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Abstract—Analog and mixed signal (AMS) electronics becomes
increasingly complex and needs to be digitally enhanced by its
own control circuitry. The RTL synthesis flow routinely used
for digital logic is however optimized for synchronous data pro-
cessing and produces inefficient control for AMS. In this paper
we demonstrate the evident benefits of asynchronous circuits
in the context of AMS systems, and propose an asynchronous
design for analog electronics (A4A) flow for their specification,
synthesis, and formal verification. A library of specialized analog-
to-asynchronous (A2A) components is developed for interfacing
analog and asynchronous worlds. A4A flow is automated in the
WORKCRAFT framework and evaluated using a multiphase buck
converter case study where A2A components are employed to
sanitise analog sensor readings. Timing analysis of asynchronous
buck control shows improved response time: 4x faster reaction
to high-load and 7x to under-voltage condition, compared with
a 333MHz clocked controller (to achieve a similar response
time, a clocked controller would require ~3GHz frequency). The
simulation results of a 4-phase asynchronous buck demonstrate
improved voltage ripple and peak current – 16% and 12%
reduction, respectively. These benefits lead to the higher efficiency
of power conversion, and can be traded off for the cost of analog
components, e.g. coils. Moreover, the use of the proposed design
flow and tools helps to improve design productivity and overall
robustness of AMS circuits.

Keywords: design flow, power converter, asynchronous logic
control, logic synthesis, formal verification, arbitration

I. INTRODUCTION

The complexity of modern systems-on-chip is rapidly grow-
ing, much as the role of analog and mixed signal (AMS)
electronics, which provides an important infrastructure for dis-
tributing and regulating energy flows, monitoring the system’s
operating conditions, and interfacing with the continuous non-
digital environment, see Figure 1. The complexity of AMS
itself is also increasing to accommodate the switching dynam-
ics, process variability, and reliability requirements of hetero-
geneous multi-core systems and emerging IoT devices [1]. As
a result, the analog layer needs to be “digitally enhanced” [2]
with its own “little digital” control that efficiently operates at
different time bands: local (e.g. interface components within
digital domain), fast (e.g. fetch the best available sensor
reading), and slow (e.g. activate an analog component and
wait for the change at a sensor). Power converters [3] are of
particular importance as energy is becoming the most valuable
resource in modern electronics.

The responsiveness and robustness of power converters is
determined by the implementation of their control circuitry:
millions of control decisions need to be made every second

and a single incorrect decision may cause a malfunction of
the whole system or even permanently damage the circuit.
For example, a 3MHz switching regulator is clocked around
473,364,000,000,000 times in 5 years of its operation [4].

A practical design problem associated with the development
of digital logic within power converters [5] is partially related
to the state-of-the-art synthesis methods: the conventional RTL
flow is neither aimed at nor suited for building “little digital”
controllers. It is primarily targeted at building high throughput,
often pipelined, data processing logic. The global clocking
paradigm imposed by RTL leads to either low responsiveness
or power consumption overheads for AMS control. Indeed,
in sub-micron technologies at least 30% of the clock period
are safety margin overheads to accommodate for on-chip and
process variability [6], and the clock distribution across the
chip often accounts for more than 40% of its total power
consumption [7].

There is a fundamental contradiction in terms of timing
requirements for such a control: On one hand, the clock
frequency must be sufficiently high to promptly react to
changes at the analog inputs (e.g. sensor readings); on the
other hand, this leads to massive waste of energy due to
useless switching of the global clock and “sanitizing” the
readings (typically, by sampling and synchronizing) when
the environment changes slowly. Moreover, the probability of
failure (due to metastability conditions lasting longer than a
clock period) in synchronizers becomes a significant factor in
systems’ reliability when the number of asynchronous signals
and the clock frequency increase. A design with synchronisers
should be carefully analysed for any change of technology
or even the clocking frequency. The mean time between
failures (MTBF) in synchronisers is extremely sensitive to the
available resolution time [8], and even a small change in the
design parameters can lead to drastic changes. For example,
it has been shown [9] that MTBF of 3,000 years for a design
clocked at 50MHz can drop to a mere 3 days when the the
clock frequency is increased to 66.7MHz (just by ~33%).

Hence, there is an ever increasing scope for the use of
asynchronous design for analog electronics (A4A). AMS
control can significantly benefit from the use of asynchronous
logic [10], [11] that does not rely on the global clocking and
functions at the pace determined by the ongoing operating
conditions. Such circuits are adaptable to the rate of changes
in the controlled system and can react to the asynchronous
signals from the sensors without the need for synchronizers.

At present, elements of asynchronous logic appear in the
industrial practice of designing analog parts of AMS sys-0000–0000/00/$00.00 c©2019 IEEE
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Fig. 1. Asynchronous design for analog electronics.

tems. However, they are typically introduced by hand in the
form of the current detector latches, up-down counters, and
hysteretic regulators [12], [13], [14]. Such ad-hock solutions
have only a handful of gates, and their verification requires
massive simulations that are very costly. (For example, few
microseconds of SPECTRE simulation time may take tens of
hours at a multi-core CPU.) Therefore analog designers cannot
afford simulating their circuits from start-up (as it takes too
long) and instead have to force them to a known state first.
As a result, they can only verify cherry-picked corners of
the digital control functionality. Both, the design-by-hand and
verification of the cherry-picked corners are unacceptable for
the complexity of modern “little digital” control, especially
in the context of mission-critical power management. There
is a strong need for automating asynchronous logic design
for analog electronics. Deploying command line tools like
Petrify [15] and VERSIFY [16] can push the size of “little
digital” control to a couple of dozens of gates. The flow
presented in this paper can push it much further, e.g. the
asynchronous 4-phase buck control used as a case study in
Section IV has 682 gates and was formally verified, and we
believe this is not the limit.

There are many methodologies and design styles for asyn-
chronous circuits [17], [18], [19]. Some of them have reached
certain degrees of automation in the last two decades. How-
ever, to the best of our knowledge, none of them tack-
les the problems of design automation for “little digital”
control. There is no consistent framework for efficient and
reliable interfacing between the digital and analog worlds.
Existing solutions are often ad hoc and based on restrictive
or even unrealistic assumptions about the behaviour of the
non-persistent (i.e. unstable) outputs of analogue comparators
and sensors. There were attempts to formalise the design
of “little digital” control using Asynchronous Finite State
Machine (AFSM) model whose 1-hot encoded states are im-
plemented as C-elements [20]. However, these techniques still
assume persistency and mutual exclusion of the state triggering
conditions. Such assumptions are almost impossible to verify
formally, as precise models of analog components tend to
be extremely complicated. Hence, the designer is forced to
rely on simulation, meaning low confidence in the correctness
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Fig. 2. Schematic of a simple buck converter.

of the design. In particular, it is very difficult to ensure
that the non-persistence inherent in analog world does not
propagate (in the form of hazards) into the digital core of the
system. This highlights the need for specialised asynchronous-
to-analog (A2A) components to reliably interface the analog
and asynchronous worlds.

In this paper we address the above challenges. It is an
extended version of [21] and its main contributions are as
follows:

• A novel A4A design flow for the systematic development
of “little digital” asynchronous controllers.

• Automation of A4A flow in WORKCRAFT
toolkit [24] (available at https://workcraft.org/).

• Integration of automated mutex insertion into the de-
sign flow.

• Library of A2A components and a methodology for
their deployment to efficiently and reliably interface
non-persistent inputs from the analog world (available at
https://workcraft.org/a2a).

• Demonstration of clear measurable benefits of asyn-
chronous controllers over the traditional synchronous
ones using a multiphase buck converter as a case study.

• The paper also has didactic value in illustrating the bene-
fits of asynchronous control with a simple yet meaningful
example of a power converter.

II. MOTIVATION

In this paper we use power converters as an example AMS
design that needs to be enhanced with “little digital” control.
However, the issues considered below, as well as the proposed
design flow, are relevant for other kinds of AMS [22], [23].
Consider the simple buck converter shown in Figure 2. For
simplicity, technical issues like circuit initialisation are ignored
for now.

The controller switches the power regulating PMOS and
NMOS transistors ON and OFF by means of gp and gn outputs
as a reaction to uv (under-voltage), oc (over-current), and
zc (zero-crossing) inputs. These inputs are produced in the
analog part by comparators of measured voltage or current
against the reference values (V_ref, I_max, I_0). To prevent
a short circuit, PMOS and NMOS must not be ON at the same
time. This should be guaranteed by observing the gp_ack
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and gn_ack signals, which indicate when the power transistor
threshold levels (V_pmos and V_nmos) are crossed.

The expected behaviour of the buck control can be infor-
mally specified as follows:

• While uv is low, wait in the tri-state (i.e. both PMOS and
NMOS power regulating transistors are OFF).

• While uv is high, keep performing cycles of charging:
1) A cycle of charging starts in the tri-state; both oc

and zc are low.
2) Switch PMOS transistor ON and wait for oc to rise.
3) When oc is high, switch PMOS transistor OFF.
4) As soon as PMOS is OFF, switch NMOS transistor

ON and wait for zc to rise.
5) When zc is high, switch NMOS transistor OFF and

enter the tri-state.
The conventional approach would be to encode this behaviour
as a state machine using RTL Verilog and synthesise its
synchronous implementation, as shown in Figure 3. Note that
inputs uv, oc, zc, gp_ack and gn_ack are asynchronous and
thus have to pass via synchronizers (shaded boxes).

A basic synchronizer is implemented as a pair of back-to-
back flip-flops, which imposes an additional latency of two
clock cycles. Therefore, the reaction time of the synchronous
control is 3 clock periods; it can be reduced to 2.5 clock
periods by doing the synchronization on the negative clock
edge and the FSM computation on the positive one. In the
worst case, if a synchronizer hits metastability, the latency
may increase by another clock period or even result in a
synchronization failure. In practice, quickly reacting to the
control inputs is of paramount importance for achieving the
efficiency: The controller’s response time should be of the
order of nano-seconds, thus implying the clock frequency of
several GHz, which is challenging if feasible, and also leads
to power overheads.

Issue 1: Quick response to input stimuli.

This simple example illustrates the main drawback of the
traditional design approach that demands the use of the clock.
The response time is then necessarily of the order of several
clock periods. Moreover, the asynchronous inputs have to be
synchronised with the clock, which further degrades the per-
formance and introduces the risk of synchronisation failures.
In other words, introducing the clock creates more problems
than it solves: For this example, one can reasonably expect the
response time of several gate delays rather than clock periods
– this is naturally achievable with asynchronous control.

Issue 2: Coping with badly behaving inputs.

Asynchronous controllers assume that input signals are
well-behaved: They must be digital signals and must not be
withdrawn prematurely. This assumption is restrictive in the
situations when inputs are produced by analog circuitry. In
practice, these signals are implemented as comparators based
on differential amplifiers, and so short pulses can be generated
due to noise if the voltages being compared are close. In

module control (input clk, uv, oc, zc, gp_ack, gn_ack,

               output reg gp, gn);

   localparam TRISTATE = 0, PMOS_ON = 1,

              TRANSIENT = 2, NMOS_ON = 3;

   reg [1:0] state;

   always @(posedge clk)

       case (state)

       TRISTATE:  if (uv == 1 && gn_ack == 0) begin

                      gp <= 1; state <= PMOS_ON;

                  end

       PMOS_ON:   if (oc == 1 && gp_ack == 1) begin

                      gp <= 0; state <= TRANSIENT;

                  end

       TRANSIENT: if (gp_ack == 0) begin

                      gn <= 1; state <= NMOS_ON;

                  end

       NMOS_ON:   if (zc == 1 && gn_ack == 1) begin

                      gn <= 0; state <= TRISTATE;

                  end

       endcase

endmodule

(a) RTL specification; asynchronous inputs need to be synchronised.

(b) Clocked implementation; clk is implicit in synchronisers (shaded boxes).

Fig. 3. Synchronous design of a simple buck control.

case of a buck converter, the under-voltage condition may
get resolved even without any action from the controller side,
e.g. when the resistance of the computational load rises. This
would result in an unexpected withdrawal of uv input which
violates the controller interface protocol.

In order to prevent bad behaviour of inputs (such as hazards,
short pulses, bursts of high-frequency jitter, analog wave-
forms) from propagating into the digital core of the system,
they have to be sanitised using special WAIT elements, as
shown by grey boxes in Figure 4b. The family of analog-to-
asynchronous (A2A) components is presented in Section III-B.

The formal specification of CONTROL module is shown
in Figure 4a. The synthesised asynchronous implementation in
Figure 4b is reliable (can be formally verified) and achieves
prompt response to input stimuli. This circuit falls within
an important class of speed-independent (SI) asynchronous
circuits: Following the classical Muller’s approach [11], each
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(a) STG specification.

(b) Speed-independent implementation.

Fig. 4. Design of asynchronous simple buck control.

gate is regarded as an atomic evaluator of a Boolean function
with a delay associated with its output.1 In the SI framework
this delay is positive and finite, but variable and unbounded.
The circuit must work correctly regardless of its gates’ de-
lays, and the wires are assumed to have negligible delays.
Alternatively, one can regard (some) wire forks as isochronic
and adjoin wire delays to their driver gate delays (Quasi-
Delay Insensitive (QDI) circuit class [25]). Behaviour of
SI circuits is traditionally specified using Signal Transition
Graphs (STGs) [26][27], as illustrated in Figure4a for this
example. They are Petri nets [28] in which transitions are
labelled with the rising and falling edges of circuit signals.
The details of circuit synthesis from STGs can be found
in [15]. The semantics of an STG coincides with that of its
state graph, so STGs can be considered as ‘syntax sugar’ for
compact representation of state graphs. This representation
is particularly beneficial for highly concurrent specifications,
where state graphs suffer from state space explosion [29].

Graphically, the places are represented as circles, transi-
tions as textual labels, consuming/producing arcs are shown
by arrows, and tokens are depicted by dots. For simplicity,
places with one incoming and one outgoing arc are often
hidden, allowing arcs (with implicit places) between pairs of
transitions.

Issue 3: Compositionality is essential.

The main challenge for asynchronous design of a controller
is to formally capture its intended behaviour. A monolithic
specification would be challenging to create and maintain, and
it would be infeasible for all but tiny circuits with a handful of

1The original Muller’s theory did not consider circuits with arbitration
elements, nor the behaviour of inputs being non-persistent. Therefore our
notion of SI goes beyond that of Muller in the sense that the set of components
subject to the requirement of correct operation under variable output delays
includes logic gates as well as WAIT and mutex (introduced below).
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Fig. 5. A4A design flow.

signals. Decomposition of the specification is a way to address
this challenge.

The above example illustrates some of the challenges pre-
sented by “little digital”, and the necessity of a fully-fledged
design flow incorporating specification, logic synthesis, and
formal verification.

III. DESIGN FLOW

Development of the “little digital” control is a complex
process with multi-dimensional optimisation possibilities and
verification challenges, that requires design automation. Our
proposed design flow is shown in Fig. 5.

The stages of A4A design flow resemble the conventional
RTL flow: specification, design, synthesis, verification, and all
the backend. The main differences between A4A the RTL flow
are summarised in Table I.

Specification: Initial representation of the intended system
behaviour is the same in conventional RTL and A4A flows,
usually in form of verbal description, waveforms, phase dia-
grams, or pseudo-code.

Design: At this stage the informal specification is for-
malised in an unambiguous form of STGs. The formal aspect
of STGs is very important for subsequent verification. In the
RTL flow a descriptive language, such as Verilog, is used.
This step is the most difficult to automate and relies on the
designer’s experience and established guidelines for decom-
position of the system into modules. High-level abstractions
over STGs, such as concepts [30] and waveform transition
graphs [31], may be used to raise productivity of the design
stage. The flow supports automated mutex insertion as follows.
The user can tag some places in the STG as mutex places, and
the tool will automatically verify their implementability and
synthesise a circuit with mutexes.

Synthesis: RTL flow relies on the presence of a global
clock to implement a circuit as a synchronous FSM. The clock
allows to synthesise a hazardous FSM logic and rely on the
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TABLE I
COMPARISON OF RTL AND A4A DESIGN FLOWS.

Design step RTL A4A
Specification function-level representation of the design intent

(verbal, waveforms, phase diagrams, pseudo-code)
Design behavioural description

(Verilog/VHDL)
formal, based on Petri nets

(STG)
Synthesis clock-constrained

(hazards filtered by clock,
async. and analog inputs

require synchronisers)

speed-independent
(hazard-free,

correct for any gate delays,
no need for synchronisers,
A2A interfaces to analog)

Verification basic verification
(equivalence checking)

formal verification
(deadlocks, conformation,

hazards, custom properties)
Backend conventional ATPG and P&R

sufficiently long clock period to filter out the hazards. This re-
duces the complexity of synthesis, but makes it very inefficient
for “little digital” controllers (need for synchronisers, response
time of several clock cycles, power consumption overheads),
as was explained in Section I. The obtained STG models of the
components are synthesised into gate-level SI circuits [26] that
are guaranteed to operate according to their STG models for
any gate delays. These components are subsequently integrated
into a complete “little digital” controller. Initialisation of the
controller preserving its SI operation is also addressed at
this stage. For interacting with the analog components the
asynchronous controller relies on a library of A2A interface
elements (available at https://workcraft.org/a2a/) for sanitising
non-persistent inputs (e.g. those coming from voltage com-
parators).

Verification: In a conventional flow the use of verifica-
tion is limited to equivalence check between RTL and the
synthesised netlist; validation of other properties is usually
achieved via exhaustive simulation. Contrary, in A4A flow,
formal verification is applied at every stage: for sanity checks
of the formal specification (e.g. deadlock-freeness and con-
sistency of signals), for functional correctness of the gate-
level implementation (e.g. conformance to the specification
and absence of glitches), and for timing verification of the
complete system (e.g. validation of the timing assumptions).

Backend: Standard EDA tools can be reused for place-
and-route and off-line testing of asynchronous “little digital”
controllers [32]. This stage is the same as in RTL flow.

A. Workcraft design automation

WORKCRAFT is a cross-platform framework for editing,
simulation, synthesis and verification of interpreted graph
models (IGMs) [33]. STGs and digital circuits are examples
of such IGMs and WORKCRAFT has plugins for their support.
We have extended and fine-tuned these plugins to fully auto-
mate our A4A design flow. We rely on established backend
tools, such as PETRIFY [15] and MPSAT [37], for logic
synthesis and formal verification tasks. The current version
of WORKCRAFT bundled with the backend tools is available
at https://workcraft.org/.

A typical use of WORKCRAFT for the development of “little
digital” asynchronous controllers is as follows:

1) The STG specification is imported from a file (in .g
or .lpn format), or captured in WORKCRAFT graphical
editor that offers elaborated editing facilities for STGs,
as well as several kinds of automatic layout. Many of
these features were developed in response to requests
from industry. While editing the STG the user can
also validate its intended behaviour by interactively
simulating various scenarios, observing the generated
traces, and automatically producing signal waveforms.

2) The user verifies standard implementability properties
of STG specification, such as consistency, deadlock
freeness, output persistency, input properness, complete
state coding (CSC). Custom design-specific properties
expressed in REACH language [34] can also be formally
verified using MPSAT backend. The verification report
generated by the backend tool is then presented to the
user in a convenient form, e.g. a violation trace can be
simulated, CSC conflict cores can be visualised as a core
map or a core density map [35]. This helps the user to
debug the STG.

3) Once a correct STG specification is obtained, it can
be implemented as a circuit. At this point the CSC
property may still be violated, and therefore a new STG
where the conflicts are resolved by inserting new internal
signals can be automatically created by either MPSAT
or PETRIFY backends.

4) Now the user can synthesise an SI circuit in one of
available styles: complex gate, generalised C-element, or
standard C-element. Alternatively the user can proceed
to technology mapping of the circuit into a specific
gate library. The user can choose between MPSAT and
PETRIFY backends for circuit synthesis and technology
mapping.

5) The synthesised circuit is automatically imported to
WORKCRAFT for analysis, verification, and, if neces-
sary, modification (e.g. the user can rely on timing
assumptions to manually decomposing some of the
complex gates).

6) The circuit must be verified against the initial specifica-
tion, as synthesis tools are complicated and may have
bugs, and manual editing is error-prone. The burden of
verification setup and interaction with the backend tools
is hidden from the user, and the final verification report
is presented in a convenient form.

7) The created models can be exported, e.g. as Verilog
netlist for circuits and *.g files for STGs. In addition
models can be exported in a variety of graphic formats
for inserting into documentation or research papers.

The screenshot in Fig. 6 illustrates the use of WORKCRAFT to
design the simple buck controller from our motivating exam-
ple. Its STG specification with grey concurrency reduction arcs
is analysed for encoding conflicts (see simple_buck-cr.stg
window) – three cores of CSC conflicts are highlighted in dif-
ferent colours. These CSC conflicts are automatically resolved
and the STG is synthesised as an SI circuit (see simple_buck-
tm.circuit window). The produced circuit is formally verified
to conform to its environment STG, being deadlock-free and
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Fig. 6. Development of simple buck in WORKCRAFT.

output-persistent – the verification results are visible in the
Output window. The screenshot captures simulation of the
circuit with analysis of different firing sequences. Enabled
signals are highlighted in orange and the next gate to fire in
the simulation trace has green background; blue and red wires
represent low and high levels of the signals, respectively.

A special feature of WORKCRAFT is its support for design
and verification of SI circuits with arbitration [8]. The user
just needs to tag the choice between non-persistent outputs in
the STG specification as a “mutex” place. WORKCRAFT then
automatically identifies the mutex requests and grants, and
formally verifies that these signals follow the mutex protocol.
During synthesis the mutex is automatically factored out into
the environment, the remaining part of the specification is
synthesised, and the mutex component is added to the result.
At circuit verification the mutex grants are treated specially
– they are allowed to disable each other, but premature
withdrawal of requests is forbidden. This mutex insertion
feature is illustrated by the design of an extended delay control
module in Section IV-C.

WORKCRAFT serves as a convenient frontend to a num-
ber of command-line backend tools. The interface to these
tools are transparent for the user: WORKCRAFT automatically
chooses the correct backends and their command-line param-
eters for the task, parses the output of the tools, and presents
it to the user in an appropriate graphic form. The detailed
information on the backend calls is logged in the Output
window, e.g. for the purpose of scripting the flow.

For example, to check whether a digital circuit conforms to
its environment the user needs to click a single menu item. In
response the following sequence of actions is performed by
WORKCRAFT frontend:

1) The digital circuit is converted to an equivalent STG,
also known as a circuit Petri net [38].

2) The internal signal transitions in the environment
STG (it models the contract between the circuit and its
environment) are replaced by dummies – this is required
for technical reasons.

3) The STGs obtained in the previous two steps are
composed by calling PCOMP backend with appropriate
command line parameters.

4) The frontend expresses the conformation property as an
expression in REACH language. Parts of this expression
are specific to the circuit being verified and need to be
calculated by the frontend.

5) The composed STG is unfolded by calling PUNF back-
end.

6) The resulting unfolding prefix and REACH expression
are passed to MPSAT backend that performs verification.

7) The verification report is parsed by the frontend. If the
property holds then a success message is displayed.
Otherwise the violation trace of the composed STG
reported by MPSAT is projected to the circuit, and the
user can execute it step-by-step to debug the problem.

Each of the above steps looks trivial, however, checking
conformation is a frequent task during the circuit design.
Performing all the above steps manually would have been
very tedious and error-prone, discouraging the casual user
from applying formal verification. Hence using WORKCRAFT
makes it feasible for the user to harness the power of research
tools to catch the bugs early in the design process and reduce
the risk of an incorrect circuit going into production. To pro-
mote A4A flow and WORKCRAFT software we have created
several tutorials on modelling, synthesis, and verification of
asynchronous circuits at https://workcraft.org/tutorial.

Most of the existing asynchronous design flows are aimed at
hardware that is datapath-determinate, i.e. micropipelines. To
the best of our knowledge there is no other fully-fledged design
flow for asynchronous controllers that can be used in the con-
text of AMS. Of course, one could produce an asynchronous
controller for a power converter in semi-automated manner,
by just employing existing synthesis and verification tools,
such as Petrify [15], VERSIFY [16], MINIMALIST [39], and
ATACS [40], from the command line. This, however, would
impact on the productivity and involves a significant effort for
dealing with the following aspects of the design:

• Verifying the STG specification. This may seem trivial
for such common properties as consistency and deadlock-
freeness. However, for more advanced cases, such as
output-determinacy or output-persistency, one would need
to do a design-specific reachability analysis of the STG.
This process is tedious, time-consuming, and is prone to
errors. Our design flow generates the formulas expressing
these properties and verifies them with a click of a button.

• Dealing with arbitration. One would have to manually
factor the arbitration out into the environment at the level
of STG specification (which is very error-prone), synthe-
sise the remaining part of the STG, and manually insert
mutex elements at the level of circuit implementation.
This is fully automated in our design flow.

• Verifying the circuit implementation against its STG



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2907905, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

(a) Block diagram. (b) STG specification. (c) Implementation.

Fig. 7. WAIT element.

specification. Some of the properties, such as confor-
mation, can be verified using Versify, but only for de-
terministic specifications. For other properties and more
complex circuits, e.g. with mutex elements, one would
need to proceed with manual verification. This involves
conversion of the circuit into an equivalent STG, its
parallel composition with the environment STG, some
structural modification of the resultant STG depending
on the property being verified via reachability analysis.
Our design flow does all this automatically with a click
of a button.

• Dealing with non-persistent inputs from analog com-
ponents. In our flow such inputs are sanitised using
specially designed interfaces from the library of A2A
components.

B. Library of A2A components

A2A library is a family of asynchronous arbitration prim-
itives designed to increase the resilience and efficiency of
the new generation of circuits and systems. This includes
primitives for synchronisation and decision-making, with an
emphasis on interfacing analogue and digital worlds, sampling
of non-persistent signals, and efficient handling of sensor
events. These elements are explicitly designed to guarantee
that non-persistent behaviour on inputs will never propagate
into the digital core of the system. Use examples of the A2A
components are shown by the multiphase buck case study in
Section IV.

1) WAIT and WAIT0: The WAIT element, shown in Fig. 7,
synchronises the ‘clean’ asynchronous handshake ctrl/san
with the ‘dirty’ non-persistent input sig: ctrl+ brings the WAIT
element into the waiting mode, and ctrl- returns it back to the
dormant mode. Output san is insensitive to sig in the dormant
mode, and goes high as soon as sig+ is detected and latched
in the waiting mode (i.e. sig crosses the threshold and stays
above it for sufficiently long time): unlike input sig, output
san is persistent and well-behaved – it is not reset until ctrl-
indicates the receipt of san+.

Note that short pulses on sig may be ignored (this is
unavoidable as a sufficiently short pulse cannot be registered
even in principle), but a persistent (or sufficiently long) value
sig=1 cannot be ignored indefinitely and will be eventually
registered. The non-persistent behaviour and the associated
metastability is fully contained within the element, guaran-
teeing a clean hazard-free output.

WAIT is a fundamental synchronisation primitive that is
used for implementing other, more sophisticated components
presented in this paper. The symmetric version of the element
that waits for the input to become low is called WAIT0; it is

(a) Block diagram. (b) Implementation.

Fig. 8. RWAIT element.

(a) Block diagram. (b) STG specification. (c) Implementation.

Fig. 9. WAIT01 element.

implemented by removing the ‘bubble’ at the sig input in the
WAIT implementation.

2) RWAIT and RWAIT0: These are modifications of the
WAIT and WAIT0, respectively, with the possibility to cancel
the waiting request. This is useful for releasing the output
handshake when the input is no longer expected to change or
the change is no longer relevant.

In the block diagram of RWAIT in Fig. 8a, input frc can
be used to force the completion of the output handshake in
the waiting mode. Thus, san+ can be caused by either sig+
or frc+ (or both), and the implementation reflects the resulting
OR-causality [41]: the inputs sig and frc are simply combined
with a NOR gate, as shown in Fig. 8b. Note that the output
of the NOR gate is non-persistent (due to non-persistent sig),
but this non-persistence will not propagate past WAIT0.

3) WAIT01 and WAIT10: These elements wait for a rising
or falling edge of the input signal, respectively. Note that this
is subtly different from waiting for a high or low input value,
e.g. a signal can be initially low, and to generate a falling
edge event it must first go high. The WAIT01 specification in
Fig. 9b tracks the input changes waiting for sig=0 and then
for sig=1. This can be implemented by connecting WAIT0 and
WAIT in sequence, as shown in Fig. 9c. An element waiting
for an arbitrary fixed pattern of alternating 0s and 1s, e.g. the
symmetric WAIT10 element, can be implemented analogously.

4) WAIT2: This is another combination of WAIT and
WAIT0: it uses a 2-phase output handshake, waiting for high
and low input values, one after the other, see Fig. 10b. One
can think of WAIT2 as a 2-phase version of the WAIT, or as
a C-element whose input sig is hardened against hazards.

The STG contains two loops: the inner sig loop, which
is unconstrained, and the outer handshake loop that synchro-
nises the rising (ctrl+−→san+) and the falling (ctrl-−→san-)
phases with the conditions sig=1 and sig=0, respectively.

The implementation in Fig. 10c uses a toggle-like con-
troller to steer the rising and falling edges of ctrl to the
inputs of the WAIT and WAIT0, in sequence, and take care
of their appropriate reset. This controller was developed in
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(a) Block diagram (b) STG specification. (c) Implementation.

Fig. 10. WAIT2 element.

(a) Block diagram (b) STG specification.

(c) Implementation.

Fig. 11. WAITX element.

WORKCRAFT [24] using conventional asynchronous design
flow.

5) WAITX: The WAITX element [42] arbitrates between
two non-persistent inputs {sig1, sig2}, producing a clean
asynchronous dual-rail handshake: depending on which of
the two signals arrives first, exactly one of the grant signals
{g1, g2} is issued, see Fig. 11b. The place me with two
consuming arcs represents the arbitration decision that needs
to be made if both inputs arrive.

WAITX isolates the outputs both from the metastability as-
sociated with non-persistent inputs and from the metastability
associated with making the decision of which input signal
arrives first. The implementation shown in Fig. 11c relies
on RWAIT elements for synchronisation with non-persistent
signals, and uses a mutex to make the decision about their
arrival order.

6) WAITX2: This element behaves as WAITX in the rising
phase and as WAIT0 in the falling phase, i.e. it does not release
the output handshake until the winning input signal goes low.
It uses a 2-phase output handshake similarly to WAIT2, and
the specification, shown in Fig. 12b, is therefore a combination
of the STGs for WAITX and WAIT2.

The implementation in Fig. 12c comprises WAITX and two
WAIT0 elements controlled by toggle-like asynchronous logic,

(a) Block diagram

(b) STG specification. (c) Implementation.

Fig. 12. WAITX2 element.

(a) Block diagram

r1 r2

r1r2

r1r2

ra ra

ra

a1 a2

a1a2

(b) Merge state graph.

r1 r2

r1r2

r1r2

ra ra

ra

a1 a2

a1a2

{a1,a2}

(c) OM state graph.

(d) Implementation.

Fig. 13. OM element.

which activates the appropriate WAIT0 in the reset phase. The
synthesis and technology mapping of this control was per-
formed using conventional asynchronous design approaches
automated in WORKCRAFT [24].

7) Opportunistic Merge: The opportunistic merge OM el-
ement [43] merges two request-acknowledgement channels
{r1/a1, r2/a2} into one r/a and can opportunistically bundle
requests from different input channels if they arrive sufficiently
close to each other, see Fig. 13a. The input channels of
OM are assumed to be hazard-free, but one can use other
A2A primitives to generate clean hazard-free handshakes from
hazardous input signals, e.g. produced by analogue sensors.

The conceptual state graphs in Fig. 13b and Fig. 13c clarifies
the difference between the standard merge element [44] and
OM. Note that the bottom state of the merge state graph is not
persistent: outputs a1 and a2 disable each other, hence this is
a decision-making element. The state graph of OM, shown on
the right, has an additional ‘opportunistic bundle’ transition
labelled by {a1, a2} that sends acknowledgements to both
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Fig. 14. Multiphase buck converter.

input channels.
The implementation of OM is shown in Fig. 13d. The

intended application of OM is to handle concurrent (and
potentially correlated) requests from several clients to a kind of
service that benefits all the clients simultaneously. Examples
include triggering an alarm by (any of) several sensors, re-
charging of a shared DRAM, and requesting a charging cycle
of a buck by any of several clients. All these use cases benefit
from serving multiple requests in bundles.

Note that the proposed implementation of OM requires the
mutex to follow a strict protocol, i.e. two grants are forbidden
to be high at any time. For a mutex with a relaxed protocol,
where both grants may be high in the reset phase, the circuit
implementation would be different.

IV. MULTIPHASE BUCK CASE STUDY

For the case study, in order to demonstrate the advantages
of asynchrony and A4A design methodology, we use a mul-
tiphase buck converter. It deploys several pairs of PMOS and
NMOS transistors (called phases) to power the same load,
see Figure 14. The main advantages of this distributed design
compared to the simple buck are faster reaction to the power
demand, heat dissipation from a larger area, and the possibility
to replace a large coil with several smaller ones, thus reducing
the dimensions of consumer gadgets [3].

The control circuit of a multiphase buck with N phases
monitors the OC and ZC conditions of individual phases (in-
puts oc1,...,ocN and zc1,...,zcN) and the voltage level at the
load (uv, hl and ov inputs – note that the latter two signals do
not have prototypes in the simple buck).

When UV is detected (the voltage drops below V_ref value)
the controller performs a charging cycle (switching the PMOS
and NMOS transistors the same way as in the simple buck) at
the currently active phase. The active phase is traditionally
selected in a round-robin schedule by a generator of non-
overlapping pulses. If by the time the next phase is activated
the UV condition still persists, a charging cycle is performed
by that phase too, thus helping the previous phase(s). This
process is repeated until the power demand is met and the
UV condition is reset, and is resumed upon detection of the
next UV.

A special mode of operation is used to handle the high-
load (HL) condition that indicates a surge in power de-
mand (the voltage drops below V_min value). In this mode,
the controller activates all the phases simultaneously and
charging cycles start in all the phases due to HL implying
UV (V_min < V_ref).

As buck rumps to its target voltage, it can overshoot (the
voltage goes above V_max value) and enter the over-
voltage (OV) mode to sink excessive energy. This can be
achieved by changing the reference values for OC and ZC
conditions (I_0 and I_neg values respectively), so that PMOS
is switched OFF as soon as positive current is detected and
NMOS stays ON until the negative current limit is reached.

For efficiency reasons, once ON, the PMOS and NMOS
transistors should not switch OFF for at least the predefined
PMIN and NMIN time intervals, respectively; furthermore, the
minimum ON time of PMOS transistor is extended by PEXT
at the first charging cycle upon detection of UV condition.

We designed both synchronous and asynchronous versions
of the multiphase buck control, and in this section we provide
a brief overview of their most interesting design aspects,
while the next section compares these two designs. Some
details have been omitted to shorten the presentation or due
to commercial sensitivity.

A. Design of synchronous control

A top-level architecture of synchronous N-phase buck
controller is shown in Figure 15a. It consists of N mod-
ules (one per buck phase) and an activator scheduling them
in the round-robin fashion. Sanitising the asynchronous non-
persistent inputs from the buck sensors is done by the synchro-
nizers [8] (shaded components). The other modules operate on
clean digital signals and can be specified in the conventional
RTL style as clocked FSMs and synthesised by the standard
EDA flow.

Two global clocks are used in this design: phase_clk – a
slow clock (few MHz) for generating non-overlapping pulses
to activate the phases, and fsm_clk – a fast clock (hundreds of
MHz) for polling the sensors and clocking the FSM. The latter
clock is implicit in all synchronizers (not shown for clarity).
Note that synchronization (e.g. using 2-flop synchronizers)
imposes a latency of up to 2.5 clock periods in the reaction
time: 2 for synchronisation plus 0.5 for FSM operation – the
reduction of 0.5 clock period has been achieved by doing
the synchronization on the negative clock edge and the FSM
computation on the positive one. In the worst case, if the
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(a) Synchronous round robin architecture. (b) Asynchronous token ring architecture.

- asynchronous arbitration primitives

- synthesised SI components

- external delay elements

(c) Decomposition of an asynchronous phase controller.

Fig. 15. Multiphase buck controller.

synchronizer hits metastability, the latency may increase by
another clock period or even result in a synchronization failure.

B. Design of asynchronous control

Asynchronous control is built as a token ring with several
identical phase controller stages [45], see Figure 15b. As
the token enters a stage, this stage becomes active and will
eventually perform a charging cycle at the corresponding buck
phase. Each stage holds the token for at least a predefined
duration of time (to parallel the slow phase activation clock in
synchronous design) before propagating it to the next stage;
however, the timer is only started after the UV condition is
detected by the stage. Hence, if there is no power demand, the
time the token spends in the stage is stretched – the token is
released only after a charging cycle is initiated.

The architecture of a single phase is shown in Figure 15c
– the modular design simplifies the process of specification
and reduces the synthesis and verification effort. The modules

communicate by means of handshakes with the following nam-
ing convention: requests start with ‘r’ and acknowledgements
with ‘a’. The second letter is either ‘i’/‘o’ for input/output
channels, or ‘d’ for timer interfaces, or ‘p’/‘n’ for controlling
PMOS and NMOS power transistors. The sensor readings are
sanitised using A2A interface components (shaded), thus wait-
ing for the specific change of a non-persistent input rather than
continuously polling its state as in the synchronous design:
a WAIT is used to wait for the HL condition; a WAITX2
to distinguish between the UV and OV modes (though these
modes are mutually exclusive in theory, switching between
them can happen fast, and so one has to arbitrate); a WAIT01
to distinguish between the first and subsequent occurrences of
uv (this affects the minimum ON time of PMOS); WAIT2 to
monitor the state of the OC condition; an RWAIT to wait for
ZC condition (a resettable element is necessary as the token
may return to the stage before zc, in which case waiting is
cancelled).
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The phase controller performs two distinct functions, viz.
handling its activation and charging the buck. The stage
may become active either when it receives a token from the
previous stage (get/pass interface to DECOUPLER) or when
the HL condition is detected by HL_CTRL – the OR-causality
between these scenarios is handled by OM. TOKEN_CTRL
starts TOKEN_TIMER to delay passing the token (if the stage
holds one) to the next phase and simultaneously activates
MODE_CTRL that monitors the UV and OV conditions to
determine the mode of buck operation. Note that HL implies
UV, as they both are the results of comparisons of the same
voltage with different thresholds. We exploit this in our design:
when a stage is activated by the HL condition, the charging
is still initiated by UV as in the regular case. MODE_CTRL
also decouples token propagation from charging by giving an
early acknowledgement to TOKEN_CTRL immediately after
either the UV or OV condition is detected.

CHARGE_CTRL conducts a cycle of charging of a buck
phase following a pattern similar to that of the simple buck.
PMOS_DELAY_CTRL and NMOS_DELAY_CTRL enforce
the requirement for the minimum ON time for PMOS and
NMOS transistors by delaying the corresponding acknowl-
edgements. They use PMIN_TIMER and NMIN_TIMER to
specify the delays. To keep PMOS transistor ON longer
on the first cycle of charging in the UV mode (de-
tected by the WAIT01), EXT_DELAY_CTRL uses also
PEXT_TIMER. We now show how this module was designed
using WORKCRAFT; the design of other modules follows the
same flow.

C. Extended delay controller

The EXT_DELAY_CTRL delays the ri/ai handshake and
operates in either normal or extended mode. In the normal
mode ai is delayed by the timer on rd/ad handshake, and in
the extended mode, which is activated once a rising transition
of ext input is detected, this delay is extended by the timer
on re/ae handshake.

The STG specification of EXT_DELAY_CTRL is shown
in Fig. 16a. In the initial state it arbitrates between ri+
and ext+. If ri+ wins then the asymmetric delay element
on the rd/ad handshake is exercised. If ext+ wins then the
controller continues to wait for ri+, but exercises a delay
element on re/ae interface first. Note that we rely on the mutex
fairness (choice between rd+ and int+): after int- the transition
rd+ is enabled and is guaranteed to fire, and the timer on the
rd/ad interface will be exercised. Hence, the delay is PMIN (if
ri+ wins) or PEXT+PMIN (if ext+ wins). If delays are equal
or one is a multiple of the other then a single timer can be
used.

In a conventional SI synthesis flow the designer would
need to manually factor out the mutex into the environment,
explicitly inserting mutex requests as output signals and mutex
grants as input signals, which is an error-prone process. In
the proposed design flow, however, it is sufficient to tag
the choice place me as a mutex place (visualised by an
outline circle). The tool would then automatically identify
the mutex requests (ri and ext) and grants (rd and int), and

(a) STG specification with arbitration.

(b) Speed-independent circuit implementation with a MUTEX.

Fig. 16. Extended delay control module.

formally verify that these signals follow the mutex protocol.
Moreover, an SI circuit with a mutex that implements this
STG specification is automatically derived by factoring out the
mutex into the environment, synthesising the remaining part
of the specification using the standard SI backends (PETRIFY
or MPSAT), and adding a mutex to the result, see Fig. 16b.
The circuit can then be formally verified to be deadlock-free,
conformant to the environment, and output-persistent (mutex
grants are treated specially – they are allowed to disable
each other, but there must be no hazards due to premature
withdrawal of a request).

The other modules of the multiphase buck controller were
designed in a similar way, and their composition was also
verified. Moreover, we verified custom buck converter prop-
erties, such as the absence of a short circuit in PMOS/NMOS
transistors and the possibility of sharing some of the timers.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We implemented a 4-phase buck with synchronous and
asynchronous controllers. The analog components were mod-
elled in VERILOG-A and the digital controllers were imple-
mented in TSMC 90nm technology. Synchronous controller
was synthesised using SYNOPSYS DESIGN COMPILER for
100MHz, 333MHz, 666MHz, and 1GHz. Response time of
synchronous control is 2.5 clock periods, as explained in
Section IV-A. The latency of asynchronous design was mea-
sured in SYNOPSYS PRIMETIME. The power consumption
of the controllers was analysed over a representative range
of operating modes (include under-voltage, over-voltage and
high-load conditions) using SYNOPSYS PRIMETIME PX.

The operation of the buck was validated and its efficiency
was estimated by simulation with CADENCE INCISIVE using
an AMS testbench. Coils were modelled in the range 1-10µH
using the parameters of COILCRAFT RF inductors, 1812CS se-
ries [47], [46]. Figure 17 shows the simulation waveforms for
one of the buck phases. One can notice that the asynchronous
buck enjoys smaller voltage overshoot after resolving the first
HL condition at startup (1-2µs). This results in shorter OV
resolution time and the absence of recurring OV condition that
can be observed in the synchronous buck waveform (2-4µs).
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TABLE II
COMPARISON OF THE CONTROLLER REACTION TIME, POWER CONSUMPTION, AND CIRCUIT AREA.

Controller Reaction time (ns) Power Area
HL UV OV OC ZC (µW) (µm2)

SYNC @ 100MHz 25.00 25.00 25.00 25.00 25.00 244 3,123
SYNC @ 333MHz 7.50 7.50 7.50 7.50 7.50 750 3,123
SYNC @ 666MHz 3.75 3.75 3.75 3.75 3.75 1,460 3,131
SYNC @ 1GHz 2.50 2.50 2.50 2.50 2.50 2,140 3,666
ASYNC 1.87 1.02 1.18 0.75 0.31 15 3,331
Improvement over 333MHz 4x 7x 6x 10x 24x 50x -6%
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Fig. 17. Simulation waveforms.

Note that asynchronous buck does not even overshoot at
the exit from high load (7-8µs). At normal load (2-7µs)
asynchronous buck demonstrates smaller voltage ripple and
lower inductor peak current than the synchronous buck:
0.36V vs 0.43V and 0.21A vs 0.24A, respectively. These
advantages are due to faster reaction of the asynchronous
controller to the input stimuli (HL, UV, OV, OC, and ZC
conditions), as summarised in Table II – synchronous control
has constant latency of 2.5 clock cycles while asynchronous
control exhibits significantly faster path-dependent reaction. To
achieve response times similar to the asynchronous controller,
the synchronous circuit would need to be clocked at ~3GHz,
which requires expensive deep-submicron fabrication process
and makes the design rather challenging.

Asynchronous controller also enjoys significantly lower
power consumption than the synchronous counterparts, e.g. it
shows 50x improvement over 333MHz synchronous controller
in a typical simulation run. This is due to the absence of
high-frequency clocking and relatively infrequent event-driven
activation of asynchronous controller (only when a reaction
to a specific power condition is required). However, the

savings in the controller are still small (in the µW range)
compared to the savings in the analog part due to better
control, as explained below. The areas of the asynchronous and
synchronous controllers are similar; the difference depends on
the tightness of the clock constraints for synchronous control
synthesis and is within few percent.

The quick response of the asynchronous control enables
it to operate with a significantly smaller peak current when
using the same coils, see Figure 18a. This advantage can
be efficiently traded off for the size of coils, which are
bulky and affect the dimensions of consumer gadgets. For
example, for a 6Ω load, the asynchronous control maintains the
peak current below 300mA using 1.8µH inductors, while the
synchronous control requires 10µH coils at 100MHz, 6.8µH
at 333MHz, or 3.1µH at 666MHz (denoted by hollow markers
in Figure 18a). This trend persists for a wide range of load
resistance that covers the typical computational load of mobile
microprocessors, see Figure 18b for the peak current data at
3-15Ω loads and 4.7µH coils.

The efficiency of buck converters is often above 90% and
is extremely challenging to improve due to the unavoidable
losses in its analog components. Coil conduction is one of
the main causes for losses in DC-DC converters [3]. Using
a smaller coil translates into smaller losses and thus helps to
achieve higher power conversion efficiency. For example, with
a 1.8µH coils and asynchronous control the 4-phase buck on
average achieves ~1% higher efficiency than with 6.8µH and
333MHz synchronous control, see Figure 18c.

To summarise, asynchronous controller enables the use of
smaller coils in power converters, while maintaining their
operating characteristics, such as voltage ripple and peak
current. This helps to shrink the physical dimensions of the
system, reduce the inductor losses, and thus improve the
overall power conversion efficiency.

VI. CONCLUSION

This work demonstrates clear advantages of asynchronous
design methodology for “little digital” control. The simulation
results show improved reaction time, voltage ripple, peak
current, and inductor losses of the buck when controlled
asynchronously. These benefits lead to higher efficiency of
power conversion, and can be traded off for the cost of analog
components. The use of the presented methodology in the
form of the design flow, A2A component library and design
tools under WORKCRAFT significantly improves the design
productivity for AMS systems as a whole.
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Fig. 18. Comparison of peak current and inductor losses.

As a future research we are considering greater integration
of formal modelling into the analog-asynchronous co-design
process. Particular challenges in this direction involve analog
behaviour mining, so that the formal capture of analog be-
haviour could be composed with control logic models, such
as STGs or Concepts [30], to enable efficient co-optimization
of the composite system. Initial steps in this direction have
been presented in [48].
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