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Efficient Automatic Resolution of Encoding
Conflicts Using STG Unfoldings

Victor Khomenko

Abstract—Synthesis of asynchronous circuits from Signal Tran-
sition Graphs (STGs) involves resolution of state encoding con-
flicts by means of refining the STG specification. In this paper, a
fully automatic technique for resolving such conflicts by means of
insertion of new signals and concurrency reduction is proposed. It
is based onconflict cores, i.e., sets of transitions causing encoding
conflicts, which are represented at the level of finite and complete
unfolding prefixes, and a SAT solver is used to find where in the
STG the transitions of new signals should be inserted and to
check the validity of concurrency reductions. The experimental
results show significant improvements over the state space based
approach in terms of runtime and memory consumption, as well
as some improvements in the quality of the resulting circuits.

Index Terms—Asynchronous circuits, encoding conflicts, con-
currency reduction, STG, Petri net unfoldings, logic synthesis.

I. I NTRODUCTION

A SYNCHRONOUS circuits are a promising type of dig-
ital circuits. They have lower power consumption and

electro-magnetic emission, no problems with clock skew and
related subtle issues, and are fundamentally more tolerantof
voltage, temperature and manufacturing process variations [1].
The International Technology Roadmap for Semiconductors
report on Design [2] predicts that 22% of the designs will
be driven by handshake clocking (i.e., asynchronous) in 2013,
and this percentage will raise up to 40% in 2020.

PETRIFY [1] is one of the commonly used tools for syn-
thesis of asynchronous circuits. As a specification it accepts a
Signal Transition Graph (STG)[3], [4] — a class of interpreted
Petri nets in which transitions are labelled with the rising
and falling edges of circuit signals. For synthesis, PETRIFY

employs the state space of the STG, and so it suffers from the
combinatorialstate space explosionproblem. That is, even
a relatively small system specification can (and often does)
yield a very large state space. This puts practical bounds
on the size of control circuits that can be synthesised using
such techniques, which are often restrictive, especially if
the specification is not constructed manually by a designer
but rather generated automatically from high-level hardware
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descriptions. (For example, designing a control circuit with
more than 20–30 signals with PETRIFY is often impossible.)
Hence, this approach does not scale. Moreover, PETRIFY

cannot guarantee a solution which can be mapped to the target
gate library.

One way to cope with the state space explosion problem is
to usesyntax-directedtranslation of the specification to a cir-
cuit, avoiding thus building the state space. This is essentially
the idea behind BALSA [5] and TANGRAM [6]. This technique,
although computationally efficient, often yields circuitswith
large area and performance overheads compared with syn-
chronous counterparts. This is because the resulting circuits
are highly over-encoded, i.e., they contain many unnecessary
state-holding elements.

For asynchronous circuits to be competitive, one has some-
how to combine the advantages of logic synthesis (high quality
of circuits) and syntax-directed translation (guarantee of a so-
lution, efficiency) while compensating for their disadvantages.
A natural way of doing this is to apply logic synthesis to the
control path extracted from, e.g., a BALSA specification. This
control path can be partitioned into smaller clusters which
can be handled by logic synthesis, and the clusters on which
it fails (because of either inability to find a solution in the
target gate library or exceeding memory or time constraints)
are implemented using the syntax-directed translation. The
experiments conducted in [7] showed that such a combined
approach can halve the area of control path and improve its
latency, compared with the traditional syntax-directed transla-
tion, as long as clusters which can be confidently handled by
logic synthesis are sufficiently large.

Arguably, one of the most difficult tasks in logic synthesis
is resolution ofComplete State Coding (CSC)conflicts, arising
when semantically different (i.e., enabling different sets of
outputs) reachable states of an STG have the sameencoding,
i.e., the binary vector representing the value of all the signals
in a given state, as illustrated in Fig. 1(a,b). To resolve a CSC
conflict, new internal signals helping to distinguish between
these states must be inserted into the specification in such a
way that its ‘external’ behaviour does not change. (Intuitively,
insertion of a signal elongates the encoding, introducing thus
additional memory into the circuit, helping to trace the current
state.) The area and latency of the resulting circuit dependto
a large extent on the way the new signals were inserted.
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The design flow advocated in [7] is as follows. Given a
(potentially large) STG, the CSC conflicts are resolved using
an integer linear programming (ILP) technique to approximate
the state space of an STG. Then the resulting STG (free from
CSC conflicts) is decomposed into smaller components in such
a way that they are also free from CSC conflicts, as described
in [8]. (Typically, each component is responsible for producing
a single signal.) Then these components are synthesised one-
by-one using PETRIFY. This approach can handle much larger
specifications than PETRIFY alone, but its scalability is still
limited since ILP is an NP-complete problem. For example,
[7] reports that for the ART(20,9) benchmark with 436 places,
398 transitions and 199 signals it took over an hour to resolve
CSC conflicts with area optimisation, and over two hours
with delay optimisation. Moreover, an ILP approximation of
the state space may work poorly for some STGs, e.g., those
containing self-loops (i.e., pairs of arcs(p, t), (t, p) going in
opposite directions).

In this paper, we follow a more scalable approach, which
avoids performing expensive operations (such as resolving
CSC conflicts) on the original STG. It works by proceed-
ing with decomposition immediately, without resolving CSC
conflicts. Hence, the resulting components, unlike ones in the
technique described above, are not free from CSC conflicts. If
a component has a CSC conflict, it can happen due to one
of the following two reasons: (i) this conflict was present
already in the original STG; or (ii) this conflict was introduced
because some of the signals preventing it in the original STG
are not present in the component. The technique described
in [9] allows one to check which of these two reasons applies,
and in case (ii) to find signals which need to be added to
the component to prevent such CSC conflicts. Finally, the
remaining CSC conflicts are resolved in each component, and
the resulting STGs are synthesised.

Although this approach is quite scalable, it can be successful
only if resolution of CSC conflicts and logic synthesis can be
efficiently performed for all components, since a failure to
synthesise even one of them means that the whole STG is not
synthesised. In particular, PETRIFY may be inadequate for this
task because of its rather restrictive limitations on the size of
components. A more promising approach is to employ STG
unfolding prefixes [10]–[12].

A finite and complete unfolding prefixof an STG is a
finite acyclic net which implicitly represents all the reachable
states of this STG together with transitions enabled at those
states. Intuitively, it can be obtained throughunfolding the
STG, by successive firing of transitions, under the following
assumptions: (i) for each new firing a fresh transition (called
an event) is generated; (ii) for each newly produced token a
fresh place (called acondition) is generated.

Due to its structural properties (such as acyclicity), the
reachable states of an STG can be represented usingconfigura-
tionsof its unfolding. A configurationC is a finite downward-

closed set of events (being downward-closed means that if
e ∈ C and f is a causal predecessor ofe then f ∈ C)
without choices(i.e., for all distinct eventse, f ∈ C, there
is no conditionc in the unfolding such that the arcs(c, e) and
(c, f) are in the unfolding). Intuitively, a configuration is a
partially ordered execution, i.e., an execution where the order
of firing of some of its events (viz. concurrent ones) is not
important. We will denote by[e] the local configuration of an
evente, i.e., the smallest (w.r.t.⊂) configuration containinge
(it is comprised ofe and its causal predecessors).

The unfolding is infinite whenever the original STG has an
infinite run; however, if the STG has finitely many reachable
states then the unfolding eventually starts to repeat itself
and can be truncated (by identifying a set ofcut-off events)
without loss of information, yielding a finite and complete
prefix. Intuitively, an evente can be declared cut-off if the
already built part of the prefix contains a configurationCe

(called thecorrespondingconfiguration ofe) such that its final
marking and encoding coincide with those of[e] [13] andCe

is smaller than[e] w.r.t. some well-founded partial order on the
configurations of the unfolding, called anadequate order[10].
Fig. 1(c) shows a finite and complete unfolding prefix of the
STG shown in Fig. 1(a); the only cut-off event is depicted as
a double box, and its corresponding configuration is{e1, e2}.

Efficient algorithms exist for building such prefixes [10],
[11], which ensure that the number of non-cut-off events in a
complete prefix can never exceed the number of reachable
states of the STG. Moreover, complete prefixes are often
exponentially smaller than the corresponding state graphs,
especially for highly concurrent STGs, because they represent
concurrency directly rather than by multidimensional ‘dia-
monds’ as it is done in state graphs. For example, if the
original STG consists of 100 transitions which can fire once in
parallel, the state graph will be a 100-dimensional hypercube
with 2100 vertices, whereas the complete prefix will coincide
with the net itself. Since practical STGs usually exhibit a
lot of concurrency, but have rather few choice points, their
unfolding prefixes are often exponentially smaller than the
corresponding state graphs; in fact, in many of the experiments
conducted in [14] they are just slightly bigger than the original
STGs themselves. Thus, unfolding prefixes are well-suited for
alleviating the state space explosion.

In [14] the unfolding technique was applied to detection of
CSC conflicts between reachable states of an STG. Moreover,
in [15] the problem of complex-gate logic synthesis from an
STG free from CSC conflicts was solved. The experiments
in [14], [15] showed that unfolding-based approach can handle
much bigger STGs then PETRIFY.

The visualisation method presented in [16] is aimed at
facilitating a manual refinement of an STG with CSC conflicts,
and works on the level of unfolding prefixes. In order to avoid
the explicit enumeration of CSC conflicts, they are visualised
ascores, i.e., sets of transitions ‘causing’ one or more of them.
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Fig. 1. An STG modelling the read cycle of the VME bus controller (a),
its state graph showing a CSC conflict between the statesM1 andM2 (b),
and its unfolding prefix showing the conflict core corresponding to this CSC
conflict and a way to resolve it by insertion of a new internal signal csc (c).

(A core can be computed as the symmetric set difference of
two configurations whose final states are in CSC conflict.)
All such cores must eventually be eliminated, e.g., by adding
new internal signals that resolve the CSC conflicts, to yieldan
STG satisfying the CSC property. This approach is illustrated
in Fig. 1(c). One can see that the encodings at the beginning
and at the end of the core are the same. This suggests that a
core can be eliminated by the introduction of a new signal,
csc, in such a way that one of its transitions is inserted into
the core, as this would violate the stated property. Note that
at least two transitions, viz. the falling and the rising edges
of the signal, have to be inserted into the STG in order to
preserve theconsistency[1], [3] — a necessary condition for
implementability of an STG as a circuit, ensuring that all the
state encodings are binary; in particular, for every signals, the
following two properties must hold: (i) in all executions ofthe
STG, the first occurrence of a transition ofs has the same sign
(either rising of falling); (ii) the rising and falling transitions
of s alternate in every execution. In this example, the new
transitions were inserted concurrently to existing ones inorder
to minimise the latency of the circuit. After transferring them
into the STG, no more CSC conflicts remain in it, and so one
can proceed with logic synthesis. (Other ways of inserting a
signal in this example are also possible — see Section V.)

The semi-automatic approach of [16] is only feasible for
synthesis of small ‘handcrafted’ blocks. In this paper, we
present a technique which is also based on cores in the STG
unfolding prefix, but isfully automaticand can handle much
larger STGs than PETRIFY, while delivering high-quality
circuits. Together with [14], [15], [17], it essentially completes
the design cycle for synthesis of asynchronous circuits from
STGs that does not involve building reachability graphs at
any stage and yet is a fully fledged logic synthesis. The
conducted experiments show that the proposed method has
significant advantage both in memory consumption and in

runtime compared with the existing state space based methods,
while delivering somewhat better circuits compared with those
produced PETRIFY and the ILP method of [7]. Combined
with the decomposition approach of [9], this design cycle can
be applied for control re-synthesis of BALSA or TANGRAM

specifications as described above.
This is the full version of the conference paper [18], with

an additional contribution describing resolution of encoding
conflicts using concurrency reduction (Section VI).

II. T RANSFORMATIONS

In this paper, we are primarily interested inSB-preserving
transition insertions, i.e., ones preserving safeness andbe-
haviour of the STG (in the sense that the original and the
transformed STGs are weakly bisimilar, provided that the
newly inserted transitions are considered silent). Below we
describe several kinds of transition insertions, which will be
used for CSC conflict resolution, and the algorithms presented
in [17] allow one to check their validity.

We assume that the original STG isinput-proper, i.e., no
transition of an internal signal can trigger a transition ofan
input signal (as this is not implementable in a speed-inde-
pendent way). All the transformations used for resolution of
encoding conflicts in this paper preserve this property.

Building an unfolding prefix of an STG can be a time-
consuming operation. However, in most practical cases the
approach described in [17] allows one to avoid a potentially
expensive re-unfolding after each transition insertion, by per-
forming local modifications in the existing prefix instead.
Moreover, it yields a prefix similar to the original one, which
is advantageous for visualisation and allows one to transfer
some information (e.g., the yet unresolved CSC cores) from
the original prefix to the modified one.

Sequential pre-insertion:A sequential pre-insertion is es-
sentially a generalised transition splitting, and is defined as
follows. Given a transitiont and a set of placesS ⊆ ∙t, the
sequential pre-insertionS ≀ t is the transformation inserting a
new transitionu (with an additional place) ‘splitting off’ the
places inS from t. The picture below illustrates the sequential
pre-insertion{p1, p2} ≀ t.

p1
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q1

q2

q3

=⇒

p1
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p3

u p

t
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q2

q3

One can easily show that sequential pre-insertions always
preserve safeness and traces (i.e., firing sequences with the
silent transitions removed). However, in general, the behaviour
is not preserved, and so a sequential pre-insertion is not
guaranteed to be SB-preserving (in fact, it can introduce
deadlocks) [17]. Given an unfolding prefix, it is quite easy
to check whether a pre-insertion is SB-preserving [17].
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If a sequential pre-insertionS ≀ t is applied to an STG, the
inserted transition should not ‘delay’ an input (as this would
impose a constraint on the environment which was not present
in the original specification), and sot must be a non-input
transition. Moreover, one should take care that theoutput-per-
sistency(i.e., the property that an enabled output cannot be
disabled by another transition) is not violated; [17] presents
an algorithm for checking that the newly inserted transition
is not in a dynamic choice relation with any other transition,
which ensures output-persistency preservation.

Sequential post-insertion:Similarly to sequential pre-inser-
tion, sequential post-insertion is also a generalisation of transi-
tion splitting, and is defined as follows. Given a transitiont and
a set of placesS ⊆ t∙, the sequential post-insertiont ≀S is the
transformation inserting a new transitionu (with an additional
place) ‘splitting off’ the places inS from t. The picture below
illustrates the sequential post-insertiont ≀ {q1, q2}.
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One can easily show that sequential post-insertions are
always SB-preserving, and, when applied to an STG, preserve
output-persistency. However, one still has to ensure that the
inserted transition does not ‘delay’ any input transitions.

Concurrent insertion:Concurrent transition insertion can be
advantageous for performance, since the inserted transition can
fire in parallel with the existing ones. It is defined as follows.
Given two distinct transitions,t′ andt′′, and ann ∈ {0, 1}, the
concurrent insertiont′n∣−→t′′ is the transformation inserting a
new transitionu (with a couple of additional places) betweent′

andt′′, and puttingn tokens in the place in its preset. We will
write t′ ∣−→t′′ instead oft′0∣−→t′′ andt′∙∣−→t′′ instead oft′1∣−→t′′.
The picture below illustrates the concurrent insertiont1

∙∣−→t3
(note that the token inp is needed to prevent a deadlock).

t1 t2 t3 ⇒ t1 t2 t3

p u q

In general, concurrent insertions preserve neither safeness
nor behaviour. In [17], an efficient test whether a concurrent
insertion is SB-preserving, working on an unfolding prefix,
has been developed.

If a concurrent insertiont′n∣−→t′′ is applied to the STG,
the output-persistency is guaranteed to be preserved, but the
inserted transition should not ‘delay’ an input, and sot′′ must
be a non-input transition.

Equivalent transformations:It can happen that a sequential
post-insertiont ≀ S yields essentially the same net as a se-
quential pre-insertionS′ ≀ t′, where t ∈ ∙∙t′; in particular,

this happens ifS ∪ S′ ⊆ t∙ ∩ ∙t′ and ∣∙p∣ = ∣p∙∣ = 1
for all p ∈ S ∪ S′. In such a case there is no reason
to distinguish between these two transformations, e.g., one
can convert a post-insertion into an equivalent pre-insertion
whenever possible. Moreover, since post-insertions are always
SB-preserving, there is no need to check the validity of the
resulting transformation.

Commutative transformations:A pair of transformations
commuteif the result of their application does not depend
on the order they are applied. (Note that a transformation can
become ill-defined after applying another transformation,e.g.,
t ≀ {p, q} becomes ill-defined after applyingt ≀ {p}.) One can
observe that:

∙ a concurrent insertion always commutes with any transi-
tion insertion;

∙ a sequential pre-insertion and a sequential post-insertion
always commute;

∙ two sequential pre-insertionsS ≀ t andS′ ≀ t′ commute iff
t ∕= t′ or S ∩ S′ = ∅;

∙ two sequential post-insertionst ≀ S and t′ ≀ S′ commute
iff t ∕= t′ or S ∩ S′ = ∅.

It is important to note that an SB-preserving transition
insertion remains SB-preserving if another commuting SB-
preserving transition insertion is applied first. Hence trans-
formations whose validity has been checked can be cached,
and after some transformation has been applied, the non-
commuting transformations are removed from the cache and
the new transformations that became possible in the modified
STG are computed, checked for validity and added to the
cache. (In particular, in the proposed CSC conflict resolution
procedure, there is no need to check the validity of a particular
transformation if it was checked in a preceding iteration.)

A compositetransition insertion is a transformation defined
as the composition of several pairwise commutative transition
insertions. Clearly, if a composite transition insertion consists
of SB-preserving transition insertions then it is SB-preserving,
i.e., one can freely combine SB-preserving transition inser-
tions, as long as they are pairwise commutative. This property
is useful for conflict resolution: typically, several transitions of
a new internal signal have to be inserted in each iteration ofthe
algorithm, in order to preserve the consistency of the STG. For
example, in Fig. 1(c) a composite transformation comprising
two commuting SB-preserving concurrent insertions (adding
the new transitionscsc+ andcsc−) has been applied in order
to resolve the CSC conflict while preserving the consistencyof
the STG. (Note that the transformation is applied to the STG,
and then is reflected in the prefix, without re-unfolding.)

III. R ESOLUTION OFCSCCONFLICTS

On each iteration of the proposed CSC conflict resolution
procedure, a consistency-preserving composite insertionℐ
resolving some of the conflict cores is chosen.
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Given a finite and complete prefix of the STG unfolding,
one can compute a setℑ of valid (i.e., SB-preserving, output-
persistency-preserving, not delaying an input, etc.) insertions
as described in the previous section. (There is only a poly-
nomial in the size of the STG number of such insertions if
max

∪

t∈T {∣
∙t∣, ∣t∙∣} is bounded by a constant, as the number

of sequential insertions is then linear in the number of STG’s
transitions, since for eacht the number of insertions of the
form t ≀ S or S ≀ t is bounded by a constant, and the number
of concurrent insertions is quadratic in the number of STG’s
transitions.) Then we formulate a SAT problem as follows.

For each insertionI ∈ ℑ we create a Boolean variable, also
denoted byI, indicating whetherI ∈ ℐ. The constraints below
ensure that for any satisfying assignment of a SAT instance to
be built, the corresponding composite insertionℐ (obtained
by taking the insertions whose corresponding variables are
assigned 1) isvalid (i.e., that it preserves the consistency of
the STG, the chosen individual insertions commute, are not in
the choice relation, and cannot trigger one another) and that
some of the conflict cores are resolved (i.e., some progress
is made). This SAT instance will be the conjunction of the
constraints described below.

ℳUT ℰX constraint

Two signal insertions,I andI ′, are calledmutually exclusive
if they are non-commuting, or the inserted transitions are either
concurrent or in the choice relation or can trigger one another.

All these conditions can be checked statically on the prefix
(i.e., they are not encoded as a part of the Boolean formula),
and one can build an undirected graphG representing the
‘mutually exclusive’ relation onℑ. Then, for every edge{I, I ′}
of G, the transformationsI andI ′ must not be used together,
which is expressed by the constraint:

⋀

{I,I′}∈edges(G)

(¬I ∨ ¬I ′) .

The size of this constraint can be quadratic in∣ℑ∣. A smaller
translation can be obtained by heuristically covering the
edges ofG by minimum number of cliques (using, e.g., the
heuristic algorithm described in [20]), trying also to minimise
the sizes of individual cliques, and generating the constraint
∑

I∈Cl I ≤ 1 for each cliqueCl . A linear in ∣Cl ∣ translation
of this pseudo-Boolean constraint into a Boolean formula is
possible by introducing auxiliary variables [21], [22].

Sign alternation constraint

The chosen SAT encoding does not carry any information
concerning the signs (‘+’ or ‘−’) of the inserted transitions.
This is motivated by the desire to reduce the number of
variables in the corresponding SAT instance by exploiting
the following symmetry: it is always possible to flip the
signs of all the transitions corresponding to a given internal

signal without affecting the correctness (consistency, output-
persistency, etc.) of the STG. However, one still has to ensure
that consistent assignment of signs to each signal insertion
within the composite signal insertion is possible; given such a
composite insertion, one can statically compute the assignment
using a prefix, by arbitrarily choosing the initial value (0 or 1)
of the newly inserted signal. Hence, without loss of generality,
one can assume that this value is 0 (it can be easily changed
to 1 by flipping the signs of all the transitions corresponding
to the newly inserted signal after the CSC conflict resolution
process is completed).

In part, this condition is ensured by theℳUT ℰX con-
straint, which guarantees that the instances of the newly
inserted signals are not concurrent, and so within any con-
figuration they are totally ordered w.r.t. the causality relation.
The purpose of the sign alternation constraintSA is to ensure
that the signs of the instances of the newly inserted signal
alternate in each configuration of the prefix.

Given a configurationC of the prefix and a composite
insertionℐ, we denote byCodeℐ(C) the encoding of the newly
inserted signal at the final state ofC. (Recall that we assume
that the initial value of this signal is 0, i.e.,Codeℐ(∅)

df
= 0.)

Let J0, . . . , Jk be the instances ofI in the prefix, i.e., the
I-labelled events which would be added to the prefix if the
insertion I is applied to the STG. (They can be computed
statically on the prefix [17].) We extend the usual notation
for presets and postsets to transformation instances; but note
that, depending on the type of insertion,∙Ji or J∙

i (or both)
may be not in the prefix (until the transformation is applied).
However, the events in∙∙Ji are in the prefix even before the
transformation is applied.

For a configurationC, let #IC be the number of instances
of I which would be inserted by the transformationI into C;
it can be computed statically as follows:

#IC
df
=

⎧

⎨

⎩

#t′′C if I is t′n∣−→t′′

#tC if I is S ≀ t
#tC −m if I is t ≀ S,

where#tC denotes the number oft-labelled events inC, and
m = 1 if C can be extended by some instance ofI andm = 0
otherwise (i.e., the ‘hanging’ instance of a sequential post-
insertionI is not counted, as it is not inside the configuration).

Assuming that the instances of the new signal withinC
can be assigned signs in a consistent way,Codeℐ(C) can be
expressed as follows:

Codeℐ(C) ⇐⇒
⊕

I : #IC is odd

I .

(An auxiliary Boolean variable, also denotedCodeℐ(C), to-
gether with the above constraint defining its value, is intro-
duced in the SAT instance being built ifCodeℐ(C) appears
in the formulae below.)

The sign alternation constraintSA needs to ensure that
if I ∈ ℐ then all its instancesJ0, . . . , Jk can be assigned
the same sign in a consistent way, i.e., that the values of
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Codeℐ([
∙∙J0]), . . . ,Codeℐ([

∙∙Jk]) are the same, where[X]
denotes the minimal (w.r.t.⊂) configuration containing all the
events inX. This can be accomplished, for eachI ∈ ℑ, by
the following constraint:

I ⇒ SAℳℰ(Codeℐ([
∙∙J0]), . . . ,Codeℐ([

∙∙Jk])) ,

where

SAℳℰ(x0, . . . , xk)
df
=

k
⋀

i=0

(xi ⇒ xi+1mod(k+1)) .

Since for a givent, all insertions of the form eithert ≀ ⋅
and t ∣−→ ⋅ or t∙∣−→ ⋅ have the same∙∙J0, . . . , ∙∙Jk, the sign
alternation constraints for a groupG of such insertions can be
combined as follows:
(

⋁

I∈G

I
)

⇒ SAℳℰ(Codeℐ([
∙∙J0]), . . . ,Codeℐ([

∙∙Jk])) .

Note that theSA constraint is defined viaCodeℐ([∙∙J ]) for
all instancesJ of all the insertionsI ∈ ℑ, and the definition
of Codeℐ(C) assumes that the instances of the new signal
within C can be assigned signs in a consistent way, i.e., they
are not concurrent (which is ensured byℳUT ℰX ) and their
signs alternate, which has to be ensured bySA. This mutual
dependency ofCodeℐ(C) andSA does not cause problems,
though, due to the following inductive argument. SupposeSA
is incorrect for some configurationC of the prefix. Since
Codeℐ(X) is computed correctly wheneverSA is correct
on X, and due toℳUT ℰX no two instances of the new
signal can be concurrent,SA must be incorrect already for
the configuration[∙∙J ] ⊂ C for some instanceJ of I ∈ ℑ.
Since⊂ is a well-founded order andSA is correct for the
empty configuration, we have a contradiction.

CUT Oℱℱ constraint

The sign alternation constraint ensures that the signs of
instances of the newly inserted signal will alternate in any
configuration of the prefix. However, to guarantee consistency,
one still has to add a constraintCUT Oℱℱ ensuring that this
is also the case for the configurations of the full unfolding
beyond the cut-off eventsof the prefix. For this, it is enough
to ensure for each cut-off evente that afterℐ is applied, the
value of the newly inserted signal is the same in the final states
of [e] and its cut-off corresponding configuration.

One may be tempted to express this constraint as

Codeℐ([e]) ⇐⇒ Codeℐ(C
e) ,

for each cut-off evente with a corresponding configurationCe.
However, it does not take into account the following subtlety.
It can happen that some instanceJ of a post-insertionI ∈ ℐ is
such thatCe can be extended byJ . The definition ofCodeℐ
does not takeJ into account (sinceJ will not be inCe after the
transformation is applied), even though it may become a part
of the corresponding configuration ofe after I is applied. To
capture this, a post-insertionI is callede/Ce-mismatchingif
some instanceJ of I is such thatCe can be extended byJ and

[e] cannot be extended byJ . Now such additional instances
of post-insertions can be taken into account as follows:

Codeℐ([e]) ⇐⇒ Codeℐ(C
e)⊕

⊕

I∈ℳℳe

I ,

for each cut-off evente with a corresponding configurationCe,
whereℳℳe is the set ofe/Ce-mismatching post-insertions.

As an optimisation, this constraint can be represented as

¬
(

Codeℐ([e])⊕ Codeℐ(C
e)⊕

⊕

I∈ℳℳe

I
)

,

and ⊕-sums can be optimised, as described at the end of
this section. Alternatively, one can observe that if two post-
insertions are commutative and non-concurrent then no con-
figuration can be extended by both of them. Hence at most one
of the variables in

⊕

I∈ℳℳe I can be assigned 1, i.e., one can
replace this sub-expression by

⋁

I∈ℳℳe I. This can improve
the runtime of SAT solver and shorten the formula, and the
⊕-sums can still be optimised forCodeℐ([e])⊕ Codeℐ(C

e).

COℛℰ constraint

To ensure progress, a constraint conveying that at least one
of the conflict cores is resolved, is added. LetC be a core.
A signal insertionI is called hanging w.r.t.C if, after it is
applied, some of its instances directly precedes or succeeds C.
A composite transition insertionℐ is hanging w.r.t.C if some
I ∈ ℐ is hanging w.r.t.C.

One can observe that ifℐ is hanging w.r.t.C then C is
not resolved byℐ. In the transformed prefix, this core will
resurface as a coreC′, as one can always ensure that the
encodings at the beginning and at the end ofC′ coincide by
adding, if needed, a hanging instance ofI ∈ ℐ to the core.
C is resolved by a composite signal insertionℐ if an odd

number of signal instances is inserted into it, and none of the
inserted signal instances is hanging w.r.t.C. By introducing
new auxiliary variablesHangingC and ResolvedC for each
coreC, theCOℛℰ constraint is defined as follows:

(

⋁

C

ResolvedC

)

∧
⋀

C

(

HangingC ⇐⇒
⋁

I∈HC

I
)

∧

⋀

C

(

ResolvedC ⇐⇒
(

¬HangingC ∧
⊕

I /∈HC∧
#IC is odd

I
)

)

,

whereHC is the set of hanging w.r.t.C transition insertions.

Computation of⊕-sums

One can notice that the constructed formulae contain many
⊕-sums over the same set of variablesℑ. There is typically
a lot of sharing between them, and so these sums can be
optimised by computing common sub-sums only once.

The problem can be abstractly formulated as follows.
Given m ⊕-sums over the variablesx1, . . . , xn, build a
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small acyclic Boolean circuit1 with n inputs andm outputs
computing these⊕-sums. (Such a circuit can then be converted
into a Boolean formula in the conjunctive normal form, whose
size is linear in the size of the circuit.)

This problem can be solved in a number of ways. The
method described in [21, Chapter 4.7], [23] divides the vari-
ables inton/ log n groups oflog n variables each, computes
all the possible sums in each group, and forms the circuit
from these sums. For this, at mostn2+mn

logn −m binary⊕-gates
are needed. In the actual implementation, a method based on
preset trees[11, Chapter 4] was used. Experiments show that
it works quite well in practice.

Cost function

On each iteration of the method, a heuristic cost function
is used to guide the search towards ‘good’ solutions with
small area and/or performance overhead. The constructed SAT
instance is solved several times, with constraints on the value
of the cost function appended to the formula, so that a
solution minimising the value of the cost function is eventually
computed. (The process resembles a binary search on the value
of the cost function.) The cost function we used is a weighted
sum of the following components:

∙ the estimated number of unresolved CSC cores;
∙ the estimated number of unresolvedUniversal State Cod-

ing (USC) cores, i.e., cores corresponding to different
states which have the same encoding (though USC cores
which are not CSC cores are not harmful, they can turn
into CSC cores once new signals are added);

∙ the estimated delay introduced by the insertion;
∙ the total number of syntactic triggers of all output and

internal signals;
∙ the number of inserted transitions of a signal;
∙ the number of input signals which are not ‘locked’2 with

the newly inserted signal;
∙ the number of output and internal signals which are not

‘locked’ with the newly inserted signal.
The user can choose the relative weights of the components
of the cost function to guide the resolution process towards
solutions with the desired area/latency trade-off. More details
can be found in the technical report [19].

IV. COMPARISON WITH OTHER TECHNIQUES

In this section, the proposed technique for resolving CSC
conflicts is compared with two other techniques: the one im-
plemented in PETRIFY [1] and employing the state graphs,
and the Integer Linear Programming (ILP) technique of [7].

1This Boolean circuit is an abstract construction needed forbuilding a
part of the SAT instance, and should not be confused with the circuit being
synthesised from the STG.

2Two signals are in the ‘lock’ relation [24] if their instances (i) cannot be
concurrent, and (ii) alternate in every execution sequence. ‘Locking’ the newly
inserted signal with as many other signals as possible is a good heuristics for
area optimisation [7].

PETRIFY’s approach is well-documented in [1]. It works
with state graphs, and thus does not scale. However, for
small specifications it typically yields quite good solutions.
Moreover, it has some additional capabilities which neither
the ILP approach of [7] nor the proposed method have, viz.
it can restructure the specification using net synthesis from
the state graph. However, in practice the scalability is usually
much more desirable than the ability to do restructuring (asit
is useful only in very special cases).

The approach described in [7] works in a very different
way. Instead of exact computation of the state space, it usesan
approximate technique based on Integer Linear Programming
(ILP). Briefly, this approach takes as an input a lasso-shaped
CSC violation trace starting from the initial state and such
that the two states, say,s1 and s2, in CSC conflict are
positioned on the loop of the lasso. Then it tries to insert a set
of new transitions (obtained by splitting existing transitions)
corresponding to a new signal into the STG, in such a way
that the STG remains consistent and the numbers of such
transitions on the parts of the loop betweens1 and s2, as
well as betweens2 and s1, are odd (i.e., the CSC conflict
is resolved). For this, an ILP problem is formulated, whose
solution gives a set of transitions which should be split (an
elegant sufficient condition for the consistency of the resulting
STG based on a place redundancy test is employed). Moreover,
a heuristic cost function is used to guide the search towards
solutions corresponding to circuits with either small areaor
small latency. This procedure is iterated until all the CSC
conflicts are resolved.

The approach presented in this paper was inspired by
that in [7], but it has a number of important differences. It
iteratively inserts new internal signals into the specification
until no CSC conflicts remain. On each iteration, it tries to
eliminate some of the CSC conflict cores in the unfolding
prefix [16] by insertion of new signals, guided by a heuristic
cost function. The technique described in [17] is used to
avoid re-unfolding the specification after each iteration,and
to transfer the unresolved conflict cores from iteration to
iteration. The main differences from [7] are described below.

∙ We use STG unfolding prefixes rather than STGs. This
allows for an exact test of consistency where [7] used an
approximate one, based on redundancy of places.

∙ We use a SAT rather than ILP solver. Besides, the SAT
encoding of the problem is based on entirely different ideas.

∙ Unlike [7], the proposed method does not require a lasso-
shaped CSC violation trace (in general, it is not always
possible to find such a trace even if there are CSC conflicts),
and uses a set of encoding conflict cores instead.

∙ Using unfoldings allows for efficient computation of viola-
tion traces using the technique described in [14]. In contrast,
for methods working on the STG level, like that in [7], this
is only possible for some restricted net classes, such as
marked graphs or live and safe free-choice nets. Intuitively,



8 IEEE TRANSACTIONS ON VLSI SYSTEMS: SPECIAL SECTION ON ASYNCHRONOUS CIRCUITS AND SYSTEMS, VOL. 17, NO. 7, JULY 2009

the problem of checking whether a given safe STG has CSC
conflicts is PSPACE-complete [25, Proposition 5.1], while
ILP is in NP, so the knowledge of aParikh vectorof the
violation trace (i.e., a vector of non-negative numbers repre-
senting the number of times each transition fired in a given
execution; it is typically returned by ILP methods [26])
does not help much — the reachability problem remains
PSPACE-complete even if such a Parikh vector is provided
as a part of the input. In principle, [7] could also use,
e.g., the unfolding based technique of [14] for computing
violation traces, but this would, to some degree, defeat the
rationale of their approach, since an unfolding prefix of the
STG has to be built for this — but then it would be natural
to employ it for conflict resolution as well.
The actual approach used in [7] for computing a CSC
violation trace works as follows [27] (unfortunately, this
question was not addressed in [7]). The problem of CSC
conflict detection is formulated as an ILP problem, which,
if infeasible, guarantees that STG has no CSC conflicts.
Otherwise, a Parikh vector of a CSC violation trace is
computed, and an attempt is made to restore a trace from
this Parikh vector by firing one-by-one the transitions
corresponding to its non-zero components (the correspond-
ing component of the Parikh vector is decremented after
each firing). If at some point none of such transitions is
enabled, one of them is anyway chosen and fired (leading
to a ‘negative’ marking). The process stops when all the
components of the vector become zero.
One can see that a violation trace is produced (and then
resolved by insertion of new signals) even if the computed
solution of the ILP problem is spurious (i.e., the corre-
sponding CSC conflict states are unreachable). Moreover,
the produced violation trace can be spurious (i.e., passing
via negative markings) even if there is a real execution
corresponding to the computed Parikh vector. Hence, the
method of [7] can sometimes insert redundant signals
resolving ‘spurious’ CSC conflicts.

∙ The transformations used in [7] were limited to simple
transition splitting. The proposed approach allows one to
use a much wider class of transformations; in particular,
concurrent insertion and insertions splitting off just a part
of a transition’s preset or postset are possible.

∙ The proposed method takes into account multiple conflict
cores, whereas the ILP approach considers only a single
(perhaps, spurious) violation trace. In particular, this makes
it possible to choose insertions which resolve many cores
with one signal, reducing thus the total number of inserted
signals and allowing for quicker progress — see the 8-way
sequencer case study in Section V.

∙ Though the proposed approach is fully automatic, it inherits
the visualisation possibilities described in [16], which may
be useful for interaction with the user.

The described advantages come at the price of increasing

Composite transition insertion Lits
1 ≀d−, ≀lds+ 8

2 ≀d−, ldtack
−≀ 9

3 ≀lds+, dtack
+ ∣−→d− 11

4 ldtack
−≀, dtack

+ ∣−→d
− 11

5 d
+ ∣−→d

−, ≀lds+ 11

6 d+ ∣−→d−, ldtack
−≀ 11

7 ≀lds+, ≀dtack+ 12

8 ldtack
−≀, ≀dtack+ 12

9 ≀d−, lds
−∙∣−→lds

+ 12

10 ≀lds+, dsr
− ∣−→dtack

− 12

11 ≀lds+, ≀dtack− 13

12 lds
−∙∣−→lds

+, dtack
+ ∣−→d− 14

13 ≀lds+, dtack
+ ∣−→dtack

− 14

14 d
+ ∣−→d

−, lds
−∙∣−→lds

+ 14

15 d
+ ∣−→dtack

−, ≀lds+ 14

16 lds
−∙∣−→lds

+, ≀dtack+ 15

17 ≀d−, ≀lds+, ≀dtack+, ≀dtack− 18

TABLE I
THE COMPOSITE TRANSITION INSERTIONS RESOLVING THECSC

CONFLICT SHOWN INFIG. 1.

the runtime compared with the method of [7]. However,
the proposed method is much faster then PETRIFY and can
handle quite large specifications. As it is intended for use in
conjunction with the decomposition approach of [9], it fits well
with practical applications such as control re-synthesis.

V. CASE STUDIES AND EXPERIMENTAL RESULTS

The CSC conflict resolution method described in this paper
has been implemented in the MPSAT tool. In this section
we present a number of case studies demonstrating some
interesting features of the proposed approach, as well as the
results of running it on a number of benchmarks. To solve
the arising SAT instances, the MINI SAT2 solver3 has been
used. All the experiments were conducted on a PC with a
PentiumTM IV/3.4GHz processor and 2G RAM.

VME bus controller.

The specification of the read cycle of VME bus controller
is shown in Fig. 1. Although it is a very small benchmark
containing a single conflict core, MPSAT was able to find
17 possible ways to resolve it, listed in Table I. This shows
that the proposed method explores a fairly large design space,
including quite an unintuitive solution 17 with two set and two
reset transitions, which resolves the core by inserting three
transitions ofcsc into it. Many of these solutions cannot be
computed by the method of [7], as the class of transformations
it uses is limited to transition splitting.

An 8-way sequencer.

Sequencers are among the standard ‘building blocks’ of
circuits produced from hardware description languages like

3Available fromwww.cs.chalmers.se/Cs/Research/FormalMe-
thods/MiniSat/Main.html.
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BALSA and TANGRAM. The ‘parent’ handshake at porta
initiates eight sequentially ordered ‘child’ handshakes at ports
b, . . . , i. Then the parent handshake completes, and the cycle
continues. (The completion of the last ‘child’ handshake is
reshuffled with the completion of the ‘parent’ handshake foran
early acknowledgement at porta.) Fig. 2 shows the unfolding
prefix of the STG specifying an 8-way sequencer with seven
conflict cores.

Intuitively, at least three bits of additional memory are
needed to implement this specification (by counting how many
of the eight ‘child’ handshakes have been executed so far), so
the CSC conflicts cannot be resolved by insertion of fewer
than three signals. However, it is not trivial to find a solution
using only three additional signals — in fact, PETRIFY’s
solutions has four new signals. MPSAT was able to find a
fully concurrent solution with three signals shown in Fig. 2
by dotted lines. Note that to accomplish this the signalcsc1
is set and reset twice in each cycle.

Finding a solution with three signals is only possible by
analysing multiple cores; the method of [7] cannot find such
a solution because it analyses just a single violation traceon
each iteration — in fact, it needed four signals to resolve the
CSC conflicts in this case study.

f 0
+

f 1
+

0
−

f f 1
−

1
+csc 2

+csc 1
+csc

2
−csc 1

−csc 3
−csc

a1
−

g0
+

g1
+

g0
−

g1
−

h0
+

h1
+

h0
−

h1
−

i 0
+

i 1
+

a1
+

a0
−

i 0
−

i 1
−

a

1
−csc

3
+csc

0
+

b0
+

b1
+

b0
−

b1
−

c0
+

c1
+

c0
−

c1
−

d0
+

d1
+

d0
−

d1
−

e0
+

e1
+

e0
−

e1
−

inputs: a0, b1, c1, d1, e1, f1, g1, ℎ1, i1
outputs: a1, b0, c0, d0, e0, f0, g0, ℎ0, i0
internal: csc1, csc2, csc3

Fig. 2. The unfolding prefix of an STG modelling an 8-way sequencer,
showing 7 cores and a fully concurrent solution with 3 new signals.

Assorted small benchmarks

Table II compares the three methods for resolving CSC
conflicts: the state-space based approach implemented in PET-
RIFY, the ILP approach of [7] (with post-processing removing
redundant signals) and the one proposed in this paper, on a
number of assorted small benchmarks from [7]. The meaning
of the columns in the table is as follows (from left to right):the
name of the problem; the number of places, transitions, and
input and output signals in the original STG; the number of
signals inserted by PETRIFY, the ILP approach of [7] and the
approach proposed in this paper; and the number of literals
in the final complex-gate implementations produced by the
three approaches (the smallest numbers are highlighted). The
numbers in the ‘Pfy’ and ‘ILP’ columns are as reported in [7],
and, for consistency with [7], PETRIFY was used to synthesise
the STGs after the CSC conflicts were resolved.

STG Signals Literals
Example ∣P ∣/∣T ∣ In/Out Pfy ILP SAT Pfy ILP SAT

ADFAST 15/12 3/3 2 2 2 14 19 21
IRCV-BM 55/46 5/4 2 3 1 38 43 28
MMU 20/16 4/4 3 3 3 29 26 27
MMU0 20/16 4/4 3 3 3 29 27 27
MMU1 24/16 4/4 3 2 2 32 23 25
MR0 31/22 5/6 3 3 3 45 30 29
MR1 25/18 4/5 4 3 3 35 29 27
NAK -PA 22/18 4/5 1 1 1 18 18 18
NOWICK 19/14 3/2 1 1 1 14 14 14
PAR(4) 23/20 5/5 4 4 4 32 32 32
SEQ(8) 36/36 9/9 4 4 3 47 37 44
TSEND-BM 45/39 5/4 2 3 1 39 44 27
ALLOC-OUTBOUND 17/18 4/3 2 2 2 16 16 15
DUPLICATOR 14/12 2/2 2 2 2 19 13 13
MOD4 COUNTER 16/16 1/2 2 3 2 25 28 25
RAM -READ-SBUF 26/20 5/5 1 1 1 18 18 19
SBUF-RAM-WRITE 29/20 5/5 2 2 2 22 32 29
SBUF-READ-CTL 14/12 2/4 1 1 1 15 15 15
MASTER 1882 38/26 6/7 1 1 1 38 38 39
TRCV-BM 53/44 5/4 2 3 2 36 44 34
SEQ MIX 20/20 4/4 3 2 2 20 20 20
SPEC SEQ(4) 20/20 5/5 3 2 2 20 19 20
Total 51 51 44 601 585 548

TABLE II
EXPERIMENTAL RESULTS: ASSORTED SMALLSTGS.4

One can see that in all cases the number of inserted by
MPSAT signals was smaller or the same compared with the
other methods, and also it produced smaller implementations
(about 8.8% improvement over PETRIFY).

Scalable benchmarks

We also compared the described method with PETRIFY

(the ILP tool of [7] was not available from the authors) on
two groups of scalable benchmarks modellingm pipelines
weakly synchronised without arbitration (PPWK(m,n)) and
with arbitration (PPARB(m,n)). They are the benchmarks
from the corresponding series used in [14], with the latter
series modified by ‘factoring out’ the arbiter into the en-
vironment to ensure output-persistency. In these two series
of benchmarks all the signals except the arbiter’s grants in
PPARB(m,n) are considered outputs, i.e., the control logic
is designed as a closed circuit. The inputs are inserted after
the synthesis is completed, by breaking up some outputs
and inserting the environment into the breaks, thus forming
handshakes (sometimes with an inverter attached to the output
if the environment acts as an active port). Fig. 3 illustrates
these two types of STGs.

The results for these two groups are summarised in Table III,
where the meaning of the columns is the same as in Table II,
except that the sizes of the corresponding finite and complete
prefixes (in terms of the numbers of conditions and events)
are given in the forth column and the runtimes (in seconds)
are now reported in the last three columns (for MPSAT,

4Two different sets of weights in the cost function were used to produce the
numbers in the two ‘SAT’ columns: in the former the cost functionwas aimed
at minimising the number of inserted signals (the literals werenot taken into
account and not reported), whereas in the latter it was aimed at minimising
the number of literals in the final implementation (the signals were not taken
into account and not reported).
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Fig. 3. STGs modelling two weakly synchronised pipelines without arbitration(a) and with arbitration(b). The dashed arcs show how to resolve encoding
conflicts using concurrency reduction.

STG Prefix Signals Literals Time, [s]
Example ∣P ∣/∣T ∣ In/Out ∣B∣/∣E∣ Pfy SAT Pfy SAT Pfy SATs SATl

Marked Graphs
PPWK(2,3) 23/14 0/7 41/24 1 1 30 29 <1 <1 <1
PPWK(2,6) 47/26 0/13 119/63 1 1 60 59 5 <1 <1
PPWK(2,9) 71/38 0/19 233/120 1 1 90 89 34 <1 6
PPWK(2,12) 95/50 0/25 383/195 1 1 120 119 368 <1 18
PPWK(3,3) 34/20 0/10 63/36 2 2 48 46 4 <1 <1
PPWK(3,6) 70/38 0/19 183/96 2 2 93 91 105 <1 6
PPWK(3,9) 106/56 0/28 357/183 2 2 138 136 1838 4 55
PPWK(3,12) 142/74 0/37 585/297 — 2 — 181 mem 5 175

STGs with Arbitration
PPARB(2,3) 48/32 2/13 110/66 2 2 63 67 35 <1 2
PPARB(2,6) 72/44 2/19 218/120 2 3 93 97 118 1 17
PPARB(2,9) 96/56 2/25 362/192 2 2 123 127 1041 2 50
PPARB(2,12) 120/68 2/31 542/282 — 3 — 157 mem 8 159
PPARB(3,3) 71/48 3/19 188/114 3 3 100 105 620 <1 14
PPARB(3,6) 107/66 3/28 368/204 3 3 145 149 5043 2 117
PPARB(3,9) 143/84 3/37 602/321 3 4 190 194 12307 7 354
PPARB(3,12) 179/102 3/46 890/465 — 5 — 239 mem 24 839

TABLE III
EXPERIMENTAL RESULTS: SCALABLE PIPELINES.4

the runtimes for signal and literal optimisation are reported
separately). We use‘mem’ if there was a memory overflow.
It also should be noted that since PETRIFY was not able to
synthesise some of the resulting STGs, they were synthesised
with the unfolding-based technique described in [15], thatis
implemented in MPSAT.

One can see that on these benchmarks PETRIFY and MPSAT

were very close in terms of the number of inserted signals
and the number of literals. However, in terms of runtime and
memory consumption MPSAT was clearly superior: in some
cases the runtime differed by orders of magnitude, and the
cases which were intractable for PETRIFY due to memory
overflow were solved by MPSAT relatively easily.

It should be noted that, depending on whether signals or
literals are minimised, MPSAT ’s runtimes can differ signifi-

cantly on the same benchmark. This can be explained by the
fact that in the former case many of the parameters of the
cost function (viz. the estimated delay, the total number of
syntactic triggers of all output and internal signals, the number
of inserted transitions, the numbers of inputs and outputs
which are not ‘locked’ with the newly inserted signal) are not
taken into account (resulting in a considerable shorteningof
the SAT instance), whereas in the latter case only the estimated
delay is not taken into account.

VI. RESOLUTION OF ENCODING CONFLICTS USING

CONCURRENCY REDUCTION

e10

12e

2C

e7

e11

e4

e9

lds+ d+ dtack+ d−dsr+ ldtack+

core

dsr+

lds+C1
dsr−

lds−

ldtack−

e dtack−1 e2 e5 e6e3

e8

inputs: dsr , ldtack ; outputs: lds, d , dtack

Fig. 4. VME bus controller: resolving the encoding conflict with the help
of one of the concurrency reductions shown by the dashed arcs.

Another way of resolving the encoding conflict in the VME
bus controller example is by eliminating the concurrency
between eitherlds− anddtack− or ldtack− anddtack−, as
shown by the dashed arcs in Fig. 4. These transformations
‘drag’ eitherlds− or lds− andldtack− into the conflict core,
destroying it. (In effect, stateM1 becomes unreachable, cf.
Fig. 1(b)). The general ways of eliminating CSC conflict cores
by ‘dragging’ existing events into the core are illustratedin
Fig. 5(b,c) (see [28] for more details).

The former concurrency reduction yields an implementation
with 10 literals, and the latter with only 7 literals, which
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compares rather favourably with the implementations givenin
Table I, especially with fully concurrent ones. Of course, this
comes at the price of sequentialising the STG, in particularthe
second concurrency reduction makesdtack− wait for an input
transition, which might adversely affect the performance.

In practice it is often the case that concurrency reduction
produces smaller circuits, which may also be faster due to
simplification of the gates (even though the system manifests
less concurrency, its events take less time to fire). Hence the
common belief that more concurrency increases the perfor-
mance is questionable in this context. In a highly concurrent
specification, almost all combinations of signal values are
reachable, and thus Boolean minimisers cannot efficiently
exploit the ‘don’t care’ values, which results in large and
slow gates in the final implementation. Moreover, transitions of
the newly inserted signals delay output transitions, increasing
thus the latency of the final circuit. Concurrency reduction
can increase the number of unreachable states, thus providing
more ‘don’t cares’ for logic optimisation. Furthermore, ifan
encoding conflict is solved by concurrency reduction rather
than signal insertion then no additional gate is required to
implement this signal. Thus, eliminating encoding conflicts
by concurrency reduction may result in a faster and smaller
circuit. On the other hand, there are situations when signalin-
sertion produces better solutions. In general, both concurrency
reduction and signal insertion are required to explore a larger
solution space, and considering only one of these techniques
may leave out important solutions. Existing techniques either
apply concurrency reduction at the state graph level [29],
[30] or are restricted to specific net classes or use local
transformations [31] and thus restrict the design space.

Formally, given an STG, a set of its transitionsU ∕= ∅, a
transitiont /∈ U and ann ∈ {0, 1}, a concurrency reduction
U

n
99K t is defined as the transformation adding a new placep,

which initially hasn tokens, the arc(u, p) for each transition
u ∈ U and the arc(p, t), as shown in Fig. 5(a). We will write

U 99K t instead ofU
0

99K t andu
n

99K t instead of{u}
n

99K t.
Note that concurrency reduction cannot add new behaviour to
the system — it can only restrict it; in particular, no new traces
are added (and thus the consistency is preserved).

Validity

Given a concurrency reductionU
n

99K t and a configuration
C of the unfolding, we defineTokens(C)

df
= n+#UC−#tC,

where#SC denotes the number ofS-labelled (i.e., labelled
by a transition inS) events inC, and #tC

df
= #{t}C.

Intuitively, Tokens(C) is the final number of tokens in the
newly inserted place (provided thatC is a configuration of
the unfolding of the modified Petri net as well), i.e., this is
essentially the marking equation (see [32]) for this place.Note
thatTokens(C) can be negative.

In [28] a framework for unfolding-based resolution of

n
p

Uu1

u2

...

uk

t

(a)

core

f

g

e

(b)

core

f

e

g

(c)

Fig. 5. Concurrency reductionU
n

99K t (a) and core elimination by concur-
rency reduction(b,c).

encoding conflicts using concurrency reduction was devel-
oped. In particular, a notion of correctness of a concurrency
reduction was proposed and justified. This notion is rather
complicated (note that even language equivalence does not
hold), and we do not present it in this paper. Instead, we
give a slightly reformulated sufficient correctness condition
proven in [28]. This condition assumesweak fairness, i.e., that
a transition cannot remain enabled forever: it must either fire
or be disabled by another transition firing.5 In particular, this
guarantees that the expected inputs eventually arrive, andthus
the concurrency reductioni 99K o cannot be declared invalid
just because the inputi fails to arrive and so the outputo is
never produced.

In the proposition below, which is a slightly re-formulated
version of [28, Proposition 3.2], we relax the definition of
a configuration by allowing it to be infinite. Amaximal
configurationis a configuration which cannot be extended by
another event. (Note that maximal configurations are either
deadlocked or infinite, though not every infinite configuration
is maximal.) We also define by⟨e⟩

df
= [e] ∖ {e} the set of

causal predecessors of an evente. Intuitively, this proposition
states that a concurrency reductionU

n
99K t is valid if every

maximal configurationΠ of the unfolding of the STG is still a
configuration (perhaps, with less concurrency) of the unfolding
of the modified STG, i.e., for each instancee of t in Π, Π
contains sufficiently many concurrent toe events with labels
in U , which can be executed (without firing other instances
of t) to supply the missing tokens in the newly inserted place
needed to firee.

Proposition 1 (Liveness):Let U
n

99K t be a concurrency
reduction transforming a consistent, input-proper and weakly
fair STG Υ into Υ′, such thatt is not a transition of an
input signal and for eacht-labelled evente and each maximal
configurationΠ ⊇ [e] of the unfolding ofΥ there is a finite set
EU ⊆ Π of events with labels inU concurrent toe such that
Tokens(⟨e⟩) + ∣EU ∣ > 0. ThenΥ′ is a valid implementation
of Υ. ♢

The above liveness condition conveys that no essential
behaviour is eliminated by a concurrency reduction. However,

5Note that because of this condition, concurrency reductioncannot be
performed independently in subsystems, as a deadlock can be introduced.
Hence, if a concurrency reduction is performed in some subsystem, it has to
be reflected in the STGs for all the other subsystems dependingon it.
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it employs infinite objects and thus is not directly checkable;
hence the tool of [28] had to rely on human input. In this
section we propose an approximate test for this condition,
which has been implemented in the MPSAT tool. Since we
work with safe STGs, MPSAT also implements an additional
validity condition stating that the modified STG is safe. Below
we separately consider safeness and liveness.

Proposition 2 (Safeness):Let U
n

99K t be a concurrency
reduction transforming a consistent, input-proper, weakly fair
and safe STGΥ into Υ′, such thatt is not a transition of an
input signal and the following conditions hold for a complete
unfolding prefix ofΥ:

(S1) n =

{

0 if #t[e] = 0 for someU -labelled evente;
1 otherwise.

(S2) Tokens([e]) = 1 for eachU -labelled evente.
(S3) No twoU -labelled eventse, f are concurrent.
(S4) Tokens([e]) = Tokens(Ce) for each cut-off evente with

a corresponding configurationCe.

ThenΥ′ is safe. ♢

Unfortunately, checking the liveness condition turns out to
be much more complicated. In fact, we are not aware of any
tool that can do such a check for the full class of safe Petri
nets. In particular, PETRIFY simply requires that (i) no events
become dead, and (ii) no (new) deadlocks appear [29]. One can
easily see that this test is not conservative. Below we propose
a more elaborate approximate test (it is also not conservative)
based on Proposition 1.

Let U
n

99K t be a concurrency reduction transforming a
consistent, input-proper, weakly fair and safe STGΥ into Υ′,
such thatt is not a transition of an input signal. Then we
check the following conditions hold for a finite and complete
unfolding prefix ofΥ:

(L1) For eacht-labelled evente, Tokens(⟨e⟩) ≥ 0.
(L2) For eacht-labelled evente, if Tokens(⟨e⟩) = 0 then

every maximal configurationC ⊇ [e] contains aU -
labelled event concurrent toe.

(L3) Tokens([e]) = Tokens(Ce) for each cut-off evente with
a corresponding configurationCe.

The condition (L2) of this test resembles Proposition 1, buta
finite and complete prefix is used instead of the full (infinite)
unfolding, and aU -labelled eventeU providing a token needed
for the t-labelled event to fire is required to be already in the
prefix (which is conservative). The only point when this test
fails to be conservative is the rare situation when the infinite
configurationΠ in Proposition 1 is such that truncating it down
to events of the prefix results in a non-maximal (w.r.t.⊂)
configuration, i.e.,eU can be disabled by some event ofΠ
that is not in the prefix. This test, though approximate, seems
to work very well in experiments (the author is not aware of
any ‘practical’ STG where it fails, though artificial examples
can be constructed).

Computing valid concurrency reductions

One can see that the naı̈ve approach enumerating all the
concurrency reductions and filtering them using the safeness
and liveness tests described above is not satisfactory because
of the combinatorial explosion in the number of possible
concurrency reductions (asU can be any non-empty set of
transitions). In practice relatively few reductions are valid, and
below we describe a method of efficiently computing them
using incremental SAT. This method works in two stages. First,
concurrency reductions satisfying (S1)–(S4), (L1) and (L3) are
computed using incremental SAT. Then the condition (L2) is
checked for each of these reductions using another incremental
SAT run. We now explain these two stages in more detail.

Stage 1: For each transitiont, the valid concurrency re-
ductions of the formU

n
99K t are computed separately. In

useful concurrency reductions, each transitionu ∈ U should
be concurrent tot, denotedu∥t, i.e., some reachable marking
should concurrently enableu and t. We denote byt∥ the set
of transitions concurrent tot (since the STG is consistent,t∥t
cannot hold, i.e.,t /∈ t∥), andU will be a subset oft∥. Note
that t∥ can be easily computed using the prefix.

In the SAT instance formulated as the conjunction of
constraints given below, we create a variableu tracing whether
u ∈ U for each transitionu ∈ t∥. Any satisfying assignment
A of this SAT instance will correspond to the concurrency
reduction for whichU

df
= {u ∈ t∥ ∣ A(u) = 1}.

∙ U ∕= ∅:
⋁

u∈t∥

u .

∙ (S1):n =

{

0 if #t[e]=0 for someU -labelled evente;
1 otherwise.

n ⇐⇒
⋀

u∈t�

¬u ,

where t� ⊆ t∥ is the set of transitions which have
instances not preceded by an instance oft, andn is the
variable tracing the value ofn.

∙ (S2): Tokens([e]) = 1 for each U -labelled evente.
We defineTokC

df
= Tokens(C)mod 2 and Toke

df
=

Tok [e] mod 2, and provide a modulo-2 formulation of this
constraint:

⋀

u∈t∥

⋀

e is u-
labelled

(u ⇒ Toke) .

Also, the following defining constraint is added for each
Toke occurring in the SAT instance:

Toke ⇐⇒ n⊕ (#t[e] mod 2)⊕
⊕

u∈t∥
#u[e] is odd

u .

∙ (S3): no two transitions inU can be concurrent:
⋀

u,u′∈t∥

u∥u′

(¬u ∨ ¬u′) .
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∙ (L1): For eacht-labelled evente, Tokens(⟨e⟩) ≥ 0. We
conservatively replace this constraint byTokens(⟨e⟩) =
n and use a modulo-2 formulation:

⋀

e∈Et

(n ⇐⇒ Tok ⟨e⟩) =
⋀

e∈Et

(n⊕ Toke) ,

whereEt is the set oft-labelled events.
∙ (S4)= (L3): For each cut-off evente with the corre-

sponding configurationCe, Tokens([e]) = Tokens(Ce).
Again, we use the modulo-2 formulation:

⋀

e/Ce

(Toke ⇐⇒ TokCe) .

The constraints follow the safeness and liveness conditions
(except (L2), which is checked separately), and the only
potential problem is the use of the modulo-2 formulation for
some of the constraints. One can show that such a formulation
is nevertheless equivalent to the original one.

To further improve the efficiency of the method, a constraint
requiring that a concurrency reduction is potentially useful
(i.e., it resolves some conflict core) is also added.

Stage 2:Once all useful concurrency reductions satisfying
(S1)–(S4), (L1) and (L3) are computed, the condition (L2) is
separately checked for each of them. (L2) holds forU

n
99K t

iff for each instancee of t such thatTokens(⟨e⟩) = 0, the
SAT instance described below is unsatisfiable (unfortunately,
this condition cannot be incorporated into the SAT instance
generated at the first stage).

Intuitively, any satisfying assignment of this instance cor-
responds to a maximal configurationC of the prefix demon-
strating a violation of (L2). This SAT instance has for each
evente of the prefix a variableconfe tracing whethere ∈ C,
i.e., for every satisfying assignmentA, the set of events
C

df
= {e ∣ confe = 1} is a configuration demonstrating

the violation of (L2). It is formed as the conjunction of the
following constraints:

∙ C is a configuration of the prefix (not just an arbitrary
set of events). Note thatC is allowed to contain cut-off
events. This condition can be defined as
⋀

e∈E

⋀

f∈∙∙e

(confe⇒conff ) ∧
⋀

e∈E

⋀

f∈(∙e)∙∖{e}

(¬confe∨¬conff ) .

The first part of this formula is basically a set of im-
plications ensuring that ife ∈ C then its immediate
predecessors are also inC, i.e., C is downward closed.
The second part ensures thatC contains no choices.

∙ C is a maximal configuration of the prefix, i.e., it cannot
be extended by any event of the prefix.

⋀

e∈E

(

⋁

f∈∙∙e

¬conff ∨
⋁

f∈(∙e)∙

conff

)

.

Intuitively, this constraint conveys that some predecessor
of e is not in C or either e or some event that is in

the choice relation withe is in C, and soC cannot be
extended bye.

∙ C ⊇ [e], i.e., e ∈ C. This constraint is expressed simply
asconfe.

∙ C contains noU -labelled events concurrent toe:
⋀

f∈U∥

¬conff ,

where U∥ is a set ofU -labelled events of the prefix
concurrent toe.

One can observe that the first two constraints do not depend
on e or t, and so the corresponding parts of the SAT instance
do not depend on the concurrency reduction being tested.
Furthermore, the remaining constraints are comprised of unit
clauses only. These observations turn out to be very useful
for implementing this test using incremental SAT. Indeed, this
test has to be performed for all the concurrency reductions
produced by the first incremental run checking the conditions
(S1)–(S4), (L1) and (L3). We can again employ the incremen-
tal SAT and use the fact that the individual SAT instances share
a large common part (the first two constraints), and differ only
by unit clauses (the remaining two constraints). As MINI SAT2
treats unit clauses in a special way, allowing to remove them
during the incremental SAT without having to regenerate the
SAT instance, testing (L2) can be efficiently implemented.

Implementation

The described technique has been implemented in the tool
MPSAT. A cost function similar to the one described in
Section III for signal insertions was used. On every iteration of
the encoding conflict resolution procedure, the best according
the cost function transformation (a signal insertion or a con-
currency reduction) is chosen and applied to the STG, until
all the encoding conflicts are resolved.

The conducted experiments showed that using concurrency
reduction in addition to signal insertion can significantly
improve the area of the circuit, with a relatively small perfor-
mance penalty. For example, MPSAT was able to reduce the
total area of the small assorted benchmarks in Table II down to
482 literals. However, during these experiments the following
phenomenon was observed. It turns out that increasing the
weight of the ‘lock’ relation component of the cost function
almost always results in reducing the area of the circuit
(this is not the case if only signal insertions are used). This
indicates that area optimisation is not a well-posed problem
if concurrency reduction is allowed,6 as the tool tries to
reduce the area by sequentialising the circuit. This problem
can be alleviated by adding additional constraints (e.g., by

6Recall the well-known anecdote about linear programming being used to
solve the problem of finding a cheapest ration containing therecommended
amounts of all the nutrients, with the computed solution containing several
liters of vinegar.
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jointly optimising latency and area), and we leave it for future
investigation.

VII. C ONCLUSIONS AND FUTURE WORK

This paper proposes a new method for resolution of CSC
conflicts based on STG unfoldings. The problem is re-
formulated in terms of Boolean satisfiability, and a tunable
heuristic cost function is used to guide the design space
exploration towards good solutions.

The presented case studies demonstrate that the proposed
approach explores a large design space and is able to find
interesting solutions which could not be found by other
methods; moreover, the experimental results show that it is
quite fast and results in high quality circuits.

As it was mentioned in the introduction, the proposed
approach is intended to be used in conjunction with STG
decomposition. This work is completed now, and the results
are very encouraging [9].

In future work, we intend to make the liveness test for
concurrency reductions conservative and to improve the cost
function so that concurrency reductions are treated in a more
sensible way. Moreover, some other improvements to the
cost function are possible, e.g., based on the ideas described
in [7], [24]. Also, compositional synthesis in the presenceof
concurrency reduction needs further investigation.

APPENDIX

Proof of Proposition 2 (safeness):SupposeΥ′ is not
safe. Then there is a configurationC in the (full) unfolding
of Υ such thatTokens(C) > 1. Due to the completeness of
the prefix and (S4), one can assume thatC is in the prefix.
W.l.o.g.,C is minimal w.r.t.⊂, and, due to (S1),C ∕= ∅. Hence
the setCmax of causally maximal events ofC is not empty,
and all these events have labels inU . However,∣Cmax ∣ ∕= 1
due to (S2) and∣Cmax ∣ ≯ 1 due to (S3), a contradiction.

Proof that the modulo-2 formulation of the check of (S1)–
(S4), (L1) and (L3) is equivalent to the original one:

It is easy to see that if some equality holds, it also holds
modulo-2, so the ‘interesting’ direction of the proof is to show
that if a concurrency reductionU

n
99K t satisfies the modulo-2

formulation then it also satisfies the original one.
For the sake of contradiction, suppose thatU

n
99K t satisfies

the modulo-2 formulation but not the original one. Hence there
must be a causally minimalbad evente such that eithere is
U -labelled andTokens([e]) ∕= 1 but Toke = 1 or e is t-
labelled andTokens(⟨e⟩) ∕= n but Tok ⟨e⟩ = n. Let k

df
= 0 in

the former case andk
df
= n in the latter case. Then in either

caseTokens(⟨e⟩) ∕= k, but Tok ⟨e⟩ = k, i.e., Tokens(⟨e⟩) ∈
(k + ℤeven) ∖ {k}.

Let C
df
= MinKeep(⟨e⟩, U ∪ {t}), whereMinKeep(C,X)

is a function which, given a configurationC and a set of

transitionsX, returns the minimal (w.r.t.⊂) configuration
C ′ ⊆ C such that all theX-labelled events ofC are in
C ′. Then Tokens(C) = Tokens(⟨e⟩), and soC ∕= ∅ as
Tokens(∅) ∈ {0, 1} and{0, 1}∩ ((k+ℤeven) ∖ {k}) = ∅ due
to k ∈ {0, 1}. Moreover, since theU - andt-labelled events are
ordered inC (due to (S3) and non-self-concurrency oft), C is
either (i) [fu] or (ii) [ft] or (iii) [fu]∪ [ft] for someU -labelled
eventfu and t-labelled eventft. In the latter caseC can be
iteratively replaced byMinKeep(C ∖ {fu, ft}, U ∪ {t}), until
a configurationC ′ of the form (i) or (ii) is obtained. Note that
Tokens(C) = Tokens(MinKeep(C ∖ {fu, ft}, U ∪ {t})), in
particularC ′ ∕= ∅.

In case (i), Tokens([fu]) ∈ (k + ℤeven) ∖ {k}. Since
the modulo-2 formulation is true,Tokfu = 1, and so
Tokens([fu])mod 2 = 1. Hence k = 1, Tokens([fu]) =
Tokens(⟨e⟩) ∕= 1, i.e., fu is a bad event causally precedinge,
contradicting the minimality ofe.

In case (ii),Tokens(⟨ft⟩) ∈ (k+ 1+ℤeven) ∖ {k+ 1} and
soTokens(⟨ft⟩) ∕= n, sincen ∈ {0, 1} and((k+1+ℤeven)∖
{k + 1}) ∩ {0, 1} = ∅ due tok ∈ {0, n}. Henceft is a bad
event causally precedinge, contradicting the minimality ofe.

Hence the modulo-2 formulation is equivalent to the original
one.
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