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Abstract— A combined framework for the resolution of en- by successive firings of transition, under the following as-
coding conflicts in STG unfoldings is presented, which extends sumptions: (i) for each new firing a fresh transition (called
previous work by incorporating concurrency reduction in addi- 5 eveny is generated; (i) for each newly produced token a
tion to signal insertion. Furthermore, a nqvel validity condition fresh ol led diti . ted. Th foldi
is proposed to justify these transformations. The method has iresh place (called @on "00_ IS generated. The uniolding
been implemented in the @NFRES tool and applied to a IS infinite whenever™ has an infinite run; however, If has
number of case studies. The experimental results show that the finitely many reachable states then the unfolding eventuall
combingd framework enlarges the design space and allows better starts to repeat itself and can be truncated (by identifgisgt
exploration of the speed/area tradeoff. of cut-off events) without loss of information, yielding a finite
and complete prefix. Fig. 1(c) shows a finite and complete
unfolding prefix (with the only cut-off event depicted as a
double box) of the STG shown in Fig. 1(a).

IGNAL Transition Graphs, or STGs [2], are widely used Efficient algorithms exist for building such prefixes [6],

or specifying the behaviour of asynchronous contrabhich ensure that the number of non-cut-off events in a
circuits. They are interpreted Petri nets in which transgi complete prefix can never exceed the number of reachable
are labelled with the rising and falling edges of circuitrgits. states of . However, complete prefixes are often exponentially
Synthesis based on STGs involves: (a) checking sufficiesthaller than the corresponding state graphs, especiatly fo
conditions for the implementability of the STG by a logicighly concurrent Petri nets, because they represent concu
circuit; (b) modifying, if necessary, the initial STG to neak rency directly rather than by multidimensional ‘diamonds’
implementable; and (c) finding appropriate Boolean neatiest it is done in state graphs. For example, if the original Reti
functions for non-input signals. consists of 100 transitions which can fire once in paralled, t

A commonly used tool, PTRIFY [2], performs all these state graph will be a 100-dimensional hypercube witA°2
steps automatically, after first constructing the readhgbi vertices, whereas the complete prefix will coincide with the
graph of the initial STG specification. To gain efficiency, ihet itself.
uses symbolic (BDD-based) techniques to represent thesSTG’Since practical STGs usually exhibit a lot of concurrency,
reachable state space. While such an approach is convenint have rather few choice points, their unfolding prefixes
for completely automatic synthesis, it has several drakdlacare often exponentially smaller than the correspondintg sta
state graphs represented explicitly or in the form of BDDgraphs; in fact, in many of the experiments conducted in [6],
are hard to visualise due to their large sizes and the tegdefif] they were just slightly bigger then the original STGs
to obscure causal relationships and concurrency between fiemselves. Therefore, unfolding prefixes are well-sufted
events, which hampers efficient interaction with the usdroth visualisation of an STG’s behaviour and alleviating th
Moreover, the combinatorial explosion of the state space dtate space explosion problem.

a serious issue for highly concurrent STGs, putting prattic In [6], [7] the unfolding technique was applied to the im-
bounds on the size of control circuits that can be synthésisplementability analysis in step (a), viz. checking the Ctete
Thus RETRIFY can fail to synthesise a circuit, especially ifState Coding (CSC) condition [2], which requires detecting
the STG models are not constructed by a human desig®@3C conflicts between reachable states of an STG. A CSC
but rather generated automatically from high-level haméwaconflict arises when semantically different reachableestat
descriptions. of an STG have the same binary encoding. Fig. 1(b) shows

Where REETRIFY fails, other tools based on alternative techthe state graph of the STG in Fig. 1(a) with a CSC conflict
nigques, and in particular those employing Petri net unfagjdj between stateM; and M.
may succeed. Ainite and complete unfolding prefixf an In [12] the unfolding technique was applied to step (b),
STGT is a finite acyclic net which implicitly represents allin particular for enforcing the CSC condition (i.e., for the
the reachable states 0f together with transitions enabled atresolution of CSC conflicts), which is a necessary condition
those states. Intuitively, it can be obtained througfoldingl”, for the implementability of an STG as a circuit. There a

I. INTRODUCTION
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Fig. 1. VME bus controller: the STG for the read cycle (a), state SPace.

graph showing a CSC conflict (b), its unfolding prefix with twrresponding  This paper extends the framework for the visualisation

conflict core (c), and the equations for signal insertionddyl concurrency ; ; ; ;

reduction (e). The signal order in binary encodingsls; dtack, Ids, Idtack,.d ?‘nd reso'ytlon of enCOdmg confhct.s n [12] (Step (b)) by

incorporating the concurrency reduction transformatiehi¢h
can eliminate encoding conflicts by removing some of the

. . ' STG’s reachable states) in addition to signal insertions Th
framework was developed for an interactive refinement E®ce

. N . . allows one to explore a larger design space.
based on visualisation of conflictores,i.e., sets of events b 9 gn sp

. . . . Another important contribution of this paper is a novel
causing encoding conflicts, which are represented at the ley .. o o . .
o ; . notion of validity, which is used to justify STG transforritats
of finite and complete prefixes of STG unfoldings.

) ) i used to solve encoding conflicts. We believe it better reflect
_The work in [8] addresses step (c), using unfolding teclise iy ition than other existing notions. However, thigion
niques to derive equations for logic gates of the Circuily mch more general and is also of independent interest: it i
The results in [6]-[8], [12] form a complete design flow Ok, ated for labelled Petri nets (of which STGs being a spe
complex-gate synthesis of asynchronous circuits based @1 Sgj) case) and arbitrary transformations preserving theatet
unfoldings rather than state graphs. of the system. For example, it can be applied to justifying th
The resolution of encoding conflicts by signal insertion iéoncurrency increasing transformation used in [14] to ednv
illustrated in Fig. 1(c), where the new signedcis helping gpeed-independent circuits into delay-insensitive ones.
to distinguish between the states involved in the encodingThis paper aims at presenting these results in a relatively

conflict. (Intuitively, insertion of signals introducesditional jnformal way. More formal presentation can be found in
memory into the circuit, helping to trace the current sjat&echnical report [9].

It was inserted concurrently to existing transitions inesrtb
minimise the latency, and in such a way that the ‘external’
behaviour of the STG does not change. Alternatively, the
encoding conflict can be resolved by reducing the concuyrenc For the sake of generality, we discuss arbitrary labelled Pe
betweenlds~ and dtack™ (as shown by the dashed arc imets (LPNs) (STGs being a special kind of them). That is ether
Fig. 1(c)) so that statél; is removed from the reachability are disjoint sets of input¢ and outputsO, and a functior?
graph shown in Fig. 1(b), which in turn resolves the encodirf§apping the transitions of the Petri net to the setouU {1},
conflict. The logic equations corresponding to these smhsti Wheret ¢ 71U O is asilent action(e.g., internal signals in an
are shown in Fig. 1(d,e). STG), which is not observable by the environment. In figures,

One can see that in this example the equations for tHé€ will denote inputs by or i, and outputs by or or. We
signal insertion are more complex then those for concuyren@ssume that the transformation does not change the inpdts an
reduction. It is often the case that concurrency reducti@itputs of the system, and we will denote yand Y’ the
produces smaller circuits, which may also be faster due @ginal and transformed LPNs, respectively.
simplification of the gates. Thus, even though the systemGiven an LPNY; a set of its transitions) 7 0, its transition
manifests less concurrency, it might be actually faster uet ¢ U andn € N, aconcurrency reduction U-» t is defined as
the events taking less time to fire. the transformation adding t@ a new placep, which initially

The common belief that concurrency is crucial for perfofdasn tokens, the arcu, p) for each transitioru e U and the
mance is questionable. In a highly concurrent specificatic®f€ (P;t), as shown in Fig. 2. We will writé) --» t instead of
almost all combinations of signal values are reachable, add--»t andu-"» t instead of{u} -"5t. Note that concurrency
thus Boolean minimisers cannot efficiently exploit the ‘donreduction cannot add new behaviour to the system — it can
care’ values, which results in large and slow gates in the finanly restrict it.

Il. VALID TRANSFORMATIONS
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Fig. 2. Concurrency reductiod - t. In this section we discuss in the described framework the

notions of validity proposed in [3], [4], [15] and present@n
_ o _ . o . one, which, in our opinion, better reflects the intuition diat
The notion of validity for signal insertion is straightfor-3 valid transformation is. Since the first and the last aspect

ward — one can justify such a transformation in terms Gfre well-studied [2], we will concentrate on the remaining t
weak bisimulation, which is well-studied. For a concuriencaspects, viz. conformation and liveness.

reduction (or transformations in general), the situate&mbre
difficult: the original and transformed systems are typicabt A. Overview of previous validity notions
even language-equivalent; deadlocks can disappear teegg., . . . .

deadlocks in Dining Philosophers can be eliminated by fix- The I|venes_s restrictions imposed on transformfltlons]n [3
ing the order in which forks are taken); deadlocks can geauire that () no events become dead, and (i) no (new)

introduced; transitions can become dead; even the langu ggdlopk states appear. As the example in Fig. 3 shows, these
inclusion may not hold (some transformations, e.g., cdingr restrictions are not sufficient to guarantee the correstothe

a speed-independent circuit into a delay-insensitive da, | LnOd'f'ed LPN. Inde;jec:], the enfa(lj)“ngl realorr: of outpl:]‘tas no;
can increase the concurrency of inputs, which in textends °SCOMe empty, and the set of deadlocks has not changed, even

the language). For the sake of generality, we discuss arjaitrthougfh the transforma}tlonl IS clearlydmvagld: 'r? the 0.”@'?]
transformations (not necessarily concurrency reductions speC|f|cat|o(;1, OUU;UD IS always produce 'ﬁW ereas in the
signal insertions). Intuitively, there are four aspectstealid transtormed one t e_epwronment can preve bm occurring
transformation: by repeatedly choosing rather thenis.

I/O interface preservation The transformation must pre- In [4] & notion ofconformationwas introduced. However, it
Pres o PTe" cannot express the liveness conditions, e.g., the UnivBxsa
serve the interface between the circuit and the e

) . . " Rl'othing module, accepting all inputs but not producing any
vironment. In particular, no input transition can be f ificati ith th lohab
‘delayed’ by newly inserted signals or ordering Con9UtpUts' conforms to any spect |c§1t|on with t ©same a phabe
straints thus one cannot require the circuit to do anythinghe other

Conformation Bounds the behaviour from above, i.e. repotion int_roduced m [.4] ?s_based on the Qxistgnce of ayvignin
quires that the transformation introduces n(1) ‘Wr’ongstrategy n a c_ertaln |nf|n|_te_game, and 'S qune_ complicated
behaviour. Note that certain extensions of behavi- I.n [15] & notion of gval.ld mple_mentgﬂowyas mtroduped,

: which can be used to justify the signal insertion transfdioma

our are valid, e.g., two inputs in sequence MaY\d takes care of liveness. Moreover, it allows the implemen

gigi?;gtw concurrently [4], [14], extending th‘laation to have additional inputs with arbitrary behaviooitd-

Liveness Bounds the behaviour from below, i.e requirewmg’ becau_se the implemerjt_atio_n will \_Nork in an environten
that no ‘interesting’ behaviour is com’pl.et.ély elimi-ﬁqat’ acco_rd|_ng to Fhe specification, will never producc_asme
nated by the transformation inputs. This in partlcullar gllows more concurrency fo.r itgu

Technical restrictions It might hapben that a valid trans—and can be used to justify th.e concurrency-increasing {rans

rmation of [14]. However, this feature is not complemehte

LOE:Z:)?SSQ ulrfirr?tllue;gr?f;ligti?lte)ec?aeucsagii s?riesc')-[h é/rallowing to decrease the concurrency for outputs, and thu
. '€ this notion cannot be used to justify the concurrency redoct
technical restriction. For example, one usually re;

quires the transformation to preserve the boundeéansformation.
) N ti f refi t int , which k
ness and speed-independence of the STG [2], [3] n [5] a notion of refinement was introduced, which works

In the examole below. the original LPN is bound %ell for deterministicprocesses, i.e., CSP processes without
€ €xampie below, the origina S DOUNCEG, . hon-deterministic choice operator. Moreover, a hy-

('E factl,) s?r:e),dwr;]er(;aas thg l((j:oncurrekr:cy rded duitl'joéhd operator combining parallel composition and hidingswa
Z (e)\r,:lThoy he't al:?er?a %rcry_le §|':n unbounde roposed, which preserves determinacy. However, for non-
v ugh 1ts viour s valid. deterministic circuits (e.g., those containing arbitexrgoten-
@. tially interesting behaviour can be lost due to the follagvin
[ A » O2
. effect: the process; Mo, (which can be obtained by hiding
some of the signals in a circuit with arbitration) can be mfin



to oy, i.e., a branch of arbitration can be refined away. Thougjuarantees that the expected inputs eventually arrivettarsd
the observer interacting witty is unable to tell that he is not the concurrency reduction--+ o cannot be declared invalid
interacting witho; Moy, this may be not what the designefjust because the inputfails to arrive and so the outpuat is
intended. (In [16] the issue of static vs. dynamic detersmmi never produced.
is raised in the context of delay-insensitive CSP procegses Intuitively, abgm) and abé) are bound by this relation
In this paper we propose a relatively simple bisimulationff abs(1) can be transformed into afpg) in two steps (see
style notion which takes the liveness into account and allowhe picture below): (i) the ordering constraints for inpate
one to justify both reduction of concurrency for outputs anetlaxed (yielding a new ordex”, which is a relaxation ok);
increase of concurrency for inputs, as well as signal ifmert (i) new ordering constraints for outputs are added, yieddi
abgt) (thus, <" is also a relaxation oK’).

B. Our notion of validity ‘abs(n) = (S.<,0) ‘ ‘abs(nl) =(S,<,0) ‘
Since one of the transformations we are discussing is

concurrency reduction, it is convenient to use a partiakord step 13, ¢ U7 step 2

rather than interleaving semantics, and our discussioh wil M

be based omprocesseswhich are a partial order analog of e

traces. The main difference between the processes and tracgyefinition 1: Let rand 1t be processes of andY’, respec-
is that in the former the events are ordered only partiaIIMveW abgm) = (S, <,¢) and abér) = (S, <", ¢). V\;e define

and thus one process can correspond to several traces, WI&'&QT{) >4 abgT) if there exist a labelled partially ordered set
can be obtained from it by linearisation of the correspogdinyg: _» ¢") and one-to-one mappinds abgm) — (S, <", ¢")

partial order. An LPN generates a set of processes much i dy: abgrt) — (S',<",¢") preserving the labels and such
it generates a language. T

A process can be represented as a (perhaps infinite) Iabeltlr(]a%t'
acyclic net, with places having at most one incoming and *
one outgoing arc. We will view processes as subnets of the®
unfolding (and the unfolding can be considered as an overlay
of processes). Hence the nodes of a process are not anonymous
entities, but correspond to the nodes of the unfolding. We wi
define byC the prefix relation on processes. Note that the .
fact that the nodes of a process have identities matters,ife.g E\

TC 17 thenT is a continuation oft rather than some unrelated P E

to Tt process whose initial part is isomorphicToA process is
maximalif it is maximal w.r.t.C, i.e., if it cannot be extended

by new events. A maximal process is either infinite (though ® if € is an input event and’ € DP_/(€) then Y(f’) €
not every infinite process is maximal) or leads to a deadlock. DP<+W(€') (in step 2, no nevdirect ordering constraints

<"=¢(=<)NYP(<) (X" is a relaxation of< and <’);

if e is an output event and € DP<(e) then ¢(f) €
DP.~(¢(e)) (in step 1, existinglirect ordering constraints

for outputs are preserved, and existing indirect ones can
become direct, e.g., as in the picture below);

If Ttis a process, we denote by &fisthe abstractionof i, for inputs can appear, and existing ones can become
i.e., the labelled partially ordered s@ <, /) (with the labels indirect, e.g., as in the picture below).
in 7U O) obtained from the nom-labelled events oft and
the appropriately restricted causal ordering of the evehts
The elements of alfg), unlike the nodes oft, are considered E > E
anonymous. (Labelled partially ordered sets are esskntfie
pomsetof [13].) O

Let (S <) be a partially ordered set argE S. An s € Sis Example 1: The following hold:
a direct predecessoof sif s < s and there is n@’ € Ssuch
thats < s’ <'s. We will denote byDP~(s) the set of direct
predecessors of ase S.

Given processes of Y and 1 of Y, we define a relation
between their abstractions, &f1s and abért), which holds
iff in T the inputs are no less concurrent and the outputs
are no more concurrent than i That is, the transformation

is allowed, on one hand, to relax the assumptions about the e e
l>;‘ -1 D;‘ -1
o] o]

01

)] : . o)
SEai % o
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order in which the environment will produce input signals,
and, on the other hand, to restrict the order in which outputs
are produced. Thus the modified LPN will conform (in the
sense of [4]) to the original specification.

The definition below assumes tlveeak fairnessi.e., that
a transition cannot remain enabled forever: it must eithrer fi fol fo
or be disabled by another transition firing. In particuldist E E E



Note that <« is an order (if we do not distinguish

order-isomorphic partially ordered sets). In what foII(;)ws.TO

slightly abusing the notation, we will writet4 ' instead
of abgm) >« abg).

Definition 2 (Validity): Y’ is a valid realisation of Y, de-
noted Y — Y, if there is a relationd between the finite
processes ol and Y’ such thatmp O 13 (wheremy and 1,
are the empty processes fandY’, respectively), and for all
finite processest and ' such thatrt O 17:

o TI4 Tl

« For all maximal processeBl’ J 17, and for all finite
processest I 1 such thatTd C ', there exist finite
processest J 7 andTtd rtsuch thafit T N’ andTtO 7.

« For all maximal processdd 1 1, and for all finite pro-
cessedgid msuch thafftC I, there exist finite processes,
TidTand™ 3 1 such thatmC M andTTO 7.

Intuitively, every activity ofY is eventuallyperformed byY’

(up to the >« relation) and cannot be pre-empted due to

choices, and vice versa, i.eY’ and Y simulate each other
with a finite delay. Note that- is a pre-order, i.e.Y —o

Y and a sequence of two valid transformations is a valfeP

transformation.

In this definition, considering maximal processes is essefl- X . -
.states having the same binary encodings. The latter makes

tial. Indeed, according to this notion the transformation i

Fig. 3 is invalid, since in the original LPN no extension of

the process comprising an instancecaofvithin the maximal
process comprising an infinite sequence of instanceés afid
an instance o has a corresponding (in terms of the«
relation) process in the transformed LPN, which would ha
to fire io before it is able to firep.

Example 2:The following hold:

(o)

show why the relations- and—~1 do not hold in the last
case we proceed as follows. Suppose one of these relations
holds. Then the empty processes of the two systems must
be bound by the correspondirig relation. Since the process
comprised of the leftmost event of the second system careot b
extended (note that the nodes of the process have ideptities
must be bound by relation to the process of the first system
comprising one instance @t However, the latter process has
extensions which cannot be matched (in the sense-af
or >« 1) by the former one (since it has no extensions), a
contradiction. %

In the full version of this paper [9], we propose criteria
which can be applied to check the validity of a concurrency
reduction.

Ill. RESOLUTION OF ENCODING CONFLICTS

At the level of unfoldings, encoding conflicts can be
compactly represented using conflicbres [12]. Encoding
nflicts can be resolved by either adding auxiliary sigioals

by concurrency reduction. The former approach was studied
[12], where additional signals are employed to disamaigu

ome of the states unreachable and thus can eliminate agcodi
conflicts.

Due to its structural properties (such as acyclicity), the
reachable states of an STG can be represented csifigura-

Jionsof its unfolding. A configuratior€ is a downward-closed

set of events (being downward-closed means thei€ and f

is a causal predecessorethen f € C) without structural con-
flicts (i.e., for all distinct eventg, f € C, there is no condition

c in the unfolding such that the ar¢s,e) and(c, f) are in the
unfolding). For example, in Fig. 8(a)ep,e1,e2,€4,€7,€8} is

a configuration whereagey, e1,€,€3,e4} and{ep, e} are not
(the former includes a structural conflict between the event
e and e3, while the latter does not include;, a causal
predecessor o). Intuitively, a configuration is a partial-
order execution, i.e., an execution where the order of firing
of concurrent events is not important; e.g., the configura-
tion {ep,e1,e2,€4,€7,€8} corresponds to two totally ordered
executionseye; 646763 andepe; e,646g€7. Configurations are
somewhat similar to processes, the difference being that th
former are sets of events of the unfolding while the latter ar
nets.

A. Encoding conflicts in a prefix

A CSC conflict can be represented as an unordecedilict
pair of configurations(C;,C;) whose final states are in CSC



conflict, as shown if Fig. 1(c). In [6], [7] two techniques - ™ ><

for detecting CSC conflicts (based, respectively, on intege e i/cscf
programming and SAT) were proposed. Essentially, theywallo 1 fork () ehoice
for f(.aff|0|ently finding such conflict pairs in STG unfolding P _‘/ _<
prefixes. - . . _: csc\l\il SN

The set of all conflict pairs may be quite large, e.g., due esot i i
to the following ‘propagation’ effect: ifC; and C, can be (S \/ \
expanded by the same everthen (C, U{e},C,U{e}) is also A, == }:SC\_ — %

a conflict pair (unless these two configurations enable thesa ;

set of output and internal signals). Therefore, it is désbérao oL L

reduce the number of pairs needed to be considered, e.g., as -< -_< :

follows. A conflict pair(Cy,Cy) is calledconcurrentif C; € Cy, oo = L, ne gy Aymene

C, ¢ C, andC,UC; is a configuration. Below is a slightly L = Jon }<

modified version of a proposition proven in [6]: ; osem oS
Proposition 1: Let (C;,C;) be a concurrent CSC conflict (@) sequential  (b) concurrent (c) structural conflict

pair. ThenC =C;NC; is such that eithefC,Cy) or (C,Cp) is  Fig. 4. Strategies for core elimination by signal insertion.
a CSC conflict pair.
Thus concurrent conflict pairs are ‘redundant’ and should
not be considered. The remaining conflict pairs can be elasgkploitation of core overlaps is implemented by means of a
fied as follows: height mapshowing the quantitative distribution of the cores
Conflict pairs of type | are such that eithe€; c C, or (see Fig. 8(b)). Each event in the prefix is assignedlatude,
C, C C1 (Fig. 1(c) illustrates this type of CSC con-i-€., the number of cores it belongs to. (The analogy with
flicts). a topographical map showing the altitudes may be helpful
Conflict pairs of type Il are such tha€;\C, # 0 # C,\Cy here.) ‘Peaks’ with the highest altitude are good candglate
and there exist/ € C;\ C, and€’ € C,\ C; such that for insertion, since they correspond to the intersection of
€ ande’ are in structural conflict (Fig. 6(c) illustratesmaximum number of cores.
this type of CSC conflicts).
Definition 3 (Core): Let (C{,C;) be a conflict pair of con- B. Core elimination by signal insertion

figurations. The correspondimgpmplementary ses definedas A framework for visualisation and manual resolution of
CS =C1AC,, whereA denotes the symmetric set differencegncqging conflicts was presented in [12], where cores were
CS is acore if it cannot be represented as the union Ofjiminated by signal insertion. By introducing an additibn
several disjoint complementary sets. A complementarysetihtemm signal and insertion of its transition, sesc’, into

of type I/ll if the corresponding conflict pair is of type VIl {he core one can destroy it eliminating thus the correspandi
respectively. _ 9 encoding conflicts. To preserve the consistency of the STG,
For example, the core corresponding to the conflict pair show,q ansition’s counterpadsc™ must also be insertegutside

in Fig. 1(c) is {e4,...,€s, €10} (note that for a conflict pair yq core in such a way that it is neither concurrent to nor
(C1,Cz) of type I, such thatC, C Cp, the corresponding i, gictural conflict withcsct. Another restriction is that
complementary set Is S'mplgzz\cl)' and th_e COre COIES- an inserted signal transitions must not trigger an inpunaig
ponding to the conflict paif{es, &, &}, {€2}) in Fig. 6(C) s ransition (the reason is that this would impose constsaomt

(€1, €2, €4, 6} the environment which were not present in the original STG,
One can show that every complementary gt can be making it ‘wait’ for the newly inserted signal).

partitioned intcCy \ G andC, \Cy, where(Cy,Cz) is a conflict e Fig. 1(c) can be eliminated by inserting a new
pair corresponding .t@‘s' Moreoyer, ifCS is of type | then signal, csc”, somewhere in the core, e.g., concurrentlyeso
one of these parts is empty, while the other(is itself. An nd es betweene, and e, and by inserting its complement

important property of complementary sets is that for ea tside the core. e.q.. concurrentl betweenes and
signalz € Z, the differences between the numberszbf and g\l + €G- yen e C12-
H

~ labellod : " i th w . q _?te that concurrent insertion of these two transitionsicds
z —labelled events are the same in these two parts (and are increase in the latency of the circuit, where each triansit

€S is_ Of. type 1). This suggests that a Complementary set CAlassumed to contribute a unit delay.) After transferrinig t
be eliminated, e.g., by introduction of a new internal SIgn@ignal into the STG, it satisfies the CSC property.

anq {nsertlon O_f Its Fran§|tlon '”t,‘? this set, or by ‘dragyjl.an The elimination of encoding conflicts by signal insertion
existing event into it using additional ordering consttsjras ¢ schematically illustrated in Fig. 4, which representicgp

thesg would violate the stated property. ___cases in STG specifications [12].
It is often the case that cores overlap. In order to minimise

the number of performed transformations, and thus the area o )

and latency of the circuit, it is advantageous to performhsu&: Core elimination by concurrency reduction

a transformation that as many cores as possible are eliedinat Concurrency reduction removes some of the reachable states
by it. That is, a transformation should be performed in thef the STG and thus can be used for the resolution of encoding
intersection of several corewhenever possible. In [12] the conflicts. The elimination of conflict cores by concurrency
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Fig. 5. Core elimination by concurrency reduction.

reduction involves the introduction of additional orderin e yJa+ eN bt/
constraints, which fix some order of execution. In an STG,
a fork transition defines the starting point of concurrencyg a gf Syct
a join transition defines its ending point. Existing signeds
be used to disambiguate the conflicting states in a core by 1a=| S yb-/l
delaying the starting point or bringing forward the ending .
point of concurrency. If there is an event concurrent to the Ly "EC_
core, and a starting or ending point of concurrency is in o
. . 10 d_
the core, then this event can be forced into the core by an =
additional ordering constraint, thus destroying it. Foamaple, inputs: b,d: outputs: a,c; inputs: a,b.f: outputs: c,d,e
in Fig. 1(c),eq is concurrent to some of the events in the core,  forward reduction: backward reductions:
and the starting point of concurrency is in the core, so the df -—>a {at,ct} o d?; {che7} -—>d?
concurrency reduction shown by the dashed line in this figure © ()

can be used to eliminate the core by ‘draggiagjinto it. Two
kinds of concurrency reduction based transformations doe ¢ Fi9- 6. Elimination of type I (a,b) and type Il (c.d) cores.
elimination are described below (wherés the mapping from
the nodes of the prefix to the nodes of the STG). succeedst and e~ succeeds™. This ‘drags’ b™ into the
Forward concurrency reduction illustrated in Fig. 5(a) core, destroying it. Note that is an input and thus cannot
performs the concurrency reductitEy ) _n h(g) be delayed, and so the concurrency reductibns--» f+
in the STG, whereEy is a maximal (w.r.t.C) set and b*™ --» f~ would be invalid. The backward concurrency
of events outside the core which are in structurgeductionse’ --» a~ and f* --» a~ can also be applied to
conflict with each other and concurrent go— an €liminate the conflict core, becauae precedes™, and both
event in the core. It is assumed thais in the core € and f+ are in the core and precede. Either of these
and either precedes or is concurrent tay, and for reductions ‘dragsa™ into the core, destroying it.
exactly one event € Ey, e precedesf. In Fig. 6(b), d* is concurrent to events in the core and
Backward concurrency reduction illustrated in Fig. 5(b) precedes™, an event in the core. The only event in the core
works in a similar way, but the concurrency reductiomhich precedes or is concurrentco is a*. However,at --»
h(Ey) _n, h(f) is performed. It is assumed thaiis d™ is an invalid transformation, which introduces a deadlock.
in the core,f is an event outside the core such that (Note that this transformation is ruled out by the maxinyalit
precedes, Ey is a maximal (w.r.t.C) set of events requirement in the definition of a backward concurrency re-
which are in structural conflict with each other andluction.) The forward concurrency reductiga®, b} --» d*
concurrent tof, such that exactly one evegt Ey is has been used instead, sirtwe is in structural conflict with

in the core, andy either precedes or is concurrent @' and concurrent tal*.

toe Fig. 6(c,d) show the elimination of type Il cores. A forward
In both cases the core is destroyed by additional orderigncurrency reduction is illustrated in Fig. 6(c). An insta
constraints ‘draggingf into the core. of d* is concurrent to the core and succeads an event in

These two rules are illustrated by the examples in Fig. #1e core, and therefore it can be used for a forward reduction
where they are applied to cores of types | (parts (a,b) &he only possible concurrency reductionds --» a~, since
this figure) and Il (parts (c,d) of this figure). In Fig. 6(ap’ is an input and thus cannot be delayed.
instances ob' anda~ are concurrent to the core. The forward The backward concurrency reduction technique is illusttat
concurrency reductiob®™ --» e~ can be applied, becaude¢ in Fig. 6(d), whered* is concurrent toa™ and e’ in the



core and precedeb™ in the core. The only events in the
core which either precede or are concurrentbto are a* =y

and e™, and either of them can be used to eliminate thy =
core. However, both reductions™ --» d* and et --» d*
are invalid, since they introduce deadlocks. (Again, these

currency reductlons eliminating the cofer*,c*} --»d* and
{ct,e"} --»d*. Note that the reductiongat,b*/1} --» d*
and{b*/1,e*} --» d* do not eliminate the core, becausé
is ‘dragged’ into both branches of the core, and so the net,,

@

Ccsc CSC

LONN)

. [x1] =Xz~ xi] =%z~
=X X2] = X2+ (Z+ €S0 + X Xp] = X2+ (Z+ €S0 + X
sum of signals in these two branches remains equal. (And OulK] = 2- (x1 +x2) + XX bﬂ izt %yﬂ — v 9t
backward concurrency reduction rule does not allow to usd yi| = ¥z vy Yel=YI (242 4Y2 2 o = Vi (242 422
YZ] Y1-(Y2+2)+Y2-Z 7= z.y,+csc (2 =z y2+x2-TSC
these two transformations, since only one event from the setiZ=yz:(z+x2)+X2-2 [csg=csc (yz+2)+%  [csd = csC (Va3 +2) + %3
Ey is allowed to be in the core.) @ © 0

outputs: x1,%,Y1,Y2,2 internal: csc

D. Implementatlon Fig. 7. Weakly synchronised pipelines: the STG (a), its Ldifig prefix with
In our framework encod|ng conflicts can be eliminated b‘y)res showing transformations resolving the encoding ict&flb,c) and the
orresponding equations (d,e,f).
the introduction of auxiliary signals and concurrency m@edu
tion. A heuristic cost functionis applied to select the best
transformation for the resolution of encoding conflictshéis

5) Select the best according to the cost function transfor-
the form

mation; if it is a signal insertion then the location for
insertion of the counterpart transition is also chosen.
6) Perform the selected transformation and continue with
and takes into account: (i) the estimated detay caused by step 1.
the applied transformation; (ii) the estimated increaséh#n The described framework has been integrated into our tool
complexity of the logicAlogic (computed using thériggers CoNnFREs [12].
of each output and internal signal; note that a signal’g#rg
are guaranteed to be in the support of this signal); and (jii) IV. CASE STUDIES
the number of cores eliminated by the transformatitecgres . . :
The parameters; 23 > 0 are givenyby the designer and can be In this section, two examples demonstrating the proposed

used to direct the heuristic search towards reducing trm/degcr)emgi'snfudsge%m_?_\(]vgr;rLOJIQEEn“;‘:’:éi“;ne thear;ﬁgg'gg t?]c:]ﬂlri:lls
inflicted by the transformationog is large compared witl ' yheg

and a3) or the estimated complexity of logi@¢ andas are simulation using the AMS-0.356CMOS technology.
large compared witk;). This cost function is computed using
the unfolding prefix, without synthesising the circuit (§6¢ A. Weakly synchronised pipelines
for more details). Fig. 7(a) shows an STG modelling two weakly synchronised
The resolution process involves finding an appropriatestrarpipelines without arbitration [7]. Note that in this STG all
formation for the elimination of cores in the STG unfoldinghe signals are considered outputs, i.e., the control ligjic
prefix, as was explained earlier. The following steps arel usdesigned as a closed circuit. (The inputs are inserted after
to resolve the CSC conflicts: the synthesis is completed, by breaking up some outputs
1) Construct an STG unfolding prefix. and inserting the environment into the breaks, thus forming
2) Compute the cores and, if there are none, terminate.2 handshake). Hence, in our simulation we measured the
3) Choose areas for transformation (the ‘highest peak®nimum cycle timei.e., the time needed to fire all the
in the height map corresponding to the overlap of tH&ansitions once in the maximally concurrent way, rath@nth
maximum number of cores are good candidates).  input-to-output delays.
4) Compute valid transformations for the chosen areas and’he STG exhibits encoding conflicts resulting in two cores
sort them according to the cost function; if no valigshown in Fig. 7(b), where two possible concurrency redustio

costZ o - Aw-+ 0 - Alogic — a3 - Acores

transformation is possible then resolving the CSC conflicts are shown. Both cores can be
« change the transformation areas by including thdiminated by introducing a causal constraint, entrer —>Xl
next highest peak and repeat step 4; orz- -+»x. However, the first reduction delayg and adds

« otherwise manual intervention by the designer i% the triggers ofx;, whereas the second reduction has no
necessary; the progress might still be possible if théfect on the delayz  can be executed concurrently with
designer_ relaxes some /O constraints, uses timifg predecessor) and on the number of triggerscofas z*
assumptions, etc. already triggersx, ). Thus the latter reduction is preferable



according to our cost function, and the simulation resuktsa
good agrement with it: the minimum cycle time for the former
concurrency reduction is 2.5ns, and for the latter one (show
in Fig. 7(a) by the dashed line) it is 2.3ns. The correspandin
equations for the latter solution are presented in Fig..7(d)
The cores can also be eliminated by an auxiliary sigsal
Phase one of the resolution process inserts a signal fansit
somewhere into the highest peak in the height map, whig
comprises the eventg, e;p andep;. For example, in Fig. 7(c)
a signal transitiowsc™ is inserted afteeg and its counterpart is
inserted outside the cores befag ensuring that the cores are
destroyed. Other valid insertions are possible, e.g.,rfinge
csc” before e;p and its counterpart befores. Both these

transformations eliminate all the cores, and in both of them (a) unfolding prefix with cores

the newly inserted signal has two triggers, but the former
insertion delays three transitions, adds the trigges to x;

(b) height map

inputs: start,Lam Laf,Ad; outputs: ready,Lr,Ar; internal: csc

and replaces the trigget of z with csg whereas the latter |

insertion delays two transitions and adds the triggee to

x1 and z. Hence, according to our cost function, the former

solution is slower but has a slightly simple logic, which is

in good agreement with the resulting implementation and

#] causal constrainlits | delay]
1| h(ey) --»h(e1) [ 11| 1.1ns]
2| h(es) --»h(en1) | 14| 1.2ns
3| h(es) --»h(es) | 14| 1.5ns
4] h(ey) --»h(es) | 11| 1.4ns|
5 h(ew) --» h(en1) [ n/a] n/a

the corresponding simulation results: the equations fer th
former implementation (see Fig. 7(e)) have 19 literals dad i
the minimum cycle time is 3.5ns, and the equations for the
latter implementation (see Fig. 7(f)) have 20 literals ated i
minimum cycle time is 3.2ns.

One can see that the implementations derived by signal

insertion are more complex than the one obtained by concur-

rency reduction. These two implementations also delayatsgn
zandx;, whereas the one derived using concurrency reduction
does not introduce delays. Additionally, the solution oled

by concurrency reduction results in a symmetrical STG.

B. A/D converter

The example shown in Fig. 8 is a part of the A/D converter
proposed in [10]. It contains two type | and three type I

cores shown in Fig. 8(a), and the corresponding height map

(c) concurrency reductions

[ready = Laf
[Lr] = start Ad - Ar+
Laf- (Ar + starf)
[Ar] =Lam-Laf- (Ar 4+Ad)
equations for solution 1

[ready = start ready-+ Laf
[Lr] = start Ad - ready- Ar+
Laf- (Ar +ready)
[Ar] = Lam-Laf- (Ar +Ad)
equations for solution 2

[ #] phase 1] phase 2Tlits [ delay|
6 | ||es to ey1 | beforeess | 16 | 1.2ns|
7 | afteres |beforees| 15| 1.5ns
8 | beforees | beforees | 16 | 1.2ns
9 | beforeey; | beforees | 15[ 1.3ns|
10| afteres aftereg | 18| 1.5ns|
11| afteres ||l es toe| 20 1.6ns

(d) signal insertions

[ready = Laf+csc
[Lr] = start Ad- Ar - TSG+
Laf- (TSC+Ar)
[Ar] = Lam-Laf- (Ar +Ad)
[csd = start csc+ Laf
equations for solution 6

[ready =csc
[Lr] = Ar - (start csc- Ad + Laf)
[Ar] = Lam-Laf- (Ar +Ad)+
Laf-csc
[csd = start csc+ Laf
equations for solution 7

[ready = Laf+csc
[Lr] =TsC (start Ar- Ad + Laf)
[Ar] = Lam-Laf- (Ar +Ad)
[csd = start csc+ Laf - Ar
equations for solution 9

(e) selected equations corresponding to valid transfoomsti

is shown in Fig. 8(b). The valid transformations are presgntrig. 8. Top level of the A/D converter.

in the tables in Fig. 8(c,d), which also show the total number

of literals in the corresponding equations and the worsecaHowever, it is somewhat misleading, since it does not tate in
input-to-output delays. The equations for most intergstih account that the introduced causal constraint indirectlaybs

these solutions are shown in Fig. 8(e).

Laf~ by the input evenstart™, which can be slow. The delay

The eventss, €5, €11 ande;z comprise the highest peak, agpenalty estimate in out cost function better reflects thé rea
each of them belongs to four cores. They can be eliminated &iyuation.

a forward concurrency reduction, since eveeisand ey are

The second solution does not deley; but introduces an

concurrent to the events in the peak and the concurrendg stadditional trigger toLr—. As a result, its literal count, 14, is
in the peak. The first four solutions in the table in Fig. 8(darger than that for the first solution, but its delay estienat
eliminate all the cores in the peak, and the last one elirafain the cost function is better. The simulated worst-casetnp
only one core. Incidentally, the first four solutions elimie to-output delay for this solution is 1.2nsgm"™ — Ar~ —
the remaining core as well, because the correspondingiogderLr—). However, it is achieved not where the concurrency was
constraints also act as backward concurrency reductions. reduced. In fact, the delays in the pattef ™ — ready™ — Lr~

The first solution introduces a large delasiy(is delayed andLaf™ — Ar~ — Lr~ are 1.0ns.
by an input evenkg) but no additional triggers (in fact, the The third solution delaygs by es, and the fourth solution
number of triggers ofr is reduced, sincér ceases to be its delayseg by es andeg; moreover, these two solutions introduce
trigger). As a result, this is a very area-efficient solutien an additional trigger téAr (which already had three triggers),
its literal count is just 11. The simulated worst-case ifpdt and thus are inferior according to both our cost function and

output delay for this solution is 1.1nkgm" — Ar~ — Lr™).

the simulation results.



Alternatively, the encoding conflicts can be solved by incores is usually much smaller than the number of encoding
serting a transition of a new signescinto the peak and its conflicts, this approach reduces the amount of information t
counterpart outside the cores belonging to the peak, pieger be analysed.
the consistency and ensuring that the cores are destroyedvioreover, a novel validity condition has been proposed to
Recall that input signal transitions must not be delayed kystify these transformations, which is also of independen
newly inserted transitions, i.e., in the peak the transitid interest. We have developed a sufficient condition for a con-
csc must not delayes and ej3. Then the parts of the prefix currency reduction on a general LPN being valid, as well as a
which are concurrent to or in structural conflict with thesimplified version of this condition for the case of a norf-sel
inserted transition are faded out, as the consistency wheild concurrent Petri net [9].
violated if the counterpart transition afcis inserted there.  The future work will be focused on the following issues:

At the same time, one can try to eliminate the remaining core. developing an algorithm for efficiently checking the va-
{es,e9,€16,€18}. The signal insertion solutions are presented lidity of a concurrency reduction on safe nets;
in the table in Fig. 8(d). « improving the cost function;

Solution 6 introduces the smallest (among all signal inser-. performing the transformations directly on the prefix
tions) delay (onlyready is delayed), and its literal count rather than the STG whenever possible, to reduce the
is 16. Its worst-case input-to-output delay is 1.2banf™ — number of runs of the unfolding algorithm.

Ar~ —Lr7), but it is achieved not in the branch whetsc  AcknowledgementsThe authors would like to thank Mark
was inserted; the delays in the pastart™ — csc’ —ready  josephs for answering our questions concerning the nofion o
andLaf~ — csc” —ready are just 0.7ns. refinement in [5] and Maciej Koutny, Walter Vogler and the
Solution 7 has the smallest (among all signal insertions) &g onymous reviewers for helpful comments. This research wa
timated logic complexity, but quite a large delay (the itiser sypported by the Royal Academy of EngineerirggEcpost-
delaysready”, Ar~ andready). Its literal count is 15 and goctoral research fellowship EP/C53400X/1A@&cC) and the
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