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1 Introduction

Many contemporary systems enjoy a number of features that significantly increase their power,
usability and flexibility:

Dynamic reconfigurability The overall structure of many existing systems is flexible: nodes
in ad-hoc networks can dynamically appear or disappear; individual cores in Networks-on-
Chip can be temporarily shut down to save power; resilient systems have to continue to deliver
(reduced) functionality even if some of their modules develop faults.

Logical mobility Mobile systems permeate our lives and are becoming ever more important.
Ad-hoc networks, where devices like mobile phones and laptops form dynamic connections are
common nowadays, and the vision of pervasive (ubiquitous) computing, where several devices
are simultaneously engaged in interaction with the user and each other, forming dynamic links,
is quickly becoming a reality.

Dynamic allocation of resources It is often the case that a system has several instances
of the same resource (e.g. network servers or processor cores in a microchip) that have to be
dynamically allocated to tasks depending on the current workload, power mode, priorities of
the clients, etc.

The common feature of such systems is the possibility to form dynamic logical connec-
tions between the individual modules. It is implemented using reference passing: a module
can become aware of another module by receiving a reference (e.g. in the form of a network
address) to it, which enables subsequent communication between these two modules. This can
be thought of as a new (logical) channel dynamically created between these modules. We will
refer to such systems as Reference Passing Systems (RPS).

As people are increasingly dependent on the correct functionality of such systems, the
cost incurred by design errors in them can be extremely high. However, even the conventional
concurrent systems are notoriously difficult to design correctly because of the complexity of
their behaviour, and reference passing adds another layer of complexity due to the logical
structure of the system becoming dynamical. Hence, computer-aided formal verification has to
be employed in the design process to ensure the correct behaviour of RPSs.

While the complexity of systems increases, the time-to-market is reducing. To address this,
system design has changed from a holistic to a compositional process: The system is usually
composed from pre-existing modules. This change in the design process has to be mirrored
by the change of focus of the formal verification from the level of individual modules to the
inter-modular level.

Nowadays it is reasonable to assume that individual modules are already well-tested or
formally verified by their vendors. Moreover, the inter-module communication fabric (e.g. a
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computer network) is usually built of standard components and uses standard protocols, and so
can be assumed to be correct-by-construction. On the other hand, the interaction between the
modules is usually highly complicated. Thus, verification of the inter-module communication
is required to ensure that the system as a whole provides the desired functionality.

These considerations can be addressed by abstracting away the low-level communication
infrastructure (e.g. network behaviour) and the internal behaviour of the modules. Only the
behaviour on the modules’ interfaces is modelled, and the model of the overall system is the
composition of these interface models. This view has the advantage of separating the verification
concerns.

Traditionally, such inter-module verification is accomplished using rely/guarantee reasoning
and supported by automated theorem provers. However, due to undecidability reasons, theorem
proving cannot be fully automated and requires substantial manual intervention to help the
tool to discharge some of the proof obligations. Hence, lifting (fully automatic) model checking
to the inter-modular level is highly desirable.

There is a number of formalisms that are suitable for specification of RPSs. The main
considerations and tradeoffs in choosing an appropriate formalism are its expressiveness and the
tractability of the associated verification techniques. Expressive formalisms (like π-calculus [16]
and Ambient Calculus [4]) are Turing powerful and so not decidable in general. Fortunately,
the ability to pass references per se does not lead to undecidability. One can impose restrictions
on dimensions like communication [1, 13], control [5, 20] and interconnection shape [12, 13] to
recover decidability while retaining a reasonable modelling power.

Finite Control Processes (FCP) [5] are a fragment of π-calculus, where the system is con-
structed as a parallel composition of a fixed number of sequential entities (threads). The control
of each thread can be represented by a finite automaton, and the number of threads is bounded
in advance. The threads communicate synchronously via channels, and have the possibility to
create new channels dynamically and to send channels via channels. These capabilities are
often sufficient for modelling mobile applications and instances of parameterised systems, and
the appeal of FCPs is due to combining this modelling power with decidability of verification
problems [5, 14].

In this paper, we contribute to FCP verification, following an established approach: we
translate the process into a safe low-level Petri net (PN). This translation bridges the gap
between expressiveness and verifiability: While π-calculus is suitable for modelling mobile sys-
tems but difficult to verify due to the complicated semantics, PNs are a low-level formalism
equipped with efficient analysis algorithms. With the translation, all verification techniques
and tools that are available for PNs can be applied to analysing the (translated) process.

Technically, our translation relies on three insights: (i) the behaviour of an FCP νa.(S1 | S2)
coincides with the behaviour of (S1{n/a} | S2{n/a}) where the restricted name a has been
replaced by a fresh public name n (a set of fresh names that is linear in the size of the FCP
will be sufficient); (ii) we have to recycle fresh names, and so implement reference counters for
them; and (iii) we hold substitutions explicit and give them a compact representation using
decomposition, e.g., {a, b/x, y} into {a/x} and {b/y}.

1.1 Complexity-theoretic considerations

There is a large body of literature on π-calculus to PN translations (cf. Section 1.2 for a detailed
discussion). Complexity-theoretic considerations, however, suggest that they are all suboptimal
for FCPs — either in terms of size [3, 10,13,14] or because of a too powerful target formalism
[1,6, 11].

The following shows that a polynomial translation of FCPs into low-level safe PNs must
exist. Indeed, it is well-known that a Turing machine with bounded tape can be modelled by
such a PN of polynomial (in the size of the control and the tape’s length) size, see e.g. [8]. In
turn, as the state of an FCP can always be described by a string of length linear in the process
size, an FCP can be simulated by a Turing machine with the tape of linear length (in the
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FCP’s size). Moreover, there is an easy translation from a safe PN to an FCP of linear (in the
PN’s size) size.1 That is, the three formalisms can simulate each other with only polynomial
overhead. This argument is in fact constructive and shows the PSPACE-completeness of FCP
model checking, but the resulting PN would be ugly.

These considerations motivated us to look for a natural polynomial translation of FCPs to
safe PNs, which is the main contribution of this paper. We stress that our translation is not
just a theoretical result, but is also quite practical:

– it is very natural (there is a strong correspondence between the control flow of the FCP
being translated and the resulting PNs);

– the transition systems of the FCP and that of its PN representation are bisimilar, which
makes the latter suitable for checking temporal properties of the former;

– the resulting PN is compact (polynomial even in the worst case);
– we propose a number of optimisations allowing to significantly reduce the size of the re-

sulting PN in practice;
– we propose several extensions of the translation, in particular to polyadic π-calculus and

match/mismatch operators;
– the conducted experiments demonstrate that the translation is suitable for practical model

checking.

1.2 Related work

There are two main approaches to verification of FCPs. The first one is to directly generate
the reachable state space of the model, e.g. as done on-the-fly by the Mobility Workbench
(MWB) [22]. This approach is relatively straightforward, but it has a number of disadvan-
tages, in particular its scalability is poor due to the complexity of the π-calculus semantics
restricting the use of heuristics for pruning the state space and the need to perform expensive
operations (like computing the canonical form of the term) every time a new state is generated.
Furthermore, some efficient model checking techniques like symbolic representation of the state
space are very difficult to apply.

The alternative approach, and the one followed in this paper, is to translate a π-calculus
term into a simpler formalism, e.g. Petri nets (PN), that is then analysed. This approach has
a number of advantages, in particular it does not depend on a concrete verification technique,
and can adapt any such technique for PNs. Furthermore, RPSs often are highly concurrent, and
so translating them into a true concurrency formalism like PNs has a number of advantages,
in particular one can efficiently utilise partial-order reductions for verification, alleviating thus
the problem of combinatorial state space explosion (that is, a small specification often has a
huge number of reachable states, which is beyond the capability of existing computers).

Although for the π-calculus several translations have been proposed in literature, none
of them provides a polynomial translation of FCPs into safe PNs. We discuss several such
translations below.

The verification kit HAL [9] translates a model into a History Dependent Automaton —
a finite automaton where states are labelled by sets of names that represent restrictions —
a formalism proposed by Montanari and Pistore [17, 20]. For model checking, these automata
are further translated to finite automata [9]. Like in our approach, the idea is to replace
restrictions with fresh names. But their translation stores full substitutions, which may yield
an exponential blow up of the finite automaton. The translation presented here avoids this
blow up by compactly representing substitutions by PN markings. This, however, needs careful
substitution manipulation and reference counting.

To handle restrictions, Amadio and Meyssonnier [1] replace unused names by generic
free names. Their translation instantiates the substitution, i.e. a π-calculus process like

1 The idea is to create a thread for each transition and two defining equations for each place that
correspond to the presence and absence of a token in that place. Then communication actions are
used to simulate the behaviour of the transitions.
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(x1〈y1〉.x2〈y2〉){a, b, a, b/x1, y1, x2, y2} is represented by a〈b〉.a〈b〉. This creates an exponen-
tial blow up: since the substitutions that are applied change over time, m public names and
n variables may yield mn instantiated terms. Moreover, since the number of processes to be
modified by replacement is not bounded in the paper, these authors use PNs with transfer.
Their translation handles a subset of π-calculus that is incomparable with FCPs. Moreover, as
the results of this paper show, transfer nets are an unnecessarily powerful target formalism —
e.g. reachability is undecidable in such nets [7].

Busi and Gorrieri study non-interleaving and causal semantics for the π-calculus and pro-
vide decidability results for model checking [3]. The work fails to prove bisimilarity, which is
recovered in [10]. The translations may be exponential for FCPs due to the instantiation of
substitutions.

Devillers, Klaudel and Koutny [6] achieve a bisimilar translation of π-calculus into high-level
Petri nets, thus using a Turing complete formalism where automatic analyses are necessarily
incomplete. The main contribution is compositionality: for every π-calculus operator there is
a corresponding net operator, and in many cases the size of the net is linear in the size of the
process. However, the target formalism is too powerful and the paper provides no experimental
evaluation.

Khomenko, Koutny and Niaouris [11] translate the recursion-free fragment of π-calculus
into high-level PNs and verify the latter using an unfolding based technique for high-level PNs.
The approach can express only finite runs, and so its practical applicability is limited. Besides,
the target formalism is unnecessarily powerful.

The approach in [14] translates FCPs into safe low-level PNs, which are then verified using
PN unfoldings. The experiments in that paper indicate that this technique is much more
scalable than the ones above, and it has the advantage of generating low-level rather than
high-level PNs. However, in the worst case the resulting PN is exponential in the size of the
original FCP.

Peschanski, Klaudel and Devillers [19] translate π-graphs (a graphical variant of π-calculus)
into high-level PNs. The technique works on a fragment that is equivalent to FCPs. However,
the target formalism is unnecessarily powerful, and the paper provides no experimental evalu-
ation.

2 Basic notions

In this section we recall the basic notions concerning Petri nets and FCPs.

2.1 Petri nets

A Petri net (PN) is a tuple N
df

= (P, T, F,M0) such that P and T are disjoint sets of places
and transitions, F ⊆ (P × T )∪ (T × P ) is a flow relation, and M0 is the initial marking of N ,

where a marking M : P → N
df

= {0, 1, 2, . . .} of N is a multiset of places. We draw PNs in the
standard way: places are represented as circles, transitions as boxes, the flow relation by arcs,

and a marking by tokens within circles. The size of N is ‖N‖
df

= |P |+ |T |+ |F |+ |M0|.

We denote by •z
df

= {y | (y, z) ∈ F} and z•
df

= {y | (z, y) ∈ F} the preset and postset

of z ∈ P ∪ T , respectively. A transition t is enabled at marking M , denoted by M
t
→, if

M(p) ≥ 0 for every p ∈ •t. Such a transition can be fired, leading to the marking M ′ with

M ′(p)
df

= M(p) − F (p, t) + F (t, p) for every p ∈ P . We denote the firing relation by M
t
→ M ′

or by M → M ′ if the identity of the transition is irrelevant. The set of reachable markings of
N is denoted by R(N).

A PN N is k-bounded if M(p) ≤ k for every M ∈ R(N) and every place p ∈ P , and safe if
it is 1-bounded. We will focus on safe PNs.

Several places in a Petri net are called mutually exclusive if at each reachable marking at
most one of them contains tokens. In a safe Petri net, a place p is a complement of a set Q of
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mutually exclusive places if at any reachable marking p contains a token iff none of the places
in Q contains a token. If Q = {q} is a singleton, the places p and q are complements of each
other.

2.2 Finite control processes

In π-calculus [15,21], threads communicate via synchronous message exchange. The key idea
in the model is that messages and the channels they are sent on have the same type: they are

just names from some set Φ
df

= {a, b, x, y, i, f, r, . . .}. This means a name that has been received
as message in one communication may serve as channel in a later interaction. To communicate,
processes consume prefixes π of the form

π ::= a〈b〉 p a(x) p τ.

The output prefix a〈b〉 sends name b along channel a. The input prefix a(i) receives a name
that replaces i on channel a. Prefix τ stands for a silent action.

Threads, also called sequential processes, are constructed as follows. A choice process
∑

i∈I πi.Si over a finite set of indices I executes a prefix πi and then behaves like Si. The
special case of choices over an empty index set I = ∅ is denoted by 0 — such a process has
no behaviour. A restriction νr.S generates a name r that is different from all other names
in the system. We denote a (perhaps empty) sequence of restrictions νr1 . . . νrk by νr̃ with
r̃ = r1 . . . rk. To implement parameterised recursion, we use calls to process identifiers K⌊ã⌋.
We defer the explanation of this construct for a moment. To sum up, threads take the form

S ::= K⌊ã⌋ p
∑

i∈I πi.Si p νr.S.

We use S to refer to the set of all threads. A finite control process (FCP) F is a parallel
composition of a fixed number of threads:

F ::= νã.(Sinit,1 | . . . | Sinit,n).

Our presentation of parameterised recursion using callsK⌊ã⌋ follows [21]. Process identifiers

K are taken from some set Ψ
df

= {H,K,L, . . .} and have a defining equation K(f̃) := S. Thread
S can be understood as the implementation of identifier K. The process has a list of formal
parameters f̃ = f1, . . . , fk that are replaced by factual parameters ã = a1, . . . , ak when a call
K⌊ã⌋ is executed. Note that both lists ã and f̃ have the same length. When we talk about an
FCP specification F , we mean process F with all its defining equations.

To implement the replacement of f̃ by ã in calls to process identifiers, we use substitutions.
A substitution is a function σ : Φ → Φ that maps names to names. If we make domain and
codomain explicit, σ : A→ B with A,B ⊆ Φ, we require σ(a) ∈ B for all a ∈ A and σ(x) = x

for all x ∈ Φ \ A. We use {ã/f̃} to denote the substitution σ : f̃ → ã with σ(fi)
df

= ai for
i ∈ {1, . . . , k}. The application of substitution σ to S is denoted by Sσ and defined in the
standard way [21].

Input prefix a(i) and restriction νr bind the names i and r, respectively. The set of bound
names in a process P = S or P = F is bn (P ). A name which is not bound is free, and the
set of free names in P is fn (P ). We permit α-conversion of bound names. Therefore, w.l.o.g.,
we make the following assumptions common in π-calculus theory and collectively referred to
as no clash (NC) henceforth. For every FCP specification F , we require that:

– a name is bound at most once;
– a name is used at most once in formal parameter lists;
– the sets of bound names, free names and formal parameters are pairwise disjoint;
– if a substitution σ = {ã/x̃} is applied to S then bn (S) and ã ∪ x̃ are disjoint.

Assuming (NC), the names occurring in an FCP specification F can be partitioned into
the following sets:
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P public names that are free in F ;
R names bound by restriction operators;
I names bound by input prefixes;
F names used as formal parameters in defining equations.

We are interested in the relation between the size of an FCP specification and the size of
its Petri net representation. The size of an FCP specification is defined as the size of its initial
term plus the sizes of the defining equations. The corresponding function ‖ · ‖ measures the
number of channel names, process identifiers, the lengths of parameter lists, and the number
of operators in use:

‖0‖
df

= 1 ‖K⌊ã⌋‖
df

= 1 + |ã|

‖
∑

i∈I πi.Si‖
df

= 3|I| − 1 +
∑

i∈I ‖Si‖ ‖Sinit,1 | . . . | Sinit,n‖
df

= n− 1 +
∑n

i=1 ‖Sinit,i‖

‖νr.P‖
df

= 1 + ‖P‖ ‖K(f̃) := S‖
df

= 1 + |f̃ |+ ‖S‖

To define the behaviour of a process, we rely on structural congruence ≡. It is the smallest
congruence where α-conversion of bound names is allowed, + and | are commutative and
associative with 0 as the neutral element, and the following laws for restriction hold:

νx.0 ≡ 0 νx.νy.P ≡ νy.νx.P νx.(P |Q) ≡ P |(νx.Q) if x /∈ fn (P ).

The behaviour of π-calculus processes is determined by the reaction relation → [15, 21]:

(Tau) τ.S +M → S (React) (x(y).S +M) |(x〈z〉.S′ +N)→ S{z/y} |S′

(Res)
P → P ′

νa.P → νa.P ′
(Struct)

P → P ′

Q→ Q′
if P ≡ Q and P ′ ≡ Q′

(Par)
P → P ′

P |Q→ P ′ |Q
(Const) K⌊ã⌋ → S{ã/f̃} if K(f̃) := S

The rule (Tau) is an axiom for silent steps. (React) describes the communication of two parallel
threads, consuming their send and receive actions respectively and continuing as a process,
where the name y is substituted by z in the receiving thread S. (Const) describes identifier
calls, likewise using a substitution. The remaining rules define→ to be closed under structural
congruence, parallel composition and restriction. By R(F ) we denote the set of all processes
reachable from F . The transition system of FCP F factorises the reachable processes along

structural congruence, T (F )
df

= (R(F )/≡, →֒, F ) where F1 →֒ F2 if F1 → F2.

Normal form assumptions To ease the definition of the Petri net translation and the corre-
sponding correctness proofs, we make assumptions about the shape of the FCP specification.
These assumptions are not restrictive, as any FCP can be translated into the required form.

We require that the sets of identifiers called (both directly from F and indirectly from
defining equations) by different threads are disjoint. This restriction corresponds to the notion
of a safe FCP [14] and can be achieved by replicating some defining equations. The resulting
specification F ′ is bisimilar with F and has size O(n‖F‖) = O(‖F‖2). We illustrate the con-
struction on the following example of an FCP specification F (left) together with its replicated
version F ′ (right):

K(f1, f2) := τ.L(f1, f2) K1(f1
1 , f

1
2 ) := τ.L1(f1

1 , f
1
2 )

L(f3, f4) := τ.K(f3, f4) L1(f1
3 , f

1
4 ) := τ.K1(f1

3 , f
1
4 )

K2(f2
1 , f

2
2 ) := τ.L2(f2

1 , f
2
2 )

L2(f2
3 , f

2
4 ) := τ.K2(f2

3 , f
2
4 )

K3(f3
1 , f

3
2 ) := τ.L3(f3

1 , f
3
2 )

L3(f3
3 , f

3
4 ) := τ.K3(f3

3 , f
3
4 )

K⌊a, b⌋ |K⌊b, c⌋ |L⌊a, c⌋ K1⌊a, b⌋ |K2⌊b, c⌋ |L3⌊a, c⌋
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Intuitively, in the resulting FCP specification each thread has its own set of defining equations.
In our translation, this requirement ensures that the control flow nets of different threads are
disjoint.

We also can ensure that defining equations do not call themselves, i.e. that the body of
K(f̃) := S does not contain any calls of the form K⌊ã⌋. Indeed, we can replace any such
call with K ′⌊ã⌋, with a new defining equation K ′(f̃ ′) := K(f̃ ′). This increases the size of the
FCP only linearly, and ensures we do not have to re-map parts of f̃ to f̃ when passing the
parameters of a call, which simplifies the translation of such calls.

3 Translation of π-calculus to safe Petri nets

In this section we informally explain the proposed polynomial translation of FCPs to safe Petri
nets.

The first step is to model the substitution σ : R ∪ I ∪ F → P ∪ N (mapping the bound
names and formal parameters occurring in the FCP and active at the current state to their
values) as a set of PN places. This step is detailed in Sect. 3.1.

The second step is to translate the control of each thread into a Petri net. This is done in
a straightforward way, in particular:

– The communication prefixes are modelled by stubs at this point (i.e. no synchronisation
between the threads is performed yet).

– The translation of the overall FCP is the net obtained by placing the translations of its
threads side-by-side (recall that the threads in an FCP never share any defining equations).

– Each subterm t of a thread is translated into a subnet with a unique entry place pt (different
occurrences of the same subterm are distinguished and yield different subnets). This place
is initially marked if t correspond to some thread’s initial expression in the main term of
the FCP.

The translation of the control is performed as follows, depending on the structure of t (note
that each thread is a sequential process, so | cannot occur in them, and that the prefix operator
is a special case of the sum):

Stop process 0 The corresponding subnet is comprised of the entry place, optionally followed
by a subnet unmapping in the substitution all the bound names and formal parameters in
whose scope this 0 process reside.

Call K⌊ã⌋ Let K(f̃) := S be the defining equation for K. The entry place is followed by a
subnet that amends the substitution in such a way that f̃ become mapped to the values
of ã and all the other bound names and formal parameters in whose scope this call resides
become unmapped; then the control is transferred to the entry place of the translation
of S.

Restriction If the term has the form νr.S then the corresponding entry place is followed by
a subnet that amends the substitution so that r becomes mapped to some n ∈ N to which
no other name is currently mapped, which in turn is followed by the translation of S.

Sum We assume that the sums are guarded, i.e. have the form
∑n

i=1 πi.Si. The entry place is
connected to the entry places of the translations of Sis by transitions labelled πi. If πi 6= τ
(i.e. the prefix is a communication action) then the corresponding transition is a stub, i.e.
it will be eliminated at the end of the translation, after the synchronisation of the nets
corresponding to the threads is completed.

The third step of the translation is to synchronise the subnets corresponding to different
threads on communication actions. Let t and t′′ be two stub transitions labelled by actions a〈b〉
and x(y), respectively, belonging to different FCP threads. They are synchronised by adding
a set of transitions implementing the communication. At most one of these transitions can be
enabled (depending on the values of a, b and x), and each of these transitions consumes tokens
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from the input places of t and t′′, produces tokens at their output places, checks by read arcs
the appropriate places of the substitution to verify that the values of a and x are the same
(and so the communication is possible), and amends the substitution by mapping y to the
value of b. If the communication is impossible, none of these transitions is enabled. After all
synchronisations are performed, the stub transitions are removed from the net.

We now explain each element of the translation in more detail. Below, we use the nota-
tion dom(x) to denote the domain of each name, i.e. any fixed overapproximation of the set
of possible values of a name x. The domains of all names in the proposed translation are fi-
nite, and can be computed by static analysis (see Sect. 6); however, even the following rough
overapproximation is sufficient to prove the polynomiality of the translation:

dom(x)
df

=







{x} if x ∈ P
N if x ∈ R
P ∪N if x ∈ I ∪ F

3.1 Petri net representation of the name substitution

The substitution σ : R ∪ I ∪ F → P ∪ N maps the bound names and formal parameters
occurring in the FCP and active at the current state to their values.

The efficient Petri net representation of this substitution is the key element of the proposed
translation. In particular, the following operations must be efficiently supported:

Initialisation of a restricted name It should be possible to find a value val ∈ N to which
no bound name or formal parameter is currently mapped, and map a given restricted name
r to val .

Remapping A given input name i may be mapped to σ(v), where v is the communicated
name in the corresponding communication action; alternatively, a given formal parameter
f can be mapped to σ(v) by a process call that uses v as a factual parameter. In the latter
case, it is also possible that v occurs in the list of factual parameters several times, so it
is convenient to be able to map several formal parameters to σ(v) in one step (i.e. by one
PN transition).

Unmapping When a bound name or formal parameters b goes out of scope, its mapping
should be removed. During a process call, it often happens that σ(b) is assigned to one or
more formal parameters, and simultaneously b goes out of scope, so it is convenient to be
able remap and unmap b in one step.

Independence The three kinds of operations described above should not interfere with each
other when applied to different names (note that due to (NC), the bound names and
formal parameters in distinct threads are always different), so that they can be performed
concurrently, without the need for synchronisation. This prevents the introduction of arbi-
tration, and so has beneficial effect on the clarity of the translation and the performance of
some model checking methods (e.g. unfoldings and those using partial order reductions).

In what follows, we describe a representation of σ as a safe PN that satisfies all the formu-
lated requirements. The PN places modelling σ are shown in Fig. 1. The places [var = val ],
when marked, represent the fact that var ∈ R∪I ∪F is mapped to val ∈ P ∪N . Places named
[var 6= val ], where var ∈ R∪ I ∪F and val ∈ N , are compliments of the corresponding places
[var = val ], and places [r∗ 6= val ], where val ∈ N , are complements of the corresponding sets of
places {[r1 = val ], . . . , [rnr

= val ]} (note that the places in these sets are mutually exclusive).
The following important invariants are maintained by all the PN transitions:

– for each var ∈ I ∪ F and val ∈ N , [var 6= val ] is complementary to [var = val ];
– for each val ∈ N , the places [r1 = val ], . . . , [rnr

= val ] are mutually exclusive (i.e. no two
restricted names can be mapped to the same value), and [r∗ 6= val ] is complementary to
these places;
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p1 p2 . . . pnp n1 n2 . . . nnn

i1 ©[i1=p1] ©[i1=p2] . . . ©[i1=pnp ] ©[i1=n1]
⊙

[i1=n2] . . . ©[i1=nnn ]⊙
[i1 6=n1] ©[i1 6=n2] . . .

⊙
[i1 6=nnn ]

...
...

...
...

...
...

...
ini ©[ini=p1] ©[ini=p2] . . . ©[ini=pnp ] ©[ini=n1] ©[ini=n2] . . . ©[ini=nnn ]⊙

[ini 6=n1]
⊙

[ini 6=n2] . . .
⊙

[ini 6=nnn ]

f1 ©[f1=p1] ©[f1=p2] . . . ©[f1=pnp ]
⊙

[f1=n1] ©[f1=n2] . . . ©[f1=nnn ]
©[f1 6=n1]

⊙
[f1 6=n2] . . .

⊙
[f1 6=nnn ]

...
...

...
...

...
...

...
fnf

©[fnf
=p1] ©[fnf

=p2] . . . ©[fnf
=pnp ] ©[fnf

=n1] ©[fnf
=n2] . . . ©[fnf

=nnn ]⊙
[fnf

6=n1]
⊙

[fnf
6=n2] . . .

⊙
[fnf

6=nnn ]

r1 ©[r1=n1] ©[r1=n2] . . . ©[r1=nnn ]

...
restricted names are never mapped
to public ones, so no places here

...
...

...
rnr ©[rnr=n1] ©[rnr=n2] . . . ©[rnr=nnn ]⊙

[r∗ 6=n1]
⊙

[r∗ 6=n2] . . .
⊙

[r∗ 6=nnn ]

Fig. 1. Illustration of NSubst with a substitution marking that corresponds to σ : {i1, f1} → ã ∪ P
where σ(i1) = a1 and σ(f1) = a2 with a1 6= a2. The marking represents a1 by n2 and a2 by n1.

– for each var ∈ R ∪ I ∪ F , the places [var = val ], where val runs through dom(var), are
mutually exclusive (i.e. a name can be mapped to at most one value).

The choice of the cardinality of the set N (nn in Fig. 1) is of crucial importance: it should
be sufficiently big to guarantee that there will always be a name that can be used to initialise
a restricted name when necessary, but taking an unnecessary big value for this parameter
increases the size of the generated PN as well as the number of its reachable states. The
following rough overapproximation is sufficient to prove the polynomiality of the translation:

|N |
df

= |R|+ |I|+ |F|.

The rationale is that there should be enough values in N to assign a unique value to each
bound variable and formal parameter. A better overapproximation can be obtained using static
analysis, see Sect. 6.

The operations on the substitution are implemented as follows.

Initialisation of a restricted name To find a value val ∈ N to which no bound name or
formal parameter is currently mapped, and map a given restricted name rk to val , the PN
transition performing the initialisation has to:

– test by read arcs that the places [i1 6= val ], . . . , [ini
6= val ] and [f1 6= val ], . . . , [fnf

6= val ]
have tokens (i.e. no input or formal parameter name is currently mapped to val);

– consume the token from [r∗ 6= val ] (checking thus that val is not currently assigned to any
restricted name);

– produce a token at [rk = val ] (performing thus the initialisation of rk with the value val).

Remapping Whenever the value of a name v becomes bound to some input name ik by
a communication action, or to a formal parameter fk by a process call, the corresponding
transition has to consume the token from [ik 6= σ(v)] (resp. [fk 6= σ(v)]) and produce a token
in [ik = σ(v)] (resp. [fk = σ(v)]). Note that in general it is possible that v occurs several times
in the list of factual parameters of the call, and so several formal parameters fk1

, . . . , fkl
have

to be bound to σ(v). This situation can still be handled by a single PN transition consuming
the tokens from [fk∗

6= σ(v)] and producing tokens in [fk∗
= σ(v)]; furthermore, this can be

combined with unmapping v (see below), and still be done by a single PN transition.
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Unmapping When a bound name or formal parameter var mapped to val goes out of scope,
its mapping should be removed. This can be modelled by a PN transition consuming the token
from [var = val ] and, if val ∈ N , producing a token in [var 6= val ].

3.2 Initialisation of restricted names

Suppose the process has the form νr.S. The corresponding subnet is constructed as follows, cf.
Fig. 2.

For each n ∈ N , we create a transition trn consuming a token from the entry place, producing
a token in the entry place of the subnet implementing S, and performing the initialisation of
the restricted name r with the value n as explained in Sect. 3.1.

Note that the transitions trn arbitrate between the names in N , allowing any of the currently
unused names to be selected for the initialisation of r. If such an arbitration is undesirable,2

separate pools of values can be used for each thread, as described Sect. 6.

3.3 Handling 0 process

Executing a 0 process terminates a thread. One option for implementing it would be to unmap
all the bound names and formal parameters in whose scope this 0 resides, and then stop.
However, one can observe that this unmapping is not necessary, as the used resources (in
particular, the names from N to which these bound variables are mapped) will not be needed.
Hence, the subnet implementing a 0 process can consist of its entry place only.

3.4 Handling calls

At the point of a call, all the active bound names and formal parameters of the process go out
of scope (recall that we assume that the body of a definition of a K cannot call K). Hence,
the substitution has to be appropriately amended.

Let K⌊ã⌋ be a call with the factual parameters ã, B be the set of bound names and formal
parameters within whose scope this call is performed, and K(f̃) := S be the equation defining
K. Due to (NC), all the names in f̃ are different (and so f̃ will be treated as a set below),
whereas names in ã can be repeated; moreover, f̃ does not overlap with ã and B. The call is
then performed by:

– Modifying the substitution so that the names in f̃ are mapped to the corresponding values
of ã, and the names in B become unmapped.

– Transferring the control to the entry place of the subnet implementing S.

The latter is trivial, and we now describe the former in more detail. Let A be the set of
names occurring in ã (perhaps, multiple times). Then the required change in the substitution
can be modelled by the assignments

Xi ← a, for each a ∈ A and ∅ ← a, for each a ∈ B \A,

where Xi is the set of formal parameters to which the value of the factual parameter a is
assigned by the call, i.e. Xi’s are disjoint non-empty sets whose union is f̃ . Intuitively, an
assignment X ← a, where X ⊆ f̃ can be empty, simultaneously maps all the variables in X to
σ(a) and, if a ∈ B, unmaps a. Since no two assignments reference the same name, they cannot
interfere and thus can be executed in any order or concurrently.

The subnet implementing an assignment X ← a has one entry and one exit place and is
constructed as follows. For each val ∈ dom(a) we create a transition tval which:

2 E.g. due to its negative impact on some of the model checking techniques. Note however that using
symmetries mitigates the negative impact of this arbitration on model checking, as all the states
that can be reached after performing this arbitration become equivalent.
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– consumes a token from the entry place and produces a token on the exit place;

– for each f ∈ X, consumes a token from [f 6= val ] (provided this place exists, i.e. val ∈ N )
and produces a token on [f = val ];

– if a ∈ B, consumes a token from the place [a = val ], and, in case val ∈ N , produces a
token on the place [a 6= val ] (or in the place [r∗ 6= val ] if a is a restricted name).

Such subnets can be combined in either sequential or parallel manner (in the later case addi-
tional fork and join transitions are needed).

3.5 Handling communication

Recall that, given stub transitions t′ and t′′ labelled by actions a〈b〉 and x(y) belonging to
different FCP threads, the synchronisation adds a set of transitions implementing the commu-
nication. We now show how these transitions are constructed, cf. Fig. 3.

If static analysis (see Sect. 6) shows that a〈b〉 and x(y) are potentially synchronisable, we
create for each i ∈ dom(a) ∩ dom(x) and j ∈ dom(b) ∩ dom(y) a transition tij which:

– consumes tokens from the input places of the stubs t′ and t′′ and produces tokens on their
output places;

– checks by read arcs that [a = i] and [x = i] are marked (i.e. the substitution maps a and
x to the same value i and thus the synchronisation is possible);

– checks by a read arc that [b = j] is marked, consumes a token from [y 6= j] (if this place
exists) and produces a token on [y = j] (mapping thus in the substitution y to j, i.e. to
the value of b).

If the synchronisation is possible in the current state of the system, exactly one of these
transitions is enabled (depending on the values of a, b and x); else none of these transitions is
enabled.

After all such synchronisations are performed, the stub transitions are removed from the
net.

3.6 Size of the translation

The size of the PN generated by our translation is dominated by the number of transitions
modelling communication — in fact, they determine the degree of the polynomial giving the
asymptotic worst-case size of the PN. In the worst case, the numbers of sending and receiving
actions are O(‖F‖) and almost all pairs of send/receive actions can synchronise; thus the
total number of such synchronisations is O(‖F‖2). Recall that for a pair of actions x1〈y1〉 and
x2(y2), a separate transition is generated for each pair of names in P ∪ N . In the worst case
|P ∪ N | = O(‖F‖), and thus the total number of transitions implementing communication,
as well as the size of the resulting PN, are O(‖F‖4). However, the ‘communication splitting’
optimisation described in Sect. 6 reduces this size down to O(‖F‖3).

4 Definition of the translation

In this section we formally describe the proposed translation. To do that, we add some further
assumptions on the form of the FCP. These assumptions are not restrictive: any FCP can be
transformed into an FCP of the required form. However, the assumptions significantly simplify
the correctness proofs by reducing the number of cases that have to be considered.
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4.1 Additional normal form assumptions

We augment the (NC) assumptions as follows: in a defining equation K(f̃) := S, fn (S) = f̃ .
That is, we do not allow public names in defining equations. Note that this assumption can
easily be enforced by passing all the required public names as parameters.

Note that our translation interprets the names in I ∪F ∪R as variables that substitutions
σ : I ∪ F ∪ R → P ∪ N assign constants to. Here, P is the finite set of public names and
N is a set of fresh names which are assigned to restricted names. The following assumption
helps us avoid case distinctions for the initial process. We assume there are artificial defining
equations KInit,i(f̃Init,i) := SInit,i, with fn (SInit,i) = f̃Init,i ⊆ F , that are called by a virtual
initialisation step. Their purpose is to guarantee that the processes SInit,i have the free names

f̃Init,i. We then apply substitutions to assign the expected values to these parameters. This
means we can write the given FCP as

F = νã.(SInit,1σ1 | . . . | SInit,nσn),

where each substitution σi maps f̃Init,i into ã and P, σi : f̃Init,i → ã ∪ P. We additionally
assume that the SInit,i are choices or calls.

Finally, if we have an input x(y).S then we assume y ∈ fn (S), which can be achieved by
adding an artificial parameter to the call at the end of the process. Similarly, for a restriction
νr.S we assume r ∈ fn (S). Restrictions not satisfying this requirement can be dropped using
structural congruence.

4.2 Outline of the translation

Recall that the main idea is to replace restricted names by fresh public ones. Indeed, the
behaviour of

F = νã.(SInit,1σ1 | . . . | SInit,nσn)

coincides with that of

SInit,1σ
′
1 | . . . | SInit,nσ

′
n

with σ′
i

df

= σi{ñ/ã}, provided the names ñ are fresh. These new names are picked from a set
N , and since for an FCP specification there is a bound on the number of restricted names
in all processes reachable from F , a finite N suffices. But how to support name creation and
deletion with a constant number of free names? The trick is to reuse the names: n ∈ N may
first represent a restricted name r1 and later a different restricted name r2. To implement this
recycling of names, we keep track of whether or not n ∈ N is currently used in the process.
This can be understood as reference counting.

The translation takes the finite set of names N as a parameter. The resulting PN is a
composition

N(F )
df

= NSubst ⊳ H(N(SInit,1) ‖ . . . ‖ N(SInit,n)).

Each PN N(SInit,i) is a finite automaton (its transitions have one incoming and one outgoing
arc and the initial marking has one token) that reflects the control flow of thread SInit,i. It op-
erates on a low-level of abstraction and explicitly handles the introduction and removal of name
bindings. The transitions of N(SInit,i) are annotated with synchronisation actions and sets of
commands. Transitions with complementary synchronisation actions are appropriately merged
by the parallel composition ‖. Hiding H then removes the original transitions. Commands are
handled by the implementation operator ⊳, which connects the control flow to NSubst — a net
that compactly represents the substitutions in a process and implements reference counting.
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4.3 Construction of NSubst

The key idea of our representation of a substitution is to partition it into elementary substitu-
tions, e.g. {a, b/x, y} is represented as {a/x} ∪ {b/y}. The substitution net has corresponding
places [x=a] and [y=b] for each component that may occur in such a decomposition. Moreover,
there is a second set of places [x 6=n] and [r∗ 6=n]. They are needed to keep track of whether an
input, a formal parameter, or a restriction is bound to n ∈ N . Note that these places comple-
ment the corresponding substitution places, in particular [r∗ 6=n] indicates that no restricted
name is bound to n. (Since at most one restriction can be bound to n, this one complement
place is sufficient.) NSubst has no transitions and hence no arcs, and we defer the explanation

of its initial marking. Formally, NSubst
df

= (PSubst ∪ PRef , ∅, ∅,M0), where

PSubst
df

= ((I ∪ F)× {=} × P) ∪ ((I ∪ F ∪R)× {=} × N )

PRef
df

= (I ∪ F ∪ {r∗})× {6=} × N .

Substitution Markings and Correspondence A marking M of NSubst is called a substitution
marking if it satisfies the following constraints:

(SM1) M([r∗ 6=n]) +
∑

r∈R

M([r=n]) = 1
∑

a∈P∪N

M([x=a]) ≤ 1 (SM2)

M([x=n]) = 1 iff M([x 6=n]) = 0. (SM3)

The first equation holds for every fresh name n ∈ N . It states that at most one restricted name
is bound to n. We find a token on [r∗ 6=n] iff there is no such binding. The second constraint
states that every name x ∈ I∪F ∪R is bound to at most one a ∈ P∪N . The reference counter
has to keep track of whether a name x ∈ I ∪F maps to a fresh name n ∈ N , which motivates
the third equivalence.

Consider now a substitution σ : (I ′∪F ′ → P ∪ ã)∪ (R′ → ã) with domain I ′ ⊆ I, F ′ ⊆ F ,
R′ ⊆ R, codomain P and some set of names ã, and where the second component R → ã is
injective. A substitution marking M of NSubst is said to correspond to σ if the following hold:

(COR1) For all x ∈ I ∪ F ∪R \ dom(σ) and a ∈ N ∪ P, M([x=a]) = 0.
(COR2) For all x ∈ dom(σ) with σ(x) ∈ P, M([x=σ(x)]) = 1.
(COR3) For all x ∈ dom(σ) with σ(x) ∈ ã, there is n ∈ N s.t. M([x=n]) = 1.
(COR4) The choice of n preserves the equality of names as required by σ, i.e. for all x, y ∈

dom(σ) with σ(x), σ(y) ∈ ã and all n ∈ N , we have

σ(x) = σ(y) iff M([x=n]) = M([y=n]).

Recall that we translate the specification F = νã.(SInit,1σ1 | . . . | SInit,nσn). As initial
marking of NSubst , we fix some substitution marking that corresponds to σ1 ∪ . . . ∪ σn. As
we shall see, every choice of fresh names ñ for ã indeed yields bisimilar behaviour. Note that
(NC) ensures that the union of substitutions is again a function. Fig. 1 illustrates NSubst and
the concepts of substitution markings and correspondence.

4.4 Construction of N(SInit)

Petri net N(SInit) reflects the control flow of thread SInit . To synchronise send and re-

ceive prefixes in different threads, we annotate its transitions with labels from L
df

=
{τ, send(a, b), rec(a, b) | a, b ∈ P ∪ N}. To capture the effect that reactions have on substi-
tutions, transitions also carry a set of commands from

C
df

= {map(x, b), unmap(x, b), test([x = b]) | x ∈ I ∪ F ∪R and b ∈ P ∪N}.

These commands maintain the name binding in the overall net. Formally, a control flow net is
a tuple (P, T, F,M0, l, c) where (P, T, F,M0) is a Petri net and l : T → L and c : T → P(C) are
the labellings.



14 Roland Meyer, Victor Khomenko, and Reiner Hüchting

Fig. 2. Translation of a restric-
tion with map(r, n) implemen-
ted.

As SInit is a sequential process, transitions in N(SInit )
will always have a single input and a single output place. This
allows us to understand N(SInit ) as a finite automaton, and
hence define it implicitly via a new labelled transition system
for SInit . Recall that S is the set of sequential processes. We
extend them by sequences of names: S × (I ∪F ∪R)∗. These
lists will carry the names that have been forgotten and should
be eventually unmapped in NSubst . Among such extended
processes, we then define the labelled transition relation

−։ ⊆ (S × (I ∪ F ∪R)∗)× L× P(C)× (S × (I ∪ F ∪R)∗).

Each transition carries a label and a set of commands, and
will yield a Petri net transition. We have the following transitions among extended processes.

For restrictions νr.S, we allocate a fresh name. Since we can select any name that is not in
use, such a transition exists for every n ∈ N :

(νr.S, λ)
τ

−−−−−−−։
{map(r,n)}

(S, λ). (TRANS ν)

Fig. 2 depicts the transition, together with the implementation of mapping defined below.
Silent actions yield a τ -labelled transition with empty set of commands as expected:

(τ.S +
∑

i∈I πi.Si, λ)
τ
−−−։

∅
(S, λ · λ′), (TRANS τ )

where λ′ = fn
(

τ.S +
∑

i∈I πi.Si

)

\ fn (S). This means λ′ contains the names that were free in
the choice process but have been forgotten in S. With an ordering on P∪N , we can understand
this set as a sequence.

Communications are more subtle. Consider x〈y〉.S +
∑

i∈I πi.Si that sends y on channel x.
Via appropriate tests, we find the names a and b that x and y are bound to. These names then
determine the transition label. So for all a, b ∈ P ∪N , we have

(x〈y〉.S +
∑

i∈I πi.Si, λ)
send(a,b)

−−−−−−−−−−−−−−−։
{test([x=a]),test([y=b])}

(S, λ · λ′). (TRANS snd)

Sequence λ′ again contains the names that are no longer in use. A receive action in x(y).S +
∑

i∈I πi.Si is handled like a send, but introduces a new binding. For all a, b ∈ P ∪N , we get

(x(y).S +
∑

i∈I πi.Si, λ)
rec(a,b)

−−−−−−−−−−−−−−։
{test([x=a]),map(y,b)}

(S, λ · λ′). (TRANS rec)

There are similar transitions for the remaining prefixes πi with i ∈ I. Fig. 3(left) illustrates
the transitions for send and receive actions.

For a call to an identifier K⌊x1, . . . , xn⌋ with K(f1, . . . , fn) := S, the idea is to iteratively
update the substitution, by binding the formal parameters to the factual ones and then unmap-
ping the names in λ (which will include the factual parameters). Note that fn (S) = {f1, . . . , fn}
by (NC), and due to the assumptions about the form of the process stated in Sect. 2, no equa-
tion calls itself, which ensures that we do not accidentally unmap a public name or the just
mapped formal parameters. The following transitions are created for each a ∈ P ∪N :

(K⌊x1, . . . , xm⌋, λ)
τ

−−−−−−−−−−−−−−−−−։
{test([xm=a]),map(fm,a)}

(K⌊x1, . . . , xm−1⌋, λ
′), (TRANS call1)

where λ′ df

= λ if xm ∈ λ and λ′ df

= λ · xm otherwise. (This case distinction ensures that we
will unmap a factual parameter precisely once, even if it occurs multiple times in the list of
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Fig. 3. Translation of communication (left), parallel composition and hiding (center), and implemen-
tation of test([x1=a]) and map(y2, n) (right).

factual parameters.) When all parameters have been passed, we unmap the names in λ 6= ε,
by creating the following transitions for each a ∈ P ∪N :

(K⌊−⌋, x · λ)
τ

−−−−−−−−−։
{unmap(x,a)}

(K⌊−⌋, λ). (TRANS call2)

When λ = ε has been reached, we transfer the control to the body S of the defining equation:

(K⌊−⌋, ε)
τ
−−−։

∅
(S, ε). (TRANS call3)

Petri net N(SInit) is the restriction of (S × (I ∪F ∪R)∗,−։) to the extended processes that
are reachable from (SInit , ε) via −։. The initial marking puts one token on place (SInit , ε) and
leaves the remaining places unmarked.

4.5 Operations on nets

Parallel composition ‖ Parallel composition of labelled nets is classical in Petri net theory.
The variant we use is inspired by [2]. The parallel composition N1 ‖ N2 forms the disjoint
union of N1 and N2, and then synchronises the transitions t1 in N1 that are labelled by
l1(t1) = send(a, b) (resp. rec(a, b)) with the transitions t2 in N2 that are labelled by l2(t2) =
rec(a, b) (resp. send(a, b)). The result is a new transition (t1, t2) without a label, which carries
the union of the commands for t1 and t2. Note that a labelled transition that has been used
for synchronisation in N1 ‖ N2 is still available for further synchronisations with N3. This in
particular implies that ‖ is associative and commutative.

Consider the Petri nets Ni = (Pi, Ti, Fi,M0,i, li, ci) with i ∈ {1, 2}, where P1 and P2 as well
as T1 and T2 are disjoint. (Note that the disjointness of these sets follows from the disjointness
of sets of process identifiers for different threads.) Their parallel composition is defined as

N1 ‖ N2
df

= (P1 ∪ P2, T1 ∪ T2 ∪ T, F1 ∪ F2 ∪ F,M0,1 ∪M0,2, l1 ∪ l2 ∪ l, c1 ∪ c2 ∪ c).

The set of new transitions is

T
df

= {(t1, t2) ∈ T1 × T2 | l1(t1) = rec(a, b) and l2(t2) = send(a, b), or

l1(t1) = send(a, b) and l2(t2) = rec(a, b)}.

The labellings are l((t1, t2))
df

= τ and c((t1, t2))
df

= c(t1) ∪ c(t2). The flow relation is inherited
from the original nets: For each pi ∈ Pi, i ∈ {1, 2}, we have:

F (pi, (t1, t2)) iff Fi(pi, ti) F ((t1, t2), pi) iff Fi(ti, pi).

Hiding H The hiding operator removes from a labelled PN N all transitions t with l(t) 6= τ .

Consider the labelled Petri net N = (P, T, F,M0, l, c). We define H(N)
df

= (P, T ′, F ′,M0, l
′, c′),
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where T ′ df

= {t ∈ T | l(t) = τ} and the flow relation and the labellings are restricted accordingly:

F ′ df

= F|T ′ , l′
df

= l|T ′ , c′
df

= c|T ′ . Since H(N) contains only τ -labelled transitions, we can omit the
labelling l′ from the result. The combination of parallel composition and hiding is illustrated
in Fig. 3(center).

Implementation operation ⊳ Consider the two Petri nets N1 = NSubst = (P1, ∅, ∅,M0,1)
and N2 = H(N(SInit,1) ‖ . . . ‖ N(SInit,n)) = (P2, T, F2,M0,2, c) defined above. The implemen-
tation operation

N1 ⊳ N2
df

= (P1 ∪ P2, T, F2 ∪ F,M0,1 ∪M0,2)

yields a standard Petri net without labelling. Its purpose is to implement the commands carried
by the transitions of N2 by adding arcs between the two nets. We fix a transition t ∈ T and a
command c ∈ c(t), and define the arcs that have to be added between t and some places of N1

to implement c. We do the case analysis for the possible types of c:

test([x=b]) We add a loop to place [x=b]: ([x=b], t), (t, [x=b]) ∈ F .
map(x, p),map(x, n),map(r, n) A map command differentiates according to whether the first

component is an input or a formal parameter x ∈ I ∪F , or whether it is a restricted name
r ∈ R. If x is assigned a public name, map(x, p) ∈ c(t) with p ∈ P, we just add a token
to the substitution net, (t, [x=p]) ∈ F . If x is assigned some n ∈ N , map(x, n) ∈ c(t),
we additionally remove the token from the reference counter: (t, [x=n]), ([x 6=n], t) ∈ F . To
represent restricted name r ∈ R by a name n ∈ N , we first check that no other name is
currently mapped to n using the reference counter for n. In case n is currently unused,
we introduce the binding [r=n] to the substitution net: ([r∗ 6=n], t), (t, [r=n]) ∈ F and
{([x 6=n], t), (t, [x 6=n]) | x ∈ I ∪ F} ⊆ F .

unmap(x, p), unmap(x, n), unmap(r, n) An unmap command removes the binding of x ∈ I∪F :
([x=p/n], t) ∈ F ; moreover, in case of n ∈ N , it updates the reference counter: (t, [x 6=n]) ∈
F . When we remove the binding of r ∈ R to n ∈ N , we update [r∗ 6=n] in the reference
counter: ([r=n], t), (t, [r∗ 6=n]) ∈ F .

Fig. 2 illustrates the implementation of mapping for a restriction, map(r, n). Tests and
mapping of an input name are shown in Fig. 3(right).

5 Correctness of the translation

To show the correctness of the proposed translation we relate F and N(F ) by a suitable form
of bisimulation. The problem is that N(F ) may perform several steps to mimic one transition
of F . The reason is that changes to substitutions (as induced e.g. by νr.S) are handled by
transitions in N(F ) whereas F uses structural congruence; i.e. a substitution change does not
necessarily lead to a step in the reaction relation of F . To obtain a clean relationship between
the models, we restrict the transition system of N(F ) to so-called stable markings and race free
transition sequences between them. Intuitively, stable markings correspond to the choices and
process calls in F , and race free transition sequences mimic the reaction steps between them.
We show below that this restriction is insignificant, as any transition sequence is equivalent to
some race free one.

Marking M of N(F ) = NSubst ⊳ H(N(SInit,1) ‖ . . . ‖ N(SInit,n)) is called stable if, in
every control flow net N(SInit,i), it marks a place (S, λ) where S either is a choice or a call
to a process identifier with full parameter list. We denote by RStbl(N(F )) the set of stable
markings that are reachable in N(F ). We furthermore refer to places (S, λ) where S either is
a choice or a call to a process identifier as stable places.

A transition sequence t1, . . . , tn between stable markings M,M ′ ∈ RStbl(N(F )) is race
free if exactly one ti is either of the form (TRANS τ ) for a silent action, of the form (t, t′)
for communication actions (TRANS snd), (TRANS rec), or of the form (TRANS call2) for an
identifier call, cf. Sect. 4.4. Thus, a race free transition sequence corresponds to precisely one
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step in the reaction relation of F , characterised by ti, while the other transitions tj implement
the substitution changes between M,M ′. In particular, no intermediary marking is stable.

We denote the fact that there is such a race free transition sequence by M ⇒ M ′. The
stable transition system of N(F ) is now

TStbl(N(F ))
df

= (RStbl(N(F )),⇒,M0).

Here, M0 is the initial marking of N(F ). By the assumption on SInit,i from Sect. 4.1, the mark-
ing is stable. Using TStbl(N(F )), we can now formulate our main theorem for the correctness
of our translation:

Theorem 1. The transition system of F and the stable transition system of N(F ) are bisim-
ilar, T (F ) ∼ TStbl(N(F )), via the bisimulation B defined below.

To define the bisimulation relation, we use the fact that every process reachable from F is
structurally congruent to

νã.(S1σ1 | . . . | Snσn).

Here, Si is a choice or an identifier call that has been derived from S with K(f̃) := S. Derived
means (S, ε) −։+ (Si, λi) so that no intermediary process is a call to a process identifier. As
second requirement, we have

σi : fn(Si) ∪ λi → ã ∪ P. (DOM)

This means the domain of σi is the free names in Si together with the names λi that have
already been forgotten. The two sets are disjoint, fn(Si) ∩ λi = ∅. The above process actually
is in standard form [15], but makes additional assumptions about the shape of threads and the
domain of substitutions.

We define B ⊆ R(F )/≡ × RStbl(N(F )) to contain (G,M1 ∪M2) ∈ B if there is a process
νã.(S1σ1 | . . . | Snσn) ≡ G as above so that the following holds: Marking M1 of NSubst

corresponds to σ1 ∪ . . . ∪ σn, and for the control flow marking, we have M2(Si, λi) = 1 for all
i ∈ {1, . . . , n}.

5.1 Bisimulation Proof

We now turn to the bisimulation proof. We have to show that for each pair (G,M) ∈ B, every
transition G →֒ G′ can be mimicked by a race free transition sequence in N(F ), i.e. there is
a stable marking M ′ with M ⇒ M ′ such that (G′,M ′) ∈ B. Moreover and in turn, the race
free transition sequences in N(F ) should be imitated in process F . The proof is split into two
parts, formulated as Lemmas 1 and 2, for both directions respectively.

Lemma 1. Let (G,M) ∈ B. For all G′ with G →֒ G′ there is a stable marking M ′ ∈
RStbl(N(F )) such that M ⇒M ′ and (G′,M ′) ∈ B.

Proof. Process G is structurally congruent to νã.(S1σ1 | . . . | Snσn). By the base cases of
the reaction rules, transition G →֒ G′ exists iff (1) either two processes Siσi and Sjσj with
i 6= j ∈ {1, . . . , n} communicate, (2) we resolve a call to a process identifier in some Siσi,
i ∈ {1, . . . , n}, or (3) we have a τ action. Silent steps are easier than the former two and hence
omitted in the proof.
Case 1: Communication For simplicity, we assume that: the first two threads communicate
using the first prefixes; after the communication, the first thread yields choice or call S′

1; the
second process creates precisely one restricted name before becoming a choice or a call S′

2; the
communication is over restricted names and a restricted name is sent. The remaining cases are
along similar lines. We thus have G ≡ νã.(S1σ1 | . . . | Snσn) with

S1 = x1〈y1〉.S
′
1 +M1 σ1(x1) = σ2(x2) ∈ ã

S2 = x2(y2).νr.S
′
2 +M2 σ1(y1) ∈ ã.
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The process resulting from the communication is

G′ df

= νã.ar.(S
′
1σ1 | S

′
2σ

′
2 | S3σ3 | . . . | Snσn) with σ′

2
df

= σ2{σ1(y1)/y2}{ar/r}.

We argue that G′ has the desired normal form. The processes S′
1 and S′

2 are choices or calls.
Moreover, (S, ε) −։∗ (S2, λ2) implies (S, ε) −։∗ (S′

2, λ2 · λ′
2). This means S′

1 and S′
2 have been

derived as required. It remains to show (DOM). We do the proof for σ′
2, the reasoning for σ1

is simpler:

dom(σ′
2) (1)

= dom(σ2) ∪ {y2, r} (2)

= λ2 ∪ fn (S2) ∪ {y2, r} (3)

= λ2 ∪ (fn (S2) \ fn (νr.S′
2)) ∪ (fn (νr.S′

2) \ {y2}) ∪ {y2, r} (4)

= λ2 ∪ (fn (S2) \ fn (νr.S′
2)) ∪ fn (S′

2) ∪ {y2, r} (5)

= λ2 ∪ (fn (S2) \ fn (νr.S′
2)) ∪ fn (S′

2) (6)

= λ2 · λ
′
2 ∪ fn (S′

2) . (7)

Equation (3) is (DOM) for σ2. Equation (4) uses the fact that

fn (S2) = (fn (S2) \ fn (νr.S′
2)) ∪ (fn (νr.S′

2) \ {y2}).

This is due to fn (νr.S′
2) \ {y2} ⊆ fn(S2). Equation (5) is due to

(fn (νr.S′
2) \ {y2}) ∪ {y2, r} = fn (S′

2) ∪ {y2, r}.

Equation (6) holds by {y2, r} ⊆ fn(S′
2). Finally, Equation (7) holds by definition of the extended

transition relation −։.

We now argue that (1.a) there is M ′ ∈ RStbl(N(F )) so that M ⇒M ′ and (1.b) (G′,M ′) ∈ B.
Claim 1.a: There is M ′ ∈ RStbl(N(F )) with M ⇒ M ′ We decompose M = M1 ∪M2 so
thatM1 is the substitution marking andM2 is the control flow marking. Since (G,M1∪M2) ∈ B,
we have M2((S1, λ1)) = 1 = M2((S2, λ2)). Moreover, M1 corresponds to σ1 ∪ . . . ∪ σn. In the
following, we also use σ to refer to this union. Since σ1(x1), σ2(x2), σ1(y1) ∈ ã, by (COR3) we
have fresh names n1, n2, n3 ∈ N with M1([x1=n1]) = 1 = M1([x2=n2]) = M1([y1=n3]). Since
σ1(x1) = σ2(x2), we conclude n1 = n2 by (COR4).

It remains to argue that there is a fresh name available in N to represent r. As r /∈ dom(σ),
we have

|dom(σ)| < |I|+ |F|+ |R| = |N |.

With (COR1), for x /∈ dom(σ) we have M1([x=n]) = 0 for all n ∈ N . For x ∈ dom(σ), we
have at most one place [x=a] marked by (SM2). Together, this means there is a name n ∈ N
with M1([x=n]) = 0 for all x ∈ I ∪F ∪R. Let this name be nr. Since we have M1([x=nr]) = 0
for x ∈ I ∪F ∪R, constraints (SM1) and (SM3) ensure M1([x 6=nr]) = 1 for x ∈ I ∪F ∪{r∗}.

Before parallel composition, the original netN(SInit,1) had the following transition sequence
leaving place (S1, λ1):

(S1, λ1)
send(n1,n3)

−−−−−−−−−−−−−−−−−−։
{test([x1=n1]),test([y1=n3])}

(S′
1, λ

′
1).

Similarly, from (S2, λ2) in N(SInit,2) we have

(S2, λ2)
rec(n1,n3)

−−−−−−−−−−−−−−−−−−−։
{test([x2=n1]),map([y2=n3],})

(νr.S′
2, λ2 · λ

′
2)

τ
−−−−−−−−։
{map(r,nr)}

(S′
2, λ2 · λ

′
2).
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Parallel composition joins the communicating transitions of the two nets, and we denote the
result by (t1, t2). Then hiding removes the original transitions t1 labelled by send(n1, n3) and
t2 labelled by rec(n1, n3). Then, for (t1, t2) and for the transition tr mapping r to a fresh name,
the implementation operation adds arcs to and from NSubst .

We now show that the transition sequence (t1, t2) tr is enabled, starting with (t1, t2). We
argued that (Si, λi) carries a token. This means the control flow is at the right place. We have
M1([x1=n1]) = 1 = M1([x2=n1]) = M1([y1=n3]). Hence, the test arcs to the substitution net
are enabled. We have y2 ∈ bn(S2). Hence, the name is not in the domain of σ2 by (DOM)
and (NC). With (COR1), M([y2=a]) = 0 holds for all names a ∈ P ∪ N . In particular,
M([y2=n3]) = 0. With (SM3), we conclude M([y2 6=n3]) = 1. This ensures map(y2, n3) is
enabled. For tr, we have M([x 6=nr]) = 1 for all x ∈ I ∪ F ∪ {r∗}. Hence, the transition is
enabled.

The resulting marking M ′ puts tokens on (S′
1, λ

′
1) and (S′

2, λ2 · λ
′
2) which are stable places.

This means M ′ is stable. The marking is reachable as M was reachable. Moreover, transition
sequence (t1, t2) · tr above is race free.
Claim 1.b: (G′,M ′) ∈ B Again M ′ = M ′

1 ∪M ′
2 where M ′

1 is the marking of NSubst and M ′
2

is the control flow. For the control flow, we moved the single token from (S1, λ1) to (S′
1, λ

′
1)

and from (S2, λ2) to (S′
2, λ2 · λ′

2) as required.
For NSubst , we show that we obtain a substitution marking. We already argued that

M1([y2=a]) = 0 for all a ∈ P ∪ N and hence M1([y2 6=n3]) = 1. We consume the latter
token and move it to M ′

1([y2=n3]) = 1. This means we still map y2 to at most one name as
required by (SM2). Moreover, the invariant on reference counting (SM3) is satisfied.

Name r is not in the domain of σ2. Hence, the places [r=a] are empty for all a ∈ N ∪ P.
We move the token from M1([r∗ 6=nr]) = 1 to M ′

1([r=nr]) = 1. As a result, the places [r=a] for
all a ∈ N ∪ P together carry at most one token as required by (SM2). Moreover, the places
[r=nr] for all r ∈ R plus [r∗ 6=nr] carry precisely one token. This proves (SM1). We have a
substitution marking.

We have to show that M ′
1 corresponds to σ′ df

= σ1 ∪ σ′
2 ∪ σ3 ∪ . . . ∪ σn. We only introduce

bindings for y2 and r. For y2 we have σ′
2(y2) = σ1(y1) ∈ ã. Hence, it is correct that we map

M ′
1([y2=n3]) = 1 with n3 ∈ N . The reasoning is similar for r with σ′

2(r) = ar. (COR3) holds.
Marking M ′

1 only introduce tokens to the places [y2=n3] and [r=nr] with {y2, r} ⊆ dom(σ′).
For the remaining names x ∈ I∪F∪R\{y2, r}, it coincides with M1. Note that for x /∈ dom(σ′)
we have x /∈ dom(σ). Hence, by (COR1) for M1, we get M ′

1([x=a]) = M1([x=a]) = 0 for all
a ∈ P ∪N . This proves (COR1) for M ′

1.
It remains to show (COR4): the equality required by σ′ coincides with the choice of fresh

names. For r we haveM ′
1([r=nr]) = 1 andM ′

1([x=nr]) = 0 for all other names r 6= x ∈ I∪F∪R.
This coincides with the requirement that σ′(r) 6= σ′(x). For y2, we only consider x /∈ {y2, r}
and get

σ′(y2) = σ′(x) iff σ(y1) = σ(x)

iff M1([y1=n]) = M1([x=n]) for all n ∈ N

iff M ′
1([y1=n]) = M ′

1([x=n]) for all n ∈ N

iff M ′
1([y2=n]) = M ′

1([x=n]) for all n ∈ N .

The first equivalence holds by σ′(y2) = σ(y1). The second equivalence is (COR4) for σ, the
third is the observation that M1 and M ′

1 coincide on all names except y2 and r. The last
equivalence is the fact that the rows for y1 and y2 coincide. This is by the fact that every
name y has at most one place [y=a] marked (SM2), in combination with M ′

1([y1=n3]) = 1 =
M ′

1([y2=n3]).
Case 2: Identifier calls We have G ≡ νã.(K⌊x̃⌋σ1 | . . . | Snσn) with K(f̃) := S. We
assume S already is a choice or a call. The process resulting from the call K⌊x̃⌋σ1 is

G′ df

= νã.(Sσ′
1 | . . . | Snσn) with σ′

1
df

= {σ1(x̃)/f̃}.
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We argue that G′ has the desired normal form. The process S is a choice or a call. It has been
derived trivially as it is the defining process. For (DOM), we have as desired

dom(σ′
1) = f̃ = fn (S) = fn (S) ∪ ∅.

We now argue that (2.a) there is M ′ ∈ RStbl(N(F )) so that M ⇒M ′ and (2.b) (G′,M ′) ∈ B.
Claim 2.a: There is M ′ ∈ RStbl(N(F )) with M ⇒ M ′ We decompose M = M1 ∪M2 so
thatM1 is the substitution marking andM2 is the control flow marking. Since (G,M1∪M2) ∈ B,

we know that M1 corresponds to substitution σ
df

= σ1∪. . .∪σn. For M2, we have M2(K⌊x̃⌋, λ) =
1. Moreover, by (DOM), we have x̃∪λ = dom(σ1). Hence, for every name xi ∈ x̃∪λ we have
a name ai ∈ P∪N so that M1([xi=ai]) = 1 by (COR2) and (COR3). Since an equation does
not call itself and since all formal parameters are unique by (NC), we have f̃ ∩ dom(σ) = ∅
by (DOM). This means M1([f=a]) = 0 for all f ∈ f̃ and all a ∈ N ∪P. With (SM3), we get
M1([f 6=n]) = 1 for all f ∈ f̃ and all n ∈ N .

By definition, Petri net N(SInit,1) has the following transition sequence:

(K⌊x̃⌋, λ)
τ

−−−−−−−−−−−−−−−−−։
{test([xi=ai]),map(fi,ai)}

+

(K⌊−⌋, λ′)
τ

−−−−−−−−−−։
{unmap(xi,ai)}

+

(K⌊−⌋, ε)
τ
−։
∅
(S, ε).

The first transition sequence introduces the bindings for f̃ and moves the names in x̃ to λ. The
result is (K⌊−⌋, λ′) with λ′ = λ · x̃′, where x̃′ is obtained from x̃ by removing the duplicates.
The next transition sequence unmaps all names in λ′. Finally, the token is moved to (S, ε).

We now show that the composed sequence is enabled. For the first sequence, the tests
are enabled with M1([xi=ai]) = 1. For formal parameters, mapping map(f, p) with p ∈ P is
always enabled, and map(f, n) with n ∈ N requires M1([f 6=n]) = 1. This holds by the above
argumentation. The second transition sequence removes the tokens from [xi=ai]. Since we do
not repeat names in x̃′ and since x̃ ∩ λ = ∅, all transitions are enabled. For ai = n ∈ N ,
unmapping introduces a token to [xi 6=n] or to [r∗ 6=n].

The resulting marking M ′ puts tokens on (S, ε), which is a stable place. This means M ′ is
stable. The marking is reachable as M was reachable. Moreover, the transition sequence above
is race free.
Claim 2.b: (G′,M ′) ∈ B Again we have M ′ = M ′

1 ∪M
′
2 where M ′

1 is the marking of NSubst

and M ′
2 is the control flow marking. For the control flow, we moved the single token from

(K⌊x̃⌋, λ) to (S, ε) as required.
For NSubst , we show that we obtain a substitution marking. We already argued that

M1([f=a]) = 0 for all a ∈ P ∪ N and hence M1([f 6=n]) = 1 for all n ∈ N . We introduce
a token M ′

1([fi=ai]) = 1, potentially consuming the complement marking if ai = n ∈ N .
This means (SM2) holds: every name is bound at most once. The second transition sequence
manipulates the places for x̃′ ∪ λ. These names are disjoint from f̃ due to f̃ ∩ dom(σ1) = ∅
explained above. We remove all tokens M1([xi=ai]) = 1 with xi ∈ x̃′ ∪ λ. The implementation
of unmap ensures we reinstall complement markings. More precisely, if xi = r ∈ R and ai = n,
we mark M ′

1([r∗ 6=n]) = 1. Since by (SM1), name r was the only restriction bound to n, the
constraint continues to hold with [r∗ 6=n] marked. If M1([xi=n]) = 1 with xi ∈ I ∪ F , we get
M ′

1([xi 6=n]) = 1. Hence, (SM3) continues to hold. We have a substitution marking.

We have to show that M ′
1 corresponds to σ′ df

= σ′
1∪σ2∪ . . .∪σn. We focus on σ′

1 and assume
σ′
1(fi) ∈ ã. This means σ1(xi) ∈ ã for the corresponding name xi ∈ x̃. Since M1 corresponds to

σ, by (COR3) for M1 we have M1([xi=n]) = 1 for a name n ∈ N . By (SM2), xi is bound to
only one name. This means n has to be the name ai, n = ai, that we chose for the transition.
As a result, we have M ′

1([f=n]) = 1 with n ∈ N as required. For σ′
1(f) ∈ P, the reasoning is

similar. For the names in I ∪ F ∪ R \ (dom(σ1) ∪ f̃), markings M1 and M ′
1 coincide. Hence,

if x /∈ dom(σ′) we either have x /∈ dom(σ) or we have x ∈ dom(σ1). In the former case, we
get M ′

1([x=a]) = M1([x=a]) = 0 for all a ∈ P ∪ N by (COR1) for σ. In the latter case, the
name has been explicitly unmapped by the second transition sequence. Hence, (COR1) holds
for σ′.
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It remains to show (COR4): the equality required by σ′ coincides with the choice of fresh
names. Consider fi, fj ∈ f̃ :

σ′(fi) = σ′(fj) iff σ(xi) = σ(xj)

iff M1([xi=n]) = M1([xj=n]) for all n ∈ N

iff M ′
1([fi=n]) = M ′

1([fj=n]) for all n ∈ N .

The first equivalence holds by σ′
1(fi) = σ1(xi) and similar for fj . The second is (COR4) for

σ. The third equivalence is the fact that the rows for xi in M1 and for fi in M ′
1 coincide. This

is by the fact that xi and fi mark at most one place [xi=ai] and [fi=ai] by (SM2), and by the
fact that this name ai coincides. The reasoning for σ′(f) = σ′(x) with x ∈ dom(σ2 ∪ . . . ∪ σn)
is similar. ⊓⊔

We now turn to the reverse direction and argue that G can imitate race free transition sequences
enabled by M .

Lemma 2. Let (G,M) ∈ B. For all M ′ ∈ RStbl(N(F )) so that M ⇒M ′ there is a process G′

with G →֒ G′ and (G′,M ′) ∈ B.

Proof. A race free transition sequence M ⇒ M ′ corresponds to a communication among two
processes (1), to an identifier call (2), or to a silent action (3). We only consider the first case,
the remaining two are along similar lines.
Case 1: Communication We reconstruct the race free transition sequence M ⇒ M ′ to
derive information about the shape of M and M ′. Since we model a communication, we have
M(S1, λ1) = 1 in the netN(SInit,1) with S1 = x1〈y1〉.S

′
1+Σi∈I1πi,1.Si,1. Similarly,M(S2, λ2) =

1 in N(SInit,2) with S2 = x2(y2).νr.S
′
2+Σi∈I2πi,2.Si,2. Here, S

′
1 and S′

2 are meant to be choices
or identifier calls. Thus, again the first two processes communicate and the second generates a
fresh name. The race free transition sequence M →+ M ′ in N(F ) is now (t1, t2) tr where

t1 = (S1, λ1)
send(n1,n2)

−−−−−−−−−−−−−−−−−−։
{test([x1=n1]),test([y1=n2])}

(S′
1, λ

′
1)

t2 = (S2, λ2)
rec(n1,n2)

−−−−−−−−−−−−−−−−−−−։
{test([x2=n1]),map([y2=n2],})

(νr.S′
2, λ2 · λ

′
2)

tr = (νr.S′
2, λ2 · λ

′
2)

τ
−−−−−−−−։
{map(r,nr)}

(S′
2, λ2 · λ

′
2).

For marking M , the test commands that label transition (t1, t2) allow us to conclude the
marking in Line (8).

M([x1=n1]) = 1 M([x2=n1]) = 1 M([y1=n2]) = 1 (8)

M([y2 6=n2]) = 1 M([y2=a]) = 0 ∀a ∈ P ∪N . (9)

In the following Line (9), the implementation of mapping requires a token on [y2 6=n2]. By
(SM3), this only gives M([y2=n2]) = 0. We derive that actually all [y2=a] are unmarked
as follows. We have (G,M) ∈ B, which means M is known to correspond to a process. This
process has a substitution that does not contain y2 in its domain. This is due to (DOM) in
combination with the fact that y2 is bound. Constraint (COR1) yields M([y2=a]) = 0 for all
a ∈ P ∪N .

M([x 6=nr]) = 1 ∀x ∈ I ∪ F ∪ {r∗} M([x=nr]) = 0 ∀x ∈ I ∪ F ∪R (10)

M([r=n]) = 0 ∀n ∈ N . (11)

That tr is enabled gives the first marking in Line (10). With (SM1) and (SM3), we conclude
that no name maps to nr. Like for y2, we get that r does not map to any fresh name, Line (11).
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In the control flow, marking M ′ differs from M in that (S′
1, λ

′
1) and (S′

2, λ2 · λ′
2) instead

of (S1, λ1) and (S2, λ2) are marked in N(SInit,1) and N(SInit,2). For the substitution net, we
only give the places on which the marking has changed. The following is immediate from the
definition of implementation:

M ′([y2=n2]) = 1 M ′([y2 6=n2]) = 0

M ′([r=nr]) = 1 M ′([r∗ 6=nr]) = 0.

We note that M ′ = M ′
1∪M

′
2 is stable. Moreover, marking M ′

1 on NSubst is indeed a substitution
marking.

We now argue that (1.a) there is G′ ∈ R(F )/≡ so that G →֒ G′ and (1.b) (G′,M ′) ∈ B.
Claim 1.a: There is G′ ∈ R(F )/≡ so that G →֒ G′ We assume that G and M1 ∪M2 are
related by B. Hence, there is a process in normal form that satisfies

G ≡ νã.(S1σ1 | S2σ2 | . . . | Snσn).

From marking M1 ∪M2, we now derive the following information:

S1 = x1〈y1〉.S
′
1 +M1 σ1(x1) = σ2(x2) ∈ ã

S2 = x2(y2).νr.S
′
2 +M2 σ1(y1) ∈ ã.

The equalities on S1 and S2 are due to the markings of N(SInit,1) and N(SInit,2). For the
substitution, we use the fact that M1 corresponds to σ1∪ . . .∪σn. We have M1([x1=n1]) = 1 =
M1([x2=n1]) with n1 ∈ N . Since x1 and x2 are bound to at most one name by (SM2), this
allows us to conclude that the markings of [x1=n] and [x2=n] coincide for all names n ∈ N .
Hence, we get σ1(x1) = σ2(x2) by (COR4). By (DOM), we have that σ1(x1) ∈ ã∪P. If σ1(x1)
was in P, we had M1([x1=σ1(x1)]) = 1 by (COR2). This is not the case, hence σ1(x1) ∈ ã.
For y1, the reasoning is similar. We already mentioned above that {y2, r} /∈ dom(σ1∪ . . .∪σn).

The normal form process has a reaction to

G′ df

= νã.ar.(S
′
1σ1 | S

′
2σ

′
2 | . . . | Snσn) with σ′

2
df

= σ2{σ1(y1)/y2}{ar/r}.

Hence, we haveG →֒ G′. SinceG was reachable from F , we haveG′ reachable from F . Moreover,
we already argued in the proof of Lemma 1 that G′ has the required normal form.
Claim 1.b: (G′,M ′

1 ∪M ′
2) ∈ B It remains to show that G′ and M ′ are related as required.

For the threads, the reasoning is as in Lemma 1 above. It remains to check that M ′
1 corresponds

to σ′ df

= σ1 ∪ σ′
2 ∪ . . . ∪ σn. (COR1) to (COR3) are as before. We have σ′(r) 6= σ′(x) with

r 6= x ∈ dom(σ′). This coincides with the fact that M ′
1([r=nr]) = 1 and M ′

1([x=nr]) = 0 for
all r 6= x ∈ I ∪ F ∪R. The remaining equalities are checked as before. ⊓⊔

Proof (of Theorem 1). It remains to show that B relates F and M0, the initial marking of
N(F ). By our assumptions from Sect. 4.1, we have

F = νã.(SInit,1σ1 | . . . | SInit,nσn).

Here, SInit,i are choices or calls that have been derived from artificial defining equations.

Moreover, σi : f̃Init,i → ã ∪ P with

dom(σi) = f̃Init,i = fn (SInit,i) ∪ ∅.

This shows (DOM), and concludes the proof that F is in normal form.
For the initial marking M0 = M0,1 ∪ M0,2 of N(F ), we have that M0,1 corresponds to

σ1 ∪ . . . ∪ σn as needed. In the control flow nets N(SInit,i), we have the necessary tokens on
(SInit,i, ε).

Imitation of transitions holds by Lemma 1 and by Lemma 2. ⊓⊔
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5.2 Reachability analysis

Theorem 1 allows one to check for reachability from F by means of TStbl(N(F )). More precisely,
in order to check whether a process G is reachable from F , one has to check the reachability of
a stable marking M with (G,M) ∈ B in N(F ) from an initial marking M0 via a combination
of race free transition sequences. We now show that every transition sequence reaching a
stable marking can be decomposed into a series of race free transition sequences. This means
the restriction to race free sequences is not necessary — it suffices to check the conventional
reachability of M in N(F ), which is a standard problem implemented in model checking tools.

Lemma 3. Every transition sequence M1 →
+ M2 between stable markings M1,M2 ∈

RStbl(N(F )) can be decomposed into a sequence M1 ⇒+ M2 of race free transition sequences.

Proof. Consider a transition sequence M1 →
+ M2 between stable markings M1,M2 ∈

RStbl(N(F )) that is not race free. This means the sequence reflects at least two of the fol-
lowing reactions: process identifier calls are replaced with their definitions, silent steps are
performed, or communications take place. We discuss the case of two concurrent communi-
cations between (S1, λ1) and (S2, λ2) as well as (Sa, λa) and (Sb, λb). The control flow nets
are finite automata that carry a single token. Therefore, all four processes have to belong to
different nets N(SInit,1) to N(SInit,b). To see this, assume to the contrary this was not the case.
Since each net only carries one token, two processes would coincide, say (S1, λ1) and (Sa, λa).
But then the two transitions corresponding to the two communications would compete for the
token, and only one would be executable. A contradiction. Due to (NC), the map and test
instructions in these four nets do not conflict and can be arbitrarily reordered. Hence, the two
communications can be decomposed into race free sequences M1 ⇒M and M ⇒M2. ⊓⊔

So far we would have to check reachability for all stable markings M that are bisimilar with
G. Below we show that in fact it is sufficient to check for reachability of a single such marking.

Lemma 4. Let M with (G,M) ∈ B be a stable marking reachable in N(F ). Then every other
marking M ′ with (G,M ′) ∈ B is also reachable from some valid initial marking of N(F ).

Proof. With Lemma 3, we can assume that M is reachable by a sequence of race free transition
sequences, and we denote the sequence of stable markings from the initial marking to M by

M0 ⇒ . . .⇒Mn = M.

By induction on the length of this sequence we show that M ′
n = M ′ is reachable from a valid

initial marking M ′
0, i.e. from a marking that corresponds to the substitution of the initial

process F (cf. Section 4.3).
Note that, as M and M ′ are both bisimilar to G, they differ only in their substitution

markings. For the base case, Mn = M0 is an initial marking in N(F ), and as M ′ is bisimilar to
the same processes (and so corresponds to the same substitutions), M ′ must be such an initial
marking as well.

For the induction step, there are a stable marking Mn−1 and a race free transition sequence
t, so that Mn is reachable from Mn−1 via t and Mn−1 is bisimilar to some process Gn−1. We
construct a marking M ′

n−1 as follows: for all places [x=a], [x=b] in NSubst where Mn([x=a]) =

M ′
n([x=b]) = 1, set M ′

n−1([x=b])
df

= Mn−1([x=a]). This means in M ′ name b takes the role that
name a has in M , and we propagate this change to the predecessor marking. Set the marking
of all other places to 0 and copy the markings of the control flow nets from Mn−1. Now M ′

n−1

is a stable marking that is bisimilar to Gn−1, and there clearly is a race free transition sequence
t′ by which M ′

n is reachable from M ′
n−1. By the induction hypothesis, M ′

n−1 is reachable from
an initial marking M ′

0. ⊓⊔

Lemmas 3 and 4 together with Theorem 1 establish the result that, in order to check the
reachability of a process G from a process F , one computes a single stable marking M with
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(G,M) ∈ B and checks reachability of M in N(F ) from some valid initial marking M0. Un-
fortunately, the initial marking M0 is not uniquely defined, and the reachability of M depends
on its choice, i.e. one has to guess a suitable M0 before performing the reachability check. To
describe a better strategy, assume the initial FCP is F = νã.(SInit,1σ1 | . . . | SInit,nσn). Recall

(Sect. 4.1) that the substitutions σi map the artificial formal parameters f̃i = fn(SInit,i) to
public names and names in ã. Instead of non-deterministically selecting the initial marking of
the substitution net, we start with the empty marking and add transitions that set the marking
of NSubst so that it corresponds to σ1 ∪ . . . ∪ σn. Technically, these transitions are similar to
(TRANS ν).

With these considerations, the reachability problem for FCPs reduces, in polynomial time,
to the one for safe PNs:

Proposition 1 (Reachability). Let F,G be two FCPs, and M be a marking with (G,M) ∈ B.
Then F →∗ G iff M0 →∗ M in N(F ).

6 Optimisation of the translation

In this section we propose several practical optimisations of the proposed translation of FCPs
to safe PNs. They can significantly reduce the size of the resulting PN and the efficiency of
subsequent model checking.

6.1 Communication splitting

Recall that the size of the PN resulting from our translation is dominated by the number of
transition modelling communication. We now propose a method of significantly decreasing this
number, reducing thus the asymptotic worst-case size of the PN from O(sz4) down to O(sz3).
Furthermore, its straightforward generalisation yields a polynomial translation from polyadic
π-calculus to safe PNs, see Sect. 7.

The idea of the method is to model the communication between potentially synchronisable
actions a〈b〉 and x(y) (corresponding to some stub transitions t′ and t′′) not by a single atomic
step but by a pair of steps: the first one checks that a and x are mapped to the same value by
the substitution (this step is not executable if the corresponding values are different), and the
second step maps y to the value of b in the substitution.

This is implemented by creating a new control place pmiddle ‘in the middle’ of communica-
tion and two sets of transitions, t1i and t2j . Transitions t

1
i , created for each i ∈ dom(a)∩dom(x),

work as follows. Each t1i

– consumes tokens from the input places of the stubs t′ and t′′ and produces a token on
pmiddle ;

– checks by read arcs that [a = i] and [x = i] are marked (i.e. the substitution maps a and
x to the same value i and thus the synchronisation is possible).

Transitions t2j , created for each j ∈ dom(b) ∩ dom(y), work as follows. Each t2j

– consumes a token from pmiddle and produces tokens on the output places of the stubs t′

and t′′;
– checks by a read arc that [b = j] is marked, consumes a token from [y 6= j] (if it exists)

and produces a token on [y = j] (mapping thus in the substitution y to j, i.e. to the value
of b).

If the synchronisation is possible in the current state of the system (i.e. a and x have the
same value), exactly one of the transitions t1i is enabled (depending on the common value
of a and x); else none of these transitions is enabled. Once some t1i fires, exactly one of the
transitions t2j becomes enabled (depending on the value of b), and firing it assigns the value of
b to y.
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6.2 Abstractions of names

In the PN representation of the substitution described in Sect. 3.1, each bound name and
formal parameter is represented by a separate row of places. In practice, it is often the case
that some bound names and formal parameters can never be simultaneously active, and so can
share the same row of places.

We have implemented a simple sharing scheme by introducing an equivalence ∼ on the
set of bound names and formal parameters, such that if two names are equivalent then they
cannot be simultaneously active. Then the rows of the substitution table will correspond to
the equivalence classes of ∼, and for each bound name and formal parameter we will introduce
the abstraction operator abs, mapping a name to the corresponding equivalence class of ∼.
Now the operations on the substitution (initialisation of a restricted name, remapping and
unmapping) can be performed on the abstraction of names rather than names themselves.

A possible choice of equivalence ∼ and the related abstraction is as follows. For each name
b ∈ R∪I∪F , we denote by thread(b) the thread where b is defined (note that due to (NC) and
the assumption that threads do not share defining equations, thread(b) is unique). Furthermore,
we define

type(b)
df

=

{

0 if b ∈ R;
1 otherwise (i.e. if b ∈ I ∪ F),

and depth(b) to be the number of names b′ ∈ R∪I ∪F in whose scope b resides and such that
type(b) = type(b′). Then the abstraction of b can be defined as a tuple

abs(b)
df

=
(

thread(b), type(b), depth(b)
)

,

and two names are considered equivalent w.r.t. ∼ iff their abstractions coincide.
Other choices of ∼ and abs are also possible, and we plan to explore them in our future

work.

6.3 Better overapproximations for name domains

Recall that the domain of a bound name or formal parameter is an overapproximation of the set
of values from P∪N that it can take. While the rough overapproximation proposed in Sect. 3 is
sufficient to make the translation polynomial, its quality can be substantially improved by static
analysis, resulting in a much smaller PN. In particular, the number of synchronisations between
the communication actions as well as the number of transitions implementing a communication
can be significantly reduced; furthermore, the number of transitions implementing passing
parameters of the calls and the number of places modelling the substitution can also decrease
substantially.

Below we outline a simple iterative procedure that can be used to compute better overap-

proximations. We start by setting dom(p)
df

= {p} for each public name p. For each restricted

name r we set dom(r)
df

= {r}, interpreting this as that the values of r are taken from the set Nr

of unique values (the procedure below never looks inside Nr, and only exploits the fact that
the names from Nr are different from all the other names). The domains of these names are
fixed and will not be changed by the procedure. The domains of all the other names occurring
in the FCP are initialised to ∅; they will grow monotonically during the run of the procedure,
converging to some overapproximations.

Each iteration of the procedure consists in identifying two actions, a〈b〉 and x(y) satisfying
the following conditions:

– the actions belong to different threads of the FCP;
– dom(a) and dom(x) are not disjoint;
– dom(b) * dom(y).
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If no two such actions can be found, the procedure stops, returning the current values of
the domains. Otherwise, dom(y) is replaced by its union with dom(b). Intuitively, the above
conditions check that the two actions can potentially synchronise, and so y can be mapped to
the value of b, and so its domain has to include that of b.

6.4 Better overapproximation for |N |

The cardinality of N is an important parameter of the translation, affecting the efficiency of
almost all its aspects. While the rough overapproximation proposed in Sect. 3 (taking |N | to be
the total number of bound names and formal parameters) is sufficient to make the translation
polynomial, a better one can make the translation much more practical and amenable to model
checking.

In the worst case, all the currently active names fromR∪I∪F in the system can be assigned
different values from N . To improve the overapproximation of Sect. 3, we observe that in many
cases not all such names can be simultaneously active, i.e. it is enough to overapproximate the
number of such names that can be simultaneously active.

Hence we propose the following improved overapproximation of |N |. If there are no occur-
rences of the restriction operator in the FCP, we set |N | to 0. Otherwise, for each thread we
compute the maximal number of names from R ∪ I ∪ F that can be simultaneously active in
it,

max{|fn (S′) ∪ λ| | (S, ε) a defining process and (S, ε) −։∗ (S′, λ)},

and set |N | to the sum of these numbers.
The number of names from R ∪ I ∪ F that can be simultaneously active in a thread

can be computed by separately computing this parameter for each of the defining equations
belonging to this thread, as well as the sub-term of the main term of the FCP corresponding
to this thread, and taking the maximum of these values. Since these π-calculus expressions are
sequential, their parse trees can have only the + operator in every node where a branching
occurs, and so the sought value is simply the maximum of the numbers of active names from
R ∪ I ∪ F in the leafs of this parse tree. Furthermore, the names whose domains contain no
restricted names can be ignored by this analysis.

6.5 Sharing subnets for unmapping names

When we call K⌊ã⌋, some names have to be unmapped in the substitution. The subnet for
unmapping a particular name can be shared by all points where such unmapping is necessary.
This reduces the size of the resulting PN. This optimisation is especially effective when name
abstractions (see above) are used, as the sharing increases significantly in such a case.

6.6 Re-ordering parameters of calls

Consider the following FCP:

K⌊x, y⌋ := L⌊y, x⌋
L⌊u, v⌋ := K⌊v, u⌋

K⌊a, b⌋

When abstractions of the names are computed, the equivalence relation has two equivalence
classes, {x, u} and {y, v}. Hence, the substitution has to be modified every time the calls are
performed, as the call parameters keep getting flipped.

If the order of the formal parameters in one of the defining equations is changed (together
with the order of the factual parameters in the corresponding calls), e.g. as shown below, the
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substitution would not require any changes, which significantly reduces the size of the resulting
net:

K⌊x, y⌋ := L⌊x, y⌋
L⌊v, u⌋ := K⌊v, u⌋

K⌊a, b⌋

This example illustrates that the order of formal parameters in the defining equations
matters, and the translation can gain some savings by changing this order. Searching for the
best order of formal parameters can be formulated as an optimisation problem, with the cost
function being the total number of changes required in the substitution for all the calls.

6.7 Dropping the restrictions in the main term of the FCP

All the restrictions occurring in the main term of the FCP, can be dropped, making thus the
formerly restricted names public (due to (NC), no name clashes can be introduced in this way).
This transformation yields a bisimilar π-calculus process, but the corresponding PN becomes
smaller.

6.8 Separate pools of values for restricted names

Creation of new names (see Sect. 3.2) introduces arbitration between the values in N , as one
of them that is currently unused has to be chosen to initialise a given restricted name. Such
arbitration can adversely affect the efficiency of some model checking methods.

It is possible to completely eliminate such arbitration by splitting the set N into several
pools, one for each thread of the FCP, and initialise restricted names in each thread only from
the corresponding pool, by sequentially looking for the first unused value in it. This however
increases the size of the resulting PN. Moreover, if symmetries reduction is used in model
checking, the problem vanishes, see below.

6.9 Using symmetries

The proposed translation introduces a number of symmetries in the resulting PN:

– The values in N (and thus the corresponding columns of the substitution, see Fig. 1) are
interchangeable;

– When enforcing the assumption that threads do not share any defining equations as ex-
plained in Sect. 2, some defining equations are replicated.

Hence, it is desirable to exploit these symmetries during model checking. In particular, this
would allow for efficient handling of the arbitration arising when a value from N has to be
chosen so that a restricted name r can be initialised with it: if symmetries are used, all the
immediate successor states after such an arbitration are equivalent, and so only one of them
has to be further explored.

6.10 Translation to different PN classes

The proposed translation produces a safe PN, as this PN class is particularly simple and
suited for formal verification. However, if the used model checking method can cope with more
powerful PN classes, the following changes can be made.
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Translation to bounded PNs In this case, for each val ∈ N , we can fuse the places [var 6= val ],
where var ∈ {r∗}∪I ∪F , into one, denoted by [∗ 6= val ], replacing thus |N | · (|I|+ |F|+1) safe
places with |N | places of capacity |I|+ |F|+ 1. It is still possible to perform all the necessary
operations with the substitution; in particular, to find a value val ∈ N to which no bound
name or formal parameter is currently mapped, and map a given restricted name rk to val ,
the PN transition performing the initialisation has to:

– consume by a weighted arc |I| + |F| + 1 tokens from [∗ 6= val ] (checking thus that val is
not currently assigned to any name) and return by a weighted arc |I|+ |F| tokens back to
this place;

– produce a token at [rk = val ] (performing thus the initialisation of rk with the value val).

Translation to coloured PNs In this case the symmetries present in the PN can be used to fold
it. In particular:

– The values in N are interchangeable, and so the corresponding columns of the substitution
can be folded into one column, by giving the tokens corresponding to the elements of N
unique colours.

– One can avoid enforcing the assumption that threads do not share any defining equations
(see Sect. 2), and instead use coloured control tokens that are unique for each thread of
the FCP.

7 Extensions

In this section we demonstrate how the proposed FCP to PN translation can be adapted to some
often used extensions of the basic FCP calculus. In particular, we consider the introduction of
match and mismatch operators and polyadic communication.

7.1 Match and mismatch operators

The match and mismatch operators are a common extension of π-calculus. Intuitively, the
process [x = y].S behaves as S if x = y and does nothing otherwise, and the process [x 6= y].S
behaves as S if x 6= y and does nothing otherwise. To handle these operators, we extend the
construction of N(SInit ) with the following transitions. For each a ∈ P ∪N , we have

([x = y].S, λ)
τ

−−−−−−−−−−−−−−−։
{test([x=a]),test([y=a])}

(S, λ) ([x 6= y].S, λ)
τ

−−−−−−−−−−−−−−−։
{test([x=a]),test([y 6=a])}

(S, λ).

For the latter rule, new places [x 6=a] complementing [x=a] have to be introduced in the sub-
stitution net (some of these places already exist). It is possible to avoid introducing such new
places by using the following set of transitions for mismatch instead: for each a, b ∈ P ∪N such
that a 6= b, we have the transition

([x 6= y].S, λ)
τ

−−−−−−−−−−−−−−−։
{test([x=a]),test([y=b])}

(S, λ).

This set of transitions, however, is too large, and thus the former translation is preferable in
practice.

Note however that in the presence of match/mismatch operators, the relationship between
the behaviours of the original FCP and the PN resulting from the translation becomes some-
what complicated: the latter simulates the former only in a non-deterministic sense, i.e. some
executions of the PN are considered invalid and do not correspond to any executions of the
original FCP, in particular, false deadlocks could be introduced. For example, in the process
[x = y].[u = v].S the former guard can be true while the latter is false, in which case the
resulting PN will get stuck between the guards, whereas this does not happen in the original
π-calculus process. Nevertheless, such invalid executions can easily be distinguished from valid
ones, and so the resulting PN is still suitable for model checking.
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7.2 Polyadic π-calculus

Polyadic communication exchanges multiple names in a single reaction. Intuitively, a sending
prefix a〈x1 . . . xm〉 (with m ≥ 0) and a receiving prefix b(y1 . . . yn) (with n ≥ 0 and all yi being
different names) can synchronise iff σ(a) = σ(b) and m = n, and after synchronisation each yi
gets the value of xi. Formally,

(React) (a(ỹ).P +M) |(a〈x̃〉.Q+N)→ P{x̃/ỹ} |Q if |ỹ| = |x̃|.

A polynomial translation of this extension generalises the ‘communication splitting’ idea
described in Sect. 6: It is possible to perform such communication in stages, where at the first
step one checks that a and b are mapped to the same value by the substitution (this step
is not executable if the corresponding values are different), and the subsequent steps map,
one-by-one, yi to the value of xi in the substitution.

8 Experimental results

To demonstrate the practicality of our approach, we implemented the proposed translation of
FCPs to safe PNs in the tool Fcp2Pn and tested the translation on a number of benchmarks;3

to demonstrate that the resulting PNs are suitable for practical model checking they were
checked for deadlocks. These benchmarks are briefly described below; note that we occasionally
violate the (NC) assumption to improve readability.

The NESS (Newcastle E-Learning Support System) series of benchmarks, modelling an
electronic coursework submission system, is taken from [11]. The model consists of a teacher
process T composed in parallel with k students S (the system can be scaled up by increasing
the number of students) and an environment process ENV . Every student has its own local
channel for communication, hi, and all students share the channel h:

νh.νh1 . . . νhk.
(

T ⌊nessc, h1, . . . , hk⌋ |
k
∏

i=1

S⌊h, hi⌋ |ENV ⌊nessc⌋
)

.

The idea is that the students are supposed to submit their work for assessment to NESS . The
teacher passes the channel nessc of the system to all students, hi〈nessc〉, and then waits for
the confirmation that they have finished working on the assignment, hi(xi). After receiving the
NESS channel, hi(nsc), students organise themselves in pairs. To do so, they send their local
channel hi on h and at the same time listen on h to receive a partner, h〈hi〉 . . .+h(x) . . . When
they finish, exactly one student of each pair sends two channels (own channel hi and the channel
received from the partner) to the support system, nsc〈hi〉.nsc〈x〉, which give access to their
completed joint work. These channels are received by the ENV process. The students finally
notify the teacher about the completion of their work, hi〈fin〉. Thus, the system is modelled
by:

T (nessc, h1, . . . , hk) :=

k
∏

i=1

hi〈nessc〉.hi(xi).0

S (h, hi) :=hi(nsc).(h〈hi〉.hi〈fin〉.0+ h(x).nsc〈hi〉.nsc〈x〉.hi〈fin〉.0)

ENV (nessc) :=nessc(y1). . . . .nessc(yk).0

To distinguish the proper termination from deadlocks (where some processes are stuck in the
middle of their intended behaviour, waiting for a communication to occur), a new transition
was added to the PNs resulting from our translation, creating a loop at the state corresponding

3 The tool and benchmarks are available from http://homepages.cs.ncl.ac.uk/victor.khomenko/
tools/fcp2pn.
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Process size Safe PN Dlck
Problem FCP nfFCP |N | |P | |T | [sec]

NESS (04) 110 110 0 137 145 0.02
NESS (05)† 137 137 0 196 246 0.09
NESS (06) 164 164 0 265 385 0.16
NESS (07)† 191 191 0 344 568 0.45

DNESS (06) 118 118 0 157 103 0.02
DNESS (08) 157 157 0 241 169 0.05
DNESS (10) 196 196 0 341 251 0.13
DNESS (12) 235 235 0 457 349 2.27
DNESS (14) 274 274 0 589 463 1.71

Process size Safe PN Dlck
Problem FCP nfFCP |N | |P | |T | [sec]

CS (2,1) 45 54 7 138 149 1.01
CS (2,2) 48 68 10 243 320 0.16
CS (3,2) 51 80 11 284 431 1.28
CS (3,3) 54 94 14 428 728 3.67
CS (4,4) 60 120 18 663 1368 11.73
CS (5,5) 66 146 22 948 2288 46.61

GSM 175 231 12 636 901 4.39
GSM ’ 174 230 0 355 503 3.09

PHONES 157 157 0 131 94 0.01

Table 1. Experimental results.

to the successful termination of the system. Obviously, the system successfully terminates iff
the number of students is even, i.e. they can be organised into pairs.

The DNESS model is a refined version of NESS , where the pairing of students is determin-
istic; thus the number of students is always even, and these benchmarks are deadlock-free.

The CS (m,n) series of benchmarks models a client-server system with one server, n clients,
and the server spawning m sessions that handle the clients’ requests:

CLIENT (url) := νip.url〈ip〉.ip(s).s(x).CLIENT ⌊url⌋

SERVER(url , getses) := url(y).getses(s).y〈s〉.SERVER⌊url , getses⌋

SESSION (getses) := νses .getses〈ses〉.ses〈ses〉.SESSION ⌊getses⌋

νgetses
(

SERVER(url , getses) |
m
∏

i=1

SESSION (getses) |
n
∏

i=1

CLIENT (url)
)

On a client’s request, the server creates a new session using the getses channel, getses(s). A
session is modelled by a SESSION process. It sends its private channel νses along the getses
channel to the server. The server forwards the session to the client, y〈s〉, which establishes
the private session, and becomes available for further requests. This case study uses recursion
and is scalable in the number of clients and the number of sessions. All these benchmarks are
deadlock-free.

The GSM benchmark is the well-known specification of the handover procedure in the
GSM Public Land Mobile Network. We use the standard π-calculus model with one mobile
station, two base stations, and one mobile switching center presented in [18]. We also generated
a variant of this benchmark where the sender process

SENDER(−) := νd.in〈d〉.SENDER⌊−⌋

is replaced with

SENDER(−) := in〈d〉.SENDER⌊−⌋,

i.e. instead of creating (with the ν operator) a new message each time, it sends the same public
channel. Since the content of the message is not important, this change is inconsequential from
the modelling point of view. However, it significantly reduces the size of the resulting PN, as
the modified specification contains no restriction operator and so N = ∅.

The PHONES benchmark is a classical example taken from [15]. It is another example of
a handover procedure for mobile phones communicating with fixed transmitters, where the
phones have to switch their transmitters on the go.

The experimental results are given in Table 1, where the meaning of the columns is as follows
(from left to right): name of the case study (benchmarks marked with † contain deadlocks);
sizes of the original FCP and its normal form (see Sect. 2), and cardinality of N determined
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by static analysis; number of places and transitions in the resulting safe PN; and deadlock
checking time.

The experiments were conducted on a PC with an Intel Core 2 Quad Q9400 2.66 GHz
(quad-core) processor (a single core was used) and 4G RAM. The deadlock checking was
performed with the LoLA tool,4 configured to assume the safeness of the PN (CAPACITY 1),
use the stubborn sets and symmetry reductions (STUBBORN, SYMMETRY), compress states using
P-invariants (PREDUCTION), use a light-weight data structure for states (SMALLSTATE), and
check for deadlocks (DEADLOCK). The FCP to PN translation times were negligible (< 0.1 sec)
in all cases and so are not reported.

The experiments indicate that the sizes of the PNs grow moderately with the sizes of the
FCPs, and the PNs are suitable for efficient model checking.

9 Conclusions

We developed a polynomial translation from finite control processes (an important fragment
of π-calculus) to safe low-level Petri nets. To our knowledge, this is the first such transla-
tion. Furthermore, there is a close correspondence between the control flow of the π-calculus
specification and the resulting PN, and the latter is suitable for practical model checking.
The translation has been implemented in a tool Fcp2Pn, and the experimental results are
encouraging.

We have also proposed a number of optimisations allowing one to reduce the size of the
resulting PN, as well as a number of extensions, in particular the match/mismatch operators
and polyadic π-calculus.

In future work we plan to further improve the translation by using a more thorough static
analysis, and to incorporate the translation into different model checking tool-chains, in partic-
ular, ones based on PN unfolding prefixes (currently none of the PN unfolders uses symmetry
reduction, which is essential for efficient model checking of PNs resulting from our translation).
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10. R. Gorrieri and R. Meyer. On the relationship between pi-calculus and finite place/transition petri
nets. In Proc. of CONCUR, volume 5170 of LNCS, pages 463–480. Springer, 2009.

11. V. Khomenko, M. Koutny, and A. Niaouris. Applying Petri net unfoldings for verification of mobile
systems. In Proc. of MOCA, Bericht FBI-HH-B-267/06, pages 161–178. University of Hamburg,
2006.

12. R. Meyer. On boundedness in depth in the π-calculus. In Proc. of IFIP TCS, volume 273 of IFIP,
pages 477–489. Springer, 2008.

13. R. Meyer. A theory of structural stationarity in the π-calculus. Acta Inf., 46(2):87–137, 2009.
14. R. Meyer, V. Khomenko, and T. Strazny. A practical approach to verification of mobile systems

using net unfoldings. Fundam. Inf., 94:439–471, 2009.
15. R. Milner. Communicating and Mobile Systems: the π-Calculus. CUP, 1999.
16. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I. Inf. Comp., 100(1):1–

40, 1992.
17. U. Montanari and M. Pistore. Checking bisimilarity for finitary π-calculus. In Proc. of CONCUR,

volume 962 of LNCS, pages 42–56. Springer, 1995.
18. F. Orava and J. Parrow. An algebraic verification of a mobile network. For. Asp. Comp., 4(6):497–

543, 1992.
19. F. Peschanski, H. Klaudel, and R. Devillers. A Petri net interpretation of open reconfigurable

systems. In Proc. of Petri nets’11, volume 6709, pages 208–227. Springer, 2011.
20. M. Pistore. History Dependent Automata. PhD thesis, Dipartimento di Informatica, Università di
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