
Strategies for Optimised STG Decomposition
Mark Schaefer1 Walter Vogler1 Ralf Wollowski2 Victor Khomenko3

1Fakulẗat für Informatik, University of Augsburg, Germany
E-mail: {schaefer,vogler}@informatik.uni-augsburg.de

Hasso-Plattner-Institut (HPI) für Softwaresystemtechnik GmbH,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany.

E-mail: ralf.wollowski@hpi.uni-potsdam.de

School of Computing Science, University of Newcastle upon Tyne, UK.
E-mail: Victor.Khomenko@ncl.ac.uk

Abstract— When synthesising an asynchronous circuit from an
STG, one often encounters the state explosion problem. In order
to alleviate this problem one can decompose the STG into smaller
components.

This paper deals with the decomposition method of [11], [12]
and introduces several strategies for efficient implementations,
proves them correct and compares them by means of benchmark
examples.

Keywords: Asynchronous circuit, STG, Petri net, decomposi-
tion, speed-independent

I. I NTRODUCTION

Asynchronous circuits are a promising type of digital cir-
cuits. They perform better, use less energy and emit less
radiation than conventional synchronous circuits. A widely
used formalism for their modelling aresignal transition graphs
(STGs), which are interpreted Petri nets.

While STGs are relatively simple and well-studied, the issue
of computational complexity for highly concurrent STGs is
quite serious due to the state space explosion problem. This
puts practical bounds on the size of control circuits that can be
synthesised using such techniques, which are often restrictive,
especially if the STG models are not constructed manually by
a designer but rather generated automatically from high-level
hardware descriptions.

One way to alleviate state explosion is to decompose an
STG into several smaller ones which behave together in the
same way as the original one. The advantages are a faster
synthesis and a reduced peak memory usage. In this paper,
we deal with the decomposition method of [11], [12], which is
non-deterministic, leaving a lot of choices for implementation.
We introduce four strategies to improve its efficiency and the
quality of the components.

The next two sections give a condensed overview of STGs
and decomposition. The fourth section introduces the new de-
composition strategies, which is followed by the results oftheir
application to some benchmark examples. After this, possible
applications of the new strategies to the STG decomposition
methods of Carmona and Cortadella [1], [2] and Yoneda,
Onda and Myers [13] are discussed. The paper ends with a
conclusion and an outlook for future work.

For more information about asynchronous circuits, STGs
and decomposition see [4], [11], [12].

II. BASIC DEFINITIONS

This section provides the basic notions for Petri nets and
STGs, for a more detailed explanation cf. e.g., [4].

A Petri net is a 4-tupleN = (P, T,W,MN) whereP is
a finite set ofplacesand T a finite set oftransitions with
P ∩ T = ∅. W : P × T ∪ T × P → N0 is theweight function
and MN the initial marking, where amarking is a function
P → N0 which assigns a number oftokensto each place. A
Petri net can be considered as a bipartite graph with weighted
and directed edges between places and transitions.

The presetof a place or transitionx is denoted as•x and
defined by•x = {y ∈ P ∪T | W (y, x) > 0}, thepostsetof x

is denoted asx• and defined byx• = {y ∈ P ∪T | W (x, y) >

0}. These notions are extended to sets as usual. We say that
there is anarc from eachy ∈ •x to x.

A transition t is enabled under a marking Mif ∀p ∈ •t :
M(p) ≥ W (p, t), which is denoted byM [t〉. An enabled
transition canfire or occuryielding a new markingM ′, written
asM [t〉M ′, if M [t〉 andM ′(p) = M(p)−W (p, t)+W (t, p)
for all p ∈ P .

A transition sequencev = t0t1 . . . tn is enabled un-
der a marking M (yielding M ′) if M [t0〉M0[t1〉M1

. . . Mn−1[tn〉Mn = M ′, and we writeM [v〉, M [v〉M ′ resp.;
v is called firing sequenceif MN [v〉. The empty transition
sequenceλ is enabled under every marking.

M is called reachable if a transition sequencev with
MN [v〉M exists. We only consider Petri netsN such that the
set [MN 〉 of reachable markings is finite (i.e.N is bounded).

An STG is a tupleN = (P, T,W,MN , In,Out, l) where
(P, T,W,MN) is a Petri net andIn andOut are disjoint sets
of input and output signals. For Sig := In ∪ Out being the
set of all signals,l : T → Sig×{+,−}∪{λ} is the labelling
function. Sig × {+,−} or short Sig± is the set ofsignal
edgesor signal transitions; its elements are denoted asa+,
a− resp. instead of(a,+), (a,−) resp. A plus sign denotes
that a signal value changes fromlogical low (written as 0)
to logical high (written as 1), and a minus sign denotes the
other direction. We writea± if it is not important or unknown
which direction takes place; if such a term appears more than
once in the same context, it always denotes the same direction.
To keep the notation short, input/output signal edges are just
called input/output edges.

An STG may initially contain transitions labelled withλ
calleddummy transitions. They are a design simplification and
describe no physical reality, and they have to be removed be-
fore our decomposition algorithm can be applied. However, the
algorithm itself labels certain transitions withλ at intermediate
stages; since their nature is different from that of dummy tran-
sitions, they are calleddivining transitions1. This relabelling
of a transition is calledlambdarisinga transition. The set of
transitions labelled with a certain signal is frequently identified
with the signal itself, e.g., lambdarising signala means to
change the label of all transitions labelled witha+ or a− to
λ.

In a graphical representation, places are drawn as circles
containing a number of tokens corresponding to their mark-
ing. Transitions are drawn as rectangles together with their
labelling, the weight function as directed arcsxy (labelled
with W (x, y) if W (x, y) > 1).

An STG can be taken as a specification formalism for
asynchronous circuits. Such a circuit has input signals, which
are controlled by the environment, and output signals, whose
values are changed by the circuit. The STG describes which
output signals should be performed; at the same time, it
describes assumptions about the environment, which should
perform input signals only if they are allowed by the STG.

We lift the notion of enabledness to transition labels: we
write M [l(t)〉〉M ′ if M [t〉M ′. This is extended to sequences
as usual; note thatλ-labels are deleted sinceλ is the empty
word. An STG hasauto-concurrencyif there are transitions
t1 andt2 with l(t1) = l(t2) 6= λ such that for some reachable
markingM ∀p ∈ P : M(p) ≥ W (p, t1) + W (p, t2).

A sequencev ∈ (Sig±)∗ is called atrace of a markingM
if M [v〉〉, and atrace of N if M = MN . The language ofN
is the set of all traces ofN denoted byL(N).

The reachability graphRGN of an STGN is an edge-
labelled directed graph on the reachable markings withMN

as root; there is an edge fromM to M ′ labelledl(t) whenever
M [t〉M ′. RGN can be seen as a finite automaton (where all
states are final), andL(N) is the language of this automaton.
N is deterministicif its reachability graph is a deterministic
automaton, i.e. if it contains noλ-labelled transitions and if
for each reachable markingM and each signal edges± there
is at most oneM ′ with M [s±〉〉M ′.

An important property of STGs isconsistency2. An STG
is consistent if it satisfies for every signals the following
two conditions: (i) in all traces, the first occurrence ofs has
the same sign (either rising of falling); (ii) the rising and
falling edges ofs alternate in every trace. From aninconsistent
STG, one cannot synthesise a circuit and in this paper we
assume that all STGs we want to decompose are consistent;
in particular, consistency is needed for the correctness proof
of the new decomposition strategy LAZY BACK. Note also that
a consistent STG cannot have auto-concurrency, since this
would imply that e.g.,s+ can fire twice under some reachable
marking.

1Motivated by their treatment in the correctness proof where some sort of
angelic bisimulation plays the role of an invariant [12].

2This is a simplified notion of consistency, see [9] for a more elaborated
one.

III. STG DECOMPOSITION

Synthesis with STG decomposition works roughly as fol-
lows: a partition of the output signals of the given specification
N is chosen, and the decomposition algorithm decomposes
N into component STGs, one for each set in this partition.
Then, a circuit is synthesised from each component, and the
interconnection of these circuits has a behaviour that conforms
to the specification.

This correctness is formally proven in [11], [12] on the level
of STGs. Interconnection on the physical level simply means
to connect the circuits with a wire for each common signal,
i.e. if an outputx of a componentC1 is also an input of a
componentC2. On the STG level, interconnection corresponds
to the ordinary parallel composition for Petri nets, which fuses
transitions with the same label.

The formal correctness notion used in [11], [12] is a form of
bisimulation between the specification and this parallel com-
position. There are two main differences: first,computation
interference[5] between the components is forbidden, i.e. in
the example above,C1 can only producex± when C2 is
ready to receive it. Secondly, the components can allow input
edges which are not allowed by the specificationN . This is
intuitively correct, sinceN also describes assumptions on the
environment, i.e. a proper environment will not produce these
additional input edges. An extension of this correctness notion
to internal signals is given in [7].

To describe the decomposition algorithm in more detail,
we discuss in the following subsection the notion ofauto-
conflicts, which plays an important part during decomposition.
The second subsection deals with the decomposition algorithm
itself.

A. Auto-Conflicts

STGs can model more behaviour than a real-life circuit can
show. For example, inconsistent STGs cannot be implemented
although they are allowed in principle. Another problem are
dynamic conflicts, i.e. two transitions of an STG enabled under
some reachable marking, where firing one would disable the
other.

If the conflicting transitions correspond to different input
signals then they model a choice made by the environment,
and this is not a problem. However, if at least one of the signals
is an output, then the specification cannot be implemented as
an asynchronous digital circuit. There are three problematic
cases:

1. One transition is labelled with an input edge, the other
with an output edge. This conflict is very hard to
implement, since both signal edges are independently
generated and may occur at the same time. Nevertheless,
our decomposition method and our tool DESIJ cover
such conflicts, but we will not discuss them here any
further.

2. Both transitions are labelled with different output edges.
A circuit which can handle such conflicts is called an
arbiter and cannot be implemented as a purely digital
circuit. STGs with such conflicts can also be handled
by our decomposition method, which does not introduce

new conflicts of this kind. For a detailed discussion see
[11], [12].

3. Both transitions are labelled with the same signal edge, a
so-calledauto-conflict. Such a non-deterministic choice
can hardly be handled by circuits, and we assume that
decomposition is only applied to STGs without auto-
conflicts. During our decomposition algorithm, auto-
conflicts could be generated; this is considered as an
indication that too many signals were lambdarised in an
STG. In this casebacktrackingis performed and a signal
is delambdarised as described below.
Note that conflicts betweenλ-labelled transitions are
ignored.

Auto-conflicts are dynamic in nature, i.e., to detect them
one has to generate the reachability graph, which we want
to avoid. A much simpler notion is that of astructural auto-
conflict, where two equally labelled transitions have a common
place in their presets. This is a necessary precondition for
auto-conflicts and can be checked structurally. Consequently,
the decomposition algorithm of [12] checks only for structural
conflicts, conservatively treating them as dynamic ones.

The improved decomposition algorithm of [11] makes it
possible to ignore structural auto-conflicts to some degreein
order to avoid unnecessary backtracking. This results in three
different strategies for handling structural auto-conflicts:

1. Conservative strategy: As in [12] every structural con-
flict is considered as a dynamic one.

2. Risky strategy: Structural conflicts are completely ig-
nored.

3. Interactive strategy: Ask a human if a structural conflict
is dynamic or not.

Despite its name, the risky approach is feasible since the
decomposition algorithm essentially preserves (dynamic)auto-
conflicts. Thus, accidentally generated ones will be detected
by the synthesis tool and at least no erroneous circuit will be
generated; also see below.

We have implemented the conservative and the risky strat-
egy, and it turned out that the risky strategy in its pure
form does not look practical: for most decompositions there
is at least some final component with an auto-conflict, and
the runtimes are not much smaller than for the conservative
conflict detection. Therefore, we restrict ourselves to the
conservative strategy from [12] in the following. Still, for
the correctness proof of LAZY BACK, it is important to know
that the decomposition algorithm gives also a correct result if
structural-but-not-dynamic auto-conflicts are ignored.

B. The Decomposition Algorithm

In the following, we assume that we are given a deter-
ministic, consistent specificationN without structural auto-
conflicts; first, one chooses afeasible partition, i.e. a family
(Ini, Outi)i∈I for some setI such that the setsOuti are a
partition ofOut, Ini ⊆ Sig\Outi for eachi and furthermore:

• If two output signalsx1, x2 are in structural conflict in
N , then they have to be in the sameOuti.

• If there aret, t′ ∈ T with t′ ∈ (t•)
• (t is calledsyntactical

trigger of t′), thenl(t′) ∈ Outi implies l(t) ∈ Ini∪Outi.

p1 p2

p3 p4

Ia+ Ack+

Ro+ λ

Ia- Ro+

(a)

p1p3

p1p4

p2p3

p2p4

Ia+ Ack+

Ro+ Ia- Ro+

(b)

Fig. 1. Transition contraction with generation of structural auto-conflict.(a)
Initial net. (b) After contraction of theλ-labelled transition.

Clearly, for each STGN there is aminimal feasible parti-
tion ΥN such that theOuti are minimal and only necessary
inputs are included inIni.

If we have a feasible partition, we can build another feasible
one by adding additional input signals to one of the members
or by merging two members(In1, Out1) and (In2, Out2) to
a new one((In1 ∪ In2) \ (Out1 ∪ Out2), Out1 ∪ Out2).

All possible partitions can be generated by applying these
operations repeatedly toΥN .

For each member(Ini, Outi) of a partition an initial
componentis generated fromN : in a copy of the original
STGN , every signal not inIni∪Outi is lambdarised and the
signals inIni are considered as inputs of this component —
even if they are outputs ofN .

The following operations are applied to each of these
components; this process is calledreduction:

• secure contractionof divining transitions
• deletion of redundant places
• deletion of redundant transitions
• backtracking

We call the first three of these operationsreduction op-
erations. The reduction of an initial component leads to a
component-STG withoutλ-transitions. Each component-STG
is then synthesised, usually by constructing its reachability
graph. Very often, adding up the sizes of these graphs gives a
number much smaller than the size of the reachability graph of
N , in which case the decomposition can be seen as successful.
Actually, it might already be beneficial if each reachability
graph is smaller than the one ofN , in particular for reducing
peak memory.

We will now describe the above operations in more detail.
Thecontraction of a transitiont generates a set of new places
{(p, q) | p ∈ •t, q ∈ t•} (each one of them inherits the tokens
and arcs of its ‘inner’ places) and removest, •t and t• from
the net; cf. Figure 1.

Contractions are only performed if they are ‘secure’ (imply-
ing language preservation) andno new structural auto-conflict
is generated. It is easy to see that the contraction of a transition
t increases the number of places by|•t| · |t•| − (|•t| + |t•|).

Redundant placesare a subclass ofimplicit placeswhich
can be deleted without changing the firing sequences of the
STG. The difference is that looking for implicit places requires

the reachability graph while redundant places can be detected
structurally; hence, we only look for the latter ones during
decomposition.

There are two kinds ofredundant transitions. First, if there
are two λ-labelled transitions which are connected to every
place in the same way, one of them can be deleted without
changing the traces of the STG. Second, aλ-labelled transition
t with W (t, p) = W (p, t) for every placep can also be deleted,
since its firing does not change the marking and is not visible
on the level of traces; observe, that this is valid for any marking
of the adjacent places.

These two operations may seem trivial, but especially the
deletion of redundant places is essential for getting small
components, since very often the existence of such places
prevents further transition contractions. The same is alsotrue
to some extent for redundant transitions.

Backtrackingmeans to choose a signal that was lambdarised
in the initial component, to add it to the input signals, and
to delambdariseit, i.e. to restore the original labels of the
corresponding transitions; then reduction is started anew. If
there are still divining transitions left but none of the reduction
operations can be performed, then an arbitrary one of these
transitions is chosen and backtracking is performed to its
former signal.

In particular, if the contraction of a divining transitiont
would generate a new structural auto-conflict, this is consid-
ered as an indication that too many signals of a component
were lambdarised to produce its output signals appropriately;
this can be changed by delambdarising the former signal oft

and — informally speaking — providing more information to
the circuit.

After the last backtracking, when enough signals are added
to the initial component, only the reduction operations have
to be applied to get the final component. This means that
backtracking is only needed to detect these additional signals;
if they are known in advance, one can perform decomposition
completely without backtracking. This point of view plays an
important part in the correctness considerations for the new
decomposition strategies.

All three reduction operations (even if secure contractionis
applied in cases where structural auto-conflicts arise) preserve
the language [12] and therefore also consistency, and the
latter is obviously also true for delambdarising signals. Hence,
all intermediate and final results of reduction are consistent.
Furthermore, the operations areauto-cc-preserving[11], i.e.
applied to some STGN with auto-concurrency or (dynamic)
auto-conflicts, the resulting STGN ′ has also auto-concurrency
or auto-conflicts. This is the precise argument why the risky
approach is feasible. It also implies the following result,which
we will use in Section IV-B:

(*) Assume the reduction operations are applied to some
initial component,ignoring structural auto-conflicts, and this
gives an STGN ′ without structural auto-conflicts. Then, no
structural auto-conflict encountered during this partial reduc-
tion is dynamic, and hence — as shown in [11] — the
reduction is correct so far.

To prove this, assume that some intermediateN̂ ′ has
an auto-conflict. Then, since the operations are auto-cc-
preserving, N ′ has to contain an auto-conflict or auto-
concurrency. The former is impossible sinceN ′ has no struc-
tural auto-conflicts; the latter implies thatN ′ is not consistent,
which is also impossible.

The decomposition algorithm itself is non-deterministic,i.e.
the operations can be applied in any order; the results have
been proven to be always correct. In the original version of
the algorithm called BASIC here, the order of contractions
depends on the ordering of items in the input file, which can
be considered as random.

However, for some examples the order of operations is
crucial for the final result in terms of the number of added
signals, the overall number of reachable markings and the
time needed for synthesis. The question is how to find a good
order of operations to get the best possible result. Furthermore,
backtracking means to undo all operations performed on this
component so far, which is very inefficient and the question
is whether this is really needed. Viewing the reduction of all
components together, a lot of work is done several times and
the question is whether it is possible to reuse intermediate
results for the reduction of other components. Finally, it is
possible to choose between several possible partitions of the
output signals but it is unclear how a good one can be found.

Answers to these questions are given in the next section.

IV. OPTIMISED DECOMPOSITIONSTRATEGIES

In this section we will introduce four new strategies to im-
prove upon the basic decomposition algorithm. In the subsec-
tion headings, the name of the corresponding strategy is given
in capitalised letters; this name is used as an identifier of the
underlying concept as well as for the concrete implementation.

A. Ordering Transition Contractions (REORDERING)

Although reduction is meant to be performed automatically,
it can be done with pen and paper. To keep this simple,
one would contract those transitions first which generate the
smallest number of new places. In the optimal case a divining
transition has only one place in its pre- and postset, thus its
contraction would generate one new place while removing
both old ones. But the contraction of a transition, with for
instance 4 places in its preset and 6 places in its postset would
increase the number of places by 14. These 14 places may
be adjacent to other divining transitions and so on. Hence,
contracting transitions in an unsuitable order can lead to an
enormous increase in the number of places.

Contracting ‘easy’ transitions first turned out to be a good
heuristic also for the automatic reduction. In REORDERING,
the divining transitions are sorted by the number of addi-
tional places their contraction would generate in the initial
component. Then reduction works as in BASIC, following
this pre-calculated list of transition contractions. In order to
avoid repeated calculation and sorting after every reduction
operation, this list is not updated during reduction.

As mentioned above, the original decomposition algorithm
is completely non-deterministic and its correctness has been

proven under this assumption. This is an advantage for proving
the newly introduced methods correct: one simply has to show
that any final component generated by a new method could
have been generated by the basic algorithm for some order of
operations.

It is perfectly clear that REORDERING is correct in this
sense, because the chosen order of contractions is just a
concrete instance of an arbitrary one.

B. Lazy Backtracking (LAZY BACK)

In the original implementation, backtracking was performed
by discarding all the operations performed so far and restarting
the reduction for an initial component with an enlarged input
set. This method plays an important part in the proof of
correctness in [11], [12]. But it can obviously be rather
inefficient, e.g., in extreme cases backtracking might occur
for the last divining transition and result in repeating a large
number of operations.

Naturally, if the reduction should not start anew from the
beginning, one has to introducesavepointsfor intermediate
STGs. Since backtracking affects signals rather than single
transitions,lazy backtrackingcontracts all transitions of signal
a0, then all transitions of signala1 and so on. After a signal
was successfully contracted, the resulting intermediate STG is
used as a savepoint.

If backtracking has to be performed, it is unnecessary now to
start from the very beginning. Instead, it is possible to usethe
last suitable savepoint. While this basic idea is simple, there
is a complication to consider; to confine the complication, we
do not delete redundant transitions in LAZY BACK.

The algorithm works as follows. Starting fromN , all
initially useless signals are lambdarised yielding the initial
componentN0. Instead of contracting them in an arbitrary
order as in BASIC, the divining transitions are contracted
grouped by their former signals as described above and
depicted in Figure 2.

If contracting all a0-transitions is possible, i.e. all con-
tractions are secure and no new structural auto-conflict is
generated, save the resulting STG asN1. Next, try to contract
signala1 in N1 and so on. This results in a sequence(Ni) of
savepoints and a sequence(ai) of contracted signals. If every
contraction is possible, LAZY BACK is obviously correct.

Assume now that backtracking has to be performed since
the contraction of signalaj is not possible inNj . In BASIC,
one would delambdariseaj in N0 and start anew from there.
Instead, we delambdariseaj in Nj resulting inN ′

j ; the critical
point is that we have to check for a structural auto-conflict of
aj in N ′

j now. (Such a conflict might exist, because conflicts
between divining transitions are ignored during reduction.)

First, we study the case where no such conflict exists: in
this case, delambdariseaj also in all preceding savepoints and
proceed fromN ′

j with a new signala′

j to be contracted. This
is correct due to the following more general claim which is
also used later on.

(**) Let N ′

j be obtained from an intermediate savepoint
Nj by delambdarising some set of signalsA not containing
a0, . . . , aj−1. If N ′

j does not have any structural auto-conflicts,

then it can be constructed during a correct reduction for the
initial componentN ′

0 obtained fromN0 by delambdarisingA.
We will argue inductively that actually the same operation

sequence which reachedNj can be performed to reachN ′

j , at
least if we ignore structural auto-conflicts for the time being;
during this, every original intermediate STĜN is matched
with some new intermediate STĜN ′ obtained fromN̂ by
delambdarisingA. We clearly have this match before the first
operation forN0 andN ′

0. Assume we have reached someN̂ ′

matchingN̂ in the original sequence.
If the operation applied tôN is a redundant place deletion,

then this can also be applied tôN ′ with a matching result,
since place redundancy does not depend on the labelling. If
the operation is the contraction of transitiont, we note that
the former signal oft is in {a0, . . . , aj−1} and that thust
is also aλ-transition in N̂ ′. Furthermore, the contraction is
still secure since this is independent of the labelling. Hence,
the contraction can be applied with a matching result, which
finishes the inductive proof.

To conclude the proof of (**), we simply point out that the
operation sequence reachingN ′

j is correct according to (*) in
the discussion of the operations in Section III-B.

This argument shows that LAZY BACK can additionally help
to keep the components small: since we assume that only
N ′

j is free of structural auto-conflicts but allow them for the
intermediate results (which are not constructed actually), it
is possible to avoid some unnecessary backtracking due to
structural-but-not-dynamic auto-conflicts. This is sound, since
real dynamic auto-conflicts of the intermediate results would
appear also inN ′

j .

Second, we look at the case where there is at least one
structural auto-conflict for signalaj in N ′

j . Then we cannot
proceed from this savepoint; instead, we have to find the
signals whose contraction caused these conflicts. To do this,
consider STGNj−1 with aj delambdarised resulting inN ′

j−1.
If there is no conflict foraj , it is clear that the conflicts were
generated by the contraction ofaj−1. For example, look at
Figure 1: in (a) there is no structural auto-conflict for the signal
Ro, but the contraction of theλ-labelled transition introduced
one in (b).

If some conflicts still exist inN ′

j−1, go back to savepoint
Nj−2, delambdariseaj again and check for a conflict for
aj , and so on. Observe that the signalsaj−1, aj−2, . . . are
not delambdarised while going back in this way, they are
contracted again if the reduction is eventually resumed.3

If eventually a savepointNk is reached, where the respective
N ′

k does not have a structural auto-conflict foraj , it is clear
that the contraction of signalak caused at least some conflict
of aj , which is visible in N ′

k+1
. Therefore,ak has to be

delambdarised inN ′

k, too, resulting inN ′′

k .
At this point there are two possible sub-strategies:
• LAZY SINGLE: If there is no structural auto-conflict for

ak in N ′′

k , lambdariseaj in N ′′

k again and proceed from
there with reduction. If there is a structural auto-conflict
for ak in N ′′

k , go back to savepointNk−1, delambdarise

3Of course, it is possible that they are delambdarised during another
backtracking.

N N0 N1

λ a0 a1
Nk−1 Nk

ak−1 ak
Nj−1 Nj

aj−1 aj

N ′

j

aj

N ′

j−1

aj

N ′

k

ajaj , ak

N ′′

k

ak

Fig. 2. Backtracking of LAZY MULTI . A dotted arc denotes that the corresponding signals are delambdarised. Theλ-labelled one denotes the construction
of the initial component. A normal arc denotes the contractionof the corresponding signals.

2, 3, 41, 2, 3 3, 4, 5

1, 2, 3

2, 3, 41, 2, 3

2, 3

3, 4, 5

2, 3

1 (2, 3) (2, 3) 4 3, 4, 5

(a) (b) (c)

1 (2, 3) (2, 3) 4 (3) 4, 5

3

2 (3)

1 (2, 3) (2, 3) 4 (3) 4, 5

3

2 (3)

1 (2, 3) (2, 3) 4

3

3, 4, 5

2, 3

(d) (e) (f)

3

3, 4, 5

2, 3

1 (2) 3 (2) 3, 4

3

3, 4, 5

2, 3

(2) 3, 41 (2) 3 2 (3, 4) (3, 4) 51, 2 (3)

3

(3) 4

(g) (h) (i)

Fig. 3. Building of a simple decomposition tree. Leafs from theleft: componentsC1, C2, C3. (a) initial situation (b) two components merged (c) already
contracted signals embraced (d) final tree with all components(e)-(g) contraction of signal 3 not possible in root node andtherefore postponed to the children
(i) alternative tree

ak but notaj and check for structural auto-conflicts, and
so on. In general, go back with thelast delambdarised
signal until a suitable savepoint is found.

• LAZY MULTI : If there is no structural auto-conflict forak

in N ′′

k , proceed from there; differing from LAZY SINGLE,
aj is not lambdarised again. If there is a structural
auto-conflict forak in N ′′

k , go back to savepointNk−1,
delambdariseak and aj and check for structural auto-
conflicts, and so on. In general, go back withall signals
delambdarised so faruntil a suitable savepoint is found.

Since N does not have any structural auto-conflicts, we
will eventually reach a savepoint which has the same property
when we delambdarise the signals in the respective setA. We
then proceed with reduction from this modified savepoint, after
having modified all preceding savepoints in the same way.

Both strategies are correct due to (**). LAZY SINGLE is
the more optimistic strategy: the hope is that preventing the
‘initial’ structural auto-conflict by makingone signal visible
might also prevent the resulting conflicts including the onefor
aj . Backtracking in LAZY MULTI mimics BASIC, which would
restart withaj delambdarised after a structural auto-conflict
was encountered, then restart with alsoak delambdarised etc.

Our implementation of LAZY BACK differs slightly from the
above description: if during backtracking a savepoint is found
from which reduction can proceed, the corresponding signals
are not delambdarised in the preceding savepoints in order to
improve runtime. It is in fact not hard to see that this is also
correct due to (**).

C. Tree Decomposition (TREE)

The strategies described so far are improvements for the
reduction of a single component. This section deals with a
method for improving theoverall efficiency of the reduction
of all components.

Considering example decompositions, it turned out that in
most cases some components had many lambdarised signals
in common. Therefore there should be an intermediate STG
C ′, from which these components could be derived: instead
of reducing both components independently, it is sufficientto
generateC ′ only once and to proceed separately with each
component afterwards, thus saving a lot of work.

We introduce tree decompositionby means of an ex-
ample (see Figure 3): letN be an STG with the signal
set {1, 2, 3, 4, 5}. Furthermore, let there be 3 components
C1, C2, C3, and {1, 2, 3}, {2, 3, 4}, {3, 4, 5} be the signals
which are lambdarised initially in these components. A pos-
sible intermediate STGC ′ for C1 andC2 would be the STG
in which signals 2 and 3 have been contracted.

In (a) the initial situation is depicted. There are three
independent leaves labelled with the signals which should be
contracted to get a component. In (b)C ′ is introduced as a
common intermediate result ofC1 and C2. In (c) one can
see nearly the same situation as in (b), but signals which
were already contracted earlier are commented out; they are
embraced, and the labels of the leaves become{1} and {4}.
The following is a more operational view: each nodeu is
labelled with the signalss(u) which should be contracted

when it is entered with some STG, see below. In (d) we
added a common intermediate result forC ′ and C3 with the
label{3}, yielding the final decomposition tree. In (i) there is
another possible tree for the same components.

Tree decomposition according to a given decomposition tree
works as follows: enter the root node with the initial STG
N without lambdarised signals. Whenever entering a nodeu

with an STGNu, lambdarise the signalss(u) in Nu, perform
reduction as usual and enter each child node with its own copy
of the resulting STG. Ifu is a leaf, the resulting STG is a final
component.

From this use of a decomposition tree, it is clear that in
an optimal decomposition tree the sum of all|s(u)| should be
minimal. Because of this, a decomposition tree is the same
as a preset treein [6]. There it is shown that finding an
optimal preset tree is NP-complete and a heuristic bottom-
up algorithm is described which performs reasonably well and
works roughly as in the example above. We use this algorithm
for the automatic computation of decomposition trees.

However, there is a twist in our setting: since this tree is
pre-calculated from the initial components, it is very likely that
not all signal contractions are possible. If a signala ∈ s(u)
cannot be contracted inNu, the easiest thing would be to
make a visible for the whole subtree ofu. But there is a
way to obtain better results: wepostponea, i.e. we adda to
every child node ofu (if there are any). This is promising for
the following reason: the contraction ofa may have caused a
structural auto-conflict for a signala′, which is lambdarised
deeper in this subtree. Whena′ is eventually contracted, the
contraction ofa may become possible, making at least some
of the final components smaller.

In our example, assume that the contraction of signal 3 in
the root node is not possible, because it causes a conflict for
signal 4, see Figure 3(e). Signal 3 is therefore added to the
inner node and the rightmost leaf in (f). In the rightmost leaf,
there can be no conflict for signal 4 since it is lambdarised;
hence, the contraction of signal 3 might become possible after
the contraction of signal 4 – but not in the inner node, and
so 3 is added to the left and middle leafs (g). In the first one
the contraction is again not possible, but in the latter one it is,
and (h) shows the final situation. Therefore, the components
C2 andC3 were generated as prearranged, only componentC1

has the additional signal 3, considered as an additional input.
Observe that — in contrast to lazy backtracking — once the

decomposition of a node is finished, it is not necessary to come
back to this node and to delambdarise additional signals. Since
signals are lambdarised just in time when entering a node,
there are no divining transitions left after the reduction in a
node is finished and every potential auto-conflict has become
visible.

Backtracking, with or without postponing signals, changes
the pre-calculated decomposition tree, possibly decreasing its
quality. In future work we will study how to approximate an
optimal decomposition tree in such a way that postponing is
taken into account, refer Section VII.

We now argue why TREE is a correct strategy. Consider
the final decomposition tree resulting from postponing some

signals, cf. Figure 3(h); consider a final componentC (possibly
having additional input signals due to postponing) and the path
from the root to the corresponding leaf. The reduction opera-
tions on this path can be performed in the same order without
backtracking by BASIC, cf. the discussion of backtracking in
Section III. The only difference is that in TREE signals are
lambdarised ‘just in time’ and not at the beginning. This could
only result in more structural auto-conflicts, but TREE does not
encounter any. This implies correctness, which follows also
from the correctness ofhierarchical decompositionintroduced
in [7].

D. Component Aggregation (AGGREGATION)

An open problem of decomposition is how to find a good
partition of the output signals of an STGN . A natural partition
is of course the finest partitionΥN , whose members usually
contain only one output signal. As already mentioned, all other
feasible partitions can be found by merging members ofΥN .

Using TREE, such a coarser partition can be found byag-
gregating nodesof a decomposition tree. We perform TREE as
described above for the partitionΥN but with one difference:
after a nodeu is reduced yielding an STGC, we check if we
should stop at this point. If so, instead of generating all the
components for the leaves ofu in the original decomposition
tree, onlyC is returned, which produces all the output signals
of the leaves.

By this method we get a reduced decomposition tree corre-
sponding to a new ‘coarser’ partition which is also feasible, see
the discussion at the beginning of Section III-B. Clearly, the
correctness of AGGREGATION follows from the correctness of
TREE.

It remains to explain under which conditions a nodeu

should be aggregated. Since the main purpose of decompo-
sition is to reduce the overall number of reachable markings
of all components, there are two sensible criteria:

• A node can be aggregated if the STGC has not too many
signals, so that synthesis can be performed in a reasonable
time. In practice this is the same as not having too many
transitions.

• Consider the case thatu has a leafu′ which can be
reached by contraction of only a small number of ad-
ditional signals. This means that the component ofu′

has nearly the same size as that ofu and the same might
easily be true for the corresponding reachability graphs.
Therefore, instead of generating the componentC ′ of u′

and some additional components, it might be better to
aggregateu and to generateC, which is only slightly
larger thanC ′. Furthermore, the potential advantage of
generatingC ′ might not materialise due to backtracking.

For our benchmark examples, we implemented the first
criterion with bounds on the signal number ranging from 3
to 15. These values could be tailored to specific synthesis
methods in future experiments.

V. RESULTS

This section presents the experimental results for a num-
ber of benchmark examples circulating in the STG com-
munity. They were obtained with the tool DESIJ, a new

implementation of the decomposition algorithm in Java. It
provides a command-line mode as well as a graphical
user interface for interactive decomposition and STG edit-
ing. The main purpose for its development was to pro-
vide an easy-to-use decomposition tool and an easy-to-
extend STG decomposition framework. DESIJ and a col-
lection of benchmark examples can be downloaded from
www.informatik.uniaugsburg.de/lehrstuehle/
swt/ti/research/desij .

Originally, our main target for the new decomposition strate-
gies was to improve theruntimeused for decomposition. Dur-
ing our experiments, it turned out that the different strategies
also influenced thesizeof a decomposition, i.e. the cumulated
number of reachable markings. The latter measure is obviously
more important for the subsequent synthesis procedure (not
discussed here) and therefore used as the main criterion for
comparing different strategies.

Each STGN was decomposed using the partitionΥN ,
i.e. usually each component produces one output. Since RE-
ORDERING turned out to be rather successful, it is used as the
reduction algorithm in the stages of LAZY BACK, TREE and
AGGREGATION.

The risky auto-conflict detection was tested with BASIC,
REORDERING, LAZY BACK and TREE, but — as mentioned
before — turned out to be not very successful in general: for
most decompositions, there are some final components with at
least one auto-conflict; furthermore, the runtimes are not much
smaller than for the conservative conflict detection. Neverthe-
less, most components are conflict-free and, thus, the risky
approach might be useful for semi-automatic decomposition.
Here we only present results for the conservative approach.
For the benchmarks considered here, there is no difference
between LAZY SINGLE and LAZY MULTI and therefore only
the results for the former are given.

In Table I the different strategies are compared. On the left,
for BASIC, REORDERING, LAZY SINGLE and TREE the run-
time (in seconds) and the size of the resulting decomposition
are given; the smallest time and smallest size in this group
of strategies is annotated with◦. The number of components
according toΥN is the same for all strategies and can be found
in the TREE column.

Furthermore, we applied AGGREGATION with bounds on
the signal number ranging from 3 to 15. In the table, we report
values for TREE, for bound 3 (column AGGREGATION 3) and
bound 15 (column AGGREGATION 15), and, furthermore, for
the bounds where the smallest size of the decomposition are
obtained (column AGGREGATION BEST). For each of these,
the size of the decomposition and the number of components
are given; the smallest size in this group is annotated with•,
except for AGGREGATION BEST. The number of components
is only meant to give a clue for the impact of aggregation;
naturally, it goes down when the bound on the signal number
goes up. Additionally, for AGGREGATION BEST, the bounds
are given for which the least size was obtained (or ’all’ when
there is no difference).

We had hoped that AGGREGATION would reduce the
runtimes since it saves some reduction steps. Actually, the

runtimes do not differ much from the ones of TREE and are
therefore omitted.

Using BASIC as a reference point for the other strategies
is somewhat problematic: it is possible (but unlikely) that
its ‘random ’order results in strictly smaller components than
the other strategies. Indeed, for our benchmark examples this
happens only once (see case 8); usually, the runtimes for
BASIC are quite large (up to 10 minutes) compared to at
most 32 seconds for TREE, and they are as expected always
longer than the ones of REORDERING. Therefore, we will not
consider BASIC in the following discussion.

As expected, in nearly every case TREE has the smallest
runtime, except for the cases 43, 48, 56 and 59 where LAZY S-
INGLE is faster . Clearly, TREE has to be preferred unless
one wants to compute only a few components. There is no
clear pattern when comparing the runtimes of REORDERING

and LAZY SINGLE: in some cases the first one runs faster, in
some cases the latter. It seems that LAZY BACK eliminates
the advantages of REORDERING, since it enforces signal-wise
contractions, and that this outweighs the advantage of the
improved time-saving backtracking.

In 17 cases all strategies return decompositions of equal
size. Considering the remaining cases, REORDERING returns
the smallest components in 23 cases, in 12 cases it is the only
strategy with such a result, LAZY SINGLE does so in 4 (3)
cases and TREE in 26 (15) cases.

Considering AGGREGATION, the comparison with respect
to the decomposition size has to be taken with a grain of
salt: the first 4 strategies compute components for the same
partitions of the respective output signals, whereas aggregation
changes these partitions, i.e. the respective sizes are sums with
fewer summands. Recall that it might already be beneficial,
if each reachability graph (i.e. each summand) is smaller
than the one ofN . Still, taking size as the measure, it turns
out that TREE is always worse than AGGREGATION, except
for the cases 43, 48, 56 and 59 where all strategies return
decompositions of equal size. Compared to the strategies other
than TREE, AGGREGATION always returns a decomposition
with the smallest size, except for cases 4 and 8.

VI. A PPLICATION TO OTHER DECOMPOSITION

APPROACHES

In this section, we discuss how the new strategies could be
used to improve the decomposition methods of Carmona and
Cortadella [1], [2] and Yoneda, Onda and Myers [13]. These
methods use the concept of Complete State Coding (CSC),
which intuitively means that it should be possible to assignto
each reachable marking of the STG a binary vector (encoding)
in such a way that no two markings enabling different outputs
have the same encoding; see e.g. [3].

Both of these decomposition methods work roughly as
follows: starting with an STG which initially has CSC, each
final component produces exactly one output and will also
have CSC. For this reason, AGGREGATION is not considered
in the rest of this section.

In contrast to our decomposition method, in the method of
Carmona and Cortadella all relevant signals are determined

BASIC REORDER. LAZY S. TREE AGG. 3 AGG. BEST AGG 15
Nr. Name t Size t Size t Size t Size C Size C Size C Best Size C

1 2pp.arb.nch.03.csc ◦0 ◦131 ◦0 ◦131 ◦0 455 ◦0 ◦131 10 123 8 92 3 7 960 1
2 2pp.arb.nch.03 ◦0 192 ◦0 ◦102 ◦0 530 ◦0 ◦102 10 94 8 77 4 5, 6 1088 1
3 2pp.arb.nch.06.csc 4 ◦179 3 ◦179 7 847 ◦0 ◦179 16 171 14 166 9 4 2048 2
4 2pp.arb.nch.06 7 804 2 ◦150 7 818 ◦0 458 16 458 16 317 6 6 8464 2
5 2pp.arb.nch.09.csc 58 4939 17 ◦227 23 1039 ◦2 ◦227 22 219 20 214 12 4 16384 2
6 2pp.arb.nch.09 71 2398 30 616 26 4274 ◦2 ◦198 22 190 20 185 12 4 18432 2
7 2pp.arb.nch.12.csc 158 3083 45 ◦275 73 5933 ◦6 ◦275 28 267 26 262 16 4 12160 3
8 2pp.arb.nch.12 151 ◦3026 143 3054 72 5662 ◦12 3610 28 3606 27 3204 10 7 53632 3
9 2pp.wk.03.csc ◦0 ◦48 ◦0 ◦48 ◦0 ◦48 ◦0 ◦48 7 •40 5 40 3 3, 4 128 1

10 2pp.wk.03 ◦0 ◦52 ◦0 ◦52 ◦0 ◦52 ◦0 ◦52 7 •44 5 44 5 3 160 1
11 2pp.wk.06.csc 1 ◦96 1 ◦96 2 ◦96 ◦0 ◦96 13 •88 11 88 6 3, 4 8192 1
12 2pp.wk.06 1 ◦100 1 ◦100 2 ◦100 ◦0 ◦100 13 •92 11 92 6 3, 4 10240 1
13 2pp.wk.09.csc 14 ◦144 11 ◦144 14 ◦144 ◦2 ◦144 19 •136 17 136 9 3, 4 4608 2
14 2pp.wk.09 11 ◦148 7 ◦148 11 ◦148 ◦1 ◦148 19 •140 17 140 17 3 5632 2
15 2pp.wk.12.csc 151 ◦192 72 ◦192 112 ◦192 ◦32 ◦192 25 •184 23 184 14 3, 4 36864 2
16 2pp.wk.12 120 ◦196 37 ◦196 79 ◦196 ◦26 ◦196 25 •188 23 188 14 3, 4 45056 2
17 3pp.arb.nch.03.csc 5 939 1 ◦321 2 2093 ◦0 ◦321 14 309 11 273 5 7 2248 2
18 3pp.arb.nch.03 13 878 2 344 3 1906 ◦0 ◦254 14 250 13 172 5 7, 8 1152 2
19 3pp.arb.nch.06.csc 15 ◦393 12 ◦393 24 2025 ◦1 ◦393 23 •381 20 381 14 3, 4 18688 2
20 3pp.arb.nch.06 19 ◦278 14 ◦278 28 1910 ◦1 ◦278 23 •266 20 266 14 3, 4 19456 2
21 3pp.arb.nch.09.csc 187 6161 52 ◦465 69 2181 ◦4 ◦465 32 •453 29 453 19 3, 4 14536 4
22 3pp.arb.nch.09 281 13198 149 6046 71 5006 ◦4 ◦350 32 •338 29 338 19 3, 4 14560 4
23 3pp.arb.nch.12.csc 627 7289 156 ◦537 212 20347 ◦14 ◦537 41 •525 38 525 25 3, 4 24776 4
24 3pp.arb.nch.12 632 7142 566 7174 229 13970 ◦15 ◦422 41 •410 38 410 25 3, 4 11904 5
25 3pp.wk.03.csc 1 ◦76 ◦0 ◦76 1 ◦76 ◦0 ◦76 10 •64 7 64 4 3 - 5 1024 1
26 3pp.wk.03 ◦0 ◦90 ◦0 ◦90 ◦0 ◦90 ◦0 ◦90 10 •78 7 78 7 3 1664 1
27 3pp.wk.06.csc 14 ◦148 12 ◦148 21 ◦148 ◦1 ◦148 19 •136 16 136 10 3, 4 10752 2
28 3pp.wk.06 7 ◦162 5 ◦162 11 ◦162 ◦0 ◦162 19 •150 16 150 16 3 16128 2
29 3pp.wk.09.csc 66 ◦220 55 ◦220 87 ◦220 ◦11 ◦220 28 •208 25 208 15 3, 4 9728 3
30 3pp.wk.09 41 ◦234 25 ◦234 53 ◦234 ◦5 ◦234 28 •222 25 222 25 3 15104 3
31 dup.4.phase.data.pull.1 50 878 46 ◦789 ◦10 833 ◦10 860 15 860 15 370 5 14, 15 •370 5
32 dup.4.phase.data.pull.2 54 900 47 ◦799 12 837 ◦11 887 15 887 15 384 5 15 •384 5
33 dup.4.phase.data.pull.3 56 904 50 ◦747 12 824 ◦11 883 15 883 15 394 5 15 •394 5
34 dup.4.phase.data.pull.master.3 43 787 28 610 8 ◦550 ◦5 590 16 590 16 318 6 13 - 15 •318 6
35 dup.4.phase.data.pull.master.4.alt16 531 15 516 4 527 ◦3 ◦471 11 471 11 249 4 14, 15 •249 4
36 dup.4.phase.data.pull.master.4 34 760 25 632 6 627 ◦4 ◦510 13 510 13 304 5 14, 15 •304 5
37 dup.4.phase.data.pull.slave.3 47 880 30 ◦574 9 729 ◦5 649 16 649 16 297 5 15 •297 5
38 dup.4ph.csc 55 900 48 ◦799 12 837 ◦10 887 15 887 15 384 5 15 •384 5
39 dup.4ph 51 878 46 ◦789 11 833 ◦10 860 15 860 15 370 5 14, 15 •370 5
40 dup.4ph.mtr.csc 43 787 28 610 8 ◦550 ◦5 590 16 590 16 318 6 13 - 15 •318 6
41 dup.4ph.mtr 16 531 15 516 5 527 ◦3 ◦471 11 471 11 249 4 14, 15 •249 4
42 dup.master.mod.1 37 962 27 709 13 844 ◦7 ◦700 10 700 10 327 3 15 •327 3
43 dup.master.mod.1.untog 46 ◦1115 40 ◦1115 ◦6 ◦1115 27 ◦

•
1115 5 •1115 5 1115 5 all •1115 5

44 dup.master.mod.2 22 724 16 598 7 600 ◦5 ◦594 9 594 9 324 3 14, 15 •324 3
45 dup.master.mod.2.untog 17 770 15 755 8 755 ◦7 ◦731 6 731 6 580 4 15 •580 4
46 dup.master.mod.3.1 71 1247 43 1166 16 ◦1150 ◦15 1151 11 1151 11 566 4 15 •566 4
47 dup.master.mod.3.3 91 1088 38 ◦840 18 978 ◦13 880 11 880 11 340 3 15 •340 3
48 dup.master.mod.3.3.untog 34 ◦968 27 ◦968 ◦9 ◦968 19 ◦

•
968 5 •968 5 968 5 all •968 5

49 dup.master.mod.3.4 116 1568 73 1043 41 1202 ◦21 ◦1013 14 1013 14 485 6 15 •485 6
50 dup.master.mod.3.5 201 1704 106 ◦1136 48 1187 ◦22 1186 15 1186 15 837 9 15 •837 9
51 dup.master.mod.3.6.1 213 1653 106 1126 48 1175 ◦23 ◦1094 15 1094 15 691 8 15 •691 8
52 dup.master.mod.3.6 202 1685 105 ◦1136 48 1187 ◦22 1186 15 1186 15 838 9 15 •838 9
53 dup.master.mod.3.7 233 1873 152 1657 60 1373 ◦30 ◦1286 16 1286 16 895 10 15 •895 10
54 dup.master.mod.3.8 235 1855 152 1639 56 1363 ◦32 ◦1306 16 1306 16 898 10 15 •898 10
55 dup.master.mod.3 72 1083 37 ◦845 16 952 ◦11 865 11 865 11 420 4 15 •420 4
56 dup.master.mod.3.untog 49 ◦1004 27 ◦1004 ◦7 ◦1004 20 ◦

•
1004 5 •1004 5 1004 5 all •1004 5

57 dup.mtr.mod.csc 201 1704 106 ◦1136 49 1187 ◦23 1186 15 1186 15 837 9 15 •837 9
58 dup.mtr.mod 37 962 27 709 13 844 ◦7 ◦700 10 700 10 327 3 15 •327 3
59 dup.mtr.mod.untog 46 ◦1115 40 ◦1115 ◦7 ◦1115 27 ◦

•
1115 5 •1115 5 1115 5 all •1115 5

TABLE I

RESULTS OF THE BENCHMARKS.

For BASIC, REORDERING, LAZY SINGLE and TREE the runtime (in seconds) and the size of the resulting decomposition are given; the smallest time and
smallest size in this group of strategies are annotated with◦.

For TREE, AGGREGATION 3, AGGREGATION BEST and AGGREGATION 15 the size of the decomposition and the number of components is given; the
smallest size in this group is annotated with•. Additionally, for AGGREGATION BEST, the bounds are given for which the least size was obtained (or ’all’

when there is no difference).

before reduction: starting with the syntactical triggers,integer
linear programming problems are solved to repeatedly add
additional relevant signals until CSC can be guaranteed for
this component.

When these signals are determined, all other ones are
lambdarised and a restricted subset of our reduction operations
is applied. If there are non-contractible dummy transitions,
they are removed later in the reachability graph with automata-
theoretic methods. As a consequence backtracking is not
needed for this method, and therefore LAZY SINGLE and
LAZY MULTI cannot be applied.

On the other hand, REORDERINGcan be used to accelerate
the reduction of the final component. Furthermore it might be
possible to contract more dummy transitions, which is not as
crucial as for our method, but can help to generate a smaller
reachability graph.

TREE can also be applied, and since postponing is not
needed (as backtracking is not needed), the hopefully optimal
pre-calculated decomposition tree will not be changed during
reduction. The application of TREE will therefore definitely
increase the efficiency of this decomposition method.

In contrast to the previous approach, in the method of
Yoneda, Onda and Myers the relevant signals are determined
through repeated reduction: for some specificationN , they
also start with components corresponding toΥN and perform
reduction similar to our reduction operations. If the resulting
component does not have CSC, additional relevant signals
are delambdarised in the initial component and reduction is
performed again. This is repeated until a component with CSC
is generated.

As above, REORDERING can be applied to increase the
efficiency of reduction. TREE can be used to accelerate the
overall component generation in the following way: calculate
the decomposition tree for all initial components (only outputs
and their triggers), perform TREE and determine for each com-
ponent the additional signals. Then use this new information
to update the decomposition tree, and so on. If a component
has CSC eventually, it does not have to be included in the
next iteration, thus making the decomposition tree smallerand
smaller when approaching the final result.

VII. C ONCLUSION AND FUTURE WORK

The prototype implementation of the decomposition al-
gorithm of [12] was very successful compared to the for-
mer all-in-one synthesis approach. Nevertheless, the improved
DESIJ implementation demonstrated that there are enough
possibilities to improve performance. Especially TREE and
AGGREGATION in combination with REORDERINGturned out
to be an excellent strategy for saving time and memory.

As mentioned in Section IV-C, the pre-calculated decompo-
sition tree is not necessarily optimal for the final components,
since signals might be moved from nodes to their children.
Future work in this direction will be to consider the top-down
algorithm for building preset trees in [6]. This strategy starts
at the root node — as the tree decomposition does — and
adds branches iteratively to the tree.

The idea is to interleave this building process with decom-
position itself — including postponing — in order to get a
better decomposition tree.

Another possibility for optimisation is to improve the detec-
tion of redundant places. DESIJ does not look for redundant
places after every single transition contraction, but onlywhen
none of the remaining divining transitions can be contracted
and also before the final components are returned. (In the
former case, it is checked again if the transitions can be
contracted.) Nevertheless, profiling runs showed that DESIJ
spends about 60% of its runtime on this task. Improving this
more technical part of DESIJ would surely improve the overall
performance.

More important, for the time being DESIJ looks only for
so calledshortcut places[8], [10] which are a subclass of
redundant places. Improving this more algorithmic part of
DESIJ would reduce backtracking (since undetected redundant
places can prevent secure transition contractions) and therefore
improve runtime and quality of the components.

Acknowledgements:This research was supported by DFG-
projects ’STG-Dekomposition’ Vo615/7-1 and Wo814/1-
1, and the Royal Academy of Engineering/EPSRC grant
EP/C53400X/1 (DAVAC).

REFERENCES

[1] J. Carmona and J. Cortadella, “ILP models for the synthesisof asyn-
chronous control circuits,” inProc. of the IEEE/ACM International
Conference on Computer Aided Design, 2003, pp. 818–825.

[2] J. Carmona, “Structural methods for the synthesis of well-formed
concurrent specifications,” Ph.D. dissertation, Universitat Polit̀ecnica de
Catalunya, 2003.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “PETRIFY: a tool for manipulating concurrent specifica-
tions and synthesis of asynchronous controllers,”IEICE Trans. Informa-
tion and Systems, vol. E80-D, 3, pp. 315–325, 1997.

[4] ——, Logic Synthesis of Asynchronous Controllers and Interfaces.
Springer, 2002.

[5] J. C. Ebergen, “Translating programs into delay-insensitive circuits,”
Ph.D. dissertation, Dept. of Math and C.S., Eindhoven University of
Technology, 1987.

[6] V. Khomenko and M. Koutny, “Towards an efficient algorithmfor
unfolding Petri nets,” inCONCUR 2001, ser. Lect. Notes Comp. Sci.
2154, K. Larsen and M. Nielsen, Eds., 2001.

[7] M. Schaefer and W. Vogler, “Component refinement and CSC solving
for STG decomposition,” inFOSSACS 05, ser. Lect. Notes Comp. Sci.
3441, V. Sassone, Ed., pp. 348–363. Springer, 2005.

[8] M. Schaefer, W. Vogler, and P. Jančar, “Determinate STG decomposition
of marked graphs,” inATPN 05, ser. Lect. Notes Comp. Sci. 3536,
G. Ciardo and P. Darondeau, Eds., 365–384. Springer, 2005.

[9] A. Semenov, “Verification and Synthesis of Asynchronous Control
Circuits Using Petri Net Unfolding,” Ph.D. dissertation, University of
Necastle upon Tyne, 1997.

[10] M. Silva, E. Teruel, and J. Colom, “Linear algebraic and linear pro-
gramming techniques for the analysis of place/transition netsystems,”
in Lectures on Petri Nets I; Basic Models, ser. LNCS 1491, 309–373.
Springer, 1998.

[11] W. Vogler and B. Kangsah, “Improved decomposition of signal transition
graphs,” in ACSD 2005, 2005, pp. 244–253, full version available:
www/forschung/reports/vogler04.

[12] W. Vogler and R. Wollowski, “Decomposition in asynchronous circuit
design,” inConcurrency and Hardware Design, ser. Lect. Notes Comp.
Sci. 2549, J. Cortadellaet al., Eds., 152–190. Springer, 2002.

[13] T. Yoneda, H. Onda, and C. Myers, “Synthesis of speed independent
circuits based on decomposition,” inASYNC 2004. IEEE Computer
Society Press, 2004, pp. 135–145.

