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ientlysimilar to the traditional unfoldings, so that a large body of results de-veloped for the latter 
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e explosion problem to a signi�
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ation.1 Introdu
tionA rea
tive system is 
ommonly des
ribed by a set of 
on
urrent pro
esses thatintera
t with ea
h other. Pro
esses typi
ally have des
riptions whi
h are shortand manageable, and the 
omplexity of the behaviour of the system as a whole
omes from highly 
ompli
ated intera
tions between them. One way of 
opingwith this 
omplexity problem is to use formal methods and, espe
ially, 
om-puter aided veri�
ation tools implementing model 
he
king (see, e.g., [1℄) |a te
hnique in whi
h the veri�
ation of a system is 
arried out using a �niterepresentation of its state spa
e.The main drawba
k of model 
he
king is that it su�ers from the state spa
eexplosion problem [16℄. That is, even a relatively small system spe
i�
ation 
an(and often does) yield a very large state spa
e. To 
ope with this, several te
h-niques have been developed, whi
h usually aim either at a 
ompa
t represen-tation of the full state spa
e of the system, or at the generation of a redu
edstate spa
e (that is still suÆ
ient for a given veri�
ation task). Among them, aprominent te
hnique is M
Millan's (�nite pre�xes of) Petri net unfoldings (see,e.g., [5, 7, 11℄). They rely on the partial order view of 
on
urrent 
omputation,and represent system states impli
itly, using an a
y
li
 unfolding pre�x.There are several 
ommon sour
es of state spa
e explosion. One of them is
on
urren
y, and the unfolding te
hniques were primarily designed for eÆ
ient
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)Fig. 1. Examples of Petri nets.veri�
ation of highly 
on
urrent systems. Indeed, 
omplete pre�xes are oftenexponentially smaller than the 
orresponding rea
hability graphs, be
ause theyrepresent 
on
urren
y dire
tly rather than by multidimensional `diamonds' as itis done in rea
hability graphs. For example, if the original Petri net 
onsists of100 transitions whi
h 
an �re on
e in parallel, the rea
hability graph will be a100-dimensional hyper
ube with 2100 verti
es, whereas the 
omplete pre�x willbe isomorphi
 to the net itself. However, unfoldings do not 
ope well with someother important sour
es of state spa
e explosion, in parti
ular with sequen
es of
hoi
es and non-safeness. Below we 
onsider examples illustrating this problem.First, 
onsider Figure 1(a) with the dashed part not taken into a

ount. The
ut-o� 
ondition proposed in [5℄ 
opes well with this Petri net (sin
e the markingrea
hed after either 
hoi
e on ea
h stage is the same | in fa
t, the Petri nethas very few rea
hable markings), and the resulting pre�x is linear in the sizeof the original Petri net. However, if the dashed part of the �gure is taken intoa

ount, the smallest 
omplete pre�x is exponential in the size of the Petri net,sin
e no event 
an be de
lared a 
ut-o� (intuitively, ea
h rea
hable marking ofthe Petri net `remembers' its past). Thus Petri nets performing a sequen
e of
hoi
es leading to di�erent markings may yield exponential pre�xes.Another problem arises when one tries to unfold non-safe Petri nets. Considerthe Petri net in Figure 1(b). Its smallest 
omplete unfolding pre�x 
ontains mninstan
es of t, sin
e the unfolding distinguishes between di�erent tokens on thesame pla
e. One way to 
ope with non-safe nets is to 
onvert them into safeones and unfold the latter, as was proposed in [5℄. However, su
h an approa
hdestroys the 
on
urren
y and 
an lead to very large pre�xes; e.g., this approa
happlied to the Petri net in Figure 1(
) would yield a pre�x exponential in thesize of the original Petri net, while the traditional unfolding te
hnique wouldyield a pre�x whi
h is linear in its size [5℄.The des
ribed problems with Petri net unfoldings should be viewed in thelight of the fa
t that all the above examples have a very simple stru
ture |viz. they are all a
y
li
, and thus many model 
he
king te
hniques, in parti
ularthose based on the marking equation [7, 13, 15℄, 
ould be applied dire
tly to theoriginal Petri nets. And so it may happen that a pre�x exponential in the sizeof the Petri net is built for a relatively simple problem!In this paper we propose a new 
ondensed representation of a Petri net'sbehaviour 
alledmerged pro
esses, whi
h remedies the problems des
ribed above.
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opes well not only with 
on
urren
y, but also with other sour
es of state spa
eexplosion we mentioned, viz. sequen
e of 
hoi
es and non-safeness. Moreover, thisrepresentation is suÆ
iently similar to the traditional unfoldings, so that a largebody of results developed for unfoldings 
an be re-used.The main idea behind this representation is to fuse some equally labellednodes in the 
omplete pre�x of the Petri net being veri�ed, and use the resultingnet as the basis for veri�
ation. For example, the unfolding of the Petri shownin Figure 1(a) (even with the dashed part taken into a

ount) will 
ollapse ba
kto the original net after the fusion. In fa
t, this will happen in all the examples
onsidered above. Of 
ourse, su
h a fusion 
an result in various problems, inparti
ular 
y
les 
an appear and the marking equation alone is not suÆ
ient forveri�
ation of su
h nets. The rest of this paper is devoted to formally de�ningthis transformation and solving some of the arising problems. The experimentalresults indi
ate that the proposed representation of a Petri net's behaviour alle-viates the state spa
e explosion problem to a signi�
ant degree and is suitablefor model 
he
king.All the proofs and further examples 
an be found in the te
hni
al report [8℄(available on-line).2 Basi
 notionsIn this se
tion we introdu
e the basi
 notions 
on
erning Petri nets and theirunfoldings (see also [5, 7, 9, 11, 13{15℄).Petri nets. A net is a triple N df= (P; T; F ) su
h that P and T are disjoint sets ofrespe
tively pla
es and transitions, and F � (P �T )[ (T �P ) is a 
ow relation.A marking of N is a multiset M of pla
es, i.e., M : P ! N df= f0; 1; 2; : : :g.The standard rules about drawing nets are adopted in this paper, viz. pla
esare represented as 
ir
les, transitions as boxes, the 
ow relation by ar
s, and themarking is shown by pla
ing tokens within 
ir
les. As usual, �z df= fy j (y; z) 2 Fgand z� df= fy j (z; y) 2 Fg denote the pre- and postset of z 2 P [T . In this paper,the presets of transitions are restri
ted to be non-empty, i.e., �t 6= ? for everyt 2 T . A net system (or Petri net) is a pair � df= (N;M0) 
omprising a �nitenet N and an initial marking M0. It is assumed that the reader is familiar withthe standard notions of Petri net theory, su
h as the enabledness and �ring of atransition, rea
hability of a marking, the marking equation, safe Petri net anddeadlo
k (see, e.g., [15℄ for a brief introdu
tion).Bran
hing pro
esses. A bran
hing pro
ess [5, 7℄ � of a Petri net � is a �niteor in�nite a
y
li
 net whi
h 
an be obtained through unfolding �, by su

essive�rings of transition, under the following assumptions: (i) for ea
h new �ring afresh transition (
alled an event) is generated; and (ii) for ea
h newly produ
edtoken a fresh pla
e (
alled a 
ondition) is generated. There exists a unique (up toisomorphism) maximal (w.r.t. the pre�x relation) bran
hing pro
ess of � 
alled



4 V. Khomenko, A. Kondratyev, M. Koutny, W. Voglerthe unfolding of �. For example, the unfolding of the Petri net in Figure 2(a) isshown in part (b) of this �gure (with the dashed lines ignored).The unfolding is in�nite whenever � has an in�nite run; however, if � has�nitely many rea
hable states then the unfolding eventually starts to repeatitself and 
an be trun
ated (by identifying a set of 
ut-o� events) without lossof essential information. The sets of 
onditions, events, ar
s and 
ut-o� eventsof � will be denoted by B, E, G and E
ut , respe
tively, (note that E
ut � E),and the labelling fun
tion mapping the nodes of � to the 
orresponding nodesof � will be denoted by h.Sin
e � is a
y
li
, the transitive 
losure of its 
ow relation is a partial order <on B [ E, 
alled the 
ausality relation. (The re
exive order 
orresponding to <will be denoted by �.) Intuitively, all the events whi
h are smaller than anevent e 2 E w.r.t. < must pre
ede e in any valid exe
ution of � 
ontaining e. Tomake this pre
ise, 
onsider the impli
it initial marking of �, obtained by puttinga single token in ea
h 
ondition whi
h does not have an in
oming ar
. Note thath is a homomorphism, i.e., it maps the 
onditions in the preset (postset resp.)of an event e bije
tively to the preset (postset resp.) of h(e) and, intuitively, itmaps the (impli
it) initial marking of � to the initial marking of �. Su
h as anyhomomorphism, h maps runs of � to runs of �. It is known that in a
y
li
 netslike �, a marking is rea
hable if and only if the 
orresponding marking equationhas a solution [15℄, and hen
e bran
hing pro
esses 
an be used for eÆ
ient model
he
king [6, 7, 10{13℄.Two nodes x; y 2 B [ E are in 
on
i
t, denoted x#y, if there are distin
tevents e; f 2 E su
h that �e\ �f 6= ? and e � x and f � y. Intuitively, no validexe
ution of � 
an 
ontain two events in 
on
i
t. Two nodes x; y 2 B [ E are
on
urrent, denoted x 
o y, if neither y#y0 nor y � y0 nor y0 � y. Intuitively, two
on
urrent events 
an be enabled simultaneously, and exe
uted in any order, oreven 
on
urrently. For example, in the bran
hing pro
ess shown in Figure 2(b)the following relationships hold: e1 < e5, e3#e4 and 
1 
o 
4.Due to stru
tural properties of bran
hing pro
esses (su
h as a
y
li
ity), therea
hable markings of � 
an be represented using 
on�gurations of �. A 
on-�guration is a �nite set of events C � E su
h that for all e; f 2 C, :(e#f)and, for every e 2 C, f < e implies f 2 C. For example, in the bran
hing pro-
ess shown in Figure 2(b) fe1; e3; e5g is a 
on�guration whereas fe1; e2; e3g andfe1; e5g are not (the former in
ludes events in 
on
i
t, e1#e2, while the latterdoes not in
lude e3, a 
ausal prede
essor of e5). Intuitively, a 
on�guration is apartial-order exe
ution, i.e., an exe
ution where the order of �ring of some of itsevents is not important.After starting � from the impli
it initial marking and exe
uting all the eventsin C, one rea
hes the marking denoted by Cut(C). Mark (C) denotes the 
orre-sponding marking of �, rea
hed by �ring a transition sequen
e 
orresponding tothe events in C. A bran
hing pro
ess � is marking-
omplete w.r.t. a set E
ut � Eif for every rea
hable marking M of � there is a 
on�guration C of � su
h thatC \ E
ut = ? and Mark (C) = M ; moreover, � is 
omplete if it is marking-
omplete and for ea
h 
on�guration C of � su
h that C \ E
ut = ? and ea
h
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esses of Petri Nets 5event e =2 C of the unfolding su
h that C[feg is a 
on�guration of the unfolding,e is in � (e may be in E
ut); this additional preservation of �rings is sometimesused for deadlo
k dete
tion. Complete bran
hing pro
esses are often 
alled 
om-plete (unfolding) pre�xes. One 
an build su
h a 
omplete pre�x ensuring thatthe number of non-
ut-o� events jE nE
ut j in it does not ex
eed the number ofrea
hable markings of � [5, 7℄.3 Merged pro
essesIn this se
tion we introdu
e the notion of a merged pro
ess, whi
h is the main
onstru
tion investigated in this paper.De�nition 1 (o

urren
e-depth). Let � be a bran
hing pro
ess of a Petri net�, and x be one of its nodes (
ondition or event). The o

urren
e-depth of xis de�ned as the maximum number of h(x)-labelled nodes on any dire
ted pathstarting at a minimal (w.r.t. <) 
ondition and terminating at x in the dire
tedgraph representing �.The above notion is well-de�ned sin
e there is always at least one dire
ted pathstarting at a minimal (w.r.t. <) 
ondition and terminating at x, and the numberof all su
h paths is �nite. In Figure 2(b) the o

urren
e-depths of 
onditions areshown in bra
kets.De�nition 2 (merged pro
ess). Given a bran
hing pro
ess �, the 
orrespond-ing merged pro
ess � =Merge(�) is a Petri net whi
h is obtained in two steps,as follows:Step 1: the pla
es of �, 
alled mp-
onditions, are obtained by fusing togetherall the 
onditions of � whi
h have the same labels and o

urren
e-depths; ea
hmp-
ondition inherits its label and ar
s from the fused 
onditions, and its initialmarking is the total number of minimal (w.r.t. <) 
onditions whi
h were fusedinto it.Step 2: the transitions of �, 
alled mp-events, are obtained by merging all theevents whi
h have the same labels, presets and postsets (after step 1 was per-formed); ea
h mp-event inherits its label from the merged events (and has ex-a
tly the same 
onne
tivity as either of them), and it is de
lared 
ut-o� i� allthe events merged into it were 
ut-o� events in �.Figure 2(b,
) illustrates this notion. In the sequel, ~ will denote the homomor-phism mapping the nodes of � to the 
orresponding nodes of �, and bE, bB, bG,
M0, dE
ut and bh will denote the set of its mp-events, the set of its mp-
onditions,its 
ow relation, its initial marking, the set of its 
ut-o� events and the homo-morphism mapping the nodes of � to the 
orresponding nodes of � (note thatbh Æ ~ = h). The merged pro
ess 
orresponding to the (full) unfolding of � willbe 
alled the unravelling of �. A few simple properties of merged pro
esses arelisted below:
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Fig. 2. A Petri net (a), its unfolding with the o

urren
e-depths of 
onditions shownin bra
kets and the 
onditions to be fused 
onne
ted by dashed lines (b), and itsunravelling (
).1. There is at most one mp-
ondition pk resulting from the fusion of 
onditionslabelled by pla
e p of � o

urring at depth k � 1.2. Two distin
t 
onditions in � having the same label and o

urren
e-depthare either 
on
urrent or in 
on
i
t. Hen
e, if the original Petri net was safethen all the 
onditions in � whi
h were fused into the same mp-
ondition pkof � were in 
on
i
t.3. For two mp-
onditions, pk and pk+1, there is a dire
ted path from the formerto latter. Moreover, if pk+1 is present and k � 1 then pk is also present.4. In general, � is not a
y
li
 (
y
les 
an arise due to 
riss-
ross fusions of 
on-ditions, as illustrated in Figure 2(b,
)). This, in turn, leads to 
ompli
ationsfor model 
he
king, in parti
ular the marking equation 
an have spurioussolutions, i.e., solutions whi
h do not 
orrespond to any rea
hable marking.To simplify model 
he
king, one 
ould stop fusing 
onditions in De�nition 2when this leads to 
y
les, but this is not a satisfa
tory solution, sin
e � isnot uniquely de�ned in su
h a 
ase; moreover, this would lead to lower 
om-pression. So we 
hose to allow 
y
les, and strengthen the marking equationwith additional 
onstraints ex
luding spurious solutions (see Proposition 6).5. There 
an be events 
onsuming 
onditions in the postset of a 
ut-o� mp-event.
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esses of Petri Nets 76. There is a strong 
orresponden
e between the runs of � and those of itsunravelling: � is a run of � i� � = bh(b�) for some run b� of the unravelling of�.A multiset bC of mp-events is an mp-
on�guration of � if bC = ~(C) for some
on�guration C of the unfolding of � (that we refer to the full unfolding ratherthan � here is a subtle point explained in [8℄). If bC is an mp-
on�guration thenthe 
orresponding mp-
ut Cut( bC) is de�ned as the marking of � rea
hed byexe
uting all the events of bC starting from the initial marking 
M0. (Cut( bC) 
anbe eÆ
iently 
omputed using, e.g., the marking equation.) Moreover, Mark ( bC)is de�ned as bh(Cut( bC)). Note that if bC = ~(C) then Mark ( bC) = Mark (C).Canoni
al merged pro
esses Sin
e Merge is a deterministi
 transformation,one 
an easily de�ne the 
anoni
al merged pro
ess as Merge(�), where � is the
anoni
al unfolding pre�x [9℄. This allows for an easy import of the results of [7,9℄ related to the 
anoni
ity.The size of a merged pro
ess One 
an see that in De�nition 2 the fusionof 
onditions 
an only de
rease the number of 
onditions without a�e
ting thenumber of events or ar
s; moreover, merging events 
an only de
rease the num-ber of events and ar
s, without a�e
ting the number of 
onditions. Hen
e, thefollowing result holds:Proposition 1 (size). If � is �nite then � is �nite and j bBj � jBj, j bEj � jEjand j bGj � jGj.This result allows to import all the upper bounds proved for unfolding pre-�xes [5, 7, 9℄; in parti
ular, sin
e for every safe Petri net � one 
an build amarking-
omplete bran
hing pro
ess with the number of events not ex
eedingthe number of rea
hable markings of �, the 
orresponding merged pro
ess � hasthe same upper bound on the number of its events. However, the upper boundgiven by Proposition 1 is rather pessimisti
; in pra
ti
e, merged pro
esses turnout to be mu
h more 
ompa
t than the unfolding pre�xes.Tables 1 and 2 show the results of our experiments. The popular set of ben
h-marks 
olle
ted by J.C. Corbett [2℄ has been attempted. The meaning of the
olumns is as follows (from left to right): the name of the problem; the numberof pla
es and transitions in the original Petri net; the number of 
onditions,events and 
ut-o� events in the unfolding pre�x; the time taken by deadlo
k
he
king based on unfoldings (dis
ussed in the next se
tion); the number of mp-
onditions and mp-events in the 
orresponding merged pro
ess; the time takenby deadlo
k 
he
king based on merged pro
esses (dis
ussed in the next se
tion);and the ratios j bEj=jT j and jEj=j bEj giving measures of 
ompa
tness of the mergedpro
ess relative to the original Petri net and its unfolding pre�x, respe
tively.The unfolding pre�xes in our experiments were built using the algorithm de-s
ribed in [5, 7, 9℄, and the 
orresponding merged pro
esses were obtained by



8 V. Khomenko, A. Kondratyev, M. Koutny, W. VoglerProblem Net Unfolding UnravellingjP j jT j jBj jEj jE
ut j MC [s℄ j bBj j bEj MC [s℄ j bEj=jT j jEj=jbEjQ 163 194 16123 8417 1188 <1 248 256 <1 1.32 32.88Speed 33 39 4929 2882 1219 <1 92 175 <1 4.49 16.47Da
(6) 42 34 92 53 0 <1 42 35 <1 1.03 1.51Da
(9) 63 52 167 95 0 <1 63 53 <1 1.02 1.79Da
(12) 84 70 260 146 0 <1 84 71 <1 1.01 2.06Da
(15) 105 88 371 206 0 <1 105 89 <1 1.01 2.31Dp(6) 36 24 204 96 30 <1 60 37 <1 1.54 2.59Dp(8) 48 32 368 176 56 <1 80 49 <1 1.53 3.59Dp(10) 60 40 580 280 90 <1 100 61 <1 1.53 4.59Dp(12) 72 48 840 408 132 <1 120 73 <1 1.52 5.59Elev(1) 63 99 296 157 59 <1 73 89 <1 0.90 1.76Elev(2) 146 299 1562 827 331 <1 150 241 <1 0.81 3.43Elev(3) 327 783 7398 3895 1629 <1 304 588 <1 0.75 6.62Elev(4) 736 1939 32354 16935 7337 <1 634 1387 <1 0.72 12.21Hart(25) 127 77 179 102 1 <1 153 102 <1 1.32 1.00Hart(50) 252 152 354 202 1 <1 303 202 <1 1.33 1.00Hart(75) 377 227 529 302 1 <1 453 302 <1 1.33 1.00Hart(100) 502 302 704 402 1 <1 603 402 <1 1.33 1.00Key(2) 94 92 1310 653 199 <1 147 402 <1 4.37 1.62Key(3) 129 133 13941 6968 2911 <1 201 1086 11 8.17 6.42Key(4) 164 174 135914 67954 32049 <1 255 2054 69 11.80 33.08Mmgt(1) 50 58 118 58 20 <1 61 58 <1 1.00 1.00Mmgt(2) 86 114 1280 645 260 <1 111 282 <1 2.47 2.29Mmgt(3) 122 172 11575 5841 2529 2 159 662 <1 3.85 8.82Mmgt(4) 158 232 92940 46902 20957 10 207 1206 <1 5.20 38.89Sent(25) 104 55 383 216 40 <1 120 81 <1 1.47 2.67Sent(50) 179 80 458 241 40 <1 195 106 <1 1.33 2.27Sent(75) 254 105 533 266 40 <1 270 131 <1 1.25 2.03Sent(100) 329 130 608 291 40 <1 345 156 <1 1.20 1.87Table 1. Experimental results for ben
hmarks with deadlo
ks.appli
ation of the algorithm given by De�nition 2. (The time taken by this al-gorithm is not in
luded in the tables be
ause it was negligible.) The algorithmfor building merged pro
esses dire
tly from Petri nets is a matter of future re-sear
h [8℄ (signi�
ant progress has already been made).One 
an see that merged pro
esses 
an be by orders of magnitude smallerthan unfolding pre�xes, and, in many 
ases, are just slightly greater than theoriginal Petri nets. In fa
t, in some of the examples merged pro
esses are smallerthan the original Petri nets due to the elimination of dead transitions. However,merged pro
esses are mu
h more amenable to model 
he
king than general safePetri nets | e.g., most of `interesting' behaviourial properties are known tobe PSPACE-
omplete for safe Petri nets [4℄, whereas in Se
tion 4 we develop anon-deterministi
 polynomial-time algorithm for 
he
king rea
hability-like prop-erties of merged pro
esses, i.e., many behaviourial properties of merged pro
essesare in NP . Sin
e many su
h properties are known to be NP-
omplete alreadyfor unfolding pre�xes, the 
omplexity 
lass is not worsened if one uses mergedpro
esses rather than unfolding pre�xes.Sin
e merged pro
esses are inherently more 
ompa
t than unfolding pre�xes,it would be natural to seek sharper upper bounds than the trivial ones given byProposition 1. In parti
ular, it would be interesting to identify sub
lasses of Petrinets whose unfolding pre�xes 
an be exponential in the size of the original Petri
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Problem Net Unfolding UnravellingjP j jT j jBj jEj jE
ut j MC [s℄ j bBj j bEj MC [s℄ j bEj=jT j jEj=jbEjAbp 43 95 337 167 56 <1 75 83 <1 0.87 2.01Bds 53 59 12310 6330 3701 <1 145 359 <1 6.08 17.63Ftp 176 529 178085 89046 35197 16 304 875 <1 1.65 101.77Cy
li
(3) 23 17 52 23 4 <1 39 21 <1 1.24 1.10Cy
li
(6) 47 35 112 50 7 <1 84 45 <1 1.29 1.11Cy
li
(9) 71 53 172 77 10 <1 129 69 <1 1.30 1.12Cy
li
(12) 95 71 232 104 13 <1 174 93 <1 1.31 1.12Dme(2) 135 98 487 122 4 <1 309 98 <1 1.00 1.24Dme(3) 202 147 1210 321 9 <1 463 148 <1 1.01 2.17Dme(4) 269 196 2381 652 16 <1 617 197 <1 1.01 3.31Dme(5) 336 245 4096 1145 25 <1 771 246 <1 1.00 4.65Dme(6) 403 294 6451 1830 36 <1 925 295 <1 1.00 6.20Dme(7) 470 343 9542 2737 49 <1 1079 344 <1 1.00 7.96Dme(8) 537 392 13465 3896 64 <1 1233 393 <1 1.00 9.91Dme(9) 604 441 18316 5337 81 <1 1387 442 <1 1.00 12.07Dme(10) 671 490 24191 7090 100 2 1541 491 <1 1.00 14.44Dme(11) 738 539 31186 9185 121 2 1695 540 <1 1.00 17.01Dpd(4) 36 36 594 296 81 <1 81 78 <1 2.17 3.79Dpd(5) 45 45 1582 790 211 <1 102 100 <1 2.22 7.90Dpd(6) 54 54 3786 1892 499 <1 123 122 <1 2.26 15.51Dpd(7) 63 63 8630 4314 1129 <1 144 144 <1 2.29 29.96Dpfm(2) 7 5 12 5 2 <1 10 5 <1 1.00 1.00Dpfm(5) 27 41 67 31 20 <1 31 31 <1 0.76 1.00Dpfm(8) 87 321 426 209 162 <1 89 209 <1 0.65 1.00Dpfm(11) 1047 5633 2433 1211 1012 <1 313 1211 <1 0.21 1.00Dph(4) 39 46 680 336 117 <1 87 108 <1 2.35 3.11Dph(5) 48 67 2712 1351 547 <1 129 293 <1 4.37 4.61Dph(6) 57 92 14590 7289 3407 <1 198 904 2313 9.83 8.06Dph(7) 66 121 74558 37272 19207 1 277 2773 >10 hrs 22.92 13.44Furn(1) 27 37 535 326 189 <1 70 98 <1 2.65 3.33Furn(2) 40 65 4573 2767 1750 <1 121 432 <1 6.65 6.41Furn(3) 53 99 30820 18563 12207 <1 180 1224 <1 12.36 15.17Gasnq(2) 71 85 338 169 46 <1 87 103 <1 1.21 1.64Gasnq(3) 143 223 2409 1205 401 <1 173 325 <1 1.46 3.71Gasnq(4) 258 465 15928 7965 2876 6 308 748 21 1.61 10.65Gasnq(5) 428 841 100527 50265 18751 321 505 1449 4455 1.72 34.69Gasq(1) 28 21 43 21 4 <1 35 21 <1 1.00 1.00Gasq(2) 78 97 346 173 54 <1 96 111 <1 1.14 1.56Gasq(3) 284 475 2593 1297 490 <1 316 509 <1 1.07 2.55Gasq(4) 1428 2705 19864 9933 4060 9 1540 3004 34 1.11 3.31Over(2) 33 32 83 41 10 <1 51 39 <1 1.22 1.05Over(3) 52 53 369 187 53 <1 89 97 <1 1.83 1.93Over(4) 71 74 1536 783 237 <1 138 217 <1 2.93 3.61Over(5) 90 95 7266 3697 1232 <1 186 375 <1 3.95 9.86Ring(3) 39 33 97 47 11 <1 58 40 <1 1.21 1.18Ring(5) 65 55 339 167 37 <1 110 97 <1 1.76 1.72Ring(7) 91 77 813 403 79 <1 160 146 <1 1.90 2.76Ring(9) 117 99 1599 795 137 <1 210 194 <1 1.96 4.10Rw(6) 33 85 806 397 327 <1 51 85 <1 1.00 4.67Rw(9) 48 181 9272 4627 4106 <1 75 181 <1 1.00 25.56Rw(12) 63 313 98378 49177 45069 <1 99 313 <1 1.00 157.12Table 2. Experimental results for deadlo
k-free ben
hmarks.
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Fig. 3. An LSFC2 Petri net whose unfolding pre�x is exponential in its size.net, but whose merged pre�xes are guaranteed to be only polynomial. Below, wepresent two su
h results.Proposition 2 (unravelling of an a
y
li
 Petri net). If � is an a
y
li
Petri net then its unravelling is isomorphi
 to the Petri net obtained from � byremoving all its dead transitions and unrea
hable pla
es.This result easily follows from the fa
t that no token in an a
y
li
 Petri net 
an`visit' a pla
e more than on
e, and thus the o

urren
e-depth of every 
onditionin the unfolding of � is 1. On the other hand, unfolding pre�xes of even safea
y
li
 Petri nets 
an be exponential in the size of the original nets, e.g., this isthe 
ase for the a
y
li
 Petri net in Figure 1(a) with the dashed part taken intoa

ount.In the dis
ussion below, LSFCk denotes the 
lass of live and safe free-
hoi
ePetri nets [3℄ whose transitions' postsets have 
ardinality less than or equal tok 2 N [ f1g; hen
e, LSFC1 denotes the whole 
lass of live and safe free-
hoi
e Petri nets. It turns out that if k 6=1 then the marking-
omplete mergedpro
esses for the nets in LSFCk are polynomial in the size of the original nets,even though their unfolding pre�xes 
an be exponential; e.g., one 
an make thePetri net in Figure 1(a) (with the dashed part taken into a

ount) live by addinga subnet `gathering' tokens at the end of the exe
ution and returning a token tothe initial pla
e, as shown in Figure 3. This net is in LSFC2 and its 
ompletepre�x is exponential in its size.Proposition 3 (merged pro
esses of LSFCk-nets [8℄). For any k 2 N,there exist marking-
omplete merged pro
esses of LSFCk-nets polynomial in thesizes of the original nets.This result is unlikely to be generalised to LSFC1 [8℄. However, one shouldnote that the expressive power of LSFCk for k � 2 is 
omparable with that ofLSFC1, sin
e every transition of an LSFC1-net with postset of 
ardinalitygreater than k 
an be repla
ed by a tree of transitions with postsets of 
ardinalitynot ex
eeding k, and the resulting Petri net will be in LSFCk.
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esses of Petri Nets 11Finiteness of a merged pro
ess In view of Proposition 1, � is �nite if �is. However, it is not obvious that the reverse holds, sin
e, in general, in�nitelymany nodes of � 
an 
orrespond to a single node of � [8℄. However, by the analogof K�onig's lemma for bran
hing pro
esses [7, 9℄, if � is in�nite then there existsan in�nite path in �. Sin
e the number of pla
es in � is �nite, some pla
e p 2 Pis repeated in�nitely many times along this path, and so the o

urren
e-depth ofits instan
es grows unboundedly in �. Thus there are in�nitely many instan
esof p after fusion, and the following result holds:Proposition 4. � is �nite i� � is �nite.Again, this result allows to import into the new framework all the �nitenessresults proved for unfolding pre�xes [5, 7, 9℄.Completeness of a merged pro
ess The marking-
ompleteness of a mergedpro
ess is de�ned similarly to the marking-
ompleteness of a bran
hing pro
ess.A merged pro
ess � is marking-
omplete w.r.t. a set dE
ut � bE if for everyrea
hable marking M of � there exists an mp-
on�guration bC of � su
h thatbC \ dE
ut = ? and Mark ( bC) =M .Let C be a 
on�guration of � and bC = ~(C) be the 
orresponding 
on�g-uration in �. One 
an easily show that if C 
ontains no 
ut-o� event then bC
ontains no 
ut-o� mp-events, and that Mark (C) = Mark ( bC). Hen
e:Proposition 5. If � is marking-
omplete then � is marking-
omplete.However, no su
h result holds for full 
ompleteness [8℄; therefore, model
he
king algorithms developed for unfolding pre�xes relying on the preservationof �rings (e.g., some of the deadlo
k 
he
king algorithms in [6, 7, 11{13℄) 
an-not be easily transferred to merged pro
esses. However, marking-
ompletenessis suÆ
ient for most purposes, as the transitions enabled by the �nal state ofan mp-
on�guration 
an be easily found using the original Petri net. The model
he
king algorithm proposed in the next se
tion does not make use of 
ut-o�mp-events, and so they 
an be removed from the merged pro
ess before model
he
king.4 Model 
he
king based on merged pro
essesModel 
he
king algorithms [6, 7, 10{13℄ working on 
omplete pre�xes of Petri netunfoldings are usually based on the following non-deterministi
 algorithm:
hoose a set of events C � E nE
utif C is a 
on�guration violating the property (e.g., deadlo
k-freeness)then a

ept /* C is a 
erti�
ate 
onvertible to a witness tra
e */else reje
tVarious kinds of solvers have been employed to implement it, e.g., ones basedon mixed-integer programming [13℄, stable models of logi
 programs [6℄, integer



12 V. Khomenko, A. Kondratyev, M. Koutny, W. Voglerprogramming [7℄ and Boolean satis�ability (SAT) [10℄. More pre
isely, a systemof 
onstraints having for ea
h non-
ut-o� event e of the pre�x a variable 
onfeis built (it might also 
ontain other variables), and for every satisfying assign-ment A, the set of events C df= fe j A(
onfe) = 1g is a 
on�guration su
h thatMark (C) violates the property being 
he
ked. This system of 
onstraints usuallyhas the form CONF&VIOL. The role of the 
on�guration 
onstraint, CONF ,is to ensure that C is a 
on�guration of the pre�x (not just an arbitrary set ofevents), and the role of the violation 
onstraint, VIOL, is to 
apture the propertyviolation 
ondition for a 
on�guration C, so that if a 
on�guration C satisfyingthis 
onstraint is found then the property (e.g., deadlo
k-freeness) does not hold,and any ordering of events in C 
onsistent with the 
ausal order on the eventsof the pre�x is a violation tra
e.It is natural to follow a similar approa
h for veri�
ation based on mergedpro
esses. However, one should bear in mind the following 
ompli
ations:{ An mp-
on�guration is generally a multiset (rather than a set) of mp-events.Though this is not a major problem, it does hamper veri�
ation employingBoolean solvers, as asso
iating a single Boolean variable with ea
h mp-eventis no longer suÆ
ient for representing an mp-
on�guration. But if the originalPetri net is safe, the mp-
on�gurations of its merged pro
esses are sets.{ An easily testable 
hara
terisation of an mp-
on�guration is ne
essary (our`indire
t' de�nition of an mp-
on�guration as an ~-image of some 
on�g-uration of the unfolding is not of mu
h use for model 
he
king). In whatfollows we develop su
h a 
hara
terisation for mp-
on�gurations of mergedpro
esses of safe Petri nets. Some issues make it non-trivial to develop su
ha 
hara
terisation:Spurious solutions of the marking equation Many model 
he
king al-gorithms working on unfolding pre�xes [6, 7, 10, 13℄ are based on themarking equation (perhaps expressed not as integer linear 
onstraintsbut in some other form, e.g., as a Boolean formula) and the fa
t that fora
y
li
 Petri nets it 
annot have spurious solutions [15℄. Sin
e mergedpro
esses are not generally a
y
li
, the marking equation 
an have spu-rious solutions. For example, the asso
iated marking equations for theunravelling shown in Figure 2(
) has a spurious solution: if one `bor-rows' a token in p14 then the t3- and t4-labelled mp-events forming a
y
le 
an be exe
uted, returning the borrowed token to p14 and leadingto the spurious marking fp12g.Spurious runs The 
orresponden
e between the runs and mp-
on�gura-tions of � is not very straightforward: some of its runs (e.g., the run
omprised of the instan
e of t1 followed by the left instan
e of t3 inFigure 2(
)) do not form mp-
on�gurations.Below we solve these problems for merged pro
esses of safe Petri nets.The 
ase of safe Petri netsTo 
apture the notion of an mp-
on�guration in the 
ase when the original Petrinet � is safe, we pro
eed as follows. Let C be a 
on�guration of �, and bC be a
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esses of Petri Nets 13set of mp-events of �. Below, G(C) and G( bC) will denote two graphs indu
ed bythe events of C together with their adja
ent 
onditions and the minimal (w.r.t.<) 
onditions of � and by the mp-events of bC together with their adja
entmp-
onditions and the initially marked mp-
onditions of �, respe
tively.We say that bC satis�es: (a) ME if it is a solution of the marking equationfor �; (b) ACYCLIC if G( bC) is a
y
li
; and (
) NG (no-gap) if, for all k > 1and all pla
es p of �, the following holds: if pk is a node in G( bC) then pk�1 isalso a node in G( bC). Note that if bC = ~(C) then G(C) is isomorphi
 to G( bC)(in
luding the labelling in terms of pla
es and transitions). The next result givesa dire
t 
hara
terisation of mp-
on�gurations and is 
ru
ial for model 
he
king:Proposition 6 (mp-
on�gurations in the safe 
ase [8℄). A set of mp-eventsbC is an mp-
on�guration i� ME&ACYCLIC&NG holds for bC.Hen
e it is enough for model 
he
king to take CONF df=ME&ACYCLIC&NGand apply an algorithm similar to that des
ribed in the beginning of this se
tionfor unfolding pre�xes.We implemented a deadlo
k 
he
king algorithm based on merged pro
essesusing zChaff [14℄ as the underlying SAT solver. (Note that other rea
hability-like properties 
an also be implemented simply by adjusting the VIOL 
on-straint.) All the experiments were 
ondu
ted on a PC with a PentiumTMIV/2.8GHz pro
essor and 512M RAM.The implementation of the ME and VIOL 
onstraints as Boolean formulaeis very similar to that for unfoldings and not dis
ussed here. The NG 
onstrainthas been implemented as a 
onjun
tion of impli
ations of the form 
onfpk !
onfpk�1 , for all mp-
onditions pk su
h that k > 1. (Intuitively, 
onfpk = 1
onveys that pk is in G( bC); similarly, 
onfbe = 1 
onveys that be is in G( bC), forea
h non-
ut-o� mp-event be of �.)The implementation of ACYCLIC 
onstraint is di�erent from that in [8℄(and so we report better results for deadlo
k 
he
king). The problem 
an bere-formulated as follows: given a digraph G = (V;E) (representing �) with aboolean variable 
onfv asso
iated with ea
h vertex v 2 V , 
onstru
t a booleanformula ACYCLIC (depending on the variables 
onf� and, perhaps, other vari-ables) su
h that, given an assignment to variables 
onf�, the formula obtainedfrom ACYCLIC by substituting the variables 
onf� by their values is satis�ablei� the subgraph of G indu
ed by the verti
es whose 
orresponding variableswere assigned to 1 is a
y
li
. (Note that ME , NG and VIOL also 
ontain thevariables 
onf�.)Sin
e ea
h 
y
le is 
ontained in some strongly 
onne
ted 
omponent of G,one 
an partition G into its strongly 
onne
ted 
omponents, generate su
h a
onstraint for ea
h of them separately and form ACYCLIC as their 
onjun
tion.For ea
h strongly 
onne
ted 
omponentGk = (Vk ; Ek) ofG = (V;E), the verti
esare sorted to heuristi
ally minimise the number of feedba
k verti
es, i.e., verti
esv 2 Vk for whi
h there exists w 2 Vk su
h that (w; v) 2 Ek and w > v (sin
e theverti
es of Gk are ordered, we identify ea
h vertex v 2 Vk with its position inthis order). Then for ea
h su
h a feedba
k vertex v 2 Vk the following formula
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h� are auxiliary variables 
reated separately for ea
h su
h v):(
onfv!rea
hv) ^ ^(x;y)2Ekx�v^y>v�(rea
hx ^ 
onfy)!rea
hy� ^^(w;v)2Ekw>v:rea
hw :The idea behind this formula is to perform a rea
hability analysis in Gk startingfrom v and ignoring all the verti
es whi
h pre
ede v in the 
hosen order or are notsele
ted. Note that if the values of the variables 
onf� are �xed then this formulais unsatis�able i� at least one of the sour
es of the feedba
k ar
s ending at v isrea
hable from v (and hen
e there is a 
y
le); moreover, the unsatis�ability 
anbe proven by unit resolution alone, i.e., one 
an setup the solver not to bran
hon the variables rea
h�.The experimental results in Tables 1 and 2 show that the developed model
he
king algorithm is quite pra
ti
al and it even outperformed the one work-ing on unfolding pre�xes on some of the ben
hmarks. On the other hand, itsperforman
e deteriorated on the Dph and Gasnq series. We re
kon that thisis due to our still ineÆ
ient implementation of the ACYCLIC 
onstraint, andthat this 
an be signi�
antly improved (major improvements over the resultsreported in [8℄ have already been a
hieved due to a di�erent implementation ofACYCLIC).The point we are making with these results is: merged pro
esses are a more
ompa
t behaviour representation than unfolding pre�xes, but still allow model
he
king of rea
hability-like properties in at least 
omparable time. Sin
e spa
e
onsiderations are of utmost importan
e in model 
he
king, we regard this asvery promising | although, to make merged pro
esses pra
ti
al, we still haveto develop an unravelling algorithm that builds them dire
tly from Petri netsinstead of deriving them from unfolding pre�xes (signi�
ant progress has alreadybeen made).5 Con
lusions and future workWe proposed the notion of a merged pro
ess | a new 
ondensed representationof a Petri net's behaviour allowing one to 
ontain state spa
e explosion arisingnot only from 
on
urren
y, but also from a sequen
e of 
hoi
es and from non-safeness of the Petri net. Experimental results show that merged pro
esses 
anbe smaller by orders of magnitude than the 
orresponding unfolding pre�xes, andare in many 
ases not mu
h bigger than the original Petri nets. Many resultsdeveloped for Petri net unfoldings (related to 
anoni
ity, �niteness, 
ompletenessand size) have been transferred to the new framework. Moreover, we provedsharper upper bounds for some of the net sub
lasses and dire
tly 
hara
terisedthe mp-
on�gurations of merged pro
esses of safe Petri nets, whi
h allowed usto develop a model 
he
king algorithm.We now identify possible dire
tions for future study (see also the dis
ussionin [8℄): (i) dire
t 
hara
terisation of merged pro
esses (
f. the 
hara
terisation ofbran
hing pro
esses by o

urren
e nets); (ii) dire
t 
hara
terisation of (general)
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on�gurations (for non-safe Petri nets this is still an open problem); (iii)more eÆ
ient model 
he
king; and (iv) dire
t unravelling algorithm.A
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