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Abstract— A combined framework for the resolution of en-
coding conflicts in STG unfoldings is presented, which extends
previous work by incorporating concurrency reduction in addi-
tion to signal insertion. Furthermore, a novel validity condition
is proposed to justify these transformations. The method has
been implemented in the CONFRES tool and applied to a
number of case studies. The experimental results show that the
combined framework enlarges the design space and allows better
exploration of the speed/area tradeoff.

I. I NTRODUCTION

SIGNAL Transition Graphs, or STGs [2], are widely used
for specifying the behaviour of asynchronous control

circuits. They are interpreted Petri nets in which transitions
are labelled with the rising and falling edges of circuit signals.
Synthesis based on STGs involves: (a) checking sufficient
conditions for the implementability of the STG by a logic
circuit; (b) modifying, if necessary, the initial STG to make it
implementable; and (c) finding appropriate Boolean next-state
functions for non-input signals.

A commonly used tool, PETRIFY [2], performs all these
steps automatically, after first constructing the reachability
graph of the initial STG specification. To gain efficiency, it
uses symbolic (BDD-based) techniques to represent the STG’s
reachable state space. While such an approach is convenient
for completely automatic synthesis, it has several drawbacks:
state graphs represented explicitly or in the form of BDDs
are hard to visualise due to their large sizes and the tendency
to obscure causal relationships and concurrency between the
events, which hampers efficient interaction with the user.
Moreover, the combinatorial explosion of the state space is
a serious issue for highly concurrent STGs, putting practical
bounds on the size of control circuits that can be synthesised.
Thus PETRIFY can fail to synthesise a circuit, especially if
the STG models are not constructed by a human designer
but rather generated automatically from high-level hardware
descriptions.

Where PETRIFY fails, other tools based on alternative tech-
niques, and in particular those employing Petri net unfoldings,
may succeed. Afinite and complete unfolding prefixof an
STG Γ is a finite acyclic net which implicitly represents all
the reachable states ofΓ together with transitions enabled at
those states. Intuitively, it can be obtained throughunfoldingΓ,

by successive firings of transition, under the following as-
sumptions: (i) for each new firing a fresh transition (called
an event) is generated; (ii) for each newly produced token a
fresh place (called acondition) is generated. The unfolding
is infinite wheneverΓ has an infinite run; however, ifΓ has
finitely many reachable states then the unfolding eventually
starts to repeat itself and can be truncated (by identifyinga set
of cut-off events) without loss of information, yielding a finite
and complete prefix. Fig. 1(c) shows a finite and complete
unfolding prefix (with the only cut-off event depicted as a
double box) of the STG shown in Fig. 1(a).

Efficient algorithms exist for building such prefixes [6],
which ensure that the number of non-cut-off events in a
complete prefix can never exceed the number of reachable
states ofΓ. However, complete prefixes are often exponentially
smaller than the corresponding state graphs, especially for
highly concurrent Petri nets, because they represent concur-
rency directly rather than by multidimensional ‘diamonds’as
it is done in state graphs. For example, if the original Petrinet
consists of 100 transitions which can fire once in parallel, the
state graph will be a 100-dimensional hypercube with 2100

vertices, whereas the complete prefix will coincide with the
net itself.

Since practical STGs usually exhibit a lot of concurrency,
but have rather few choice points, their unfolding prefixes
are often exponentially smaller than the corresponding state
graphs; in fact, in many of the experiments conducted in [6],
[7] they were just slightly bigger then the original STGs
themselves. Therefore, unfolding prefixes are well-suitedfor
both visualisation of an STG’s behaviour and alleviating the
state space explosion problem.

In [6], [7] the unfolding technique was applied to the im-
plementability analysis in step (a), viz. checking the Complete
State Coding (CSC) condition [2], which requires detecting
CSC conflicts between reachable states of an STG. A CSC
conflict arises when semantically different reachable states
of an STG have the same binary encoding. Fig. 1(b) shows
the state graph of the STG in Fig. 1(a) with a CSC conflict
between statesM1 andM2.

In [12] the unfolding technique was applied to step (b),
in particular for enforcing the CSC condition (i.e., for the
resolution of CSC conflicts), which is a necessary condition
for the implementability of an STG as a circuit. There a
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Fig. 1. VME bus controller: the STG for the read cycle (a), itsstate
graph showing a CSC conflict (b), its unfolding prefix with thecorresponding
conflict core (c), and the equations for signal insertion (d)and concurrency
reduction (e). The signal order in binary encodings is:dsr, dtack, lds, ldtack, d.

framework was developed for an interactive refinement process
based on visualisation of conflictcores, i.e., sets of events
causing encoding conflicts, which are represented at the level
of finite and complete prefixes of STG unfoldings.

The work in [8] addresses step (c), using unfolding tech-
niques to derive equations for logic gates of the circuit.
The results in [6]–[8], [12] form a complete design flow for
complex-gate synthesis of asynchronous circuits based on STG
unfoldings rather than state graphs.

The resolution of encoding conflicts by signal insertion is
illustrated in Fig. 1(c), where the new signalcsc is helping
to distinguish between the states involved in the encoding
conflict. (Intuitively, insertion of signals introduces additional
memory into the circuit, helping to trace the current state.)
It was inserted concurrently to existing transitions in order to
minimise the latency, and in such a way that the ‘external’
behaviour of the STG does not change. Alternatively, the
encoding conflict can be resolved by reducing the concurrency
betweenlds− and dtack− (as shown by the dashed arc in
Fig. 1(c)) so that stateM1 is removed from the reachability
graph shown in Fig. 1(b), which in turn resolves the encoding
conflict. The logic equations corresponding to these solutions
are shown in Fig. 1(d,e).

One can see that in this example the equations for the
signal insertion are more complex then those for concurrency
reduction. It is often the case that concurrency reduction
produces smaller circuits, which may also be faster due to
simplification of the gates. Thus, even though the system
manifests less concurrency, it might be actually faster dueto
the events taking less time to fire.

The common belief that concurrency is crucial for perfor-
mance is questionable. In a highly concurrent specification,
almost all combinations of signal values are reachable, and
thus Boolean minimisers cannot efficiently exploit the ‘don’t
care’ values, which results in large and slow gates in the final

implementation. Moreover, transitions of the newly inserted
signals delay output transitions, and hence can also increase
the latency of the final circuit. Concurrency reduction can
increase the number of unreachable states, thus providing
more ‘don’t cares’ for logic optimisation. Furthermore, ifan
encoding conflict is solved by concurrency reduction rather
than signal insertion then no additional gate is required to
implement this signal. Thus, the elimination of encoding
conflicts by concurrency reduction may result in a faster and
smaller circuit. On the other hand, there are situations when
signal insertion produces better solutions. In general, both
concurrency reduction and signal insertion are required to
explore a larger solution space, and considering only one of
these techniques may leave out important solutions. Existing
techniques either apply concurrency reduction at the state
graph level [3], [11] or are restricted to specific net classes
or use local transformations [1] and thus restrict the design
space.

This paper extends the framework for the visualisation
and resolution of encoding conflicts in [12] (step (b)) by
incorporating the concurrency reduction transformation (which
can eliminate encoding conflicts by removing some of the
STG’s reachable states) in addition to signal insertion. This
allows one to explore a larger design space.

Another important contribution of this paper is a novel
notion of validity, which is used to justify STG transformations
used to solve encoding conflicts. We believe it better reflects
the intuition than other existing notions. However, this notion
is much more general and is also of independent interest: it is
formulated for labelled Petri nets (of which STGs being a spe-
cial case) and arbitrary transformations preserving the alphabet
of the system. For example, it can be applied to justifying the
concurrency increasing transformation used in [14] to convert
speed-independent circuits into delay-insensitive ones.

This paper aims at presenting these results in a relatively
informal way. More formal presentation can be found in
technical report [9].

II. VALID TRANSFORMATIONS

For the sake of generality, we discuss arbitrary labelled Petri
nets (LPNs) (STGs being a special kind of them). That is, there
are disjoint sets of inputsI and outputsO, and a functionℓ
mapping the transitions of the Petri net to the setI ∪O ∪{τ},
whereτ /∈ I ∪O is a silent action(e.g., internal signals in an
STG), which is not observable by the environment. In figures,
we will denote inputs byi or ik, and outputs byo or ok. We
assume that the transformation does not change the inputs and
outputs of the system, and we will denote byϒ and ϒ′ the
original and transformed LPNs, respectively.

Given an LPNϒ, a set of its transitionsU 6= /0, its transition
t /∈U andn∈N, aconcurrency reduction U

n
99K t is defined as

the transformation adding toϒ a new placep, which initially
hasn tokens, the arc(u, p) for each transitionu∈U and the
arc (p, t), as shown in Fig. 2. We will writeU 99K t instead of

U
0

99K t andu
n

99K t instead of{u}
n

99K t. Note that concurrency
reduction cannot add new behaviour to the system — it can
only restrict it.



n

p
U

u1

u2

...

uk

t
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The notion of validity for signal insertion is straightfor-
ward — one can justify such a transformation in terms of
weak bisimulation, which is well-studied. For a concurrency
reduction (or transformations in general), the situation is more
difficult: the original and transformed systems are typically not
even language-equivalent; deadlocks can disappear (e.g.,the
deadlocks in Dining Philosophers can be eliminated by fix-
ing the order in which forks are taken); deadlocks can be
introduced; transitions can become dead; even the language
inclusion may not hold (some transformations, e.g., converting
a speed-independent circuit into a delay-insensitive one [14],
can increase the concurrency of inputs, which in turnextends
the language). For the sake of generality, we discuss arbitrary
transformations (not necessarily concurrency reductionsor
signal insertions). Intuitively, there are four aspects toa valid
transformation:

I/O interface preservation The transformation must pre-
serve the interface between the circuit and the en-
vironment. In particular, no input transition can be
‘delayed’ by newly inserted signals or ordering con-
straints.

Conformation Bounds the behaviour from above, i.e., re-
quires that the transformation introduces no ‘wrong’
behaviour. Note that certain extensions of behavi-
our are valid, e.g., two inputs in sequence may
be accepted concurrently [4], [14], extending the
language.

Liveness Bounds the behaviour from below, i.e., requires
that no ‘interesting’ behaviour is completely elimi-
nated by the transformation.

Technical restrictions It might happen that a valid trans-
formation is still unacceptable because the STG
becomes unimplementable or because of some other
technical restriction. For example, one usually re-
quires the transformation to preserve the bounded-
ness and speed-independence of the STG [2], [3].
In the example below, the original LPN is bounded
(in fact, safe), whereas the concurrency reduction
shown by the dashed arc yields an unbounded LPN,
even though its behaviour is valid.

o1 o2

i1 i2 o

i1 i2

i1 i2

o
o

ER(o)

deadlocks

i1 i2

o

ER′(o)

deadlocks

Fig. 3. Liveness problem: an LPN with the concurrency reduction shown
by the dashed arc together with its state graphs before and after the transfor-
mation.

In this section we discuss in the described framework the
notions of validity proposed in [3], [4], [15] and present a new
one, which, in our opinion, better reflects the intuition of what
a valid transformation is. Since the first and the last aspects
are well-studied [2], we will concentrate on the remaining two
aspects, viz. conformation and liveness.

A. Overview of previous validity notions

The liveness restrictions imposed on transformations in [3]
require that (i) no events become dead, and (ii) no (new)
deadlock states appear. As the example in Fig. 3 shows, these
restrictions are not sufficient to guarantee the correctness of the
modified LPN. Indeed, the enabling region of outputo has not
become empty, and the set of deadlocks has not changed, even
though the transformation is clearly invalid: in the original
specification, outputo is always produced, whereas in the
transformed one the environment can prevento from occurring
by repeatedly choosingi1 rather theni2.

In [4] a notion ofconformationwas introduced. However, it
cannot express the liveness conditions, e.g., the Universal Do-
Nothing module, accepting all inputs but not producing any
outputs, conforms to any specification with the same alphabet;
thusone cannot require the circuit to do anything.The other
notion introduced in [4] is based on the existence of a winning
strategy in a certain infinite game, and is quite complicated.

In [15] a notion of avalid implementationwas introduced,
which can be used to justify the signal insertion transformation
and takes care of liveness. Moreover, it allows the implemen-
tation to have additional inputs with arbitrary behaviour follo-
wing, because the implementation will work in an environment
that, according to the specification, will never produce these
inputs. This in particular allows more concurrency for inputs,
and can be used to justify the concurrency-increasing trans-
formation of [14]. However, this feature is not complemented
by allowing to decrease the concurrency for outputs, and thus
this notion cannot be used to justify the concurrency reduction
transformation.

In [5] a notion of refinement was introduced, which works
well for deterministicprocesses, i.e., CSP processes without
the non-deterministic choice operator⊓. Moreover, a hy-
brid operator combining parallel composition and hiding was
proposed, which preserves determinacy. However, for non-
deterministic circuits (e.g., those containing arbiters)a poten-
tially interesting behaviour can be lost due to the following
effect: the processo1⊓o2 (which can be obtained by hiding
some of the signals in a circuit with arbitration) can be refined



to o1, i.e., a branch of arbitration can be refined away. Though
the observer interacting witho1 is unable to tell that he is not
interacting witho1 ⊓ o2, this may be not what the designer
intended. (In [16] the issue of static vs. dynamic determinism
is raised in the context of delay-insensitive CSP processes.)

In this paper we propose a relatively simple bisimulation-
style notion which takes the liveness into account and allows
one to justify both reduction of concurrency for outputs and
increase of concurrency for inputs, as well as signal insertion.

B. Our notion of validity

Since one of the transformations we are discussing is
concurrency reduction, it is convenient to use a partial order
rather than interleaving semantics, and our discussion will
be based onprocesses, which are a partial order analog of
traces. The main difference between the processes and traces
is that in the former the events are ordered only partially,
and thus one process can correspond to several traces, which
can be obtained from it by linearisation of the corresponding
partial order. An LPN generates a set of processes much like
it generates a language.

A process can be represented as a (perhaps infinite) labelled
acyclic net, with places having at most one incoming and
one outgoing arc. We will view processes as subnets of the
unfolding (and the unfolding can be considered as an overlay
of processes). Hence the nodes of a process are not anonymous
entities, but correspond to the nodes of the unfolding. We will
define by⊑ the prefix relation on processes. Note that the
fact that the nodes of a process have identities matters, e.g., if
π⊑ π′ thenπ′ is a continuation ofπ rather than some unrelated
to π process whose initial part is isomorphic toπ. A process is
maximalif it is maximal w.r.t.⊑, i.e., if it cannot be extended
by new events. A maximal process is either infinite (though
not every infinite process is maximal) or leads to a deadlock.

If π is a process, we denote by abs(π) the abstractionof π,
i.e., the labelled partially ordered set(S,≺, ℓ) (with the labels
in I ∪O) obtained from the non-τ-labelled events ofπ and
the appropriately restricted causal ordering of the eventsof π.
The elements of abs(π), unlike the nodes ofπ, are considered
anonymous. (Labelled partially ordered sets are essentially the
pomsetsof [13].)

Let (S,≺) be a partially ordered set ands∈ S. An s′ ∈ S is
a direct predecessorof s if s′ ≺ s and there is nos′′ ∈ S such
that s′ ≺ s′′ ≺ s. We will denote byDP≺(s) the set of direct
predecessors of ans∈ S.

Given processesπ of ϒ and π′ of ϒ′, we define a relation
between their abstractions, abs(π) and abs(π′), which holds
iff in π′ the inputs are no less concurrent and the outputs
are no more concurrent than inπ. That is, the transformation
is allowed, on one hand, to relax the assumptions about the
order in which the environment will produce input signals,
and, on the other hand, to restrict the order in which outputs
are produced. Thus the modified LPN will conform (in the
sense of [4]) to the original specification.

The definition below assumes theweak fairness, i.e., that
a transition cannot remain enabled forever: it must either fire
or be disabled by another transition firing. In particular, this

guarantees that the expected inputs eventually arrive, andthus
the concurrency reductioni 99K o cannot be declared invalid
just because the inputi fails to arrive and so the outputo is
never produced.

Intuitively, abs(π) and abs(π′) are bound by this relation
iff abs(π) can be transformed into abs(π′) in two steps (see
the picture below): (i) the ordering constraints for inputsare
relaxed (yielding a new order≺′′, which is a relaxation of≺);
(ii) new ordering constraints for outputs are added, yielding
abs(π′) (thus,≺′′ is also a relaxation of≺′).

abs(π) = (S,≺, ℓ)

(S′′,≺′′, ℓ′′)

ϕ

abs(π′) = (S′,≺′, ℓ′)

ψstep 1ց ր step 2

Definition 1: Let π andπ′ be processes ofϒ andϒ′, respec-
tively, abs(π) = (S,≺, ℓ) and abs(π′) = (S′,≺′, ℓ′). We define
abs(π) ⊲◭ abs(π′) if there exist a labelled partially ordered set
(S′′,≺′′, ℓ′′) and one-to-one mappingsϕ : abs(π)→ (S′′,≺′′, ℓ′′)
and ψ : abs(π′) → (S′′,≺′′, ℓ′′) preserving the labels and such
that:

• ≺′′= ϕ(≺)∩ψ(≺′) (≺′′ is a relaxation of≺ and≺′);
• if e is an output event andf ∈ DP≺(e) then ϕ( f ) ∈

DP≺′′(ϕ(e)) (in step 1, existingdirect ordering constraints
for outputs are preserved, and existing indirect ones can
become direct, e.g., as in the picture below);

i1 i2 o ⊲◭

i1

i2

o

• if e′ is an input event andf ′ ∈ DP≺′(e′) then ψ( f ′) ∈
DP≺′′ψ(e′) (in step 2, no newdirect ordering constraints
for inputs can appear, and existing ones can become
indirect, e.g., as in the picture below).

i
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⊲◭ o1 o2 i

♦
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Note that ⊲◭ is an order (if we do not distinguish
order-isomorphic partially ordered sets). In what follows,
slightly abusing the notation, we will writeπ ⊲◭ π′ instead
of abs(π) ⊲◭ abs(π′).

Definition 2 (Validity): ϒ′ is a valid realisation of ϒ, de-
noted ϒ ⊸ ϒ′, if there is a relation∝ between the finite
processes ofϒ and ϒ′ such thatπ /0 ∝ π′

/0 (where π /0 and π′
/0

are the empty processes ofϒ andϒ′, respectively), and for all
finite processesπ andπ′ such thatπ ∝ π′:

• π ⊲◭ π′

• For all maximal processesΠ′ ⊒ π′, and for all finite
processeŝπ′ ⊒ π′ such thatπ̂′ ⊑ Π′, there exist finite
processes̃π′ ⊒ π̂′ andπ̃ ⊒ π such that̃π′ ⊑ Π′ andπ̃ ∝ π̃′.

• For all maximal processesΠ ⊒ π, and for all finite pro-
cesseŝπ ⊒ π such that̂π ⊑ Π, there exist finite processes
π̃ ⊒ π̂ and π̃′ ⊒ π′ such that̃π ⊑ Π and π̃ ∝ π̃′. ♦

Intuitively, every activity ofϒ is eventuallyperformed byϒ′

(up to the ⊲◭ relation) and cannot be pre-empted due to
choices, and vice versa, i.e.,ϒ′ and ϒ simulate each other
with a finite delay. Note that⊸ is a pre-order, i.e.,ϒ ⊸

ϒ and a sequence of two valid transformations is a valid
transformation.

In this definition, considering maximal processes is essen-
tial. Indeed, according to this notion the transformation in
Fig. 3 is invalid, since in the original LPN no extension of
the process comprising an instance ofo within the maximal
process comprising an infinite sequence of instances ofi1 and
an instance ofo has a corresponding (in terms of the⊲◭

relation) process in the transformed LPN, which would have
to fire i2 before it is able to fireo.

Example 2:The following hold:
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To show why the relations⊸ and⊸−1 do not hold in the last
case we proceed as follows. Suppose one of these relations
holds. Then the empty processes of the two systems must
be bound by the corresponding∝ relation. Since the process
comprised of the leftmost event of the second system cannot be
extended (note that the nodes of the process have identities), it
must be bound by∝ relation to the process of the first system
comprising one instance ofo. However, the latter process has
extensions which cannot be matched (in the sense of⊲◭

or ⊲◭ −1) by the former one (since it has no extensions), a
contradiction. ♦

In the full version of this paper [9], we propose criteria
which can be applied to check the validity of a concurrency
reduction.

III. R ESOLUTION OF ENCODING CONFLICTS

At the level of unfoldings, encoding conflicts can be
compactly represented using conflictcores [12]. Encoding
conflicts can be resolved by either adding auxiliary signalsor
by concurrency reduction. The former approach was studied
in [12], where additional signals are employed to disambiguate
states having the same binary encodings. The latter makes
some of the states unreachable and thus can eliminate encoding
conflicts.

Due to its structural properties (such as acyclicity), the
reachable states of an STG can be represented usingconfigura-
tionsof its unfolding. A configurationC is a downward-closed
set of events (being downward-closed means that ife∈C and f
is a causal predecessor ofe then f ∈C) without structural con-
flicts (i.e., for all distinct eventse, f ∈C, there is no condition
c in the unfolding such that the arcs(c,e) and(c, f ) are in the
unfolding). For example, in Fig. 8(a){e0,e1,e2,e4,e7,e8} is
a configuration whereas{e0,e1,e2,e3,e4} and{e0,e2} are not
(the former includes a structural conflict between the events
e2 and e3, while the latter does not includee1, a causal
predecessor ofe2). Intuitively, a configuration is a partial-
order execution, i.e., an execution where the order of firing
of concurrent events is not important; e.g., the configura-
tion {e0,e1,e2,e4,e7,e8} corresponds to two totally ordered
executions:e0e1e2e4e7e8 ande0e1e2e4e8e7. Configurations are
somewhat similar to processes, the difference being that the
former are sets of events of the unfolding while the latter are
nets.

A. Encoding conflicts in a prefix

A CSC conflict can be represented as an unorderedconflict
pair of configurations〈C1,C2〉 whose final states are in CSC



conflict, as shown if Fig. 1(c). In [6], [7] two techniques
for detecting CSC conflicts (based, respectively, on integer
programming and SAT) were proposed. Essentially, they allow
for efficiently finding such conflict pairs in STG unfolding
prefixes.

The set of all conflict pairs may be quite large, e.g., due
to the following ‘propagation’ effect: ifC1 and C2 can be
expanded by the same evente then〈C1∪{e},C2∪{e}〉 is also
a conflict pair (unless these two configurations enable the same
set of output and internal signals). Therefore, it is desirable to
reduce the number of pairs needed to be considered, e.g., as
follows. A conflict pair〈C1,C2〉 is calledconcurrentif C1 *C2,
C2 * C1 and C1 ∪C1 is a configuration. Below is a slightly
modified version of a proposition proven in [6]:

Proposition 1: Let 〈C1,C2〉 be a concurrent CSC conflict
pair. ThenC = C1∩C1 is such that either〈C,C1〉 or 〈C,C2〉 is
a CSC conflict pair.

Thus concurrent conflict pairs are ‘redundant’ and should
not be considered. The remaining conflict pairs can be classi-
fied as follows:

Conflict pairs of type I are such that eitherC1 ⊂ C2 or
C2 ⊂C1 (Fig. 1(c) illustrates this type of CSC con-
flicts).

Conflict pairs of type II are such thatC1\C2 6= /0 6= C2\C1

and there existe′ ∈C1\C2 ande′′ ∈C2\C1 such that
e′ ande′′ are in structural conflict (Fig. 6(c) illustrates
this type of CSC conflicts).

Definition 3 (Core): Let 〈C1,C2〉 be a conflict pair of con-
figurations. The correspondingcomplementary setis defined as
C S

df
= C1△C2, where△ denotes the symmetric set difference.

C S is a core if it cannot be represented as the union of
several disjoint complementary sets. A complementary set is
of type I/II if the corresponding conflict pair is of type I/II,
respectively. ♦

For example, the core corresponding to the conflict pair shown
in Fig. 1(c) is {e4, . . . ,e8,e10} (note that for a conflict pair
〈C1,C2〉 of type I, such thatC1 ⊂ C2, the corresponding
complementary set is simplyC2 \C1), and the core corres-
ponding to the conflict pair〈{e1,e4,e6} ,{e2}〉 in Fig. 6(c) is
{e1,e2,e4,e6}.

One can show that every complementary setC S can be
partitioned intoC1\C2 andC2\C1, where〈C1,C2〉 is a conflict
pair corresponding toC S . Moreover, if C S is of type I then
one of these parts is empty, while the other isC S itself. An
important property of complementary sets is that for each
signalz∈ Z, the differences between the numbers ofz+– and
z−–labelled events are the same in these two parts (and are 0 if
C S is of type I). This suggests that a complementary set can
be eliminated, e.g., by introduction of a new internal signal
and insertion of its transition into this set, or by ‘dragging’ an
existing event into it using additional ordering constraints, as
these would violate the stated property.

It is often the case that cores overlap. In order to minimise
the number of performed transformations, and thus the area
and latency of the circuit, it is advantageous to perform such
a transformation that as many cores as possible are eliminated
by it. That is, a transformation should be performed in the
intersection of several coreswhenever possible. In [12] the
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Fig. 4. Strategies for core elimination by signal insertion.

exploitation of core overlaps is implemented by means of a
height mapshowing the quantitative distribution of the cores
(see Fig. 8(b)). Each event in the prefix is assigned analtitude,
i.e., the number of cores it belongs to. (The analogy with
a topographical map showing the altitudes may be helpful
here.) ‘Peaks’ with the highest altitude are good candidates
for insertion, since they correspond to the intersection of
maximum number of cores.

B. Core elimination by signal insertion

A framework for visualisation and manual resolution of
encoding conflicts was presented in [12], where cores were
eliminated by signal insertion. By introducing an additional
internal signal and insertion of its transition, saycsc+, into
the core one can destroy it eliminating thus the corresponding
encoding conflicts. To preserve the consistency of the STG,
the transition’s counterpartcsc− must also be insertedoutside
the core, in such a way that it is neither concurrent to nor
in structural conflict withcsc+. Another restriction is that
an inserted signal transitions must not trigger an input signal
transition (the reason is that this would impose constraints on
the environment which were not present in the original STG,
making it ‘wait’ for the newly inserted signal).

The core in Fig. 1(c) can be eliminated by inserting a new
signal, csc+, somewhere in the core, e.g., concurrently toe5

and e6 betweene4 and e7, and by inserting its complement
outside the core, e.g., concurrently toe11 betweene9 ande12.
(Note that concurrent insertion of these two transitions avoids
an increase in the latency of the circuit, where each transition
is assumed to contribute a unit delay.) After transferring this
signal into the STG, it satisfies the CSC property.

The elimination of encoding conflicts by signal insertion
is schematically illustrated in Fig. 4, which represent typical
cases in STG specifications [12].

C. Core elimination by concurrency reduction

Concurrency reduction removes some of the reachable states
of the STG and thus can be used for the resolution of encoding
conflicts. The elimination of conflict cores by concurrency
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reduction involves the introduction of additional ordering
constraints, which fix some order of execution. In an STG,
a fork transition defines the starting point of concurrency and
a join transition defines its ending point. Existing signalscan
be used to disambiguate the conflicting states in a core by
delaying the starting point or bringing forward the ending
point of concurrency. If there is an event concurrent to the
core, and a starting or ending point of concurrency is in
the core, then this event can be forced into the core by an
additional ordering constraint, thus destroying it. For example,
in Fig. 1(c),e9 is concurrent to some of the events in the core,
and the starting point of concurrency is in the core, so the
concurrency reduction shown by the dashed line in this figure
can be used to eliminate the core by ‘dragging’e9 into it. Two
kinds of concurrency reduction based transformations for core
elimination are described below (whereh is the mapping from
the nodes of the prefix to the nodes of the STG).

Forward concurrency reduction illustrated in Fig. 5(a)
performs the concurrency reductionh(EU )

n
99K h(g)

in the STG, whereEU is a maximal (w.r.t.⊂) set
of events outside the core which are in structural
conflict with each other and concurrent tog — an
event in the core. It is assumed thate is in the core
and either precedesg or is concurrent tog, and for
exactly one eventf ∈ EU , e precedesf .

Backward concurrency reduction illustrated in Fig. 5(b)
works in a similar way, but the concurrency reduction
h(EU )

n
99K h( f ) is performed. It is assumed thate is

in the core,f is an event outside the core such thatf
precedese, EU is a maximal (w.r.t.⊂) set of events
which are in structural conflict with each other and
concurrent tof , such that exactly one eventg∈EU is
in the core, andg either precedese or is concurrent
to e.

In both cases the core is destroyed by additional ordering
constraints ‘dragging’f into the core.

These two rules are illustrated by the examples in Fig. 6,
where they are applied to cores of types I (parts (a,b) of
this figure) and II (parts (c,d) of this figure). In Fig. 6(a)
instances ofb+ anda− are concurrent to the core. The forward
concurrency reductionb+ 99K e− can be applied, becauseb+
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succeedse+ and e− succeedse+. This ‘drags’ b+ into the
core, destroying it. Note thatf is an input and thus cannot
be delayed, and so the concurrency reductionsb+ 99K f +

and b+ 99K f− would be invalid. The backward concurrency
reductionse+ 99K a− and f + 99K a− can also be applied to
eliminate the conflict core, becausea− precedese−, and both
e+ and f + are in the core and precedee−. Either of these
reductions ‘drags’a− into the core, destroying it.

In Fig. 6(b), d+ is concurrent to events in the core and
precedesc+, an event in the core. The only event in the core
which precedes or is concurrent toc+ is a+. However,a+ 99K

d+ is an invalid transformation, which introduces a deadlock.
(Note that this transformation is ruled out by the maximality
requirement in the definition of a backward concurrency re-
duction.) The forward concurrency reduction{a+,b+} 99K d+

has been used instead, sinceb+ is in structural conflict with
a+ and concurrent tod+.

Fig. 6(c,d) show the elimination of type II cores. A forward
concurrency reduction is illustrated in Fig. 6(c). An instance
of d+ is concurrent to the core and succeedsa+, an event in
the core, and therefore it can be used for a forward reduction.
The only possible concurrency reduction isd+ 99K a−, since
b+ is an input and thus cannot be delayed.

The backward concurrency reduction technique is illustrated
in Fig. 6(d), whered+ is concurrent toa+ and e+ in the



core and precedesb+ in the core. The only events in the
core which either precede or are concurrent tob+ are a+

and e+, and either of them can be used to eliminate the
core. However, both reductionsa+ 99K d+ and e+ 99K d+

are invalid, since they introduce deadlocks. (Again, these
transformations are ruled out by the maximality requirement in
the definition of a backward concurrency reduction.) Thusc+

should be involved, yielding the following two backward con-
currency reductions eliminating the core:{a+,c+} 99K d+ and
{c+,e+} 99K d+. Note that the reductions{a+,b+/1} 99K d+

and{b+/1,e+} 99K d+ do not eliminate the core, becaused+

is ‘dragged’ into both branches of the core, and so the net
sum of signals in these two branches remains equal. (And our
backward concurrency reduction rule does not allow to use
these two transformations, since only one event from the set
EU is allowed to be in the core.)

D. Implementation

In our framework, encoding conflicts can be eliminated by
the introduction of auxiliary signals and concurrency reduc-
tion. A heuristic cost functionis applied to select the best
transformation for the resolution of encoding conflicts. Ithas
the form

cost
df
= α1 ·∆ω+α2 ·∆logic−α3 ·∆cores

and takes into account: (i) the estimated delay∆ω caused by
the applied transformation; (ii) the estimated increase inthe
complexity of the logic∆logic (computed using thetriggers
of each output and internal signal; note that a signal’s triggers
are guaranteed to be in the support of this signal); and (iii)
the number of cores eliminated by the transformation,∆cores.
The parametersα1,2,3 ≥ 0 are given by the designer and can be
used to direct the heuristic search towards reducing the delay
inflicted by the transformation (α1 is large compared withα2

and α3) or the estimated complexity of logic (α2 and α3 are
large compared withα1). This cost function is computed using
the unfolding prefix, without synthesising the circuit (see[9]
for more details).

The resolution process involves finding an appropriate trans-
formation for the elimination of cores in the STG unfolding
prefix, as was explained earlier. The following steps are used
to resolve the CSC conflicts:

1) Construct an STG unfolding prefix.
2) Compute the cores and, if there are none, terminate.
3) Choose areas for transformation (the ‘highest peaks’

in the height map corresponding to the overlap of the
maximum number of cores are good candidates).

4) Compute valid transformations for the chosen areas and
sort them according to the cost function; if no valid
transformation is possible then

• change the transformation areas by including the
next highest peak and repeat step 4;

• otherwise manual intervention by the designer is
necessary; the progress might still be possible if the
designer relaxes some I/O constraints, uses timing
assumptions, etc.
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Fig. 7. Weakly synchronised pipelines: the STG (a), its unfolding prefix with
cores, showing transformations resolving the encoding conflicts (b,c) and the
corresponding equations (d,e,f).

5) Select the best according to the cost function transfor-
mation; if it is a signal insertion then the location for
insertion of the counterpart transition is also chosen.

6) Perform the selected transformation and continue with
step 1.

The described framework has been integrated into our tool
CONFRES [12].

IV. CASE STUDIES

In this section, two examples demonstrating the proposed
combined framework for the resolution of encoding conflicts
are discussed. The simulation times are obtained by the analog
simulation using the AMS-0.35µ CMOS technology.

A. Weakly synchronised pipelines

Fig. 7(a) shows an STG modelling two weakly synchronised
pipelines without arbitration [7]. Note that in this STG all
the signals are considered outputs, i.e., the control logicis
designed as a closed circuit. (The inputs are inserted after
the synthesis is completed, by breaking up some outputs
and inserting the environment into the breaks, thus forming
a handshake). Hence, in our simulation we measured the
minimum cycle time, i.e., the time needed to fire all the
transitions once in the maximally concurrent way, rather than
input-to-output delays.

The STG exhibits encoding conflicts resulting in two cores
shown in Fig. 7(b), where two possible concurrency reductions
resolving the CSC conflicts are shown. Both cores can be

eliminated by introducing a causal constraint, eitherz−
1

99K x+
1

or z−
1

99K x+
2 . However, the first reduction delaysx+

1 and addsz
to the triggers ofx1, whereas the second reduction has no
effect on the delay (z− can be executed concurrently with
its predecessor) and on the number of triggers ofx2 (as z+

already triggersx−2 ). Thus the latter reduction is preferable



according to our cost function, and the simulation results are in
good agrement with it: the minimum cycle time for the former
concurrency reduction is 2.5ns, and for the latter one (shown
in Fig. 7(a) by the dashed line) it is 2.3ns. The corresponding
equations for the latter solution are presented in Fig. 7(d).

The cores can also be eliminated by an auxiliary signalcsc.
Phase one of the resolution process inserts a signal transition
somewhere into the highest peak in the height map, which
comprises the eventse8,e10 ande11. For example, in Fig. 7(c)
a signal transitioncsc+ is inserted aftere8 and its counterpart is
inserted outside the cores beforee6, ensuring that the cores are
destroyed. Other valid insertions are possible, e.g., inserting
csc+ before e10 and its counterpart beforee6. Both these
transformations eliminate all the cores, and in both of them
the newly inserted signal has two triggers, but the former
insertion delays three transitions, adds the triggercsc to x1

and replaces the triggerx2 of z with csc, whereas the latter
insertion delays two transitions and adds the triggercsc to
x1 and z. Hence, according to our cost function, the former
solution is slower but has a slightly simple logic, which is
in good agreement with the resulting implementation and
the corresponding simulation results: the equations for the
former implementation (see Fig. 7(e)) have 19 literals and its
the minimum cycle time is 3.5ns, and the equations for the
latter implementation (see Fig. 7(f)) have 20 literals and its
minimum cycle time is 3.2ns.

One can see that the implementations derived by signal
insertion are more complex than the one obtained by concur-
rency reduction. These two implementations also delay signals
z andx1, whereas the one derived using concurrency reduction
does not introduce delays. Additionally, the solution obtained
by concurrency reduction results in a symmetrical STG.

B. A/D converter

The example shown in Fig. 8 is a part of the A/D converter
proposed in [10]. It contains two type I and three type II
cores shown in Fig. 8(a), and the corresponding height map
is shown in Fig. 8(b). The valid transformations are presented
in the tables in Fig. 8(c,d), which also show the total number
of literals in the corresponding equations and the worst-case
input-to-output delays. The equations for most interesting of
these solutions are shown in Fig. 8(e).

The eventse3, e6, e11 ande13 comprise the highest peak, as
each of them belongs to four cores. They can be eliminated by
a forward concurrency reduction, since eventse5 and e9 are
concurrent to the events in the peak and the concurrency starts
in the peak. The first four solutions in the table in Fig. 8(c)
eliminate all the cores in the peak, and the last one eliminates
only one core. Incidentally, the first four solutions eliminate
the remaining core as well, because the corresponding ordering
constraints also act as backward concurrency reductions.

The first solution introduces a large delay (e11 is delayed
by an input evente9) but no additional triggers (in fact, the
number of triggers ofLr is reduced, sinceAr ceases to be its
trigger). As a result, this is a very area-efficient solution—
its literal count is just 11. The simulated worst-case input-to-
output delay for this solution is 1.1ns (Lam+ → Ar− → Lr−).
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inputs: start,Lam,Laf ,Ad; outputs: ready,Lr,Ar; internal: csc

# causal constraint lits delay

1 h(e9) 99K h(e11) 11 1.1ns
2 h(e5) 99K h(e11) 14 1.2ns
3 h(e5) 99K h(e6) 14 1.5ns
4 h(e9) 99K h(e6) 11 1.4ns
5 h(e10) 99K h(e11) n/a n/a

(c) concurrency reductions

# phase 1 phase 2 lits delay

6 ‖e3 to e11 beforee16 16 1.2ns
7 after e3 beforee16 15 1.5ns
8 beforee6 beforee16 16 1.2ns
9 beforee11 beforee16 15 1.3ns
10 after e3 after e9 18 1.5ns
11 after e3 ‖e5 to e16 20 1.6ns

(d) signal insertions

[ready] = Laf
[Lr] = start·Ad ·Ar+

Laf · (Ar +start)
[Ar] = Lam·Laf · (Ar +Ad)
equations for solution 1

[ready] = start· ready+Laf
[Lr] = start·Ad · ready·Ar+

Laf · (Ar + ready)
[Ar] = Lam·Laf · (Ar +Ad)
equations for solution 2

[ready] = Laf+csc
[Lr] = start·Ad ·Ar ·csc+

Laf · (csc+Ar)
[Ar] = Lam·Laf · (Ar +Ad)
[csc] = start·csc+Laf

equations for solution 6

[ready] = csc
[Lr] = Ar · (start·csc·Ad+Laf)
[Ar] = Lam·Laf · (Ar +Ad)+

Laf ·csc
[csc] = start·csc+Laf

equations for solution 7

[ready] = Laf+csc
[Lr] = csc· (start·Ar ·Ad+Laf)
[Ar] = Lam·Laf · (Ar +Ad)
[csc] = start·csc+Laf ·Ar

equations for solution 9

(e) selected equations corresponding to valid transformations

Fig. 8. Top level of the A/D converter.

However, it is somewhat misleading, since it does not take into
account that the introduced causal constraint indirectly delays
Laf− by the input eventstart−, which can be slow. The delay
penalty estimate in out cost function better reflects the real
situation.

The second solution does not delaye11 but introduces an
additional trigger toLr−. As a result, its literal count, 14, is
larger than that for the first solution, but its delay estimate
in the cost function is better. The simulated worst-case input-
to-output delay for this solution is 1.2ns (Lam+ → Ar− →
Lr−). However, it is achieved not where the concurrency was
reduced. In fact, the delays in the pathsLaf+ → ready+ → Lr−

andLaf+ → Ar− → Lr− are 1.0ns.
The third solution delayse6 by e5, and the fourth solution

delayse6 by e5 ande9; moreover, these two solutions introduce
an additional trigger toAr (which already had three triggers),
and thus are inferior according to both our cost function and
the simulation results.



Alternatively, the encoding conflicts can be solved by in-
serting a transition of a new signalcsc into the peak and its
counterpart outside the cores belonging to the peak, preserving
the consistency and ensuring that the cores are destroyed.
Recall that input signal transitions must not be delayed by
newly inserted transitions, i.e., in the peak the transition of
csc must not delaye3 and e13. Then the parts of the prefix
which are concurrent to or in structural conflict with the
inserted transition are faded out, as the consistency wouldbe
violated if the counterpart transition ofcsc is inserted there.
At the same time, one can try to eliminate the remaining core
{e5,e9,e16,e18}. The signal insertion solutions are presented
in the table in Fig. 8(d).

Solution 6 introduces the smallest (among all signal inser-
tions) delay (onlyready− is delayed), and its literal count
is 16. Its worst-case input-to-output delay is 1.2ns (Lam+ →
Ar− → Lr−), but it is achieved not in the branch wherecsc
was inserted; the delays in the pathsstart− → csc− → ready−

andLaf− → csc− → ready− are just 0.7ns.
Solution 7 has the smallest (among all signal insertions) es-

timated logic complexity, but quite a large delay (the insertion
delaysready+, Ar− and ready−). Its literal count is 15 and
the worst-case input-to-output delay is 1.5ns (Laf+ → csc+ →
Ar− → Lr−).

Solution 8 has the literal count 16 and the worst-case input-
to-output delay of 1.2ns, which is as good as the delay of
solution 6. However, unlike the worst-case delay in solution
6, it is achieved in the pathLaf− → csc+ → Ar− → Lr−,
i.e., wherecscwas inserted.

Solutions 10 and 11 are inferior to other solutions in the
table, which is in good agreement with our cost function. How-
ever, the literal count of solution 9 (which is also PETRIFY’s
solution) is 15, which is lower than our cost function suggests
— in fact, it is equal to that of solution 7. This shows that
our cost function is not perfect, since it uses quite a rough
estimate of complexity, not taking the context signals into
account. However, it worked well in the other cases and it
is not trivial to significantly improve it without introducing
a considerable time overhead. The worst-case input-to-output
delay for this solution is 1.3ns (Laf+ → Ar− → csc+ → Lr−).

Note that our combined framework explored quite a large
design space and produced a wide range of solutions, allowing
the designer to exploit the speed/area tradeoff and make an
informed choice about which of them is the most appropriate
for a given application (or allow the tool to chose the trans-
formation using the cost function).

V. CONCLUSIONS AND FUTURE WORK

This paper presents a combined framework for the resolu-
tion of encoding conflicts in STG unfoldings. It allows for
exploring a larger design space and helps the designer to
exploit the area/delay tradeoff, which is crucial in synthesis of
many interface controllers, e.g., in the ‘glue logic’ between IP
cores of SoCs. Encoding conflicts are represented by means
of cores, which are sets of transitions ‘causing’ them. The
advantage of using cores is that only those parts of STGs
which cause encoding conflicts, rather than the complete
list of CSC conflicts, are considered. Since the number of

cores is usually much smaller than the number of encoding
conflicts, this approach reduces the amount of information to
be analysed.

Moreover, a novel validity condition has been proposed to
justify these transformations, which is also of independent
interest. We have developed a sufficient condition for a con-
currency reduction on a general LPN being valid, as well as a
simplified version of this condition for the case of a non-self-
concurrent Petri net [9].

The future work will be focused on the following issues:
• developing an algorithm for efficiently checking the va-

lidity of a concurrency reduction on safe nets;
• improving the cost function;
• performing the transformations directly on the prefix

rather than the STG whenever possible, to reduce the
number of runs of the unfolding algorithm.

Acknowledgements:The authors would like to thank Mark
Josephs for answering our questions concerning the notion of
refinement in [5] and Maciej Koutny, Walter Vogler and the
anonymous reviewers for helpful comments. This research was
supported by the Royal Academy of Engineering/EPSRCpost-
doctoral research fellowship EP/C53400X/1 (DAVAC ) and the
EPSRCgrant GR/S12036 (STELLA ).

REFERENCES

[1] J. Carmona, J. Cortadella and E. Pastor: A Structural Encoding Technique
for the Synthesis of Asynchronous Circuits.Fund. Inf.50(2) (2002) 135–
154.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakov-
lev: Logic Synthesis of Asynchronous Controllers and Interfaces. Sprin-
ger Verlag (2002).

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakov-
lev: Automatic Handshake Expansion and Reshuffling Using Concur-
rency Reduction. Proc. ofHWPN’98, (1998) 86–110.

[4] D. L. Dill: Trace Theory for Automatic Heirarchical Verification of
Speed-Independent Circuits. PhD Thesis 15213, CMU (1987).

[5] M. Josephs: An Analysis of Determinacy Using a Trace-Theoretic Model
of Asynchronous Circuits. Proc. ofASYNC’03, IEEE Comp. Soc. Press
(2003) 121–131.

[6] V. Khomenko: Model Checking Based on Prefixes of Petri Net Unfol-
dings. PhD Thesis, School of Comp. Sci., Univ. of Newcastle (2003).

[7] V. Khomenko, M. Koutny and A. Yakovlev: Detecting State Coding Con-
flicts in STG Unfoldings Using SAT.Fund. Inf.62(2) (2004) 1–21.

[8] V. Khomenko, M. Koutny and A. Yakovlev: Logic Synthesis for Asyn-
chronous Circuits Based on Petri Net Unfoldings and Incremental SAT.
Fund. Inf.70(1-2) (2006) 49–73.

[9] V. Khomenko, A. Madalinski and A. Yakovlev: Resolution ofEncoding
Conflicts by Signal Insertion and Concurrency Reduction Based on STG
Unfoldings. Tech. Rep. CS-TR-858, Univ. of Newcastle (2004).

[10] D. J. Kinniment, B. Gao, A. Yakovlev and F. Xia: Towards asynchronous
A-D conversion. Proc. ofASYNC’00, IEEE Comp. Soc. Press (2000)
206–215.

[11] B. Lin, C. Ykman-Couvreur and P. Vanbekbergen: A GeneralState
Graph Transformation Framework for Asynchronous Synthesis.Proc.
of EURO-DAC’94, IEEE Comp. Soc. Press (1994) 448–453.

[12] A. Madalinski, A. Bystrov, V. Khomenko and A. Yakovlev: Visualization
and Resolution of Coding Conflicts in Asynchronous Circuit Design.IEE
Proceedings: Computers & Digital Techniques150(5) (2003) 285–293.

[13] V. Pratt: Modelling Concurrency with Partial Orders.International Jour-
nal of Parallel Programming15(1) (1986) 33–71.

[14] H. Saito, A. Kondratyev, J. Cortadella, L. Lavagno and A. Yakovlev:
What Is the Cost of Delay Insensitivity?. Proc. ofCAD’99, IEEE Comp.
Soc. Press (1999) 316–323.
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