The technique descrigonentially smaller than the corresponding state graphs
in [9] allows one to check which of these two reasons appliesspecially for highly concurrent STGs, because they reptes
and in case (ii) to find signals which need to be added t@ncurrency directly rather than by multidimensional ‘dia
the component to prevent such CSC conflicts. Finally, theonds’ as it is done in state graphs. For example, if the
remaining CSC conflicts are resolved in each component, améginal STG consists of 100 transitions which can fire omce i
the resulting STGs are synthesised. parallel, the state graph will be a 100-dimensional hypescu

Although this approach is quite scalable, it can be sucakssiith 2190 vertices, whereas the complete prefix will coincide
only if resolution of CSC conflicts and logic synthesis can beith the net itself. Since practical STGs usually exhibit a
efficiently performed for all components, since a failure tt of concurrency, but have rather few choice points, their
synthesise even one of them means that the whole STG is nofolding prefixes are often exponentially smaller than the
synthesised. In particularE?RIFY may be inadequate for this corresponding state graphs; in fact, in many of the experisne
task because of its rather restrictive limitations on ttee €if conducted in [14] they are just slightly bigger than the iordd)
components. A more promising approach is to employ ST&TGs themselves. Thus, unfolding prefixes are well-suibed f
unfolding prefixes [10]-[12]. alleviating the state space explosion.

A finite and complete unfolding prefigf an STG is a  In [14] the unfolding technique was applied to detection of
finite acyclic net which implicitly represents all the reable CSC conflicts between reachable states of an STG. Moreover,
states of this STG together with transitions enabled atethds [15] the problem of complex-gate logic synthesis from an
states. Intuitively, it can be obtained througifolding the STG free from CSC conflicts was solved. The experiments
STG, by successive firing of transitions, under the follayvinin [14], [15] showed that unfolding-based approach can leand
assumptions: (i) for each new firing a fresh transition éxhll much bigger STGs theneRRIFY.
an even) is generated, (ii) for each newly produced token a The visualisation method presented in [16] is aimed at
fresh place (called aonditior) is generated. facilitating a manual refinement of an STG with CSC conflicts,

Due to its structural properties (such as acyclicity), thend works on the level of unfolding prefixes. In order to avoid
reachable states of an STG can be represented asirfigura- the explicit enumeration of CSC conflicts, they are visealis
tionsof its unfolding. A configuratior is a finite downward- ascores i.e., sets of transitions ‘causing’ one or more of them.
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Il. TRANSFORMATIONS

In this paper, we are primarily interested 8B-preserving
transition insertions, i.e., ones preserving safeness kand
(c) haviour of the STG (in the sense that the original and the
Fig. 1. An STG modelling the read cycle of the VME bus contmo(a), transformed STGs are weakly bisimilar, provided that the
its state graph showing a CSC conflict between the stafesand M> (b), newly inserted transitions are considered silent). Belowv w
and its unfolding prefix showing the conflict core correspongdo this CSC describe several kinds of transition insertions, which \é

conflict and a way to resolve it by insertion of a new interrighal csc (c).
A cor nb mputed th mmetri t differen ﬁed for CSC conflict resolution, and the algorithms present
(A core can be computed as the symmetric se erence, R [17] allow one to check their validity.

two configurations whose final states are in CSC confllct) - 2 .
We assume that the original STG iigut-proper,i.e., no
All such cores must eventually be eliminated, e.g., by agldin
transition of an internal signal can trigger a transitionaof
new internal signals that resolve the CSC conflicts, to yéeld
STG satisfying the CSC property. This approach is |Iluet|iatmpUt signal (as this is not implementable in a speed-inde-
9 Property. bp endent way). All the transformations used for resolutién o

in Fig. 1(c). One can see that the encodings at the begmnP
coding conflicts in this paper preserve this property.
and at the end of the core are the same. This suggests ths
uilding an unfolding prefix of an STG can be a time-

core can be eliminated by the introduction of a new S|gnal . . . .

bnsumlng operation. However, in most practical cases the
csc, in such a way that one of its transitions is inserted int®

approach described in [17] allows one to avoid a potentially
the core, as this would violate the stated property. Noté th

expensive re-unfolding after each transition insertionper-
at least two transitions, viz. the falling and the rising eslg

: ) . : orming local modifications in the existing prefix instead.
of the signal, have to be inserted into the STG in order o T - ;
oreover, it yields a prefix similar to the original one, whic

preserve theonsistencyl], [3] — a necessary condition for .

is advantageous for visualisation and allows one to transfe

implementability of an STG as a circuit, ensuring that aél th
. . " . . some information (e.g., the yet unresolved CSC cores) from
state encodings are binary; in particular, for every signéte - : i
the original prefix to the modified one.

following two properties must hold: (i) in all executions thie Sequential bre-insertionA sequential pre-insertion is es-
STG, the first occurrence of a transitionolfias the same sign > pre-in >€q al p . ;
sentially a generalised transition splitting, and is defirzes

(either rising of falling); (ii) the rising and falling traitions follows Given a transitiort and a set of place$ C *f, the

of 5 alternate in every execution. In this example, the ne se uential pre-insertiof ¢ is the transformation inserting a
transitions were inserted concurrently to existing onesrder q P ¢ 9
new transitionu (with an additional place) ‘splitting off’ the

to minimise the latency of the circuit. After transferrirgetn
into the STG, no more CSC conflicts remain in it, and so Orplaces inS from ¢. The picture below illustrates the sequential
pée insertion{py, p2} 1 t.

can proceed with logic synthesis. (Other ways of inserting

signal in this example are also possible — see Section V.) @>\ EE @ @ o
The semi-automatic approach of [16] is only feasible for
synthesis of small ‘handcrafted’ blocks. In this paper, we . = ‘

present a technique which is also based on cores in the STG

unfolding prefix, but isfully automaticand can handle much

larger STGs than PrriFy, while delivering high-quality  One can ea5|ly show that sequentlal pre-msertlons always
circuits. Together with [14], [15], [17], it essentially wpletes preserve safeness and traces (i.e., firing sequences veith th
the design cycle for synthesis of asynchronous circuitenfrosilent transitions removed). However, in general, the bisha
STGs that does not involve building reachability graphs & not preserved, and so a sequential pre-insertion is not
any stage and yet is a fully fledged logic synthesis. Thguaranteed to be SB-preserving (in fact, it can introduce
conducted experiments show that the proposed method dasdlocks) [17]. Given an unfolding prefix, it is quite easy
significant advantage both in memory consumption and ia check whether a pre-insertion is SB-preserving [17].
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If a sequential pre-insertiof 1 ¢ is applied to an STG, the this happens ifS U S" C t* Nt and |*p| = [p*| = 1
inserted transition should not ‘delay’ an input (as this Wdoufor all p € S U S’. In such a case there is no reason
impose a constraint on the environment which was not presémtdistinguish between these two transformations, e.ge, on
in the original specification), and somust be a non-input can convert a post-insertion into an equivalent pre-ifsert
transition. Moreover, one should take care thatdbtput-per- whenever possible. Moreover, since post-insertions avaya
sistency(i.e., the property that an enabled output cannot I&B-preserving, there is no need to check the validity of the
disabled by another transition) is not violated; [17] prese resulting transformation.
an algorithm for checking that the newly inserted transitio Commutative transformationsA pair of transformations
is not in a dynamic choice relation with any other transitiocommuteif the result of their application does not depend
which ensures output-persistency preservation. on the order they are applied. (Note that a transformation ca

Sequential post-insertionSimilarly to sequential pre-inser- become ill-defined after applying another transformatig,,
tion, sequential post-insertion is also a generalisatfdraosi- ¢ {p,q} becomes ill-defined after applying {p}.) One can
tion splitting, and is defined as follows. Given a transitt@nd observe that:

a set of places’ C ¢*, the sequential post-insertianS is the | 3 concurrent insertion always commutes with any transi-

transformation inserting a new transitian(with an additional tion insertion;
place) ‘splitting off’ the places it from ¢. The picture below , 3 sequential pre-insertion and a sequential post-insertio
illustrates the sequential post-insertion{q;, g2 }. always commute;
1 @ p1 IOK% « two sequential pre-insertion$ ¢ and S’ 1 ¢’ commute iff
JPrul t#£t orSNs =0

= ] « two sequential post-insertiortg S and¢': S’ commute

./’ ./’ iff t£¢ orSNS =0.

3 (@3 (P9 @ It is important to note that an SB-preserving transition

One can easily show that sequential post-insertions dfgertion remains SB-preserving if another commuting SB-
always SB-preserving, and, when applied to an STG, preseRI€Serving transition insertion is applied first. Hencensra
output-persistency. However, one still has to ensure that formations whose validity has been checked can be cached,
inserted transition does not ‘delay’ any input transitions ~ and after some transformation has been applied, the non-

Concurrent insertion:Concurrent transition insertion can bef®mmuting transformations are removed from the cache and
advantageous for performance, since the inserted transigin the new transformations that became _p(_)ssmle in the modified
fire in parallel with the existing ones. It is defined as folow STG aré computed, checked for validity and added to the
Given two distinct transitions! and¢”, and am € {0, 1}, the cache. (In partlcqlar, in the proposed CSC _cqnfllct resmt_utl
concurrent insertion'¢" is the transformation inserting aProcedure, there is no need to check the validity of a paaticu
new transition: (with a couple of additional places) betwegn transformation if it was checked in a preceding iteration.)
andt”, and putting: tokens in the place in its preset. We will A composnet_rgnsnmn |nsert|0n. is a transformat.lon d.efln.ed
write t—¢" instead Oft/g’—)t// andt’*}>t” instead Oﬁ/L'—HfH. ?_S the composition .Of several pa|rW|se f:pmmutatlye tFMIt
The picture below illustrates the concurrent insertigh—+t; insertions. Clearly, if a composite transition insertimnsists

(note that the token ip is needed to prevent a deadlock). of SB-preserving transition insertions then it is SB-pressy,
i.e., one can freely combine SB-preserving transition rinse

tions, as long as they are pairwise commutative. This ptgper
is useful for conflict resolution:; typically, several trarens of

a new internal signal have to be inserted in each iteratiadheof
algorithm, in order to preserve the consistency of the STuB. F

] ) S example, in Fig. 1(c) a composite transformation compgisin
In general, concurrent insertions preserve neither safengyo commuting SB-preserving concurrent insertions (agidin

nor behaviour. In [17], an efficient test whether a concurrefhe new transitionssc* and csc~) has been applied in order
insertion is SB-preserving, working on an unfolding prefiXg resolve the CSC conflict while preserving the consistaicy
has been developed. the STG. (Note that the transformation is applied to the STG,

If a concurrent insertiont’*—¢" is applied to the STG, and then is reflected in the prefix, without re-unfolding.)
the output-persistency is guaranteed to be preservedhbut t

inserted transition should not ‘delay’ an input, andt$anust
be a non-input transition.

Equivalent transformationstt can happen that a sequential On each iteration of the proposed CSC conflict resolution
post-insertiont ! S yields essentially the same net as a s@rocedure, a consistency-preserving composite inserfion
quential pre-insertionS’ ¥ ¢/, wheret € **¢’; in particular, resolving some of the conflict cores is chosen.

IIl. RESOLUTION OFCSCCONFLICTS
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Given a finite and complete prefix of the STG unfoldingsignal without affecting the correctness (consistencypuatd
one can compute a sgtof valid (i.e., SB-preserving, output- persistency, etc.) of the STG. However, one still has to ensu
persistency-preserving, not delaying an input, etc.)riimes that consistent assignment of signs to each signal insertio
as described in the previous section. (There is only a polgthin the composite signal insertion is possible; givenlsa
nomial in the size of the STG number of such insertions domposite insertion, one can statically compute the asségi
max [ J,.{|*t|, [t*|} is bounded by a constant, as the numbersing a prefix, by arbitrarily choosing the initial value (019
of sequential insertions is then linear in the number of STGOHf the newly inserted signal. Hence, without loss of geritgral
transitions, since for eachthe number of insertions of the one can assume that this value is O (it can be easily changed
form ¢S or St is bounded by a constant, and the numbeo 1 by flipping the signs of all the transitions correspogdin
of concurrent insertions is quadratic in the number of STGis the newly inserted signal after the CSC conflict resotutio
transitions.) Then we formulate a SAT problem as follows. process is completed).

For each insertiod € J we create a Boolean variable, also In part, this condition is ensured by the1i/TEX con-
denoted by/, indicating whetherd € Z. The constraints below straint, which guarantees that the instances of the newly
ensure that for any satisfying assignment of a SAT instanceitserted signals are not concurrent, and so within any con-
be built, the corresponding composite insertibn(obtained figuration they are totally ordered w.r.t. the causalityatiein.
by taking the insertions whose corresponding variables arbe purpose of the sign alternation constratt is to ensure
assigned 1) iwalid (i.e., that it preserves the consistency othat the signs of the instances of the newly inserted signal
the STG, the chosen individual insertions commute, aremotalternate in each configuration of the prefix.
the choice relation, and cannot trigger one another) and thaGiven a configurationC' of the prefix and a composite
some of the conflict cores are resolved (i.e., some prograssertionZ, we denote byCodez(C') the encoding of the newly
is made). This SAT instance will be the conjunction of thanserted signal at the final state 6f (Recall that we assume
constraints described below. that the initial value of this signal is 0, i.eGodez () = 0.)

Let Jo,...,Jir be the instances aof in the prefix, i.e., the
. I-labelled events which would be added to the prefix if the
MUTEX constraint insertion I is applied to the STG. (They can be computed

Two signal insertions] and/’, are callednutually exclusive statically on the prefix [17].) We extend the usual notation
if they are non-commuting, or the inserted transitions &fee for presets and postsets to transformation instances; diat n
concurrent or in the choice relation or can trigger one agroththat, depending on the type of insertidnj; or J? (or both)

All these conditions can be checked statically on the prefiay be not in the prefix (until the transformation is applied)
(i.e., they are not encoded as a part of the Boolean formuli)owever, the events if*.J; are in the prefix even before the
and one can build an undirected graghrepresenting the transformation is applied.

‘mutually exclusive’ relation or¥. Then, for every edgé!, I'} For a configuratiorC, let #;C be the number of instances
of G, the transformationg and I’ must not be used together,of I which would be inserted by the transformatidrinto C;
which is expressed by the constraint: it can be computed statically as follows:
/\ (_\I\/ _\I/) ) . #t//C |f I ?S t”l|_>t”
(1.1} edges(Q) #:C=<¢ #.C if Iis St

The size of this constraint can be quadratiddih A smaller #C—m 1f Tist1S, _
translation can be obtained by heuristically covering thihere#:C denotes the number oéflabelled events i, and

edges ofG by minimum number of cliques (using, e.g., thé” = 1 if €' can be extended by some instancd @indm = 0
heuristic algorithm described in [20]), trying also to rmnise  Otheérwise (i.e., the ‘hanging’ instance of a sequentialtpos
the sizes of individual cliques, and generating the com;tra'”sert'onl. is not countgd, as it is not inside the ponflguratlon).
Y, I < 1 for each cliqueCt. A linear in |CI| translation Assumlng that the m_stances (_)f the new signal within
of this pseudo-Boolean constraint into a Boolean formula §&n Pe assigned signs in a consistent wéyjez(C) can be
possible by introducing auxiliary variables [21], [22]. expressed as follows:
Codez(C) <= @ I.
I:#:C is odd
(An auxiliary Boolean variable, also denotétbdez(C), to-
The chosen SAT encoding does not carry any informatigyether with the above constraint defining its value, is intro
concerning the signs ' or ‘—') of the inserted transitions. duced in the SAT instance being built fodez(C) appears
This is motivated by the desire to reduce the number of the formulae below.)
variables in the corresponding SAT instance by exploiting The sign alternation constraif.A needs to ensure that
the following symmetry: it is always possible to flip thef I € Z then all its instancesy,...,J; can be assigned
signs of all the transitions corresponding to a given irdernthe same sign in a consistent way, i.e., that the values of

Sign alternation constraint
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Codez([**Jo]), .- ., Codez([**J;]) are the same, wherEX] [e] cannot be extended by. Now such additional instances
denotes the minimal (w.r.tZ) configuration containing all the of post-insertions can be taken into account as follows:
events inX. This can be accomplished, for eaéhc 7, b .

the following constraint: Codez([e]) = Codez(C)® (P I,

I = SAME(Codez([** o)), - .., Codez([** i) . femme
where for each cut-off event with a corresponding configuratiari®,
k where MM is the set ofe/C¢-mismatching post-insertions.
SAME (xg, ..., xL) £ /\(xi = Tit1mod(k+1)) - As an optimisation, this constraint can be represented as
1=0
Since for a givent, all insertions of the form eithet { - ﬁ(CodeI([ ) & Codez(C*®) @ I)
and t+ - or t*}> - have the samé*.Jy,...,**Ji, the sign Ie MM
alternation constraints for a grodp of such insertions can be and @-sums can be optimised, as described at the end of
combined as follows: this section. Alternatively, one can observe that if twotpos
( \/ [) = SAME(Codez([** Jy]), ..., Codez([**Jx])) . insertions are commutative and non-concurrent then no con-
IeG figuration can be extended by both of them. Hence at most one

Note that theS.A constraint is defined vi@odez([**J]) for  of the variables i, ,,. I can be assigned 1, i.e., one can
all instances/ of all the insertions! € 7, and the definition replace this sub-expression B, . /. This can improve

of Codez(C) assumes that the instances of the new signdle runtime of SAT solver and shorten the formula, and the
within C' can be assigned signs in a consistent way, i.e., theysums can still be optimised fafoder([e]) & Coder(C®).

are not concurrent (which is ensured BT EX) and their

signs alternate, which has to be ensuredSby. This mutual e constraint

dependency ofCodez(C) and S.A does not cause problems,

though, due to the following inductive argument. SuppSse
is incorrect for some configuration’ of the prefix. Since
Codez(X) is computed correctly wheneve$.A is correct
on X, and due toMUTEX no two instances of the new
signal can be concurren§.A must be incorrect already for
the configuration**.J] c C for some instance/ of I € 7.
Since C is a well-founded order ané A is correct for the
empty configuration, we have a contradiction.

To ensure progress, a constraint conveying that at least one
of the conflict cores is resolved, is added. I(ebe a core.

A signal insertion] is called hanging w.r.t.C if, after it is
applied, some of its instances directly precedes or susaged
A composite transition insertiof is hanging w.r.t.C if some
I € T is hanging w.r.tC.

One can observe that If is hanging w.r.t.C thenC is
not resolved byZ. In the transformed prefix, this core will
resurface as a coré’, as one can always ensure that the
) encodings at the beginning and at the endCbtoincide by
CUTOFF constraint adding, if needed, a hanging instancel/of 7 to the core.

The sign alternation constraint ensures that the signs of¢ is resolved by a composite signal insertidnf an odd
instances of the newly inserted signal will alternate in amyumber of signal instances is inserted into it, and none ®f th
configuration of the prefix. However, to guarantee consesteninserted signal instances is hanging wet.By introducing
one still has to add a constraii/ 7 OF F ensuring that this new auxiliary variablesHanging. and Resolvedc for each
is also the case for the configurations of the full unfoldingoreC, the CORE constraint is defined as follows:
beyond the cut-off eventd the prefix. For this, it is enough

to ensure for each cut-off eventthat afterZ is applied, the (\/ Resolvedc) N /\ (Hangmgc — \/ I>A
value of the newly inserted signal is the same in the finaéstat ¢ ¢ IeHc
of [e] and its cut-off corresponding configuration. ,
One may be tempted to express this constraint as /\ <R650h’6dc — (ﬁHangmgc A @ I)) )
C I¢HeA
Codez([e]) <= Codez(C®), #r€ s odd

for each cut-off event with a corresponding configuratiaft where H. is the set of hanging w.r.t transition insertions.

However, it does not take into account the following sultlet _

It can happen that some instangef a post-insertiod € 7 is Computation of2-sums

such thatC¢ can be extended by. The definition of Codez One can notice that the constructed formulae contain many
does not take into account (sincg will not be in C¢ after the @-sums over the same set of variablesThere is typically
transformation is applied), even though it may become a partlot of sharing between them, and so these sums can be
of the corresponding configuration efafter I is applied. To optimised by computing common sub-sums only once.
capture this, a post-insertiahis callede/C*¢-mismatchingf The problem can be abstractly formulated as follows.
some instancd of I is such that”¢ can be extended by and Given m @-sums over the variablesy,...,z,, build a
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small acyclic Boolean circuitwith n inputs andm outputs PETRIFY's approach is well-documented in [1]. It works
computing these>-sums. (Such a circuit can then be convertedith state graphs, and thus does not scale. However, for
into a Boolean formula in the conjunctive normal form, whosemall specifications it typically yields quite good soluiso
size is linear in the size of the circuit.) Moreover, it has some additional capabilities which neithe
This problem can be solved in a number of ways. Thiae ILP approach of [7] nor the proposed method have, viz.
method described in [21, Chapter 4.7], [23] divides the-varit can restructure the specification using net synthesim fro
ables inton/logn groups oflogn variables each, computesthe state graph. However, in practice the scalability isallgu
all the possible sums in each group, and forms the circuituch more desirable than the ability to do restructuringit(as
from these sums. For this, at mdﬁtm m binary @-gates is useful only in very special cases).
are needed. In the actual |mplementat|on a method based offhe approach described in [7] works in a very different
preset treegl1, Chapter 4] was used. Experiments show thatay. Instead of exact computation of the state space, itarses

it works quite well in practice. approximate technique based on Integer Linear Programming
. (ILP). Briefly, this approach takes as an input a lasso-sthape
Cost function CSC violation trace starting from the initial state and such

On each iteration of the method, a heuristic cost functidhat the two states, say; and s», in CSC conflict are
is used to guide the search towards ‘good’ solutions witppsitioned on the loop of the lasso. Then it tries to inseta s
small area and/or performance overhead. The construct&d SA new transitions (obtained by splitting existing traisis)
instance is solved several times, with constraints on thgevacorresponding to a new signal into the STG, in such a way
of the cost function appended to the formula, so that that the STG remains consistent and the numbers of such
solution minimising the value of the cost function is evetiy transitions on the parts of the loop between and s,, as
computed. (The process resembles a binary search on thee vatell as betweens; and s;, are odd (i.e., the CSC conflict
of the cost function.) The cost function we used is a weightdgl resolved). For this, an ILP problem is formulated, whose
sum of the following components: solution gives a set of transitions which should be split (an
« the estimated number of unresolved CSC cores; elegant sufficient condition for the consistency of the itasy
. the estimated number of unresolMgdiversal State Cod- STG based on a place redundancy test is employed). Moreover,
ing (USC) cores, i.e., cores corresponding to differerd heuristic cost function is used to guide the search towards
states which have the same encoding (though USC cofgdutions corresponding to circuits with either small acga
which are not CSC cores are not harmful, they can tugnall latency. This procedure is iterated until all the CSC

into CSC cores once new signals are added); conflicts are resolved.
« the estimated delay introduced by the insertion; The approach presented in this paper was inspired by
« the total number of syntactic triggers of all output anghat in [7], but it has a number of important differences. It
internal signals; iteratively inserts new internal signals into the speciita
« the number of inserted transitions of a signal; until no CSC conflicts remain. On each iteration, it tries to
« the number of input signals which are not ‘lockedlith  eliminate some of the CSC conflict cores in the unfolding
the newly inserted signal; prefix [16] by insertion of new signals, guided by a heuristic
. the number of output and internal signals which are ngpst function. The technique described in [17] is used to
‘locked’ with the newly inserted signal. avoid re-unfolding the specification after each iteratiand

The user can choose the relative weights of the Componemstransfer the unresolved conflict cores from iteration to
of the cost function to guide the resolution process towar#gration. The main differences from [7] are described Welo
solutions with the desired area/latency trade-off. Mor@it'e « We use STG unfolding prefixes rather than STGs. This
can be found in the technical report [19]. allows for an exact test of consistency where [7] used an
approximate one, based on redundancy of places.
_ _ _ _ « We use a SAT rather than ILP solver. Besides, the SAT
In this section, the proposed technique for resolving CSC encoding of the problem is based on entirely different ideas
conflicts is compared with two other techniques: the one img- Unlike [7], the proposed method does not require a lasso-
plemented in BTRIFY [1] and employing the state graphs, shaped CSC violation trace (in general, it is not always
and the Integer Linear Programming (ILP) technique of [7]. possible to find such a trace even if there are CSC conflicts),
1This Boolean circuit is an abstract construction neededbidlding a am.j uses a S.et of encoding C(?ﬂﬂlCt cores ms_tead. .
part of the SAT instance, and should not be confused with iiwitbeing * Using unfoldings allows for efficient computation of viola-
synthesised from the STG. tion traces using the technique described in [14]. In catra
2Two signals are in the ‘lock’ relation [24] if their instaregi) cannot be for methods working on the STG level, like that in [7], this
concurrent, and (i) alternate in every execution sequethoeking’ the newly . | ible f icted ’ | ’ h
inserted signal with as many other signals as possible is @ beoristics for IS only possibie o_r some restricte ne_t classes, SUC as
area optimisation [7]. marked graphs or live and safe free-choice nets. Intuytivel

IV. COMPARISON WITH OTHER TECHNIQUES
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the problem of checking whether a given safe STG has CSC B dfcoq}sgfte transition insertion L'tg
conflicts is PSPACE-complete [25, Proposition 5.1], while 5 Zd_: Tdtack—1 9
ILP is in NP, so the knowledge of Barikh vectorof the 3| udst, dtackTIod- 11
violation trace (i.e., a vector of non-negative numberseep 4 | ldtack™), dtack™>d~ 11
senting the number of times each transition fired in a given 5 di—de UdsT _ 11
execution; it is typically returned by ILP methods [26]) (73 g dsf‘,_)dzétacl:i“k 2 E
does not help much — the reachability problem remains 3 ldmc,;fz’ "dtackT 1
PSPACE-complete even if such a Parikh vector is provided 9 [, lds “f=ldsT 12
as a part of the input. In principle, [7] could also use, 10 | udsT,  dsr—J—dtack™ 12
e.g., the unfolding based technique of [14] for computing 11 lldsf: Zdtick_ S— 13
violation traces, but this would, to some degree, defeat the g l?j +"_”jt5 pet dt”;f ;’f’d ii
rationale of their approach, since an unfolding prefix of the 11 ;Q;d_’acldsj;%?;ﬁ 1
STG has to be built for this — but then it would be natural 15 | dT{>dtack—, dst 14
to employ it for conflict resolution as well. 16 | lds—*4—idsT, dtack™ 15
The actual approach used in [7] for computing a CSC 17 [ Wd—, UdsT, dtack™, dtack™ | 18
violation trace works as follows [27] (unfortunately, this TABLE |

guestion was not addressed in [7]). The problem of CSC THE comMPOSITE TRANSITION INSERTIONS RESOLVING THESC
conflict detection is formulated as an ILP problem, which, CONFLICT SHOWN INFIG. 1.

if infeasible, guarantees that STG has no CSC conflicts. ) )
Otherwise, a Parikh vector of a CSC violation trace i€ runtime compared with the method of [7]. However,

computed, and an attempt is made to restore a trace frdfi§ Proposed method is much faster thegmRIFY and can
this Parikh vector by firing one-by-one the transitionEan,dle qune I.arge speuﬂcauon;. As it is intended .fo.r urse |
corresponding to its non-zero components (the correspoff@niunction with the decomposition approach of [9), it fitsliv
ing component of the Parikh vector is decremented aft&th practical applications such as control re-synthesis.

each firing). If at some point none of such transitions is

enabled, one of them is anyway chosen and fired (leading V- CASE STUDIES AND EXPERIMENTAL RESULTS

to a ‘negative’ marking). The process stops when all the The CSC conflict resolution method described in this paper
components of the vector become zero. has been implemented in the MRIStool. In this section
One can see that a violation trace is produced (and thee present a number of case studies demonstrating some
resolved by insertion of new signals) even if the computedteresting features of the proposed approach, as welleas th
solution of the ILP problem is spurious (i.e., the correresults of running it on a number of benchmarks. To solve
sponding CSC conflict states are unreachable). Moreowvire arising SAT instances, the INMISAT2 solvef has been
the produced violation trace can be spurious (i.e., passinged. All the experiments were conducted on a PC with a
via negative markings) even if there is a real executioRentium™™ IV/3.4GHz processor and 2G RAM.
corresponding to the computed Parikh vector. Hence, the

method of [7] can sometimes insert redundant signal@ig bus controller.

;—ehsgl\t/rlggsfso F;Lrg;:gsnscﬁgegoi?]ﬂ'g]s .were limited to simol The specification of the read cycle of VME bus controller
p(Es shown in Fig. 1. Although it is a very small benchmark

transition splitting. The proposed approach allows one %ntaining a single conflict core, MR% was able to find

use a much W|d_er class .Of tra_nsformz_atl_ons; n partlcula{7 possible ways to resolve it, listed in Table I. This shows
concurrent insertion and insertions splitting off just atpathat the proposed method explores a fairly large designespac

_IO_L: trfgsétézgsrﬁéfsoeé ?;kic;sif; 2Li§3:f'r?]lsl'ﬁ le conflii cluding quite an unintuitive solution 17 with two set amebt
prop P g}set transitions, which resolves the core by insertingehr

cores, whereas the ILP approach considers only a sin &nsitions ofcsc into it. Many of these solutions cannot be

_(perhaps, spurious) V"?'a“"'? trace. I_n particular, thiskess computed by the method of [7], as the class of transformation

it possible to choose insertions which resolve many cores T L -
. . . ) It;uses is limited to transition splitting.

with one signal, reducing thus the total number of inserted

signals and allowing for quicker progress — see the 8-W8R/

sequencer case study in Section V. n 8-way sequencer.

Though the proposed approach is fully automatic, it ineerit Sequencers are among the standard ‘building blocks’ of

the visualisation possibilities described in [16], whiclayn circuits produced from hardware description languages lik

be useful for interaction with the user. )
) ) ) ~ 3Available fromwww. cs. chal mer s. se/ Cs/ Resear ch/ For mal Me-
The described advantages come at the price of increasimgds/ M ni Sat/ Main. htm .
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‘ ) STG Signals Literals
BALSA and TANGRAM. The ‘parent’ handshake at pout Example \P|/IT| ,n/Out‘pfy ILP SAT‘pfy ILP SAT‘
initiates eight sequentially ordered ‘child’ handshakepats ADFAST 15712 33 2 2 2| 14 19 21
7 IRCV-BM 55/46 5/4 2 3 1| 38 43 28
b,.. 12 Then the parent _handshake con?plt_ate,s, and the cy_cle M o6 a4 3 3 3 29 26 97
continues. (The completion of the last ‘child’ handshake is MMUO 20/16  4/4 3 3 3| 29 27 27
i i ‘ , MmU1 24/16 44 3 2 2| 3223 25
reshuffled with the completion ofthe parent handshakeaim_ r VRO 3129 o6 3 3 3| 45 30 29
early acknowledgement at part) Fig. 2 shows the unfolding MR1 25118 4/5 4 3 3| 35 29 27
T if\si R H NAK-PA 22/18 45 1 1 1| 18 18 18
prefn_( of the STG specifying an 8-way sequencer with seven Nowiex Tona 32 1 1 1| 14 14 14
conflict cores. PAR(4) 23/20 5/5 4 4 4| 32 32 32
i i iti SEQ(8) 36/36  9/9 4 4 3| 47 37 44
Intumvely, at least three b|.t§ of additional memory are e e aoias ol 2 3 il 30 ag o7
needed to implement this specification (by counting how many | acoc-outsouno| 17718 4/3 2 2 2| 16 16 15
i ‘~hild’ DUPLICATOR 14/12  2/20 2 2 2| 19 13 13
of the eight ch_lld handshakes have been e_xecut_ed so far), s Mond COUNTER 1606 19 5 3 2| 25 25 2
the CSC conflicts cannot be resolved by insertion of fewer RAM-READ-SBUF 26/20 55 1 1 1| 18 18 19
i it Wi i i SBUF-RAM-WRITE 29/20 5/5 2 2 2| 22 32 29
tha}n three signals. However, it is not trlvu_all to find a S(I!Otl oo w2 o 11 1 e ie oo
using only three additional signals — in factgPRIFY’'s MASTER 1882 3826 67 1 1 1| 38 38 39
i i i TRCV-BM 53/44 5/44 2 3 2| 36 44 34
solutions has four new S|gnals. MRﬁwas able to_fmd_ a Se0 i 30120 aid 3 5 2| 50 20 20
fully concurrent solution with three signals shown in Fig. 2 SPEC_SEQ(4) 20/20 55 3 2 2| 20 19 20
by dotted lines. Note that to accomplish this the sigaal; Total 51 51 44]601 585 548

is set and reset twice in each cycle. TABLE |I \

Finding a solution with three signals is only possible by EXPERIMENTAL RESULTS ASSORTED SMALLSTGS.

analysing multiple cores; the method of [7] cannot find such one can see that in all cases the number of inserted by
a solution because it analyses just a single violation toate \jpsat signals was smaller or the same compared with the
each iteration — in fact, it needed four signals to resohe thyther methods, and also it produced smaller implementtion

CSC conflicts in this case study. (about 8.8% improvement overEPRIFY).

Scalable benchmarks

We also compared the described method withTRFY
(the ILP tool of [7] was not available from the authors) on
two groups of scalable benchmarks modelling pipelines
weakly synchronised without arbitration K¥®/k (m,n)) and
with arbitration (PARB(m,n)). They are the benchmarks
. . from the corresponding series used in [14], with the latter

Inputs: ao, by, c1, d1, ex, f1, 91, ha, iy series modified by ‘factoring out' the arbiter into the en-

outputs: ay, by, co, do, €0, fo, 9o, o, o vironment to ensure output-persistency. In these two serie

internal: csey, esez, escs of benchmarks all the signals except the arbiter’s grants in
Fig. 2. The unfolding prefix of an STG modelling an 8-way seqeen PpARB(m,n) are considered outputs, i.e., the control logic
showing 7 cores and a fully concurrent solution with 3 newnalg. is designed as a closed circuit. The inputs are inserted afte
Assorted small benchmarks the synthesis is completed, by breaking up some outputs

d inserting the environment into the breaks, thus forming

andshakes (sometimes with an inverter attached to theitoutp
if the environment acts as an active port). Fig. 3 illussate
ﬁnese two types of STGs.

" %he results for these two groups are summarised in Table Il1,

number of assorted small benchmarks from [7]. The meani\r)\%ere the meaning of the columns is the same as in Table Il

of the columns in the table is as follows (from left to rigtt)e . LT
) 2 except that the sizes of the corresponding finite and complet

name of the problem; the number of places, transitions, and . . .
efixes (in terms of the numbers of conditions and events)

input and output signals in the original STG; the number . : . )
signals inserted by ©rRIFY, the ILP approach of [7] and the are given in the for_th column and the runtimes (in seconds)
' [ now reported in the last three columns (for MPS

approach proposed in this paper; and the number of liter&)
in the final complex-gate |mplementat|ons pmduced by the“Two different sets of weights in the cost function were usegrbduce the
three approaches (the smallest numbers are highlightéx#). Fumbers in the two ‘SAT’ columns: in the former the cost functieas aimed
numbers in the ‘Pfy’ and ‘ILP’ columns are as reported in [7]?t minimising the number of inserted signals (the literals weretaken into

. . .~ -account and not reported), whereas in the latter it was airhedirdmising
and, for consistency with [7]- ETRIFY was used to Synthes'Sethe number of literals in the final implementation (the signaésemnot taken

the STGs after the CSC conflicts were resolved. into account and not reported).

+ 4 —
9% 91 9%

Table Il compares the three methods for resolving C
conflicts: the state-space based approach implementegtin
RIFY, the ILP approach of [7] (with post-processing removin
redundant signals) and the one proposed in this paper, o
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outputs: z1,...,Z4,Y1,.--,Y4, 2

iINPUtS: gz, gy; OULPULS: T1,..., 25,41, .-, Y5, 2, Ta, Ty

Fig. 3. STGs modelling two weakly synchronised pipelineshaitt arbitration(a) and with arbitration(b). The dashed arcs show how to resolve encoding
conflicts using concurrency reduction.

STG
|P|/|T] InfOut

Literals
Pfy SAT

Prefix
|BI/|E|

Signals|
Pfy SAT

Time, [s]

bty ST SAT cantly on the same benchmark. This can be explained by the
T? T

fact that in the former case many of the parameters of the
’ Marked Graphs ‘ cost function (viz. the estimated delay, the total number of

PPWK(2,3) | 2314  0/7) 41/24 30 29 <1 <1 <1| syntactic triggers of all output and internal signals, thenber
PPWK(2,6) 47/26 0/13 119/63 60 59 5 <1 «1

PPWK(2.9) | 71/38 0/19 233/120 90 89| 34 <1 6| Of inserted transitions, the numbers of inputs and outputs

PPWK(2,12) | 95/50 0/25 383/195 120 119 368 <1 18] which are not ‘locked’ with the newly inserted signal) are no
PPWK(3,3) 34/20 0/10 63/36 48 46 4 <l <1

PPWK(3.6) | 70/38 019 183/96 93 91| 105 <1 6| taken into account (resulting in a considerable shorteiihg
PPWK(3,9) | 106/56 0/2§ 357/183 138 136 1838 4 55 the SAT instance), whereas in the latter case only the efgtna
PPWK(3,12) | 142/74 0/37 585/297 — 181 mem 5 175 . .

delay is not taken into account.

STGs with Arbitration

’ Example

[N N [N
NNN NP R R Ee

PPARB(2,3) | 48/32 2/13 110/66] 2 2| 63 67] 35 <1 2
PPARB(2,6) | 72/44 2/19 218/120, 2 3| 93 97| 118 1 17 VI. RESOLUTION OF ENCODING CONFLICTS USING
PPARB(2,9) | 96/56 2/25362/192] 2  2|123 127 1041 2 50
PPARB(2,12)| 120/68 2/31542/282] — 3| — 157| mem 8 159 CONCURRENCY REDUCTION
PPARB(3,3) | 71/48 3/19 1868/114] 3  3|100 105 620 <1 14
PPARB(3,6) | 107/66 3/2d 368/204] 3  3|145 149 5043 2 117
PPARB(3,9) | 143/84 3/37602/321] 3  4|190 194|12307 7 354 core
PPARB(3,12)| 179/102 3/4 890/465 — 5| — 239| mem 24 839 €4
€1 I €2 esﬂ I f €5 I €6
TABLE IlI H i 1 i 1 i
EXPERIMENTAL RESULTS SCALABLE F’IPELINES4 dSI’“r(:1 Ids+ Idtack+ d+ dtack+ dsr—
2

the runtimes for signal and literal optimisation are reedrt
separately). We usmem’ if there was a memory overflow.
It also should be noted that sinceE®RIFY was not able to Fig- 4. VME bus controller: resolving the encoding conflidtiwthe help
synthesise some of the resulting STGs, they were Syntmsiggone of the concurrency reductions shown by the dashed arcs
with the unfolding-based technique described in [15], tkat Another way of resolving the encoding conflict in the VME
implemented in MP&T. bus controller example is by eliminating the concurrency

One can see that on these benchmatksR?ry and MP3\T  between eitheids™ and dtack™ or ldtack™ anddtack™, as
were very close in terms of the number of inserted signatbown by the dashed arcs in Fig. 4. These transformations
and the number of literals. However, in terms of runtime aridrag’ eitherids™— or lds~ andldtack™ into the conflict core,
memory consumption MPS was clearly superior: in somedestroying it. (In effect, statd/; becomes unreachable, cf.
cases the runtime differed by orders of magnitude, and tk&. 1(b)). The general ways of eliminating CSC conflict core
cases which were intractable forEPRIFY due to memory by ‘dragging’ existing events into the core are illustratad
overflow were solved by MP& relatively easily. Fig. 5(b,c) (see [28] for more details).

It should be noted that, depending on whether signals orThe former concurrency reduction yields an implementation
literals are minimised, MP&’s runtimes can differ signifi- with 10 literals, and the latter with only 7 literals, which

inputs: dsr, ldtack; outputs: lds, d, dtack
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compares rather favourably with the implementations given , U
Table I, especially with fully concurrent ones. Of courdest 8

comes at the price of sequentialising the STG, in partidhlar | M\\ :
. _ . . | T >
second concurrency reduction makisck— wait for an input D ;Zlf* at L
transition, which might adversely affect the performance. P : i
|

|
v
In practice it is often the case that concurrency reduction }
produces smaller circuits, which may also be faster due to~—-
simplification of the gates (even though the system marifest @) (b) (©
less concurrency, its events take less time to fire). Henee thg. 5. Concurrency reductiotr -~ ¢ (a) and core elimination by concur-

common belief that more concurrency increases the perfegacy reductior(b,c).

mance is questionable in this context. In a highly concdrreg, o qing conflicts using concurrency reduction was devel-
specification, almost all combinations of signal values afg,eq |n particular, a notion of correctness of a concugrenc
reachable, and thus Boolean minimisers cannot ef'f'c'enpe\;(duction was proposed and justified. This notion is rather

exploit the ‘don’t care’ values, which results in large andymjicated (note that even language equivalence does not
slow gates in the final implementation. Moreover, transgiof hold), and we do not present it in this paper. Instead, we

the newly inserted signals delay output transitions, @ift) ie 5 slightly reformulated sufficient correctness cdodit

thus the latency of the final circuit. Concurrency redUCﬁC(’groven in [28]. This condition assumesak faimessi.e., that

can increase the number of unreachable states, thus prgvidj transition cannot remain enabled forever: it must eithrer fi
or be disabled by another transition firiddn particular, this

more ‘don’t cares’ for logic optimisation. Furthermore,aif
encoding conflict is solved by concurrency reduction rath?ﬁarantees that the expected inputs eventually arrivethard
fe concurrency reductioh--» o cannot be declared invalid

than signal insertion then no additional gate is required
implement this signal. Thus, eliminating encoding conilic:just because the inputfails to arrive and so the outputis
fibver produced.

by concurrency reduction may result in a faster and smal
CIrCl_JIt. On the other hand, th_ere are situations when sigral |, e proposition below, which is a slightly re-formulated
sertion produces better solutions. In general, both coanay version of [28, Proposition 3.2], we relax the definition of
redugtion and signal insertioq are required to explore gei::}r a configuration by allowing it to be infinite. Anaximal
solution space, and considering only one of these teChs!q%nfigurationis a configuration which cannot be extended by
may leave out important spluuons. Existing techniquebegit o, her event. (Note that maximal configurations are either
apply concurrency reduction at the state graph level [29e4q10cked or infinite, though not every infinite configuati
[30] or are restricted to specific _net Classe_s or use qugl maximal.) We also define bye) a €] \ {e} the set of
transformations [31] and thus restrict the design space. . 55| predecessors of an eventntuitively, this proposition
Fofma”y’ given an STG, a set of its transitiofs# 0, 2 states that a concurrency reductibn-_» ¢ is valid if every
transltlor]t ¢ U and ann € {0, 1}, aconcurrency reduction . aximal configuratiodlI of the unfolding of the STG is still a
U --» tis defined as the transformation adding a new pface configuration (perhaps, with less concurrency) of the i)
which initially hasn tokens, the ar¢u,p) for each transition ¢ the modified STG, i.e., for each instaneeof ¢ in II, II
u € U and the ardp, t%’ as shownnm Fig. 5(a). We wHLwnte contains sufficiently many concurrent toevents with labels
U --» tinstead ofU --» t andu --» ¢ instead of{u} --» ¢. in U, which can be executed (without firing other instances
Note that concurrency reduction cannot add new behaviourdpt) to supply the missing tokens in the newly inserted place
the system — it can only restrict it; in particular, no newc#a needed to fires.
are added (and thus the consistency is preserved). Proposition 1 (Liveness)Let U --» ¢ be a concurrency
reduction transforming a consistent, input-proper andkiyea
Validi fair STG T into Y/, such thatt is not a transition of an
alidity : . :
" input signal and for eactilabelled event and each maximal
Given a concurrency reductidii --» ¢ and a configuration configurationl D [e] of the unfolding of Y there is a finite set
C of the unfolding, we defin@okens(C) < n+#yC—#:C, E; C 11 of events with labels i/ concurrent tae such that
where #sC denotes the number df-labelled (i.e., labelled Tokens((e)) + |Ey| > 0. Then Y’ is a valid implementation
by a transition inS) events inC, and #,C < #1C. of T. O
Intuitively, Tokens(C) is the final number of tokens in the The above liveness condition conveys that no essential

newly inserted place (provided thét is a configuration of behaviour is eliminated by a concurrency reduction. Howeve
the unfolding of the modified Petri net as well), i.e., this is
essentially the marking equation (see [32]) for this mme 5Note thgt because of _this condition, concurrency reductianno_t be
that Tokens(C’) can be neaative performed independently in subsystems, as a deadlock cantioeluned.

g : Hence, if a concurrency reduction is performed in some subsyst has to
In [28] a framework for unfolding-based resolution obe reflected in the STGs for all the other subsystems depermdirig
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it employs infinite objects and thus is not directly checkabl Computing valid concurrency reductions

hence the tool of [28] had to rely on human input. In this one can see that the iva approach enumerating all the
section we propose an approximate test for this conditiogpncurrency reductions and filtering them using the safenes
which has been implemented in the MRStool. Since we an( liveness tests described above is not satisfactoryubeca
work with safe STGs, MP&r also implements an additionalof the combinatorial explosion in the number of possible
validity condition stating that the modified STG is safe. el concurrency reductions (a8 can be any non-empty set of
we separately consider safeness and liveness. transitions). In practice relatively few reductions aréideand
Proposition 2 (Safeness):et U --» ¢ be a concurrency below we describe a method of efficiently computing them
reduction transforming a consistent, input-proper, weddir  using incremental SAT. This method works in two stagestFirs
and safe STGY into Y’, such thatt is not a transition of an concurrency reductions satisfying (S1)—(S4), (L1) and) @
input signal and the following conditions hold for a completcomputed using incremental SAT. Then the condition (L2) is
unfolding prefix of T: checked for each of these reductions using another incraen
: _ : : SAT run. We now explain these two stages in more detail.
(S1) n (1) gtftr[w}lseo for someU/-labelled event; Stage 1: For each transitiort, the valid concurrency re-
(S2) Tokens([e]) = 1 for eachU-labelled event. ductions of the formU —T—L_» t are computgc_i separately. In
useful concurrency reductions, each transitioe U should
be concurrent t@, denotedul||t, i.e., some reachable marking
should concurrently enable andz. We denote byt the set
of transitions concurrent to(since the STG is consistent|t
ThenY’ is safe. ¢ cannot hold, i.e.t ¢ t), andU will be a subset ot. Note
Unfortunately, checking the liveness condition turns aut thatt; can be easily computed using the prefix.
be much more complicated. In fact, we are not aware of anyln the SAT instance formulated as the conjunction of
tool that can do such a check for the full class of safe Pe@@nstraints given below, we create a variabkeacing whether
nets. In particular, BTRIFY simply requires that (i) no eventsu € U for each transition: € t. Any satisfying assignment
become dead, and (ii) no (new) deadlocks appear [29]. One carPf this SAT mstance will correspond to the concurrency
easily see that this test is not conservative. Below we wepdeduction for whichl £ {u € t; | A(u) = 1}.
a more elaborate approximate test (it is also not conseeyati ¢ U # 0:

(S3) No twoU-labelled events, f are concurrent.
(S4) Tokens([e]) = Tokens(C*) for each cut-off event with
a corresponding configuratiofi®.

based on Proposition 1. \ ou.
Let U -“> ¢ be a concurrency reduction transforming a u€t

consistent, input-proper, weakly fair and safe STGnto Y’, 0 if #:[e]=0 for someU-labelled event;

such thatt is not a transition of an input signal. Then we ° (S1):n {1 otherwise.

check the following conditions hold for a finite and complete

unfolding prefix of Y: n < /\ -,

(L1) For eacht-labelled evene, Tokens((e)) > 0. Uty

(L2) For eacht-labelled evente, if Tokens({e)) = 0 then where t, C t) is the set of transitions which have
every maximal configuratiorC D [e] contains aU- instances not preceded by an instance,adndn is the
labelled event concurrent @ variable tracing the value of.

(L3) Tokens([e]) = Tokens(C¢) for each cut-off evene with ~ » (S2): Tokens([e]) = 1 for each U-labelled evente.

a corresponding configuratiofi°. We define Tokc = Tokens(C)mod2 and Tok, =
The condition (L2) of this test resembles Proposition 1, dut gﬁg&?ﬁ?z and provide a modulo-2 formulation of this
finite and complete prefix is used instead of the full (infinite ' /\ /\ U= Tok
unfolding, and d/-labelled event; providing a token needed AR
for the ¢-labelled event to fire is required to be already in the YEEI fapettea
prefix (which is conservative). The only point when this test ~ Also, the following defining constraint is added for each
fails to be conservative is the rare situation when the it&ini Tok. occurring in the SAT instance:
configurationtT in Proppsition 1 is_such that trun_cating it down Tok, <= n @ (#:e] mod 2) @@u .
to events of the prefix results in a non-maximal (w.cl) e
configuration, i.e.ey can be disabled by some event kdf #ule]is odd
that is not in the prefix. This test, though approximate, s2em « (S3): no two transitions i/ can be concurrent:
to work very well in experiments (the author is not aware of /\ (—u Vv —u)

any ‘practical’ STG where it fails, though artificial exarapl
can be constructed).

u,u’EtH

wlju
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e (L1): For eacht-labelled event, Tokens({e)) > 0. We the choice relation witke is in C, and soC cannot be
conservatively replace this constraint Bpkens({(e)) = extended bye.
n and use a modulo-2 formulation: e C D e, i.e.,e € C. This constraint is expressed simply
asconf,.
/\ (n = Tok() = /\ (n @ Tok.), « C contains nal/-labelled events concurrent to
eeFE, eckE;
where E; is the set ofi-labelled events. /\ ~confy ,
e (S4)= (L3): For each cut-off event with the corre- Fely
sponding configuratio, Tokens([e]) = Tokens(C®). where U; is a set ofU-labelled events of the prefix
Again, we use the modulo-2 formulation: concurrent tee.

One can observe that the first two constraints do not depend
on e or t, and so the corresponding parts of the SAT instance
do not depend on the concurrency reduction being tested.

The constraints follow the safeness and liveness conditioRurthermore, the remaining constraints are comprised f un
(except (L2), which is checked separately), and the ontyauses only. These observations turn out to be very useful
potential problem is the use of the modulo-2 formulation fdfor implementing this test using incremental SAT. Indeédk t
some of the constraints. One can show that such a formulattest has to be performed for all the concurrency reductions
is nevertheless equivalent to the original one. produced by the first incremental run checking the condition

To further improve the efficiency of the method, a constrairig1)—(S4), (L1) and (L3). We can again employ the incremen-
requiring that a concurrency reduction is potentially useftal SAT and use the fact that the individual SAT instancesesha
(i.e., it resolves some conflict core) is also added. a large common part (the first two constraints), and diffdy on

Stage 2:Once all useful concurrency reductions satisfyingy unit clauses (the remaining two constraints). ABNMBAT 2
(S1)—(S4), (L1) and (L3) are computed, the condition (L2) iseats unit clauses in a special way, allowing to remove them
separately checked for each of them. (L2) holds or”s ¢+ during the incremental SAT without having to regenerate the
iff for each instancee of ¢ such thatTokens({(e)) = 0, the SAT instance, testing (L2) can be efficiently implemented.
SAT instance described below is unsatisfiable (unfortupate
this condition cannot be incorporated into the SAT instan
generated at the first stage).

Intuitively, any satisfying assignment of this instance-co The described technique has been implemented in the tool
responds to a maximal configuratioh of the prefix demon- MPSAT. A cost function similar to the one described in
strating a violation of (L2). This SAT instance has for eacRection Il for signal insertions was used. On every iteraof
evente of the prefix a variableonf. tracing whethek € C, the encoding conflict resolution procedure, the best adegrd
i.e., for every satisfying assignment, the set of events the cost function trapsformation (a signz_al insertion or a-co _
C £ {e¢| conf. = 1} is a configuration demonstratingCurrency reduction) is chosen and applied to the STG, until

the violation of (L2). It is formed as the conjunction of the?ll the encoding conflicts are resolved.

following constraints: The conducted experiments showed that using concurrency

. C'is a configuration of the prefix (not just an arbitraryreduction in addition to_sig_nal _insertion_can significantly
set of events). Note that is allowed to contain cut-off Improve the area of the circuit, with a relatively small perf
events. This condition can be defined as mance penalty. For example, MRSwas ablg to reduce the

total area of the small assorted benchmarks in Table Il down t

/\ /\(confe:»conff) /\/\ /\(ﬁconfevﬂconff) . 482 literals. However, during these experiments the fahow
cCE fevoe c€E fe(ve)*\{e} phenomenon was observed. It turns out that increasing the
The first part of this formula is basically a set of imWweight of the ‘lock’ relation component of the cost function
p|ications ensuring that it € C then its immediate almost alW&yS results in redUCing the area of the circuit
predecessors are a|som i_e_, C' is downward closed. (thls is not the case if Only Signal insertions are Used)SThi

)\ (Tok, <= Tokce) .
e/Ce

Q%plementation

The second part ensures th@tcontains no choices. indicates that area Optimisation is not a We||-posed pmble
« C'is a maximal configuration of the prefix, i.e., it cannolf concurrency reduction is allowed,as the tool tries to
be extended by any event of the prefix. reduce the area by sequentialising the circuit. This proble

can be alleviated by adding additional constraints (e.g., b

/\ ( \/“COnf‘f \% \/ conff) .
5Recall the well-known anecdote about linear programmingdeised to

GE E.. > 6 L] L]
Intuitivel t‘;T / te int fette) that d solve the problem of finding a cheapest ration containingrée®mmended
nturtvely, this constraint conveys that Some predecessSiounts of all the nutrients, with the computed solution doirig several

of e is not in C or eithere or some event that is in liters of vinegar.
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jointly optimising latency and area), and we leave it forufet transitions X, returns the minimal (w.r.tC) configuration

investigation. C’ C C such that all theX-labelled events ofC are in
C'. Then Tokens(C) = Tokens({e)), and soC # ) as
VII. CONCLUSIONS AND FUTURE WORK Tokens(0) € {0,1} and{0,1} N ((k + Zeven) \ {k}) = 0 due

This paper proposes a new method for resolution of cdpk e {0, 1}. Moreover, since th&’- andt-labelled events are

conflicts based on STG unfoldings. The problem is reo_rdered InC’ (due to (S3) and non-self-concurrencydfC is

formulated in terms of Boolean satisfiability, and a tunabfeither () [f.] or (i) [f:] or (ii)) [f.]U[f:] for someU-labelled

- . . - . ent f,, andt-labelled eventf;. In the latter cas& can be
heuristic cost function is used to guide the design spag . . .
exploration towards good solutions. ﬁeratlvely replaced byWinKeep(C\ {fu, fi},U U {t}), until

The presented case studies demonstrate that the propog & nfiguratiorC” of the fprm (1) or (ii) is obtained. Note Fhat
approach explores a large design space and is able to fing gns(C) ,: Tokens(MinKeep(C'\ {fu, fe}, U U {t})), in
interesting solutions which could not be found by Othé?artlcularc 7& 0. .

methods; moreover, the experimental results show that it len cazel (')2 Z;Okensl([f“]) < (k J}%“”)_\ {k} Sdlnce
quite fast and results in high quality circuits. the ‘modulo ormulation Is truefokys, = 1, and so

As it was mentioned in the introduction, the propose Ozens(mbm?d? = L Het;lcgk :tL TOkﬁnS([f"])d.
approach is intended to be used in conjunction with ST okens({e)) # 1, I.€., fu is a bad event causally precediag

decomposition. This work is completed now, and the resuﬁgntradictin_g the minimality of.

are verr))/ encouraging [9]. P In case (ii), Tokens((_m) € (k4+1+Zeyen) \ {k+1} and
In future work, we intend to make the liveness test f?io TollcenS((ft))l#_n,ms(ljncen i{oﬂ 1} andlsl(k+1+-zevenb) \d

concurrency reductions conservative and to improve thé ¢ b+ })N{0,1} = 0 due tok € {0,n}. Hencef; is a ba

function so that concurrency reductions are treated in aemdivent causally preceding contrgdlc_tlng the minimality Of.z' :
sensible way. Moreover, some other improvements to theHence the modulo-2 formulation is equivalent to the origina

cost function are possible, e.g., based on the ideas dedcriB"€: u
in [7], [24]. Also, compositional synthesis in the presemte
concurrency reduction needs further investigation. ACKNOWLEDGEMENTS
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