Branching Processes of High-Level Petri Nets

Victor Khomenko and Maciej Koutny

School of Computing Science, University of Newcastle
Newecastle upon Tyne NE1 7TRU, U.K.
{Victor.Khomenko, Maciej.Koutny}@ncl.ac.uk

Abstract. In this paper, we define branching processes and unfoldings
of high-level Petri nets and propose an algorithm which builds finite and
complete prefixes of such unfoldings. The advantage of our method is
that it avoids a potentially expensive translation of a high-level Petri net
into a low-level one. The approach is conservative as all the verification
tools employing the traditional unfoldings can be reused with prefixes
derived directly from high-level nets. We show that this is often better
than the usual explicit construction of the intermediate low-level net.

Keywords: verification, model checking, high-level Petri nets, unfolding.

1 Introduction

A distinctive characteristic of reactive concurrent systems is that their sets of
local states have descriptions which are both short and manageable, and the
complexity of their behaviour comes from highly complicated interactions with
the external environment rather than from complicated data structures and ma-
nipulations thereon. One way of coping with this complexity problem is to use
formal methods and, especially, computer aided verification tools implementing
model checking (see, e.g., [4]) — a technique in which the verification of a system
is carried out using a finite representation of its state space.

The main drawback of model checking is that it suffers from the state space
explosion problem. That is, even a relatively small system specification can yield
a very large state space. To cope with this, a number of techniques have been
proposed, which can roughly be classified as aiming at a compact representation
of the full state space of a reactive system, or at an explicit generation of its
reduced (though sufficient for a given verification task) representation.

McMillan’s (finite prefixes of) Petri Net unfoldings (see, e.g., [20, 21]) rely on
the partial order view of concurrent computation, and represent system’s actions
and local states implicitly, using an acyclic net. In view of the development of
fast model checking algorithms employing unfoldings ([11, 14]), the problem of
efficiently building them is becoming increasingly important. Recently, [7, 8, 10,
12,15, 22] addressed this issue — considerably improving the original McMil-
lan’s technique — but we feel that generating net unfoldings deserves further
investigation. In particular, it is highly desirable to generalize this technique to
more expressive formalisms, such as high-level (or ‘coloured’) Petri nets. This

2 V. Khomenko, M. Koutny

formalism allows one to model in quite a natural way many constructs of high-
level specification languages used to describe concurrent systems (see, e.g., [1,
9]). Though it is possible to translate a high-level net into a low-level one and
then unfold the latter, it is often the case that the intermediate low-level net is
much larger than the resulting prefix.

In this paper, we propose an approach which allows one to build the prefix
directly from a high-level net. Such a method is often superior to the traditional
one, involving the explicit construction of an intermediate low-level net.
Notation A multiset over a set X is a function u: X — N = {0,1,2,...} (any
subset of X may be viewed through its characteristic function as a multiset over
X). We denote x € p if p(xz) > 1, and for two multisets over X, p and p’, we
write p < p' if p(z) < p/(x) for all z € X. @ denotes the empty multiset defined
by &(z) £ 0, for all z € X. A finite multiset may be represented by explicitly
listing its elements between the {...[brackets, e.g., {y,y, z}} denotes u such
that p(y) = 2, p(z) = 1 and p(z) = 0, for z € X \ {y,z}. The sum of two
multisets p and i over X is given by (u+ i) (z) = p(z) + 1 (x), the difference
by (4 — p/)(z) = max{0, u(x) — p/(z)}, and the intersection by (N p')(z) =
min{p(z), ¢/ (x)}, for all x € X. A multiset 4 is finite if there are finitely many
x € X such that p(z) > 1. In such a case, the cardinality of u is defined
as |u| = Yowex i(x). {P(z) | © € pl, where p is a multiset and P(z) is an
object constructed from x € X, will be used to denote the multiset ' such that
i (y) = Y re XAP(x)=y H(T) Y, Wwhere p(z) -y is the multiset consisting of exactly
p(x) copies of y, e.g., {z*+1 |z € { —1,0,0,1}} = {1,1,2,2}. For a mapping
h:X — Y and a multiset over X, we denote hfu} = {h(z) | = € puf}.

2 Low-level Petri nets

In this section, we first present basic definitions concerning Petri nets, and then
recall (see also [6, 8, 16]) notions related to net unfoldings.

A net (with weighted arcs) is a triple N = (P,T,W) such that P and T
are disjoint sets of respectively places and transitions, and W is a multiset over
(P xT)U(T x P) called the weight function. A net N is called ordinary if W is a
set; in such a case, W can be considered as a flow relation on (P x T)U (T x P).
A marking of N is a multiset M over P, and the set of all markings of N
will be denoted by M(N). (Note that M is finite whenever P is.) We adopt
the standard rules about drawing nets, viz. places are represented as circles,
transitions as boxes, the weight function by arcs with the indicated weight (we
do not draw arcs whose weight is 0, and we do not indicate the weight if it
is 1), and markings are shown by placing tokens within circles. The multisets
2= {y| (y,2) € W} and 2* = {y | (z,y) € W], denote the pre- and postset
of z € PUT. (Note that for an ordinary net, both *z and z* are sets.) We will
assume that *t #£ @ £ t®, for every t € T.

A net system is a pair X = (N, My) comprising a finite net N = (P, T, W)
and an initial marking My. A transition ¢ € T is enabled at a marking M if

Branching Processes of HL. Petri Nets 3

*t < M. Such a transition can be fired, leading to the marking M’ = M — *t+t*;
we denote this by M[t)M’. The set of reachable markings of X is the smallest
(w.r.t. C) set RM(X) containing My and such that if M € RM(X) and M[t)M’,
for some t € T, then M’ € RM(X).

X is k-bounded if, for every reachable marking M and every place p € P,
M(p) <k, and safe if it is 1-bounded. Moreover, X' is bounded if it is k-bounded
for some k € N. One can show that the set RM(X) is finite iff X is bounded.

Places p1,...,pr of a net system X are mutually exclusive if no reachable

marking puts tokens on more than one of them, i.e., for every M € RM(X),
M(p;) > 1 implies M (p;) =0, for all j € {1,...,k}\ {i}.
Low-level branching processes Two nodes (places or transitions), y and y/’,
of an ordinary net N = (P,T,W) are in conflict, denoted by y#y’, if there are
distinct transitions ¢,¢’ € T such that *t N *t’ # @ and (¢,y) and (¢,y’) are in
the reflexive transitive closure of the flow relation W, denoted by <. A node y
is in self-conflict if y#y.

An occurrence net is an ordinary net ON = (B, E, G), where B is the set of
conditions (places), E is the set of events (transitions) and G is a flow relation,
satisfying the following: ON is acyclic (i.e., < is a partial order); for every b € B,
[*b] < 1; for every y € BU E, —(y#y) and there are finitely many gy’ such that
y" <y, where < denotes the transitive closure of G. Min(ON) will denote the
set of minimal (w.r.t. <) elements of B U E. The relation < is the causality
relation. Two nodes are concurrent, denoted y co y’, if neither y#y’ nor y < ¢/
nor y' < y.

A homomorphism from an occurrence net ON = (B, E, G) to a net system X
is a mapping h : BUE — PUT such that: h(B) C P and h(E) C T (conditions
are mapped to places, and events to transitions); for each e € E, h{®e} = *h(e)
and h{e®}} = h(e)® (transition environments are preserved); h{ Min(ON)} = M
(minimal conditions are mapped to the initial marking); and for all e, f € E,
if e = *f and h(e) = h(f) then e = f (there is no redundancy). A branching
process of ¥ is a pair 7 = (ON, h) such that ON is an occurrence net and h is
a homomorphism from ON to X.

If an event e is such that h(e) = t then we will often refer to it as being
t-labelled. A branching process 7’ = (ON',h') of X is a prefiz of a branching
process m = (ON,h), denoted by 7' C «, if ON' = (B’,E’,G’) is a subnet of
ON = (B, E,G) containing all minimal elements and such that: if e € E’ and
(b,e) € G or (e,b) € G then b € B’;if b € B’ and (e,b) € G then e € E’; and
I’ is the restriction of h to B’ U E’. For each X' there exists a unique maximal
(w.r.t. C) branching process Unfs5'®, called the unfolding of X (see [6]).

Sometimes it is convenient to start a branching process with a (virtual) initial
event |, which has the postset Min(ON), empty preset, and no label; we will use
such an event, without drawing it in figures or treating it explicitly in algorithms.
Configurations and cuts A configuration of an occurrence net ON is a set
of events C such that for all e, f € C, —(e#f) and, for every e € C, f < ¢
implies f € C'; since we assume the initial event 1, we additionally require that
1L € C. For every e € E, the configuration [¢] = {f | f < e} is called the local

4 V. Khomenko, M. Koutny

configuration of e, and (e) = [¢] \ {e} denotes the set of causal predecessors of e.
Moreover, for a set of events E’, we denote by C' & E’ the fact that C U E’ is
a configuration and C N E’ = @. Such an F’ is a suffiz of C, and C & E’ is an
extension of C.

The set of all finite (resp. local) configurations of a branching process 7 is

max

denoted by C}En (resp. CT.), and we will drop the superscript 7 if 7 = Unfs,

A set of events E’ is downward-closed if all causal predecessors of the events
in £ also belong to E’. Such a set induces a unique branching process m whose
events are exactly the events in E’, and whose conditions are the conditions
adjacent to the events in E’ (including).

A set of conditions B’ such that for all distinct b, € B’, b co V', is called
a co-set. A cut is a maximal (w.r.t. C) co-set. Every marking reachable from
Min(ON) is a cut.

Let C' be a finite configuration of a branching process 7. Then the set
Cut(C) = (Ueee)\ (U.ee ®c) is a cut (note that L € C'); moreover, the multi-

set of places Mark(C) = h{Cut(C)} is a reachable marking of X, called the final
marking of C. A marking M of X' is represented in 7 if there is C' € C,, such
that M = Mark(C). Every marking represented in 7 is reachable in the original
net system X, and every reachable marking of X is represented in Unf 5 ".
Complete prefixes of Petri net unfoldings Though unfoldings are infinite
whenever the original net systems have infinite runs, it turns out that often they
can be truncated in such a way that the resulting prefixes, though finite, con-
tain enough information to decide a certain behavioural property, e.g., deadlock
freeness. We then say that the prefixes are complete for this property.

There exist several different methods of truncating Petri net unfoldings. The

differences are related to the kind of information about the original unfolding one
wants to preserve in the prefix, as well as to the choice between using only local
configurations (which can improve the running time of an unfolding algorithm),
or all finite configurations (which can result in a smaller prefix), to cut the
unfolding. In [16], a uniform approach to truncating unfoldings, based on cutting
contexts, was proposed.
Cutting contexts For greater flexibility, the approach proposed in [16] is para-
metric. The first parameter determines the information to be preserved in a
complete prefix (in the standard case, the set of reachable markings). The main
idea there was to shift the emphasis from the reachable markings of X' to the
finite configurations of Unf'**. Formally, the information to be preserved in
the prefix corresponds to the equivalence classes of some equivalence relation =
on Cgqyp. The other two parameters are more technical: they specify under which
circumstances an event can be designated as a cut-off event (intuitively, this
means that all its causal successors in the full unfolding can be removed).

. . . df
A cutting context is a triple © = (=, <, {Ce}eeE), where:

1. = is an equivalence relation on Cgy,.
2. <, called an adequate order, is a strict well-founded partial order on Cgy,
refining C, i.e., C' € C" implies C' <1 C”.

Branching Processes of HL. Petri Nets 5

3. =~ and < are preserved by finite extensions, i.e., for every pair of configura-
tions C’ =~ C"”, and for every suffix E’ of C”, there exists a finite suffix E” of
C"” such that: C" @ E" =~ C' @ FE', and if C” <«C’ then C" ® E" < C' ® E'.

4. {Cc}ecr is a family of subsets of Cpp, i.e., Ce C Cpip, for all e € E. &

The main idea behind the adequate order is to specify which configurations will
be preserved in the complete prefix; it turns out that all <-minimal configu-
rations in each equivalence class of &~ will be preserved. The last parameter is
needed to specify the set of configurations used later to decide whether an event
can be designated as a cut-off event. For example, C. may contain all finite con-
figurations of Unf'® or, as it is usually the case in practice, only the local
ones. We will say that a cutting context © is dense (saturated) if C. O Cioc (resp.
Ce =Cfin), for alle € E.

In practice, © is usually dense (or even saturated, see [10]), the adequate
order is either McMillan’s one (see [8,21]) or the total order proposed in [8], and
at least the following equivalences = have been shown to be of interest:

— C'®por C" if Mark(C") = Mark(C"). This is the most widely used equiv-
alence (see [8,10,12,20]). Note that the equivalence classes of =4, corre-
spond to the reachable markings of .

— C'= 04 C" if Mark(C') = Mark(C") and Code(C’) = Code(C"), where
Code is the signal coding function. Such an equivalence is used in [23] for
unfolding Signal Transition Graphs (STGs) specifying asynchronous circuits.

— C'=mgymC" if Mark(C") and Mark(C") are symmetric markings according
to some suitable notion (see [5,13]). This equivalence is the basis of the
approach aimed at reducing the size of prefix described in [5].

We will write e < f whenever [e] < [f]. Clearly, < is a well-founded partial order
on the set of events refining <. Hence, one can use the Noetherian induction
for definitions and proofs, i.e., it suffices to define or prove something for an
event under the assumption that it has already been defined or proven for all its
<-predecessors. In the rest of this section, we assume that the cutting context @
is fixed.

A branching process 7w of X is complete w.r.t. a set Ecyu (see also [16]) of
events of Unf** if the following hold:

1. If C € Cgp, then there is C’ € Cf,, such that C'NE. =@ and C =~ C'.
2. If C € Cf,, is such that CN B,y = @, and e is an event such that C & {e} €
Cfin, then C @ {e} € CF,.

A branching process 7 is complete if it is complete w.r.t. some set E ;.

Note that 7 remains complete following the removal of all events e for which
(e) N Ecut # @, after which the events from E.,; (usually referred to as cut-off
events) will be either maximal events of the prefix or not in the prefix at all.
Note also that the last definition depends only on the equivalence 2, and not on
the other components of the cutting context.

For the relation ~,,,., each reachable marking is represented by a config-
uration in Cfp, and, hence, also by a configuration in Cf,, provided that 7 is

6 V. Khomenko, M. Koutny

complete. This is what is usually expected from a correct prefix. Moreover, the
definition of completeness implies that all firings enabled by the configurations
from Cf, containing no events from FE¢,; are preserved (see [16] for the expla-
nation why this property is desirable).
Static cut-off events Here we recall (see also [16]) the definition of static cut-off
events. They are defined w.r.t. the whole unfolding, so that they are independent
on an algorithm (hence the term ‘static’), together with feasible events, which
are precisely those events whose causal predecessors are not cut-off events, and
as such must be included in the prefix determined by the static cut-off events.
The sets of feasible events, denoted by fsbleg, and static cut-off events,
denoted by cutg, of Unfsn® are defined thus:

1. An event e is a feasible event if (e) N cutg = 2.

2. An event e is a static cut-off event if it is feasible, and there is a configuration
C € C, such that C C fsbleg \ cuto, C = [e], and C < [e]. Any C satisfying
these conditions will be called a corresponding configuration of e.

It turns out that, due to the well-foundedness of <, fsbleg and cutg are
well-defined sets (see [16]). Since (L) = &, L € fsbleg by the above definition.
Furthermore, | ¢ cutg, since | cannot have a corresponding configuration.
Indeed, [L] = {L} is the smallest (w.r.t. C) configuration, and so <t-minimal by
the definition of a cutting context.

Canonical prefix Once the feasible events are defined, the following notion
arises quite naturally. The canonical prefix of Unfs® is the branching process
Unfg induced by fsbleg. Thus Unfg is uniquely determined by the cutting
context ©. In [16], it is proven that the canonical prefix is always complete,
and the conditions which guarantee its finiteness are investigated. Further in
this paper we will show that all these results can be imported to the theory of
branching processes of high-level Petri nets.

Algorithms for generating canonical prefixes It turns out that canonical
prefixes can be constructed by straightforward generalizations of the existing
unfolding algorithms (see, e.g., [8,12]). The slicing algorithm from [12], param-
eterized by a cutting context ©, is shown in Figure 1. (The algorithm proposed
in [8] is its special case.) It is assumed that the function POTEXT(7) finds the
set of possible extensions of a branching process m, according to the following.
For a branching process 7 of X, a possible extension is a pair (D,t), where D is
a co-set in 7w and t is a transition of X, such that h{D} = *t and 7 contains no
t-labelled event with preset D. We will take the pair (D,t) as a t-labelled event
having D as its preset.

Compared to the standard unfolding algorithm in [8], the slicing algorithm
has the following modifications in its main loop. A set of events Si, called a slice,
is chosen on each iteration and processed as a whole, without taking or adding
any events from or to pe. A slice must satisfy the following conditions:

— Sl is a non-empty subset of the current set of possible extensions pe.
— For every e € Sl and every event f<le of Unf+*, f & pe\ Sl and pen(f) = @.

Branching Processes of HL. Petri Nets 7

input : X = (N, My) — a net system
output : Prefy, — the canonical prefix of X’s unfolding (if it is finite)

Prefs, < the empty branching process
add instances of the places from My to Prefs,
pe «— POTEXT(Prefs,)
cut_off — @
while pe # @ do
choose Sl € SLICES(pe)
if 3ee€ Sl: [e]Ncutoff =@
then
for all e € Sl in any order refining << do
if [e] N cut_off = @
then
add e together with its postset to Prefs,
if e is a cut-off event of Prefy, then cut_off «— cut_off U {e}
pe «— POTEXT(Prefs,)
else pe — pe \ Sl

Fig. 1. Unfolding algorithm with slices (e is a cut-off event of Prefy, if there is C € C.
such that the events of C' belong to Prefy, but not to cut_off, C' = [e], and C < [¢]).

In particular, if f € pe and f < e for some e € Sl, then f € SI. The set
SLICES(pe) is chosen so that it is non-empty whenever pe is non-empty. Note that
this algorithm, in general, exhibits more non-determinism than the one from [8]:
it may be non-deterministic even if the order < is total. Since the events in
the current slice can be processed independently, the slicing algorithm admits
efficient parallelization (along the lines proposed in [12]). A crucial property of
the slicing unfolding algorithm is that it generates the canonical prefix (see [12,
16]).

3 High-level Petri nets

In this paper we use M-nets (see [1]) as the main high-level Petri net model,
as we believe that it is general enough to cover many other existing relevant
formalisms. The full definition of M-nets can be found in [1]. Here, in order to
match the presentation of low-level nets as closely as possible, we give a suitably
adapted short description omitting those details which are not directly related
to our purposes. In particular, [1] devotes a lot of attention to the composition
rules, which are relevant only at the construction stage of an M-net, but not for
model checking of an already constructed one.

M-nets It is assumed that there exists a (finite or infinite) set Tok of elements
(or ‘colours’) and a set VAR of variable names, such that Tok N VAR = &. An
M-net N is a quadruple N = (P, T,W,.) such that P and T are disjoint sets
of respectively places and transitions, W is a multiset over (P x VAR x T) U

8 V. Khomenko, M. Koutny

(T x VAR x P) of arcs, and ¢ is an inscription function with the domain PUT.
It is assumed that, for every place p € P, «(p) C Tok is the type of p and, for
every transition ¢ € T, «(t) is a boolean expression over Tok U VAR, called the
guard of t. We assume that the types of all places are finite.! In what follows,
we assume that N = (P,T,W,) is a fixed M-net.

For a transition t € T, let *t = {p* | (p,v,t) € W}, t* = {p* | (t,v,p) € W},
and VAR(t) = {v | (p,v,t) € W} U VAR(u(t)), where VAR(u(t)) is the set of
variables appearing in «(t). A firing mode of t is a mapping o : VAR(t) — Tok
such that o(v) € ¢(p), for all p” in *t 4 t*, and ¢(¢) evaluates to true under the
substitution given by o. (The notation p¥, similarly as p* and ¢° used later on,
is a shorthand for the pair (p,v).)

We define the set of legal place instances as P = {p* |pe PNz €lp)} and
the set of legal firings as T = {t? |t € T and o is a firing mode of t}. For every
t7 € T, we will also denote *t7 = {p°®) | p¥ € *t} and t7® = {p°™) | p¥ € t*].
According to the definitions given below, all valid markings of an M-net will
be composed of legal place instances, and its firing sequences will be composed
of legal firings. Furthermore, the sets P and 7 will provide the basis for the
construction of the low-level net corresponding to a high-level one.

A marking M of N is a multiset over P. We will denote the set of all such
markings by M(N). (Traditionally, a marking is a mapping which, to every place
p € P, associates a multiset over ¢(p). Clearly, such a representation is equivalent
to that we chose to use.)

The transition relation is a ternary relation on M(N) x 7 x M(N) such

that a triple (M, ¢, M’) belongs to it (denoted M[t7)M’) if *t° < M and M’ =
M — *t° +t°°. Note that o is a firing mode of ¢, which guarantees that M’ is a
valid marking of N.
M-net systems An M-net system is a pair T = (N, M) comprising a finite
M-net N and an initial marking My. The set of reachable markings of an M-net
system 1" is the smallest (w.r.t. C) set RM(Y") containing My and such that if
M e RM(Y) and, for some t° € T, M[t°)M’ in N then M’ € RM(Y).

An M-net system 7 is k-bounded if, for every marking M € RM(T) and
every p* € P, M(p®) < k; safe if it is 1-bounded; and bounded if it is k-
bounded for some k € N. Moreover, 1" is strictly k-bounded if, for every marking
M € RM(Y) and every place p € P, {z | p* € M}}| <k, and strictly safe if it is
strictly 1-bounded. One can show that strictly k-bounded M-net systems are k-
bounded, strictly safe ones are safe, and the set RM(T) is finite iff 7" is bounded.
Note that according to the above definitions, a safe M-net system can have a
reachable marking which places several tokens on the same place, provided that
their ‘colours’ are all distinct. The rational behind our choice of the definition
is that the low-level expansion (defined below) of an M-net system is safe iff the
original M-net system is safe, and so the total adequate order proposed in [8] for
safe net systems can be re-used (see the end of Section 4).

! In general, allowing infinite types yields a Turing-powerful model. Nevertheless, this
restriction can be omitted in certain important cases (see Section 5).

Branching Processes of HL. Petri Nets 9

p1:{1..2} G)\\ '/@>p2:{1..2} pi p3
V1 V2

(c)

(a) U3

©p3;{1.,4} P3 ng

Fig. 2. An M-net system (a), its expansion (b), and its unfolding (c). Note that a
firing mode o of ¢ is represented as a three-element string o(v1)o(v2)o(vs).

Consider the M-net system shown in Figure 2(a). At the initial marking, ¢;
can fire with the firing mode o < {v1 — 1,09 — 2,3 — 1} or o’ £ {v1 — 1,09 —
2,v3 — 2}, consuming the tokens from p; and py and producing respectively the
token 1 or 2 on p3. Formally, we have {p!, p2}[t7){pi} and {p}, p2}[t V{p3}.
Transforming M-net systems into low-level nets For each M-net it is
possible to build an ‘equivalent’ low-level one. Such a transformation is called
‘unfolding’ in [1], but since this term is already used in this paper with a different
meaning (see Section 2), we will use the term ‘expansion’ instead. The ezpansion
E(N) of an M-net N = (P,T,W,1) is a low-level net £(N) = (P, T, W’) where
W' = Y eer (7™, 17) | (pov,t) € Wh {(¢7,p°®)) | (t,v,p) € W]). The
expansion £(M) of a marking M of N is M itself, i.e., E(M) = M (this is possible
since there is no difference between the markings of £(IN) and N). Finally, the
expansion of an M-net system 1" = (N, M) is defined as £(Y) = (E(N), E(My))
(see Figure 2(a,b)).

Proposition 1 ([1]). Let N be an M-net, and M',M" € M(N).
Then M'[t7)M" in T iff M'[t°)M"' in E(T).
Proposition 2. Let T = (N, My) be an M-net system.
— For every k € N, E(T) is k-bounded (safe) iff T is k-bounded (safe).

— If T is strictly safe and p is a place of T then the places p*, x € 1(p), are
mutually exclusive in E(T).

Though, by Proposition 1, the expansion of an M-net system faithfully mod-
els the original system, the disadvantage of this transformation is that it usually

10 V. Khomenko, M. Koutny

yields a very large net. Moreover, the resulting net system is usually unnecessar-
ily large, in the sense that it contains many places which cannot be marked and
many dead transitions. This is so because the place types are usually overapprox-
imations, and the transitions of the original M-net system may have many firing
modes, only few of which are realized when executing the net from the initial
marking. E.g., only two out of eight transitions of the expansion of the M-net
system in Figure 2(a), shown in Figure 2(b), can actually fire. Therefore, though
the M-net expansion is a neat theoretical construction, it is often impractical.

4 Branching processes of high-level nets

In this section, we develop the main results of this paper, namely the notions
of a branching process of an M-net system, the associated unfolding, and its
canonical prefix. We also show that there is a strong correspondence between
the branching processes of an M-net system and those of its expansion. This
allows for importing many results from the theory of branching processes of
low-level Petri nets.

A homomorphism from an occurrence net ON = (B, E,G) to an M-net
system 7" is a mapping h: BUE — P U7 such that: h(B) C P and h(E) C T
(conditions are mapped to legal place instances, and events to legal firings);
for every e € E, h{®e} = *h(e) and h{e®} = h(e)® (the environments of legal
firings are preserved); h{Min(ON)[}} = My (minimal conditions are mapped to
the initial marking); and for all e, f € E, if *e = *f and h(e) = h(f), thene = f
(there is no redundancy). A branching process of T is a pair 7 = (ON, h) such
that ON is an occurrence net and h is a homomorphism from ON to 7. (See
Figure 2.)

This definition closely follows the definition of a (low-level) branching process
of £(T), and constitutes the main contribution of this paper. Because of this
similarity, most of the definitions for branching processes of low-level net systems
can now be lifted to branching processes of M-net systems. In particular, this
is the case for the notions of a configuration, cut, final marking, the relation C,
cutting context, and the completeness of a prefix. Also, most of the results proven
for branching processes of low-level Petri nets can also be lifted to branching
processes of M-net systems. In particular, for each M-net system 7" there exist
a unique (up to isomorphism) maximal (w.r.t. C) branching process Unfy"**
of 7', called the unfolding of T. Moreover, for any cutting context @ there exists
unique canonical prefix Unff (coinciding with Unfgo(r)) of Unfy*, and the
theory of canonical prefixes (see [16]) can be transferred without any changes.

It is straightforward to give an upper bound on the size of Unf? , since the
results of [8,16] regarding the size of the canonical prefix are still applicable. In
particular, if the cutting context © = (~, <, {Ce}eeE) is dense, < is total, and
C' = C" & Mark(C') = Mark(C"), then the number of non-cut-off events in
Unf¥ does not exceed |[RM(T)|.

Branching Processes of HL. Petri Nets 11

5 M-net unfolding algorithm

Due to the results developed in the previous section, it is now possible to sug-
gest a suitable modification of the standard unfolding algorithms, e.g., that in
Figure 1, which is capable of building canonical prefixes of M-net unfoldings. It
turns out that the only thing which has to be changed is the notion of a possible
extension (so all the modifications are inside the POTEXT function and thus are
not visible in the top-level description of the algorithm).

For a branching process m of an M-net system 7", a possible extension is a pair
(D,t7), where D is a co-set in 7 and ¢7 is a legal firing, such that h{ D[} = *¢ and
7 contains no t?-labelled event with the preset D. Similarly as in the low-level
case, we will take the pair (D,t?) as a new event of the prefix, with the preset
D. After it is inserted into the prefix, its postset D’ consisting of new conditions
such that h{D’[} =t?° is also inserted.

It is worth noting that most of the existing heuristics aiming at speeding up
the prefix generation can be applied. In particular, the total adequate order for
safe net systems proposed in [8] can be used to unfold safe M-net systems. It is
still adequate, since Unfy*** coincides with Unfg(y] and the expansion of a safe
M-net system is safe. Moreover, the concurrency relation (see [7,22]) can also be
employed, even for non-safe systems. As for the preset trees (see [15]), they can
be used without any modifications to unfold strictly safe M-net systems (and we
work now on generalizing them to wider net classes).

It turns out that direct unfolding a high-level net not only avoids the genera-
tion of its (potentially, very large) expansion, but often is also more efficient than
unfolding its expansion. Indeed, the most time-consuming part of the algorithm
is computing the possible extensions (see [15]). Since one high-level transition
usually corresponds to several low-level ones, less transitions have to be tried
each time possible extensions are computed, which may lead to considerable
savings in the running time.

It is often the case that the information about the firing mode of an event
needs not be explicitly stored. Indeed, this information almost always can be
discarded, since one is usually not interested what was the precise firing mode
of a transition, as long as the consumed and produced tokens are the same.

An important extension of our approach allows for M-nets with places having
infinite types. For example, it is often convenient to assign to a place the type
N rather than {1,...,n}, since n might be not known in advance. Even when
the set of reachable markings of such an M-net system is finite, its expansion is
infinite and so of little use for model checking, whereas with our direct approach
we still can build the canonical prefix and complete the verification. The only
thing which needs to be ensured is that at any stage of prefix construction only
a finite number of legal firings needs to be considered. This will be the case if,
for every transition ¢ and every finite multiset Z over P, the set of all firing
modes o of ¢t such that *t° < Z is both finite and computable.

Having built a canonical prefix, one can easily construct the refined version
of the low-level expansion of the original M-net system, with unreachable places

12 V. Khomenko, M. Koutny

and dead transitions removed. This may be important, e.g., for directly mapping
a Petri net to a circuit simulating its behaviour (see, e.g., [3]).

Finally, it is worth mentioning that since our method constructs exactly the
same prefix which would have been generated from the corresponding expansion
of the M-net system, all the existing model checkers employing unfolding prefixes
derived from low-level nets can be used without any changes when dealing with
prefixes generated directly from M-net systems.

6 Case studies

In this section, we compare our approach with the traditional one, viz. the un-
folding of M-net expansions. We used the unfolding engine described in [12,15]
which after suitable modifications was able to unfold both low-level and high-
level nets. For building M-net expansions, we used the h1211 utility from the
PEP tool (see [2]). The experiments were conducted on a PC with a Pentium™
IT1/500MHz processor and 128M RAM.

The meaning of the columns in the tables is as follows (from left): the ‘size’ of
the problem; the number of places and transitions in the original M-net system;
the number of places and transitions in the corresponding expansion, together
with the time required by the h1211 utility to build the expansion; the number
of conditions, feasible events, and cut-off events in the canonical prefix; the times
(in seconds) required to unfold the expansion of the M-net system and the M-net
system itself, respectively.

The first example is data-intensive, and so the traditional (via low-level nets)
approach is extremely inefficient, whereas we expected our algorithm to perform
well. The second example is control-intensive, so the M-net expansions are just
slightly larger that the original M-nets. It was chosen to test the worst-case
performance of our method relatively to unfolding of the low-level expansion.
Greatest common divisor (GCD) An M-net simulating Euclid’s algorithm
for computing the greatest common divisor of two non-negative integers, together
with its unfolding, is shown in Figure 3. In this net, ¢; fires until the number
in p; becomes 0, replacing the number in py by that in p;, and the number in
p1 by the residual of division of these two numbers. Then t5 fires copying the
result from ps to p3. In our experiments, for each N we computed the greatest
common divisor of Fiy and F_1, where F; denotes the i-th Fibonacci’s number
(such numbers are known to produce the longest sequences of computational
steps for Euclid’s algorithm). The results of our experiments are summarized in
Table 1. From the structure of the M-net, it is easy to calculate that its expansion
contains 3(Fy + 1) places and (F + 1)? transitions. These values are reported
in the corresponding columns of the table, even though h1211 failed to produce
the expansions when they became large.

The experimental results show that for this example the high-level unfolding
is clearly superior. Though the M-net expansion grows very quickly, the resulting
prefix has only 2N — 1 conditions and N — 1 events. Therefore, our algorithm
was able to build it for relatively large N (we had to stop the experiments after

Branching Processes of HL. Petri Nets 13

v1 Z0Aur = v2%v1 Aug =1 p%& pg

Ul u
e N\ pi() ‘ P5
p1:{0..3} @km/ \U27GJ)> p2:{0..3} ez |t
v /U2 p(f & ‘ p%

\
U1=0/\U1=’U2 es | ta

@ pe{0.3) () (b) (o

Fig.3. An M-net system modelling Euclid’s algorithm for computing the greatest
common divisor of two non-negative integers (a), and its unfolding (b). Firing modes
are not shown, but can easily be determined from events’ presets and postsets.

N = 45 since Fj5g overflows 4-bytes integer, but it is a limitation of the current
implementation rather than of the method itself).

Mutual exclusion algorithm The previous example was rather favourable
for our algorithm, since the expansions of the M-net systems were very large.
We therefore checked the performance of our approach in a totally opposite
case, when the expansion of an M-net is relatively small. This happens when
the transitions of the M-net are connected to few places and the cardinality
of most place types is 1. Such M-nets arise when modelling Lamport’s mutual
exclusion algorithm (see [13,19]), which employs ‘very small’ atomic actions.
We encoded it in the B(PN)? language supported by the PEP tool, and the
corresponding experimental results are shown in Table 1. As one can see, our
algorithm performs almost as well as the algorithm for low-level nets. Though
there is some overhead when computing transition guards and more complicated
final states, it is relatively small, because the most time-consuming operation is
computing the possible extensions of a current prefix. Moreover, this overhead
becomes relatively smaller as the size of the prefix grows (it is just 0.5% for the
last example in the table).

After the prefixes had been build, we verified using the efficient model checker
described in [14] that the M-net system is deadlock free, and that the places cor-
responding to the critical sections of the processes are mutually exclusive. This
was done without recompiling the model checker, since our unfolding algorithm
generates prefixes which are indistinguishable from those generated by a low-
level net unfolder from the corresponding expansions of the M-nets.

It is worth noting that in this example partial-order methods have advantage
over the state-space ones. In [13], this mutual exclusion algorithm was verified
for N = 3 by building a reachability graph of the Petri net model and for N = 4
by applying symmetry reductions. We managed to verify the case N = 4 without
applying symmetry reductions, using a PC with smaller memory (128M rather

14 V. Khomenko, M. Koutny

M-net Expansion Unfolding |Time]s]
N||P||T|| |P| |T| Time[s)||B| |E||Eecu:||LL HL
5/ 3 2[18 36 <1 9 4 o<1 <1
10 3 2| 168 3136 1119 9 0 6 <1
15| 3 2/1833 >10° —129 14 ol — <1
20 3 2/>10* >107 —|39 19 ol — <1
251 3 2[>10° >10° —| 49 24 ol — <1
300 3 2/>10° >10"! —1 59 29 ol — <1
35/ 3 2[>107 >10'® —| 69 34 ol — <1
40| 3 2|>10% >10'¢ —1 79 39 ol — <1
45/ 3 2|>10° >10'® —| 89 44 ol — <1

M-net | Expansion Unfolding Timels]
N||P| |T|||P| |T| Time[s]| |B] |E| |Eew|| LL HL
2] 52 50] 58 88 <1] 711 368 102 <1 <1
3| 77 76| 86 154 <1| 23424 12026 4562| 29 30
4/104 104[116 236 <1|736507 375983 167780(28772 28917

Table 1. Experimental results for the M-net systems simulating Euclid’s GCD algo-
rithm and Lamport’s mutex algorithm.

than 256M), for a net which was generated from a relatively high-level description
(B(PN)? language) rather than built by hand. Moreover, our specification was
not optimal since we had to replicate parts of the code, because B(PN)? does
not currently have the goto operator (see [17] for more details). In principle, it is
also possible to apply partial-order methods together with symmetry reductions
(see [5,16]) to achieve even better results, but we have not implemented the
combined method yet.

7 Conclusions and acknowledgements

We defined branching processes and unfoldings of high-level Petri nets and pro-
posed an algorithm which builds finite and complete prefixes. We established
an important relation between the branching processes of a high-level net and
those of its low-level expansion, viz. that the sets of their branching processes
are the same, allowing us to import results proven for low-level nets. Among
such results are the canonicity of the prefix for different cutting contexts, the
usability of the total adequate order proposed in [8], and the parallel unfolding
algorithm proposed in [12]. Our approach is conservative in the sense that all
the verification tools employing the traditional unfoldings can be reused with
such prefixes. The conducted experiments demonstrated that it is, on one hand,
superior to the traditional approach on data-intensive application, and, on the
other hand, has the same performance on control-intensive ones. The full version
of this paper ([17]) contains a comparison with a similar work reported in [18].

Branching Processes of HL. Petri Nets 15

This research was supported by an ORS Awards Scheme grant ORS/C20/4,

and by EPSRC grants GR/M99293 and GR/M94366 (MOVIE).

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

E. Best, H. Fleischhack, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz: A Class
of Composable High Level Petri Nets. ICATPN’1995, LNCS 935 (1995) 103-120.
E. Best and B. Grahlmann: PEP — more than a Petri Net Tool. TACAS’96, LNCS
1055 (1996) 397-401.

A.Bystrov and A. Yakovlev: Asynchronous Circuit Synthesis by Direct Mapping:
Interfacing to Environment. ASYNC’02, IEEE Comp. Soc. Press (2002) 127-136.
E. M. Clarke, O. Grumberg, and D. Peled: Model Checking. MIT Press (1999).
J.-M. Couvreur, S. Grivet, and Denis Poitrenaud: Unfolding of Products of Sym-
metrical Petri Nets. ICATPN’2001, LNCS 2075 (2001) 121-143.

J. Engelfriet: Branching processes of Petri Nets. Acta Inf. 28 (1991) 575-591.
J.Esparza and S. Romer: An Unfolding Algorithm for Synchronous Products of
Transition Systems. CONCUR’99, LNCS 1664 (1999) 2-20.

J. Esparza, S.Romer and W. Vogler: An Improvement of McMillan’s Unfolding
Algorithm. TACAS’96, LNCS 1055 (1996) 87-106. Full version: Formal Methods
in System Design 20(3) (2002) 285-310.

H. Fleischhack, B. Grahlmann: A Petri Net Semantics for B(PN)? with Procedures.
PDSE’97, IEEE Computer Society Press (1997) 15-27.

K. Heljanko: Minimizing Finite Complete Prefixes. CS&P’99, Workshop Concur-
rency, Specification and Programming (1999) 83-95.

K. Heljanko: Using Logic Programs with Stable Model Semantics to Solve Deadlock
and Reachability Problems for 1-Safe Petri Nets. Fund. Inf. 37(3) (1999) 247-268.
K. Heljanko, V. Khomenko and M. Koutny: Parallelisation of the Petri Net Unfold-
ing Algorithm. TACAS’02, LNCS 2280 (2002) 371-385.

K. Jensen: Colored Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. EATCS Monographs on Theoretical Computer Science (1992).

V.Khomenko and M. Koutny: LP Deadlock Checking Using Partial Order Depen-
dencies. CONCUR’2000, LNCS 1877 (2000) 410-425.

V. Khomenko and M. Koutny: Towards An Efficient Algorithm for Unfolding Petri
Nets. CONCUR’2001, LNCS 2154 (2001) 366-380.

V.Khomenko, M. Koutny, and V. Vogler: Canonical Prefixes of Petri Net Unfold-
ings. CAV’02, LNCS 2404 (2002) 582-595.

V.Khomenko and M. Koutny: Branching Processes of High-Level Petri Nets.
Techn. Rep. CS-TR-763, Department of Computing Science, University of New-
castle (2002).

V. E. Kozura: Unfolding of Colored Petri Nets. Techn. Rep. 80, A. P. Ershov Insti-
tute of Informatics Systems (2000).

L. Lamport: A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer
Systems 5(1) (1987) 1-11.

K. L. McMillan: Using Unfoldings to Avoid State Explosion Problem in the Verifi-
cation of Asynchronous Circuits. CAV’92, LNCS 663 (1992) 164-174.

K. L. McMillan: Symbolic Model Checking. PhD thesis, CMU-CS-92-131 (1992).
S.Romer: Entwicklung und Implementierung von Verifikationstechniken auf der
Basis von Netzentfaltungen. PhD thesis, Technische Universitat Munchen (2000).
A.Semenov: Verification and Synthesis of Asynchronous Control Circuits Using
Petri Net Unfolding. PhD Thesis, University of Newcastle upon Tyne (1997).

