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Abstract

In partially observed Petri nets, diagnosis is the

task of detecting whether or not the given sequence of

observed labels indicates that some unobservable fault

has occurred. Diagnosability is an associated property

of the Petri net, stating that in any possible execution an

occurrence of a fault can eventually be diagnosed.

In this paper we consider diagnosability under the

weak fairness (WF) assumption, which intuitively states

that no transition from a given set can stay enabled for-

ever — it must eventually either fire or be disabled. We

show that a previous approach to WF-diagnosability

in the literature has a major flaw, and present a cor-

rected notion. Moreover, we present an efficient method

for verifying WF-diagnosability based on a reduction to

LTL-X model checking. An important advantage of this

method is that the LTL-X formula is fixed — in particu-

lar, the WF assumption does not have to be expressed as

a part of it (which would make the formula length pro-

portional to the size of the specification), but rather the

ability of existing model checkers to handle weak fair-

ness directly is exploited.

Keywords: Diagnosability, weak fairness, model check-

ing, LTL-X, formal verification, Petri nets.

1. Introduction

The diagnosability of systems has recently drawn

the attention of many researchers in both artificial in-

telligence and control theory communities. Diagno-

sis is the process of explaining abnormal behaviours

of a physical system, and diagnosability is an impor-

tant property that determines the possibility of detecting

faults given a set of observations. If a system is diag-

nosable, it is always possible to determine whether the

fault has occurred by observing the system’s behaviour

for sufficiently long time, and then the diagnosis can

find possible explanations for the given sequence of ob-

servations. Otherwise there are scenarios in which it is

impossible to tell whether the fault has occurred or not,

no matter for how long the system is observed. Non-

diagnosability usually indicates that the system should

be augmented with additional sensors monitoring it.

The seminal work [8] introduced a formal language

framework for diagnosis and analysis of diagnosability

properties of discrete event systems represented by fi-

nite automata. The proposed method for diagnosabil-

ity verification was based on the construction of a di-

agnoser — an automaton with only observable transi-

tions that allows one to estimate states of the system by

observing its traces. Improvements based on the twin

plant method have been introduced in [3, 9], where the

basic idea was to build a verifier by constructing the

synchronous product of the system with itself on ob-

servable transitions. The verifier compares every pair of

executions in the system that have the same projection

on the observable transitions. If the original system is

given as a labelled Petri net, then the verifier can be con-

structed directly, by synchronising the original net with

its replica at the Petri net level, and the problem reduces

to model checking of a fixed LTL-X [4, 7] property of

the verifier [5].

Recent work [2] presented a diagnosis method that

encompasses weak fairness. There, concurrent systems

are modelled by partially observable safe Petri nets, and

diagnosis is carried out under the assumption that all ex-

ecutions of the Petri net are weakly fair, that is, the only

infinite executions admitted are those in which any tran-

sition enabled at some stage will be disabled at some

later stage, i.e. either it will actually fire later in that

execution, or else some conflicting transition will fire.

Under this assumption, a given finite observation diag-

noses a fault if no finite execution yielding this obser-

vation can be extended to a weakly fair fault-free exe-



cution. The work in [2] gave a procedure for deciding

this diagnosis problem. It remained open for which sys-

tems this procedure reliably diagnoses faults, i.e. how

to determine whether a system is diagnosable under the

weak fairness assumption. In this paper, we address this

problem.

Note that a first definition of diagnosability under

weak fairness was proposed in [1]. However, this defi-

nition is incompatible with the notion of diagnosis in [2]

and contains a major flaw, as we shall point out below.

We make the following contributions in this paper:

• We develop a notion of weakly fair (WF) diag-

nosability, which corrects and supersedes the one

from [1].

• We characterise executions that witness violations

of WF-diagnosability.

• We further investigate the special case where fault

transitions are not WF, i.e. a fault is a possible out-

come in the system but not one that is required to

happen. (Our examples in Sect. 5 suggest that this

is a reasonable assumption in practice.) Under this

assumption, the notion of a witness can be signifi-

cantly simplified.

• We develop a method for verifying diagnosability

in this case, and evaluate it experimentally.

The paper is organised as follows: Sect. 2 discusses

existing notions of diagnosability and explains why they

are problematic for concurrent systems. Sect. 3 de-

velops our notion of WF-diagnosability and witnesses.

Sect. 4 presents the construction of the verifier, which

is evaluated in Sect. 5. We conclude in Sect. 6.

2. Petri nets and diagnosability

In this paper, we consider concurrent systems mod-

elled as Petri nets. We use this section to explain why

the standard notion of diagnosability, as well as the no-

tion of WF-diagnosability developed in [1], are prob-

lematic, which motivates our new definition, to be pre-

sented later.

Throughout the paper we assume that the system is

modelled as a labelled Petri net (LPN) N , where each

transition is labelled with the performed action. The ac-

tions are partitioned into observable and silent, i.e. there

is a labelling function ℓ mapping the LPN’s transitions

to O∪{ε}, where O is an alphabet of observable actions

and ε /∈ O is the empty word denoting the silent action.

(Intuitively, observable actions correspond to controller

commands and sensor readings, while the silent action

models some internal activity that is not recorded by

sensors.) This labelling function ℓ can be naturally ex-

tended to finite and infinite executions of the LPN, pro-

jecting them to words in O∗ or Oω . We assume that the

LPN is free from deadlocks and divergencies, i.e. every

execution of the LPN can be extended to an infinite one,

and every infinite execution of the LPN has infinitely

many observable transitions. Some of the transitions

are designated as faults; w.l.o.g., we assume that none

of them is observable. An example in Fig. 1 shows an

LPN with the observable transitions t3, t4 and t5 with

ℓ(t3) = a, ℓ(t4) = b and ℓ(t5) = tick (the other transi-

tions are unobservable). Note that we draw faults as

black boxes, and the observable transitions are shaded.

Figure 1. This LPN without t5 would be diag-

nosable, but t5 makes it undiagnosable. Mak-
ing t3 WF makes the LPN diagnosable.

2.1. Standard diagnosability

Given a finite execution σ of the LPN, the observer

sees the outputs of the system ℓ(σ) ∈ O∗, and needs to

conclude whether some fault transition t has definitely

occurred in σ . In a diagnosable system, once a fault has

occurred, the observer is able to eventually detect this.

That is, provided that the suffix of σ after the first oc-

currence of a fault in it is sufficiently long, the observer

should be able to conclude that each execution with the

same projection ℓ(σ) contains a fault, i.e. a fault has

either already occurred or will definitely occur in the

future. Let us first recall the standard definition of diag-

nosability:1

Definition 1 (Diagnosability). An LPN is diagnosable

iff for all its infinite traces σ and ρ such that ℓ(σ) =
ℓ(ρ), σ contains a fault iff ρ contains a fault.

1This definition is taken from [5]. It is subtly different from the

original definition in [8], but equivalent for finite state systems, and

simpler to use in practice. (An LPN has finitely many reachable mark-

ings iff it is bounded.)



In other words, a non-diagnosable LPN has two in-

finite executions having the same projection onto the

observable actions and such that one of them contains a

fault and the other does not; such a pair of traces con-

stitutes a witness of diagnosability violation.

For example, the LPN in Fig. 1 is not diagnosable.

Indeed, the diagnoser can only conclude that the fault

has occurred after observing a. However, the infinite

execution t2tω
5 contains a fault but never fires t3. Never-

theless, if t5 is removed, the LPN becomes diagnosable.

2.2. Weak fairness

The example from Fig. 1 exhibits a pathological

property of this notion of diagnosability: a diagnosable

system ceases to be such simply because some unrelated

concurrent activity is added to the specification. In prac-

tice, it is often reasonable to assume that the system is

keen to fire its enabled transitions, and cannot perpetu-

ally ignore an enabled transition. In other words, one

can consider the LPN in Fig. 1 diagnosable, by declar-

ing the infinite execution t2tω
5 impossible.

To capture this idea formally, the notion of weak

fairness is helpful [10]. Suppose the designer wants to

disallow some of the transitions to be perpetually ig-

nored when enabled. We call such transitions weakly

fair (WF). An infinite execution σ of the LPN is called

weakly fair (WF) if for each WF transition t, if t is en-

abled after some prefix of σ then the rest of σ contains

some transition in (•t)•, see Fig. 2. All finite execu-

tions are regarded as WF. We now can use the set of

WF executions as the semantics of the LPN, i.e. other

executions are considered impossible. Coming back to

the example in Fig. 1, if t3 is WF then the execution t2tω
5

is not WF and thus impossible, and so the LPN becomes

diagnosable.

It is tempting to derive the definition of WF-diag-

Figure 2. (i) The execution (t1t2t3)
ω is WF as no

enabled transition is perpetually ignored by it.

(ii) The execution (t1t2)
ω is not WF as t3 is en-

abled but all the transitions in (•t3)
• = {t3} are

perpetually ignored. (iii) The execution (t1t3)
ω

is WF: even though t2 is perpetually ignored,
t1 ∈ (•t2)

• = {t1, t2} is fired.

nosability simply by taking Def. 1 and restricting to WF

executions. In fact, such an approach was taken in [1],

where an LPN N was said to be WF-diagnosable iff for

all its infinite WF executions σ and ρ such that ℓ(σ) =
ℓ(ρ), σ contains a fault iff ρ contains a fault.

Unfortunately, this definition contains a major flaw,

demonstrated by the example in Fig. 3. This LPN would

be said to be diagnosable, while it is not possible for the

observer to detect a fault in finite time, as one would

have to observe the infinite trace aω to positively con-

clude that the fault has occurred.

Figure 3. This LPN is WF-diagnosable ac-
cording to the definition from [1], but not ac-
cording to the corrected definition (Def. 2 and

Lemma 1). Note that the observer cannot de-
tect the fault in finite time.

3. Weakly fair diagnosability

To fix the problems exhibited in Sect. 2, we present

a corrected definition of WF-diagnosability, where the

possibility of detecting a fault in finite time is imposed.

Intuitively, it states that each infinite WF execution con-

taining a fault must have a finite prefix after which it is

possible to conclude unambiguously that the fault has

either occurred or will inevitably occur in future. Be-

low we denote by ‘<’ the prefix relation on sequences.

Definition 2 (WF-diagnosability). An LPN is WF-diag-

nosable iff each infinite WF execution σ containing a

fault has a finite prefix σ̂ such that every infinite WF

execution ρ with ℓ(σ̂)< ℓ(ρ) contains a fault.

The LPN in Fig. 3 is not WF-diagnosable according

to Def 2, as for each finite prefix (say, t1tn
3 for some n ∈

N) of the infinite WF execution t1tω
3 containing a fault,

there is a finite execution (t2tn
3 ) with the same projection

to observable actions, that can be extended to an infinite

WF execution without a fault (e.g. t2tn
3 (t3t4)

ω ).

In this example one can also identify a fault-free in-

finite execution t2tω
3 that is in itself not WF, but each of



its finite prefixes can be extended to a fault-free WF ex-

ecution. As we shall see, such an execution can always

be found in a bounded LPN that is not WF-diagnosable.

Definition 3 (Witness for a bounded LPN). Let N be a

bounded LPN. A pair of infinite executions (σ ,ρ) with

ℓ(σ) = ℓ(ρ) is called witness (of WF-diagnosability vi-

olation) if σ is WF and contains a fault, and every prefix

of ρ can be extended to a fault-free WF execution.

Lemma 1 (WF-diagnosability of a bounded LPN). A

bounded LPN N is WF-diagnosable iff no witness of its

WF-diagnosability violation satisfying the conditions of

Def. 3 exists.

Proof. If a witness satisfying Def. 3 exists then the con-

dition of Def. 2 is violated, as for any prefix of σ one

can choose a prefix of ρ with the same projection, which

can be extended to a fault-free WF execution, i.e. the N
is not WF-diagnosable.

In the reverse direction: Suppose N is not WF-

diagnosable. Then, according to Def. 2, there exists an

infinite, WF, faulty execution σ such that for every finite

prefix σ̂ < σ there exists some infinite, WF, fault-free

execution ρ with ℓ(σ̂) < ℓ(ρ). From σ , we shall con-

struct a pair of executions (σ ′,ρ ′) constituting a witness

according to Def. 3.

Let K be the number of states (i.e. reachable mark-

ings) of N . Let m(σ , i) denote the marking generated

by the i-th observable transition in σ ; since N has no di-

vergencies, it is well-defined for all i ≥ 1. Moreover, let

s(σ , i, j) denote the interval of σ starting after i-th ob-

servable transition and ending at j-th observable transi-

tion, for all 0 < i < j. Furthermore, let k be the number

of observable transitions in σ before the first occurrence

of a fault.

By the pigeonhole principle, some marking m must

satisfy m = m(σ , i) for infinitely many i, and thus one

can construct an infinite, strictly ascending sequence of

indices (i j) j≥0 such that i0 > k, and all j ≥ 0 satisfy (i)

m(σ , i j) = m, and (ii) s(σ , i j, i j+1)∩(•t)• 6= /0 for every

WF transition t enabled in m (such a subsequence exists

since σ is WF and m appears infinitely often). Let σ̂

be the prefix of σ with |ℓ(σ̂)|= iK .

By the pigeonhole principle, there must be two in-

dices 0 ≤ j1 < j2 ≤ K with m(ρ , i j1) = m(ρ , i j2) =: m′.

We are now ready to conclude. Consider the execu-

tion σ ′, identical to σ up to m(σ , i j1) and then execut-

ing s(σ , i j1 , i j2)
ω . This execution is infinite, contains a

fault, and is WF by construction. Moreover, let ρ ′ be an

infinite execution identical to ρ up to m(ρ , i j1) and then

executing s(ρ , i j1 , i j2)
ω . By construction, ℓ(σ ′) = ℓ(ρ ′)

but ρ ′ does not contain a fault. Also, every prefix of ρ ′

can be extended to a WF fault-free execution by going

to the next occurrence of m′ and then continuing as in

ρ . Thus, (σ ′,ρ ′) constitutes a witness.

We note that in certain practical cases, the witness

definition can be simplified. In particular, we consider

the case when no fault transition is WF: Then one can

simplify the requirements imposed on ρ in Def. 3.

Definition 4 (Special case for witness). Let N be a

bounded LPN where no fault transition is WF. Then a

pair of infinite executions (σ ,ρ) with ℓ(σ) = ℓ(ρ) is

called witness iff σ is WF and contains a fault, and ρ

contains no fault.

Note also that this definition is quite similar to the

definition from [1], but with the following important

differences: (i) it is correct only for bounded LPNs

without WF faults, and (ii) ρ is not required to be WF.

As an example, a witness of WF-diagnosability vi-

olation for the LPN in Fig. 3 would be (t1tω
3 , t2tω

3 ); note

that the latter trace is not WF, but any its prefix can be

extended to a WF trace.

It should be noted that the assumption that the

faults are not WF is essential for the above definition.

Indeed, consider the LPN in Fig. 4. This LPN is triv-

ially WF-diagnosable, as every its infinite WF execution

will contain the WF fault transition. However, (t2tω
1 , tω

1 )
would constitute a witness of WF-diagnosability viola-

tion had the assumption about the absence of WF faults

been dropped in Def. 4.

Figure 4. A bounded LPN illustrating that the
assumption about faults being non-WF is es-

sential: This LPN is trivially WF-diagnosable,
as the fault must occur in every infinite WF
execution, but (t2tω

1 , tω
1 ) would constitute a wit-

ness of WF-diagnosability violation had this
assumption been dropped in Def. 4.

Lemma 2 (special case for WF-diagnosability). Let N
be a bounded LPN where no fault transition is WF. Then

N is WF-diagnosable iff no witness satisfying the con-

ditions of Def. 4 exists.

Proof. If N is not WF-diagnosable then Lemma 1 pro-

vides a witness satisfying also the less restrictive condi-

tions in Def. 4.

For the other direction, suppose that a witness

(σ ,ρ) according to Def. 4 exists. Take any finite prefix



σ̂ of σ and let ρ̂ρ ′ be a decomposition of ρ satisfying

ℓ(σ̂) = ℓ(ρ̂). To get a contradiction, it is enough to con-

struct an infinite, WF, fault-free continuation of ρ̂ . If ρ

itself is WF then we are done. Otherwise there exists

some WF transition t that is enabled at some point in

ρ after which ρ contains no more transition from (•t)•;

note that t is not a fault by the assumption. But this

means that firing t cannot disable any transition in the

rest of the execution, so we can insert it anywhere into

ρ ′ without disabling the rest of this execution. The re-

peated application of this insertion process yields the

required continuation of ρ̂ , and it is always can be done

in such a way that no enabled WF transition is perpetu-

ally ignored by the insertion process, and no transition

from ρ ′ is indefinitely delayed by the newly inserted

transitions.

This result is central for the WF-diagnosability ver-

ification method proposed in the next section.

4. Checking WF-diagnosability

In this section we show how checking WF-diagnos-

ability can be re-formulated in terms of LTL-X [4, 7]

model checking.

Our approach works for a bounded LPN N . We

perform various operations on N to obtain another

bounded LPN V , called the verifier, which we check

against a fixed LTL-X formula (in particular, its size

does not depend on N ). To achieve this, we exploit

the ability of many existing model checkers to handle

weak fairness directly.2

We first introduce the operations on N needed to

obtain V (Sect. 4.1), then recall the approach for non-

WF diagnosability (Sect. 4.2), and finally present the

modifications necessary to handle WF-diagnosability

for the special case where no fault transition is WF

(Sect. 4.3).

We use the net in Fig. 5 as a running example.

4.1. Net operations

In this paper we are concerned with the state-based

LTL-X verification. However, the definition of diagnos-

ability in Sect. 3 is action-based, and thus has to be re-

formulated in terms of states. The first two operations

are defined for this purpose.

Fault monitor We will need to keep track whether

some execution contains a fault transition. Given N , the

2The algorithm looking for an accepting (lasso-shaped) execution

of a Büchi automaton can be modified in such a way as to ignore

non-WF executions.

Figure 5. An LPN similar to that in Fig. 3, but
with a different choice of a fault transition. It is
not diagnosable but WF-diagnosable, as an oc-

currence of a fault enables t4, which can be per-
petually ignored under the non-WF semantics,
but must eventually fire — thus diagnosing the

fault — under the WF semantics.

net N ft denotes N extended with two additional places

p f and p f of which p f is initially marked, indicating

that no fault has happened so far. Then we make every

fault transition move a token from p f to p f , indicat-

ing that a fault has occurred. Also, since a fault transi-

tion may fire several times in N , another transition f ′

is added for each fault transition f , in order to simu-

late these subsequent firings in N ft. The construction is

illustrated in Fig. 6, where it is applied to Fig. 5.

In terms of behaviour, N and N ft are equivalent

in a strong sense. Suppose that the transitions of N
are injectively labelled, and the transitions of N ft retain

these labels, with the label of f and f ′ being the same.

Then these two nets are strongly bisimilar. Moreover, if

p f in N ft is unmarked then a fault occurred in the past.

Figure 6. Fault tracking net N ft for the LPN in

Fig. 5.

Stubs We will want to know whether an infinite exe-

cution perpetually enables certain transitions. Given a

subset of N ’s transitions and a ‘fresh’ initially marked

place stub monitor, we can turn these transitions into

stubs by removing all their outgoing arcs and adding

stub monitor to their presets.

Stubs are not meant to be executed: in fact, our



LTL-X formulae will make such executions ‘irrele-

vant’ by demanding that stub monitor remains always

marked. Then, a ‘relevant’ WF execution that keeps

stub monitor marked cannot enable a stub forever.

Removing transitions We can remove a given subset

of transitions from an LPN, together with their incom-

ing and outgoing arcs.

Synchronising Let N and N ′ be two LPNs with dis-

joint sets of places and transitions, whose transition sets

are T and T ′, respectively. Intuitively, the synchronisa-

tion of N and N ′ w.r.t. Ts ⊆ T ⊎T ′ puts N and N ′ side-

by-side, and then each transition t of N is fused with

each transition t ′ of N ′ that has the same label (each

fusion produces a new transition), provided that t and t ′

are both in Ts (t and t ′ remain in the result). Thus the

synchronised net has three types of transitions: those

from N , those from N ′, and the fused ones.

4.2. Verifying ordinary diagnosability

We recall the verification of (non-WF) diagnosabil-

ity from [5] and show that it is unsuitable for WF-diag-

nosability. Let N be the original LPN. The construction

works in the following steps:

1. Let N ft be the fault tracking net corresponding to

N .

2. Let N ′ be a copy of N .

3. Synchronise N ft and N ′ on the observable transi-

tions in both nets, yielding the net Ns.

4. Remove from Ns all observable transitions of N ft.

5. Remove from Ns all observable and fault transi-

tions of N ′.

6. Call the resulting net V .

Note that after V has been built, it is no longer nec-

essary to remember which actions are visible and which

are not, and so we can disregard all the labelling and

treat V as an unlabelled PN. This construction is illus-

trated in Fig. 7.

It turns out [5] that N is diagnosable iff the follow-

ing LTL-X property holds for all traces of V:

diag
df
=� p f ,

i.e. we simply require that there is no infinite trace in V
containing an occurrence of a fault.

Conversely, a counterexample satisfying ♦¬p f is

an infinite execution of V containing a fault; when pro-

jected to the parts corresponding to N ft and N ′, it gives

Figure 7. The (non-WF) verifier for the LPN in

Fig. 5.

a witness of (non-WF) diagnosability violation, i.e. two

infinite executions of N that have the same projection

on the set of observable actions but the first contains a

fault while the second does not. Similarly, such a pair

of executions corresponds to an infinite trace of V , with

the first being executed by the part of V corresponding

to N ft, and the second (which has no occurrences of

faults) being executed by the part of V corresponding to

N ′.

Unfortunately, this construction is not appropriate

for WF-diagnosability, even if the executions of the ver-

ifier are restricted to be WF. For example, consider the

net in Fig. 5. The verifier proposed in [5] is shown in

Fig. 7. It has an infinite execution containing a fault,

t2t ′1tω
3 , which, when projected to N ft and N ′, yields a

pair of traces constituting a witness of diagnosability vi-

olation. However, this verifier cannot be used for check-

ing WF-diagnosability simply by restricting its execu-

tions to be WF, as the same execution t2t ′1tω
3 is actu-

ally WF, since t4 is not permanently enabled by it (in

fact, it is a dead transition in the verifier). Therefore,

this execution is a false negative (the original LPN is

in fact WF-diagnosable). Note that when this WF ex-

ecution of the verifier is projected to N ft and N ′, the

resulting pair of traces will not constitute a witness of

WF-diagnosability, as the former projection will be a

non-WF execution of N ft that perpetually ignores an

enabled transition t4.

Below, we amend V to fix this problem for bounded

LPNs with no WF faults.

4.3. Verifier for non-WF fault transitions

Let N be a bounded LPN, in which no fault transi-

tion is WF. We keep the basic idea of the verifier con-



struction from Sect. 4.2, i.e. our verifier VWF will be

the synchronisation of two nets, and a counterexample

to our LTL-X formula will give a faulty execution σ in

one net, and a fault-free execution ρ in the other net,

such that (σ ,ρ) is a witness.

The first important change is to check the formula

only against WF executions. As seen in Sect. 4.2, this

alone is not enough: The false counterexample obtained

for Fig. 5 comes from the fact that VWF allows σ to

perpetually ignore a transition (here: t4) if ρ does not

enable it. We use stubs to prevent this from happening.

More precisely, V is constructed as follows:

1. Obtain the net Ns as in Sect. 4.2; its fused transi-

tions are declared non-WF.

2. Turn in Ns the observable WF transitions of N ft

into stubs; they remain WF.

3. Remove from Ns all observable and fault transi-

tions of N ′.

4. In Ns, make the remaining transitions of N ′ non-

WF.

5. Call the resulting net VWF .

Fig. 8 shows the verifier VWF for the LPN in Fig. 5.

Figure 8. The WF verifier for the LPN in Fig. 5.

Now we can formulate WF-diagnosability of the

original N as a fixed LTL-X formula on VWF that has to

be checked for infinite WF executions only:

diagWF
df

=� p f ∨ ♦¬stub monitor.

Thus a counterexample is an infinite WF execution con-

taining a fault but no stubs.

Theorem 1 (Correctness of specialised WF Verifier).

Let N be a bounded LPN where no fault transition is

WF. Then N is WF-diagnosable iff all infinite WF exe-

cutions of VWF satisfy diagWF .

Proof. According to Lemma 2, N is WF-diagnosable

iff no witness satisfying Def. 4 exists.

First, suppose diagWF is false, i.e. VWF has an infi-

nite WF execution τ that contains a fault and no stubs.

Let σ and ρ be the projections of τ to N ft and N ′, re-

spectively. We claim that (σ ,ρ) is a witness. Indeed,

since N has no divergencies, τ must contain infinitely

many observable transitions. Thus, both σ and ρ are

infinite, and ℓ(σ) = ℓ(ρ) holds; moreover, σ contains a

fault but ρ does not. Finally, σ must be WF because τ

is and no stubs are fired.

For the reverse direction, it is fairly straightforward

to see that any witness (σ ,ρ) from Def. 4 gives rise to

an execution τ of VWF violating diagWF . Moreover, τ

is WF because σ is. The fact that ρ is not necessarily

WF does not play a role, as ρ is executed in the part of

the verifier corresponding to N ′ and so contains no WF

transitions by construction.

5. Experimental results

In this section we present experimental results for

the proposed WF diagnosability approach. Further-

more, we demonstrate that the proposed approach can

easily be lifted from low-level Petri nets to high-level

ones: both the used benchmarks and the corresponding

verifiers were modelled using high-level PNs.

For the verification, we used the MARIA (modular

reachability analyser) tool [6]. Since MARIA supports

modular verification, it was possible to exploit the mod-

ular structure of the verifier (recall that it is built by syn-

chronising two LPNs, see Sect. 4) to significantly speed

up the verification.

It should be noted that finding interesting bench-

marks was a challenging task: Despite a lot of theo-

retical work done in the area of diagnosability, rather

few practical experiments have been conducted. More-

over, we wanted benchmarks where weak fairness is

essential, i.e. removing some transitions from the WF

set would make the system undiagnosable. Hence, we

designed the following two new families of scalable

benchmarks, available from the authors upon request.

COMMBOX (n) Fig. 9 shows a high-level Petri net

modelling the system comprising commutator boxes

and an inspector, together with the verifier. It models

n boxes commuting telephone calls. Normally, a box

just handles telephone calls (the normal execution tran-

sition), but occasionally it may register a fault (the fault

transition) in a telephone line. Such an event, however,

does not take the box out of action, and it still contin-

ues to commute calls (the normal execution transition)

and register further faults (the fault transition). Never-



Figure 9. The COMMBOX (n) benchmark (left) and the corresponding verifier (right).

Figure 10. The COMMBOXTECH (n) benchmark (left) and the corresponding verifier (right).



theless, the registered faults have to be considered and

fixed, and so there is an inspector visiting the boxes on a

round trip and fixing them if necessary (the skip healthy

and fix transitions). It is assumed that fix is the only ob-

servable transition, and one can be sure that a fault has

occurred once it fires. Nevertheless, it is possible that

the inspector indefinitely postpones visiting the boxes

(i.e. its transitions are always preempted by, e.g., nor-

mal execution which is always enabled), and so the sys-

tem is undiagnosable. However, if the transitions mod-

elling the inspector are WF, the system becomes diag-

nosable, as after a fault the fix transition is eventually

executed.

Vrf Vrf Modular

Benchmarks Time Time

COMMBOX (4) <1 <1

COMMBOX (5) 4 1

COMMBOX (6) 12 4

COMMBOX (7) 38 14

COMMBOXTECH (4) 17 6

COMMBOXTECH (5) 101 33

COMMBOXTECH (6) 561 162

COMMBOXTECH (7) 2995 Bug

Table 1. Experimental results for COMMBOX

and COMMBOXTECH benchmarks (all nets are

diagnosable).

COMMBOXTECH (n) Fig. 10 shows an elaborated

version of the above system, together with its verifier:

The inspector reports the faults to a technician, who

then fixes them. Again, the inspector’s and technician’s

transitions must both be WF to make the system diag-

nosable.

The experimental results are summarised in Ta-

ble 1, where the meaning of the columns is as follows

(from left to right): name of the benchmark, verifica-

tion time, and verification time using the modular rep-

resentation of the verifier. (The time is measured in sec-

onds.) All experiments were conducted on a PC with

64-bit Windows 7 operating system, an Intel Core i7

2.8GHz Processor with 8 cores and 4GB RAM (no par-

allelisation was used for the results in this table). The

MARIA tool has confirmed that the diagnosability prop-

erty holds for these benchmarks. We also discovered

a bug in MARIA: for the COMMBOXTECH (7) bench-

mark there is a mismatch between the verification out-

comes in the standard and modular modes.

We also wanted to check that the WF constraint is

essential for diagnosability, i.e. that if even one transi-

tion is removed from the WF set then the system be-

comes undiagnosable. These results are summarised in

Tables 2 and 3. The MARIA tool confirmed that this is

the case for the transitions skip healthy and fix for the

COMMBOX family, and for the transitions skip healthy,

report and fix for the COMMBOXTECH family. How-

ever, to our surprise, the COMMBOXTECH benchmarks

remain diagnosable even when the skip reported transi-

tion is removed from the WF set: This is in fact correct,

as skip reported can be enabled only after some fault

has been reported, i.e. some fault will be diagnosed due

to the fix transition even if skip reported never fires.

6. Conclusions

In this paper we have identified a major flaw in the

previous definition of WF-diagnosability in the litera-

ture, and proposed a corrected notion. Moreover, un-

der a simplifying assumption that the fault transitions

are non-WF, we have presented an efficient technique

for verifying WF-diagnosability based on a reduction to

LTL-X model checking. An important advantage of this

method is that the LTL-X formula is fixed — in partic-

ular, the WF assumption does not have to be expressed

as a part of it (which would make the formula length

proportional to the size of the specification), but rather

the ability of existing model checkers to handle weak

fairness directly is exploited.

We also created two families of scalable bench-

marks, where the weak fairness is essential for diagnos-

ability. The proposed WF-diagnosability verification

method has been tested on these benchmarks, and the

experimental results demonstrate its feasibility in prac-

tice.

Lemma 1 indicates that WF-diagnosability in the

general settings in which any transition may be WF, is

feasible in principle; we are already pursuing ideas for

the construction and optimisation of adequate verifiers.

Other possible directions of future work include devel-

oping a theory that would allow one to cope with strong

fairness.
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