
Canonical Prefixes of Petri Net Unfoldings

Victor Khomenko1, Maciej Koutny1, and Walter Vogler2

1 Department of Computing Science, University of Newcastle
Newcastle upon Tyne NE1 7RU, U.K.

{Victor.Khomenko, Maciej.Koutny}@ncl.ac.uk

2 Institut für Informatik, Universität Augsburg
D-86135 Augsburg, Germany

Walter.Vogler@informatik.uni-augsburg.de

Abstract. In this paper, we develop a general technique for truncat-
ing Petri net unfoldings, parameterised according to the level of infor-
mation about the original unfolding one wants to preserve. Moreover,
we propose a new notion of completeness of a truncated unfolding. A
key aspect of our approach is an algorithm-independent notion of cut-off
events, used to truncate a Petri net unfolding. Such a notion is based
on a cutting context and results in the unique canonical prefix of the
unfolding. Canonical prefixes are complete in the new, stronger sense,
and we provide necessary and sufficient conditions for its finiteness, as
well as upper bounds on its size in certain cases. A surprising result is
that after suitable generalisation, the standard unfolding algorithm pre-
sented in [5], and the parallel unfolding algorithm proposed in [8], despite
being non-deterministic, generate the canonical prefix. This gives an al-
ternative correctness proof for the former algorithm, and a new (much
simpler) proof for the latter one.
Keywords: Model checking, Petri nets, unfolding, canonical prefix.

1 Introduction

Computer aided verification tools implementing model checking (see, e.g., [1])
verify a concurrent system using a finite representation of its state space, and
thus may suffer from the state explosion problem. To cope with this, several
techniques have been developed, which usually aim either at a compact repre-
sentation of the full state space of the system, or at the generation of its re-
duced (though sufficient for a given verification task) state space. Among them,
a prominent technique is McMillan’s (finite prefixes of) Petri Net unfoldings (see,
e.g., [5, 13]). They rely on the partial order view of concurrent computation, and
represent system states implicitly, using an acyclic net. More precisely, given a
Petri net Σ, the unfolding technique aims at building a labelled acyclic net UnfΣ

(a prefix ) satisfying two key properties:

– Completeness. Each reachable marking of Σ is represented by at least one
‘witness’, i.e., one marking of UnfΣ reachable from its initial marking. (Sim-
ilarly, for each possible firing of a transition in Σ there is a suitable ‘witness’
event in UnfΣ .)



– Finiteness. The prefix is finite and thus can be used as input to model
checking algorithms, e.g., those searching for deadlocks.

This paper presents a uniform treatment of both these aspects and provides a
fresh impetus for further development of unfolding-based model checking tech-
niques.

There are two fundamental issues which we wish to address here, namely
the precise semantical meaning of completeness, and the algorithmic problem of
generating complete prefixes.

Semantical meaning of completeness A direct motivation to re-examine the
issue of completeness was provided by our own experience of dealing with unfold-
ings of Signal Transition Graphs (STGs) in [11], used to specify the behaviour
of asynchronous circuits. Briefly, an STG (see [16]) is a Petri net together with a
set of binary signals (variables), which can be set or reset by transition firings. A
transition can either change the value of one specific signal, or affect no signals
at all. Thus, the current values of the signals depend not on the current marking,
but rather on the sequence of transition firings that leads to it. In effect, one is
interested in a ‘combined’ system state which includes both the current marking
and the current values of the binary signals. Therefore, if one wants to ensure
that a prefix represents the entire state space, some additional information (in
this case, the valuation of signal variables) must be taken into account. Clearly,
the completeness as sketched above does not guarantee this.

We soon found that the situation can also be a totally opposite one, i.e., the
standard notion of completeness can be unnecessarily strong. As an example, one
can consider the building of a prefix when there is a suitable notion of symmetric
(equivalent) markings, as described in [3]. The idea is then to ensure that each
marking of Σ is represented in UnfΣ either directly or by a symmetric marking.
Such an approach may significantly reduce the size of the prefix.

Having analysed examples like these, we have concluded that the original no-
tion of completeness, though sufficient for certain applications, may be too crude
and inflexible if one wants to take into consideration more complex semantics of
concurrent systems, or their inherent structural properties.

Algorithmics of prefix generation The essential feature of the existing un-
folding algorithms (see, e.g., [5, 8, 13]) is the use of cut-off events, beyond which
the unfolding starts to repeat itself and so can be truncated without loss of in-
formation. So far, cut-off events were considered as an algorithm-specific issue,
and were defined w.r.t. the part of the prefix already built by an unfolding al-
gorithm (in other words, at run-time). Such a treatment was quite pragmatic
and worked reasonably well. But, in more complicated situations, the dynamic
notion of a cut-off event may hinder defining appropriate algorithms and, in par-
ticular, proving their correctness. This has become apparent when dealing with
a parallel algorithm for generating prefixes in [8], where the degree of possible
non-determinism brought up both these issues very clearly. To conclude, the
algorithm-dependent notion of a cut-off event is increasingly difficult to manage.



There is also an important aspect linking cut-off events and completeness,
which was somewhat overlooked in previous works. To start with, the notion of
a complete prefix given in [5] did not mention cut-off events at all. But, with
the development of model-checking algorithms based on unfoldings, it appeared
that cut-off events are heavily employed by almost all of them. Indeed, the
deadlock detection algorithm presented in [13] is based on the fact that a Petri
net is deadlock-free iff each configuration of its finite and complete prefix can
be extended to one containing a cut-off event, i.e., a Petri net has a deadlock iff
there is a configuration which is in conflict with all cut-off events. The algorithms
presented in [7, 9, 15] use the fact that there is a certain correspondence between
the deadlocked markings of the original net and the deadlocked markings of
a finite and complete prefix, and cut-off events are needed to distinguish the
‘real’ deadlocks from the ‘fake’ ones, introduced by truncating the unfolding.
Moreover, those algorithms need a stronger notion of completeness than the one
presented in [5], in order to guarantee that deadlocks in the prefix do correspond
to deadlocks in the original Petri net.1 Since all these algorithms make certain
assumptions about the properties of a prefix with cut-off events, it is natural to
formally link cut-off events with the notion of completeness, closing up a rather
uncomfortable gap between theory and practice.

The new approach In order to address issues of semantical meaning and al-
gorithmic pragmatics relating to the finite prefixes of Petri net unfoldings, we
propose a parametric set-up in which questions concerning, e.g., completeness
and cut-off events, could be discussed in a uniform and general way. One param-
eter captures the information we intend to retain in a complete prefix, while the
other two specify under which circumstances a given event can be designated
as a cut-off event. Crucially, we decided to shift the emphasis from markings
to the execution histories of Σ, and the former parameter, a suitably defined
equivalence relation ≈, specifies which executions can be regarded as equivalent.
Intuitively, one has to retain at least one representative execution from each
equivalence class of ≈. (The standard case in [5, 13] is then covered by regarding
two executions as equivalent iff they reach the same marking.)

For efficiency reasons, the existing unfolding algorithms usually consider only
local configurations when deciding whether an event should be designated as a
cut-off event. But one can also consider arbitrary finite configurations for such
a purpose if the size of the resulting prefix is of paramount importance (see,
e.g., [6]). As a result, the final definition of the set-up, called here a cutting

context, contains besides an adequate order (as in [5]) a parameter which specifies
precisely those configurations which can be used to designate an event as a cut-
off event. For a given equivalence relation ≈, we then define what it means for a

1 According to the notion of completeness presented in [5], a marking M enabling a
transition t may be represented by a deadlocked configuration C in a complete prefix,
as long as there is another configuration C ′ representing this marking and enabling
an instance of t. This means that the prefix may contain a deadlock, which does not
correspond to any deadlock in the original net system (see Figure 1).



prefix to be complete. In essence, we require that all equivalence classes of ≈ are
represented, and that any history involving no cut-off events can be extended
(in a single step) in exactly the same way as in the full unfolding.

The definition of a cutting context leads to our central result, the algorithm-

independent notion of a cut-off event and the related unique canonical prefix; the
latter is shown to be complete w.r.t. our new notion of completeness. Though the
canonical prefix is always complete, it may still be infinite, making it unusable
for model checking. We therefore investigate what guarantees the finiteness of
the canonical prefix and, in doing so, formulate and prove a version of König’s
Lemma for unfoldings of (possibly unbounded) Petri nets.

To summarise, this paper addresses both semantical and algorithmic prob-
lems using a single device, namely the canonical prefix. The theoretical notion
of a complete prefix is useful as long as it can be the basis of a practical prefix-
building algorithm. We show that this is indeed the case, generalising the already
proposed unfolding algorithm presented in [5] as well as the parallel algorithm
from [8]. We believe that the above approach results in a more elegant framework
for investigating issues relating to unfolding prefixes, and provides a powerful
and flexible tool to deal with different variants of the unfolding technique. All
proofs can be found in the technical report [10].

2 Basic Notions

In this section, we first present basic definitions concerning Petri nets, and then
recall (see also [4, 5]) notions related to net unfoldings.

A net is a triple N
df

= (P, T, F ) such that P and T are disjoint sets of respec-
tively places and transitions, and F ⊆ (P × T ) ∪ (T × P ) is a flow relation. A
marking of N is a multiset M of places, i.e., M : P → {0, 1, 2, . . .}. As usual,
•z

df

= {y | (y, z) ∈ F} and z•
df

= {y | (z, y) ∈ F} denote the pre- and postset of
z ∈ P ∪ T . We will assume that •t 6= ∅ 6= t•, for every t ∈ T . A net system is

a pair Σ
df

= (N,M0) comprising a finite net N and an initial marking M0. We
assume the reader is familiar with the standard notions of the theory of Petri
nets, such as the enabledness and firing of a transition, marking reachability, and
net boundedness and (1-)safeness. We will denote the set of reachable markings
of Σ by M(Σ).

Branching processes Two nodes (places or transitions), y and y′, of a net
N = (P, T, F ) are in conflict, denoted by y#y′, if there are distinct transitions
t, t′ ∈ T such that •t∩ •t′ 6= ∅ and (t, y) and (t′, y′) are in the reflexive transitive
closure of the flow relation F , denoted by �. A node y is in self-conflict if y#y.

An occurrence net is a net ON
df

= (B,E,G), where B is the set of conditions

(places) and E is the set of events (transitions), satisfying the following: ON

is acyclic (i.e., � is a partial order); for every b ∈ B, |•b| ≤ 1; for every y ∈
B∪E, ¬(y#y) and there are finitely many y′ such that y′ ≺ y, where ≺ denotes
the transitive closure of G. Min(ON ) will denote the set of minimal (w.r.t. ≺)



elements of B ∪E. The relation ≺ is the causality relation. A ≺-chain of events
is a finite or infinite sequence of events such that for each two consecutive events,
e and f , it is the case that e ≺ f . Two nodes are concurrent, denoted y co y′, if
neither y#y′ nor y � y′ nor y′ � y.

A homomorphism from an occurrence net ON to a net system Σ is a mapping
h : B ∪ E → P ∪ T such that: h(B) ⊆ P and h(E) ⊆ T ; for all e ∈ E, the
restriction of h to •e is a bijection between •e and •h(e); the restriction of h
to e• is a bijection between e• and h(e)•; the restriction of h to Min(ON ) is
a bijection between the multisets Min(ON ) and M0; and for all e, f ∈ E, if
•e = •f and h(e) = h(f) then e = f . If an event e is such that h(e) = t, then
we will often refer to it as being t-labelled.

A branching process of Σ (see [4]) is a quadruple π
df

= (B,E,G, h) such that
(B,E,G) is an occurrence net and h is a homomorphism from ON to Σ. A
branching process π′ = (B′, E′, G′, h′) of Σ is a prefix of a branching process
π = (B,E,G, h), denoted by π′ v π, if (B′, E′, G′) is a subnet of (B,E,G)
(i.e., B′ ⊆ B, E′ ⊆ E and G′ = G ∩ (B′×E′ ∪ E′×B′)) containing all minimal
elements and such that: if e ∈ E ′ and (b, e) ∈ G or (e, b) ∈ G then b ∈ B′; if
b ∈ B′ and (e, b) ∈ G then e ∈ E′; and h′ is the restriction of h to B′ ∪ E′. For
each net system Σ there exists a unique (up to isomorphism) maximal (w.r.t.
v) branching process Unf max

Σ , called the unfolding of Σ.
For convenience, we assume a branching process to start with a (virtual)

initial event ⊥, which has the postset Min(ON ), empty preset, and no label.
We do not represent ⊥ in figures nor treat it explicitly in algorithms.

Configurations and cuts A configuration of an occurrence net ON is a set of
events C such that for all e, f ∈ C, ¬(e#f) and, for every e ∈ C, f ≺ e implies
f ∈ C; since we assume the initial event ⊥, we additionally require that ⊥ ∈ C.

For e ∈ E, the configuration [e]
df

= {f | f � e} is called the local configuration of

e, and 〈e〉
df

= [e] \ {e} denotes the set of causal predecessors of e. Moreover, for a
set of events E′ we denote by C ⊕E′ the fact that C ∪E′ is a configuration and
C ∩ E′ = ∅. Such an E′ is a suffix of C, and C ⊕ E′ is an extension of C.

The set of all finite (resp. local) configurations of a branching process π will
be denoted by Cπ

fin (resp. Cπ
loc) — or simply by Cfin (resp. Cloc) if π = Unf max

Σ .
A co-set is a set of mutually concurrent conditions. A cut is a maximal (w.r.t.

set inclusion) co-set. Every marking reachable from Min(ON ) is a cut.

Let C be a finite configuration of a branching process π. Then Cut(C)
df

=
(Min(ON ) ∪ C•) \ •C is a cut; moreover, the multiset of places h(Cut(C)) is a
reachable marking of Σ, denoted Mark(C). A marking M of Σ is represented in
π if there is C ∈ Cπ

fin such that M = Mark(C). Every such marking is reachable
in Σ, and every reachable marking of Σ is represented in the unfolding of Σ.

In the rest of this paper, we assume that Σ is a fixed, though not necessarily
bounded, net system, and that Unf max

Σ = (B,E,G, h) is its unfolding.

König’s Lemma for branching processes König’s Lemma (see [12]) states
that a finitely branching, rooted, directed acyclic graph with infinitely many



nodes reachable from the root has an infinite path. It turns out that a version
of such a result holds for branching processes of Petri nets.

Proposition 1. A branching process π is infinite iff it contains an infinite ≺-

chain of events.

Note that the above result does not follow directly from the original König’s
Lemma [12], since the conditions of π can have infinitely many outgoing arcs.

3 Complete prefixes of Petri net unfoldings

As explained in the introduction, there exist several different methods of trun-
cating Petri net unfoldings. The differences are related to the kind of information
about the original unfolding one wants to preserve in the prefix, as well as to
the choice between using either only local configurations (which can improve the
running time of an algorithm), or all finite configurations (which can result in a
smaller prefix). Also, we need a more general notion of completeness for branch-
ing processes. Here we generalise the entire set-up so that it will be applicable
to different methods of truncating unfoldings and, at the same time, allow one
to express the completeness w.r.t. properties other than marking reachability.

Cutting contexts For flexibility, our new set-up is parametric. The first pa-
rameter determines the information to be preserved in a complete prefix (in the
standard case, the set of reachable markings). The main idea here is to shift
the emphasis from the reachable markings of Σ to the finite configurations of
Unf max

Σ . Formally, the information to be preserved in the prefix corresponds to
the equivalence classes of some equivalence relation ≈ on Cfin . The other two
parameters are more technical: they specify under which circumstances an event
can be designated as a cut-off event.

Definition 2. A cutting context is a triple Θ
df

=
(

≈ , � ,
{

Ce

}

e∈E

)

, where:

1. ≈ is an equivalence relation on Cfin .
2. �, called an adequate order (comp. [5]), is a strict well-founded partial order

on Cfin refining ⊂, i.e., C ′ ⊂ C ′′ implies C ′
� C ′′.

3. ≈ and � are preserved by finite extensions, i.e., for every pair of configura-
tions C ′ ≈ C ′′, and for every suffix E′ of C ′, there exists2 a finite suffix E′′

of C ′′ such that:

(a) C ′′ ⊕ E′′ ≈ C ′ ⊕ E′, and
(b) if C ′′

� C ′ then C ′′ ⊕ E′′
� C ′ ⊕ E′.

4. {Ce}e∈E is a family of subsets of Cfin , i.e., Ce ⊆ Cfin for all e ∈ E. 3

2 Unlike [5], we do not require that E′′ = I2

1 (E′), where I2

1 is the ‘natural’ isomorphism
between the finite extensions of C ′ and C ′′. That isomorphism may be undefined if
Mark(C ′) 6= Mark(C ′′), and thus cannot be used in our generalised settings.



The main idea behind the adequate order is to specify which configurations
will be preserved in the complete prefix; it turns out that all �-minimal con-
figurations in each equivalence class of ≈ will be preserved. The last parameter
is needed to specify the set of configurations used later to decide whether an
event can be designated as a cut-off event. For example, Ce may contain all finite
configurations of Unf max

Σ , or, as it is usually the case in practice, only the local
ones. We will say that a cutting context Θ is dense (saturated) if Ce ⊇ Cloc (resp.
Ce = Cfin), for all e ∈ E.

In practice, Θ is usually dense (or even saturated, see [6]), and at least the
following three kinds of the equivalence ≈ have been used:

– C ′≈marC
′′ if Mark(C ′) = Mark(C ′′). This is the most widely used equiva-

lence (see [5, 6, 8, 13]). Note that the equivalence classes of ≈mar correspond
to the reachable markings of Σ.

– C ′≈codeC
′′ if Mark(C ′) = Mark(C ′′) and Code(C ′) = Code(C ′′), where

Code(C) is the signal coding function. Such an equivalence is used in [16] for
unfolding Signal Transition Graphs (STGs) specifying asynchronous circuits.

– C ′≈symC ′′ if Mark(C ′) and Mark(C ′′) are symmetric (equivalent) markings.
This equivalence is the basis of the approach exploiting symmetries to reduce
the size of the prefix, described in [3].

For an equivalence relation ≈, we denote by R
fin
≈

df

= Cfin/≈ the set of its equiva-

lence classes, and by R
loc
≈

df

= Cloc/≈ the set of its equivalence classes on the local
configurations. We will also denote by ΘERV the cutting context corresponding
to the framework used in [5], i.e., such that ≈ is equal to ≈mar , � is the total
adequate order for safe net systems proposed there, and Ce = Cloc , for all e ∈ E.

We will write e�f whenever [e]� [f ]. Since � is a well-founded partial order
on the set of events, we can use Noetherian induction (see [2]) for definitions
and proofs, i.e., it suffices to define or prove something for an event under the
assumption that it has already been defined or proven for all its �-predecessors.

Proposition 3. Let e and f be two events, and C be a finite configuration.

1. If f ≺ e then f � e.
2. If f ∈ C � [e] then f � e.

In the rest of this paper, we assume that the cutting context Θ is fixed.

Completeness of branching processes We now introduce a new notion of
completeness for branching processes.

Definition 4. A branching process π is complete w.r.t. a set Ecut of events of
Unf max

Σ if the following hold:

1. If C ∈ Cfin , then there is C ′ ∈ Cπ
fin such that C ′ ∩ Ecut = ∅ and C ≈ C ′.

2. If C ∈ Cπ
fin is such that C ∩Ecut = ∅, and e is an event such that C ⊕ {e} ∈

Cfin , then C ⊕ {e} ∈ Cπ
fin .

A branching process π is complete if it is complete w.r.t. some set Ecut . 3
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Fig. 1. A Petri net (a) and one of its branching processes (b), which is complete
according to [5], but not w.r.t. Definition 4: the configuration {e1, e4} does not preserve
firings and introduces a fake deadlock. To make the prefix complete w.r.t. Definition 4,
one has to add an instance of t5 consuming the conditions produced by e1 and e4.

Note that π remains complete following the removal of all events e for which
〈e〉 ∩ Ecut 6= ∅, after which the events from Ecut (usually referred to as cut-off

events) will be either maximal events of the prefix or not in the prefix at all.
Note also that the last definition depends only on the equivalence ≈, and not on
the other components of the cutting context.

For the relation ≈mar , each reachable marking is represented by a config-
uration in Cfin and, hence, also by a configuration in Cπ

fin , provided that π is
complete. This is what is usually expected from a correct prefix. But even in
this special case, our notion of completeness differs from that presented in [5],
since it requires all configurations in Cπ

fin containing no events from Ecut to
preserve all transition firings, rather than the existence of a configuration pre-
serving all firings. The justification why such a stronger property is desirable,
e.g., for deadlock detection, was given in the introduction (see also Figure 1).
Obviously, our notion is strictly stronger than the one in [5], i.e., it implies the
completeness in the sense of [5], but not vice versa (see Figure 1). However, the
proof of completeness in [5] almost gives the stronger notion; we have adopted
it (see [10, Proposition 8]) with relatively few modifications.

4 Canonical prefix

This and the next section develop our central results. First, we define cut-off
events without resorting to any algorithmic argument. This yields a definition
of the canonical prefix, and we then establish several of its relevant properties.

Static cut-off events In [5], the definition of a cut-off event was algorithm-
specific, and given w.r.t. the already built part of a prefix. Here we define cut-off
events w.r.t. the whole unfolding instead, so that it will be independent of an
algorithm (hence the term ‘static’), together with feasible events, which are
precisely those events whose causal predecessors are not cut-off events, and as
such must be included in the prefix determined by the static cut-off events.



Definition 5. The sets of feasible events, denoted by fsbleΘ, and static cut-off

events, denoted by cutΘ, are two sets of events e of Unf max
Σ defined thus:

1. An event e is a feasible event if 〈e〉 ∩ cutΘ = ∅.
2. An event e is a static cut-off event if it is feasible, and there is a configuration

C ∈ Ce such that C ⊆ fsbleΘ \ cutΘ, C ≈ [e], and C � [e]. Any C satisfying
these conditions will be called a corresponding configuration of e. 3

Note that fsbleΘ and cutΘ are well-defined sets due to Noetherian induction.
Indeed, when considering an event e, by the well-foundedness of � and Proposi-
tion 3(1), one can assume that for the events in 〈e〉 it has already been decided
whether they are in fsbleΘ or in cutΘ. And, by Proposition 3(2), the same holds
for the events in any configuration C satisfying C � [e].

Since 〈⊥〉 = ∅, ⊥ ∈ fsbleΘ by the above definition. Furthermore, ⊥ 6∈ cutΘ,
since ⊥ cannot have a corresponding configuration. Indeed, [⊥] = {⊥} is the
smallest (w.r.t. set inclusion) configuration, and so �-minimal by Definition 2(2).

Remark 1. A näıve attempt to define an algorithm-independent notion of a cut-
off event as an event e for which there is a configuration C ∈ Ce such that
C ≈ [e] and C � [e] fails. Indeed, suppose that Θ = ΘERV , as it is often the
case in practice. Then a corresponding local configuration C of a cut-off event
e defined in this way may contain another cut-off event. Though in this case
Unf max

Σ contains another corresponding configuration C ′
� C with no cut-off

events and the same final marking, such a configuration is not necessarily local.
The approach proposed in this paper, though slightly more complicated,

allows to deal uniformly with arbitrary cutting contexts. Moreover, it coincides
with the näıve approach when Θ is saturated. 3

Canonical prefix and its properties Once we have defined feasible events,
the following notion arises quite naturally. The canonical prefix of Unf max

Σ is
the unique branching process Unf Θ

Σ , whose set of events is fsbleΘ, and whose
conditions are the conditions adjacent to these events. Thus Unf Θ

Σ is uniquely
determined by the cutting context Θ.

In what follows, we present several fundamental properties of Unf Θ
Σ . We stress

that, unlike those given in [5], their proofs are not algorithm-specific (see [10]).

Theorem 6. Unf Θ
Σ is complete w.r.t. Ecut = cutΘ.

Having established that the canonical prefix is always complete, we now set
out to analyse its finiteness. A necessary and sufficient condition for the latter
follows directly from our version of König’s Lemma for branching processes.

Theorem 7. Unf Θ
Σ is finite iff there is no infinite ≺-chain of feasible events.

Thus, in order to get a finite canonical prefix, one should choose a cutting
context such that the Ce’s contain enough configurations, and ≈ is coarse enough,
to cut each infinite ≺-chain. Interestingly, certain cutting contexts sometimes
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Fig. 2. An unbounded net system (a) and its canonical prefix (b). The cutting context
is such that C ′ ≈ C′′ ⇔ Mark(C ′) ∩ {p1, p3, p4} = Mark(C ′′) ∩ {p1, p3, p4} and {⊥} ∈
Ce3

, and so e3 is a static cut-off event.

give a finite canonical prefix even for unbounded net systems. Figure 2(a) shows
a net modelling a loop, where place p2, used for counting the number of iterations,
is unbounded. If ≈ ignores the value of this ‘counter’ place, it is possible to build
a finite and complete canonical prefix, shown in Figure 2(b).

The following result provides quite a tight and practical indication for decid-
ing whether Unf Θ

Σ is finite or not.

Proposition 8. If |Rfin
≈ | < ∞ and Θ is dense, then Unf Θ

Σ is finite. If |Rfin
≈ | =

∞, then Unf Θ
Σ is infinite.

Corollary 9. Let ≈ be either of ≈mar , ≈code , ≈sym . If Σ is bounded and Θ is

dense, then Unf Θ
Σ is finite. If Σ is unbounded, then Unf Θ

Σ is infinite.

In the important special case of a total adequate order �, one can also derive
an upper bound on the number of non-cut-off events in Unf Θ

Σ . A specialised
version of the following result (for Θ = ΘERV ) was proven in [5] for the prefix
generated by the unfolding algorithm presented there.

Theorem 10. Suppose that � is total, |Rloc
≈ | < ∞, and the following holds: For

every R ∈ R
loc
≈ , there is γR > 0 such that, for every chain e1 � e2 � · · · � eγR

of feasible events whose local configurations belong to R, there is at least one

i ≤ γR such that [ei] ∈
⋂

[e]∈R
Ce. Then | fsbleΘ \ cutΘ | ≤

∑

R∈Rloc
≈

γR.

Note that if Θ is dense, then γR = 1 for every R ∈ R
loc
≈ , and

∑

R∈Rloc
≈

γR =

|Rloc
≈ | ≤ |Rfin

≈ |. The standard result of [5] is then obtained by taking Θ = ΘERV .
Indeed, since the reachable markings of Σ correspond to the equivalence classes
of ≈mar , the upper bound on the number of non-cut-off events in Unf Θ

Σ in this
case is equal to |M(Σ)|. Using the above theorem, one can easily derive the
following upper bounds for the remaining two equivalences considered in this
paper (in each case, we assume that Θ is dense):

–
∣

∣R
fin
≈code

∣

∣ =
∣

∣{(Mark(C),Code(C))}C∈Cfin

∣

∣ ≤
∣

∣M(Σ)
∣

∣ ·
∣

∣Code(Cfin)
∣

∣ ≤
∣

∣M(Σ)
∣

∣ · 2n, where n is the number of signals.



input : Σ = (N, M0) — a net system
output : Pref

Σ
— the canonical prefix of Σ’s unfolding (if it is finite)

Pref
Σ
← the empty branching process

add instances of the places from M0 to Pref
Σ

pe ← PotExt(Pref
Σ

)
cut off ← ∅
while pe 6= ∅ do

choose Sl ∈ Slices(pe)
if ∃e ∈ Sl : [e] ∩ cut off = ∅
then

for all e ∈ Sl in any order refining � do
if [e] ∩ cut off = ∅
then

add e and new instances of the places from h(e)• to Pref
Σ

if e is a cut-off event of Pref
Σ

then cut off ← cut off ∪ {e}
pe ← PotExt(Pref

Σ
)

else pe ← pe \ Sl

Note: e is a cut-off event of Pref
Σ

if there is C ∈ Ce such that
the events of C belong to Pref

Σ
but not to cut off , C ≈ [e], and C � [e].

Fig. 3. Unfolding algorithm with slices.

– |Rfin
≈sym

| ≤ |Rfin
≈mar

| = |M(Σ)|.

These upper bounds are rather pessimistic, particulary because we bound |Rloc
≈ |

by |Rfin
≈ |. In practice, the set R

fin
≈ is usually exponentially larger than R

loc
≈ , and

so prefixes are often exponentially smaller than reachability graphs.

5 Algorithms for generating canonical prefixes

It turns out that canonical prefixes can be generated by straightforward gen-
eralisations of the existing unfolding algorithms (see, e.g., [5, 8]). The slicing

algorithm from [8], parameterised by a cutting context Θ, is shown in Figure 3.
(The algorithm proposed in [5] is a special case.) It is assumed that the func-
tion PotExt(PrefΣ) finds the set of possible extensions of a branching process
PrefΣ , according to the following definition.

Definition 11. For a branching process π of Σ, a possible extension is a pair
(t,D), where D is a co-set in π and t is a transition of Σ, such that h(D) = •t
and π contains no t-labelled event with preset D. We will take the pair (t,D) as
a t-labelled event having D as its preset. 3

Compared to the standard unfolding algorithm in [5], the slicing algorithm
has the following modifications in its main loop. A set of events Sl , called a slice,



is chosen on each iteration and processed as a whole, without taking or adding
any events from or to pe. A slice must satisfy the following conditions:

– Sl is a non-empty subset of the current set of possible extensions pe;
– for every e ∈ Sl and every event f �e of Unf max

Σ , f 6∈ pe \Sl and pe∩〈f〉 = ∅.

In particular, if f ∈ pe and f �e for some e ∈ Sl , then f ∈ Sl . The set Slices(pe)
is chosen so that it is non-empty whenever pe is non-empty. Note that this algo-
rithm, in general, exhibits more non-determinism than the one from [5]: it may
be non-deterministic even if the order � is total. Since the events in the current
slice can be processed completely independently, the slicing algorithm admits
efficient parallelisation (along the lines proposed in [8]). A crucial property of
the slicing unfolding algorithm is that it generates the canonical prefix.

Theorem 12. If Unf Θ
Σ is finite, then the slicing algorithm generates Unf Θ

Σ in

a finite number of steps.

As far as this paper is concerned, the above theorem completes our investi-
gation. What remains is to put this section in the context of the previous work.
In the case Θ = ΘERV the slicing algorithm is nothing more but the algorithm

proposed in [8]. Moreover, by setting Slices(pe)
df

= {{e} | e ∈ min�pe}, one can
obtain the unfolding algorithm of [5]. For the slicing algorithm, the correctness
was proven (in a very complicated way) in [8] by showing that it is equivalent to
the unfolding algorithm of [5], in the sense that prefixes produced by arbitrary
runs of these algorithms are isomorphic (and then relying on the correctness
results developed in [5]). The theory developed in this paper allows for a much
more elegant and general proof, essentially by showing that arbitrary runs of
both these algorithms generate the canonical prefix. Moreover, one should not
forget that the notion of completeness developed in this paper is strictly stronger
than that used in previous works; in particular, algorithms shown correct here
are also correct w.r.t. the weaker notion.

6 Conclusions

In this paper, we presented a general framework for truncating Petri net un-
foldings. It provides a powerful tool for dealing with different variants of the
unfolding technique, in a flexible and uniform way. In particular, by finely tun-
ing the cutting contexts, one can build prefixes which better suit a particular
model checking problem. A fundamental result is that, for an arbitrary Petri net
and a cutting context, there exists a ‘special’ canonical prefix of its unfolding,
which can be defined without resorting to any algorithmic argument.

We introduced a new, stronger notion of completeness of a branching pro-
cess, which was implicitly assumed by many existing model checking algorithms
employing unfoldings (see the introduction). The canonical prefix is complete
w.r.t. this notion, and it is exactly the prefix generated by arbitrary runs of
the non-deterministic unfolding algorithms presented in [5, 8]. This gives a new



correctness proof for the unfolding algorithms presented there, which is much
simpler in the case of the algorithm developed in [8]. As a result, relevant model
checking tools can now make stronger assumptions about the properties of the
prefixes they use. In particular, they can safely assume that for each configura-
tion containing no cut-off events, all firings are preserved.

Finally, we gave conditions for the finiteness of the canonical prefix and, in
certain cases, the upper bounds on its size, which are helpful in choosing problem-
specific cutting contexts. To deal with the finiteness problem, we developed a
version of König’s Lemma for branching processes of (possibly unbounded) Petri
nets. We believe that the results contained in this paper, on the one hand, will
help to better understand the issues relating to prefixes of Petri net unfoldings,
and, on the other hand, will facilitate the design of efficient model checking tools.
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