
On Dual-Rail Control Logic for
Enhanced Circuit Robustness

Andrey Mokhov†, Victor Khomenko†, Danil Sokolov‡, Alex Yakovlev‡

†School of Computing Science, Newcastle University, UK
‡School of Electrical, Electronic and Computer Engineering, Newcastle University, UK

Abstract—Ultra low-power design and energy harvesting ap-
plications require digital systems to operate under extremely low
voltages approaching the point of balance between dynamic and
static power consumption which is attained in the sub-threshold
operation mode. Delay variations are extremely large in this
mode, which calls for the use of asynchronous circuits that
are speed-independent or quasi-delay-insensitive. However, even
these classes of asynchronous logic become vulnerable because
certain timing assumptions commonly accepted under normal
operating conditions are no longer valid. In particular, the delay
of inverters, often used as the so-called input ‘bubbles’, can
no longer be neglected and they have to be either removed or
properly acknowledged to ensure speed-independence.

This paper presents an automated approach to synthesis
of robust controllers for sub-threshold digital systems based
on dual-rail implementation of control logic which eliminates
inverters completely. This and other important properties are
analysed and compared to the standard single-rail solutions.
Dual-rail controllers are shown not to have significant overheads
in terms of area and power consumption and are even faster in
some cases due to the elimination of inverters from criticalpaths.
The presented automated synthesis techniques are very efficient
and can be applied to very large controllers as demonstratedin
benchmarks.

I. I NTRODUCTION

Recent research (e.g., [7][17][21][37]) reveals that for the
majority of logic and static memory blocks the optimal energy-
per-operation voltage lies near or below the threshold voltage
of a MOSFET device, where the point of balance between
dynamic and static power consumption is found. This mode is
commonly known as a sub-threshold mode. A comprehensive
analysis, using the EKV model, of the sub-threshold operation
of static logic can be found in [36]. The decision at which
Vdd level the circuit should operate to meet its optimum
in terms of energy efficiency and guarantee the acceptable
level of operational robustness requires considering process
and environmental variability. Notably, delay variationsare
extremely large in the sub-threshold mode. This calls for
the use of asynchronous circuits that are speed-independent
(SI) or quasi-delay-insensitive (QDI) [23][25]. These classes
of asynchronous logic operate on the principles of caus-
ality and completion detection rather than matched delay
and fundamental mode, which makes them inherently robust
to variations in the delays of their gates. Additionally, the
performance of such circuits is determined by actual, rather
than worst case latency. Recent studies in [6] and [2] show
the high potential of asynchronous SI and QDI circuits to

build energy-efficient circuits. Moreover, for power harvesting
applications, where Vdd can be unstable and varying, this is
even more the case (cf. [4] and [9]). The design of SI and QDI
circuits for deep-submicron can be performed using existing
CAD support, provided by tools such as Haste and Balsa [30]
or desynchronization methods [35], which use the principleof
single-rail logic and bundled-delay for the data-path, butuse
handshake QDI circuits for control.

Control logic usually determines the robustness of the
overall system to variations and transient errors because it
forms its operational kernel. While errors in the data-pathcan
be tolerated using conventional (e.g. error-correction codes)
approaches, any error in control logic (e.g. unspecified trans-
ition or spurious pulse on a request or acknowledgement line)
can be fatal for the entire system. It has been demonstrated
that power reduction through voltage scaling increases thesoft
error rate (SER) exponentially [8]. It is therefore important
to support design of robust asynchronous controllers for sub-
threshold mode with tools for their efficient synthesis from
behavioural specifications.

A. Control circuit synthesis techniques

There are two sufficiently mature control synthesis method-
ologies: one is based on Petri nets [11] and produces SI/QDI
controllers, while the other is based on burst-mode finite state
machines [27] and produces controllers working under the
fundamental modeof interaction with environment. Since the
paper focuses on robust controllers working under extremely
large variations we follow the Petri net synthesis flow to have
as few assumptions on environment as possible. The flow
accepts event-based specifications in terms of interpretedPetri
nets, called Signal Transition Graphs (STGs), and converts
them into logic equations for complex gates in the imple-
mentation circuit. By construction, this circuit is an SI circuit
with respect to the delays associated with the outputs of the
complex gates. Designers usually prefer using complex gates,
which can be implemented as the so-called generalised (or
asymmetric) C-elements [30]. This way many control circuits
published to date, such as controllers for pipeline stages [30],
NoC routers [13], as well as controllers for latches for sub-
threshold logic [1], have been constructed. However, in the
sub-threshold mode, even these SI/QDI implementations may
become vulnerable to the effects of variability or susceptibility
to noise (cross-talk) and transient faults. For example, the

excessive delay variations under low Vdd make certain timing
assumptions that are commonly accepted under normal Vdd
no longer valid. In particular, most of the complex gates in
the implementations produced by SI/QDI synthesis contain the
so-called ‘bubbles’. These are input inverters, whose delay is
typically neglected, or at least regarded to be much smaller
than the delay of a certain (‘racing’) path passing through
other logic gates. In sub-threshold operation these bubbles can
no longer be ignored. Starodoubtsev has developed a method
of behavioural refinement for the synthesis of the SI/QDI
class of circuits from STGs [31], which produces circuits in
simple monotonic gates (free from bubbles). Unfortunately,
this technique tackles both problems, obtaining monotonic
functions of the gates and decomposition of gates into simple
gates, at the same time, which makes it quite complex in
practice (see also a discussion of normalcy in Section III).
As a result it has not been automated to date and leads to
circuits with long acknowledgement paths, thereby increasing
their latency.

To facilitate the availability of tools for designing efficient
and robust sub-threshold circuits it would be beneficial to
maximally use the existing logic synthesis frameworks, such
as that of PETRIFY, to generate monotonic SI/QDI circuits. It
would be desirable to obtain a relatively simple synthesis flow,
similar in its spirit to the one used in NCL-D/NCL-X [16][20]
for data-path logic. Fortunately, the way to such an approach
originates in the idea of a ‘perfect implementation’ for a semi-
modular circuit from [14]. The theory for this approach is
based on deriving separate Boolean covers for the set and reset
functions for each signalx in the circuit specification. Those
can be obtained from the excitation and quiescent regions [11]
for x. This is equivalent to finding next state functions for two
separate railsx and x̂ of each binary signalx. The original
theory of [14] was developed for the so-called closed circuits,
without input choice, and hence is not directly applicable
to the types of controllers designed in practice today. Later
this approach was extended to work for open circuits in the
technique for monotonic cover implementation [19], however
the focus of that work was not specifically on finding dual-rail
control implementations; besides it was not fully automated to
work with specifications of complex controllers.

B. Contribution and organisation of the paper

In this paper, we address the problem of robust control logic
synthesis with a specific requirement of finding an SI/QDI
implementation which will meet the needs of sub-threshold
mode of operation and will be obtained automatically from
a specification which may be as complex as hundreds of
logic signals. We pursue the approach of dual-rail synthesis,
using the theoretical basis of [14] as well as monotonic cover
techniques of [19] to support the decomposition of complex
dual-rail gates into separate logic for set and reset functions
and standard RS latches. This combination offers a range of
dual-rail architectures, called heregRS and stdRS, which
can be implemented using static logic libraries as well as
custom transistor-level circuits. We implement the synthesis

algorithms using efficient methods of coping with huge state
spaces that are based on Petri net unfoldings (PUNF/MPSAT

tool chain [18]). One of the important benefits of these dual-
rail implementations of complex controllers is that the control
logic can be distributed, i.e. the appropriate gates producing
control signals can be placed next to the data-path sections.
This distribution may lead to the need to use long wires, but
this risk of violating delay-insensitivity due to wire delays
will be mitigated by the inherent robustness of dual-rail im-
plementations. Special dual-rail repeaters will be used where
necessary, against transient faults and violations of signal
integrity. Besides monotonicity (no bubbles), other benefits of
these implementations compared to single-rail control include:
less gate complexity, fewer isochronic forks; easier testability
(RS-latches instead of C-elements). The paper illustratesthese
advantages in a relatively simple case study and a set of
benchmarks whose complexity scales up to large quantities
of control gates.

Our main contributions in this paper can be summarised as
follows.

• An in-depth study of dual-rail control methodology is
carried out:

– gate- and transistor-level implementations of stand-
ard dual-rail control structures are presented;

– the implementations are analysed in terms of robust-
ness, area and latency;

– we demonstrate vulnerability of single-rail control-
lers due to input inverters;

– a number of single-rail and dual-rail controllers are
compared in terms of area, power consumption,
as well as required post-synthesis effort in logic
decomposition and isochronic fork balancing.

• A scalable synthesis method for dual-rail control, which
is based on Petri net unfoldings, is presented and evalu-
ated.

The paper is organised as follows. Section II presents the
main foundation behind dual-rail control logic, includingits
motivation, advantages and possible penalties. Section III
describes the basic synthesis process. Section IV presentsa
detailed case study and Section V covers the experiments on
a set of standard asynchronous controllers.

II. D UAL -RAIL CONTROL

Dual-rail codeuses a pair of physical wires,x and x̂, per
logical signalx. There are two valid signal combinations, 01
and 10, which encode values0 and1, respectively. This code
is employed to represent data in self-timed circuits [12], where
a specific protocol of switching helps to avoid hazards. The
protocol allows only the monotonic switching from all-zeroes
00, which is a non-code word, to acode wordand back to
all-zeroes as shown in Figure 1. The all-zeroes state, whichis
calledspacer, indicates the absence of data and separates one
code word from another.

Traditionally the dual-rail switching protocol is used in
asynchronous data-path logic due to its robustness and sim-
plicity of circuit construction, as in [20] where the standard

spacer

code
word

code
word
"1""0"

0001 10

Figure 1: Dual-rail signalling protocol

C

C

C

C
a

â

b

b̂

x

x̂

(a) NCL-D

inversiona

â

b

b̂

x

x̂

(b) NCL-X

Figure 2: Dual-rail data-path on AND-gate example

RTL-based design flow is extended by converting single-
rail circuits into dual-rail. Within this approach, calledNull-
Convention Logic [15] one can follow either of two main
implementation styles: NCL-D, which integrates completion
detection into the dual-rail logic or NCL-X, which relies ona
separate completion detection circuitry and/or on some timing
assumptions. The former is more conservative with respect
to delay sensitivity while the latter is more area and speed
efficient. For example, an AND gate implemented in NCL-D
and NCL-X styles is shown in Figure 2.

The inherent property of the dual-rail circuits is that the op-
eration of Boolean negation corresponds to the rail swapping,
which allows to achieve race-free operation under any single
transition. Another feature of the dual-rail logic is its balanced
power consumption which facilitates circuit resistance tothe
power analysis attacks. Security aspects of the dual-rail circuits
have been further improved by introducing a specialalternat-
ing spacerprotocol [29] – it guaranties all gates of the circuit
switch exactly once in each computation cycle, thus making
circuit power consumption invariant to the processed data.

A. Cost of dual-rail control

The major drawback of thedual-rail data-pathlogic is (at
least) twofold increase in area and power consumption com-
pared to the single-rail implementation. Since data-path cir-
cuits constitute a dominant part of the whole system, this
restricts the adoption of dual-rail methodology to the fairly
specific domain of security applications and to building truly
self-timed systems. However, area and power penalties should
not impose significant overhead on the relatively small control
circuits being implemented in dual-rail style. A far more
important issue for control is latency: switching through the
all-zeroes state in dual-rail data-path doubles the computation
cycle unless extra logic is inserted to concurrently precharge
the combinational logic to spacer [34], see illustration in
Figure 3(a). By contrast,dual-rail control does not require
acknowledgement of the spacer state, so the latter can be
transientas shown in Figure 3(b), thereby achieving latency
of a single-rail implementation.

code−word <01> code−word <10>spacer <00>

all levels of combinational logic

long enough to propagate through

x

x̂

(a) Data-path: acknowledged spacer

code−word <01> code−word <10>

spacer <00>

very short
(transient)

x

x̂

(b) Control: transient spacer

Figure 3: Spacer state: dual-rail data-path vs dual-rail control

The asynchronous control is usually dominated by C-
elements which perform a generic function of signal syn-
chronisation (a C-element output goes high when all its
inputs are high, and goes low when all the inputs are low).
While enjoying all the benefits of dual-rail switching protocol,
a dual-rail C-element can actually be made comparable in
size, power consumption and latency to the single-rail one.
For example, a typical single-rail complex-gate C-element
shown in Figure 4(a) (as synthesised by MPSAT or PETRIFY

tools) requires 12 transistors in static CMOS implementation.
An equivalent dual-rail circuit in Figure 4(b) has the same
transistor count and is built out of simpler gates, which are
more likely to be present in the technology library. Availability
of the complex gates is particularly important to avoid hazard-
free decomposition of the C-element set/reset functions [19],
which is not trivial and often results in significant area, power
and latency penalties.

a
b x

(a) Single-rail

negation
a

â

b

b̂

x

x̂

(b) Dual-rail

Figure 4: Complex gate implementation of C-element

For custom design the dual-rail C-element is also similar
in size to the standard transistor-level single-rail implementa-
tion (8 transistors), as illustrated in Figure 5. The state of the
C-element is held in akeeper– a logic level holding circuit
which consists of two inverters connected back to back. Note
that for single-rail implementation the feedback inverterhas
to be weak (made out of small transistors), so that the pull-up
and pull-down transistor stacks are able to enforce the keeper
state. Whenx = 1 and a 6= b the keeper state is supported

keeper

a

b

x

(a) Single-rail

aâ

bb̂

x x̂

(b) Dual-rail

Figure 5: Custom implementation of C-element

by a weak PMOS transistor only and therefore is vulnerable
to a single event upset(SEU), such as a voltage pulse caused
by charge-induced particles or electromagnetic radiation. The
corresponding dual-rail solution is based on cross-coupled
inverters and pull-down NMOS networks for both set and
reset. Under the same conditions this implementation is more
robust to SEUs because its state holding element is symmetric
and both inverters are strong, hence the critical charge from the
particle strike is required to be higher to pull down the middle
point sufficiently low [33]. Note that a dual-rail C-elementis
most exposed to SEUs when neither set nor reset function
is evaluated to1 and its state can be toggled by a particle
strike. Therefore, to improve circuit robustness one can explore
a tradeoff between the complexity of the set/reset functions
and minimisation of the dangerous time interval when both
functions evaluate to0.

The above C-element implementations combine the set/reset
functions and the state holding latch. Often it may be necessary
to separate the set and/or reset logic from the latch, e.g. to
reduce the implementation complexity or to map the latch
into a standard library RS-latch. Such decomposition must
preserve the hazard-free operation and is achieved by building
the set/reset functions satisfying the condition of monotonic
cover, as described in Section III. The use of standard RS-
latches is advantageous for compatibility with the standard
design practice as it helps to avoid combinational loops which
often cause problems for EDA tools. Circuit testability canalso
be addressed by extending the RS-latches with a synchron-
ous scan interface and applying standard testing techniques
for level-sensitive scan design(LSSD) [28]. With this scan
structure the circuit operates asynchronously in mission mode,
while it is synchronised with the test clock signals when in
test mode.

negationa

â

x

x̂

(a) Gate-level

aâ

x x̂

(b) Transistor-level

a

â

x

x̂

S

R

Q

Q̂

(c) RS-latch

SS

RR

Q Q

Q̂ Q̂

∆

∆1

δ1
∆2

δ2 ∆3

∆ > ∆1 + δ1 +∆2 + δ2 +∆3

(d) Repeater insertion

Figure 6: Dual-rail repeaters

B. Robust dual-rail repeaters

A C-element with trivial set/reset functions, as shown in
Figure 6, is called arepeater and is employed to maintain
signal integrity in long wires. Similarly to single-rail buffers,
the dual-rail repeaters can be used to reduce the time delay
associated with long wires by inserting them along the swit-
ching lines. This technique, known asrepeater insertion, is
well studied [3][26] and can be directly applied for dual-rail
control logic as shown in Figure 6(d).

Dual-rail repeaters are very robust to SEUs because their
inputs go through the dangerous spacer state only for a
short period of time and switch back into a stable code
word state immediately – see Figure 3(b). If a single wire
distortion occurs while in a code word state the repeater
recovers from the error – the information redundancy of dual-
rail code words plays its role; a spacer state, on the other hand,
does not provide sufficient information for recovery. This is
demonstrated by simulation1 of two SEUss0 ands1 on output
wires x̂ and x, respectively, which is shown in Figure 7(a).
SEUs were modelled as 5ps pulses and the full recovery took
around 100ps. In the unlikely event of a SEU occurring during
the spacer state, the repeater still recovers froms1 but cannot
recover froms0 as illustrated in Figure 7(b).

The notorious penalties of dual-rail data-path, power con-
sumption and cycle time, are irrelevant to the dual-rail control
logic. In dual-rail control the switching activity doublesas all
the wire pairs go through a spacer state (similar to the dual-rail
data-path). However, the load of the wires is roughly halved
compared to the corresponding single-rail circuit and therefore
the power consumption increase is insignificant (not twofold
as in data-path logic). Also the spacer state is transient indual-

1All simulations in this paper have been performed in SPECTRE using
Faraday standard gate library based on UMC 90nm technology.

(a) In code word state

(b) In spacer state

Figure 7: Recovery of dual-rail repeater from SEUs

rail control and does not require a dedicated precharge stage
as in NCL, therefore the cycle time remains the same as in
single-rail control.

To summarise, the penalties associated with the dual-rail
data-path circuits do not show in the control logic. In par-
ticular, the key building block of asynchronous control, the
dual-rail C-element, is similar in size and speed to the standard
single-rail implementation, while its operation at sub-threshold
voltage is more robust to noise and charge-induced particles. A
synthesis method and hazard-free decomposition of set/reset
functions is presented in Section III and circuit complexity,
size and power consumption is analysed on a set of large
benchmarks in Section V.

III. SYNTHESIS

We want to build speed-independent (SI) circuits, assuming
that their behaviour is specified usingstate graphs(SGs),
which are finite state machines with annotations, cf. Figure8
(SGs can be constructed from higher-level specifications, such
as STGs [11] or HDLs). We further assume that all the states
in the SG are reachable from the initial state. With each
states of the SG we associate a vector of binariesCode(s)

0100 0000 1000

0110

0010

1100

1110 1111 1101

c+

b+ a+

b+

d+

c+d–

a–

b–

c–

inputs: a, b

outputs: c, d

order of signals
in encodins:
a, b, c, d

Figure 8: A circuit specification from [5]

representing the values of all the circuit signals at this state;
moreover,Codez(s) will denote the component ofCode(s)
corresponding to signalz. Each arc of the SG is labelled by
z+ or z−, wherez is a signal. We assume that the specification
is consistent, i.e. if an arc(s, s′) is labelled byz+ (resp.
z−) thenCodez(s) = 0 (resp. 1),Codez(s′) = 1 (resp. 0),
andCodez′(s) = Codez′(s′) for all z′ 6= z. Furthermore, we
assume that the SG isdeterministic, i.e. no two arcs with the
same source are labelled by the same signal.

The circuit signals are partitioned intoinputs and outputs
(the latter also include internal signals). Input signals are
assumed to be generated by the environment, while output
signals are produced by the circuit. We assume that the SG is
output-persistent, i.e. an output cannot be disabled by firing
any other transition (i.e. choices are allowed only between
inputs).2

For each output signalz, the Boolean functionsOutz+ ,
Outz− andOutz are defined as follows:Outz+/z−/z(s) is 1 if
states enablesz+/z−/z±, and 0 otherwise. The Booleannext-
state functionNxtz is then defined asNxtz(s)

df
= Codez(s)⊕

Outz(s), where⊕ is the ‘exclusive or’ operation. Similarly,
the set and reset functionsSetz and Resetz are defined as
follows:

Setz/Resetz(s)
df
=





1 if Outz+/z−(s) = 1
0 if Nxtz(s) = 0/1
− otherwise,

where ‘−’ denotes the ‘don’t care’ value (i.e. the value of the
function can be chosen arbitrarily, with the view of simplifying
the resulting implementation).

Various architectures are used to implement speed-inde-
pendent circuits; the following are probably the most well-
known [11][19] (see Figure 9):

Complex-gate (CG) implementation:Every output is im-
plemented as a single (possibly very complicated) atomic
gate [10].

Generalised-C (gC) implementation:Every output is im-
plemented using a pseudo-static latch calledgeneralised C
element (gC element)which is assumed to be atomic [23]. A

2In some applications a choice between outputs is allowed, which can be
implemented by a special element calledarbiter that internally uses some
analog circuitry to handle the arising metastability; however, arbiters can
be ‘factored out’ into the environment, so that the remaining part of the
specification is output-persistent.

(a) Complex-gate (b) gC implementation

abc
_ _

d

b
_

b

C c

a

d
c
b

(c) CorrectstdC implementation

ab
_

d
a

d
b

b
_

b

C c

(d) NaïvestdC implementation

(e) gRS implementation (f) stdRS implementation

Figure 9: Implementations of signalc of the SG in Figure 8

gC implementation is specified by the set and reset functions
for each output, which are implemented by pull-up and pull-
down transistor networks. In the states where both set and reset
functions evaluate to 0, a keeper element is used to ensure
that the output keeps its current value (it is an error if in some
reachable state both functions evaluate to 1 — this can lead
to a short circuit). This is similar to the implementation of
single-rail C-element from Figure 5(a).

Standard-C (stdC) implementation:Every output is imple-
mented using a C-latch controlled by set and reset signals,
which we assume are implemented as complex-gates [5]. This
architecture is superficially similar to the previous one, but
one should bear in mind that agC element is assumed to be
atomic, while in thestdC implementation the gates controlling
a C-latch have delays. Hence a naïve transformation of agC
implementation into anstdC one can result in a hazardous
circuit (see below).

Generalised-RS (gRS) and standard-RS (stdRS) imple-
mentations: These two architectures correspond togC and
stdC ones, in particular the same set and reset functions are
used, but an RS-latch is used as the state holding element [19].
Furthermore, the dual-rail representation of each signal is used,
and so there are no inverters anywhere in the circuit (except
those hidden inside the latch).

For the circuit to be implementable in theCG architecture,
the value ofNxtz must be uniquely determined by the en-
coding of each reachable state, i.e. it should be a function
of Code(s) rather thans: Nxtz(s) = Fz(Code(s)) for some
Boolean functionFz , which is eventually implemented as a

complex-gate. Similarly, forgC architecture the values of
Setz and Resetz must be functions ofCode(s) rather than
s: Setz/Resetz(s) = Sz/Rz(Code(s)) for some Boolean
functionsSz andRz, which will determine the corresponding
gC element. In case ofstdC architecture,Sz andRz must in
addition satisfy theMonotonic Cover condition (MCC)[5][11],
in order to provide a hazard-free circuit. MCC states thata
cover must be entered only via the states enabling the output
z. As MCC reduces the flexibility in choosingSz and Rz,
they can be more complicated than those forgC architecture,
cf. Figure 9(b,c).

To illustrate the importance of MCC, consider the imple-
mentation shown in Figure 9(d), which does not satisfy it,
since the state 0110 (which is covered by the set function
ab ∨ d and does not enablec) can be reached from the state
1110 (which is not covered by this set function and does

not enablec). Consider the sequence of states1111
d−

−→

1110
a−

−→ 0110
b−
−→ 0010. The gate computing the set function

is high at 1111. Firing ofd− drives its output low, but before
it reaches 0,a− can fire, driving its output high; similarly,
before it reaches 1,b− can fire, driving it low. Hence, this
gate can exhibit runt non-digital pulses causing the circuit to
malfunction.

It turns out that the notion of implementability of a signal is
invariant across theCG/gC/stdC/gRS/stdRS architectures,3

i.e. if a signal is implementable in one of them, it is imple-
mentable in the other architectures as well; moreover, given the
mentioned above assumptions on the SG, the implementability
of the specification in either architecture is equivalent to
the Complete State Coding (CSC)property, which states that
for every circuit outputz, no two statess and s′ of the SG
satisfyCode(s) = Code(s′) andOutz(s) 6= Outz(s

′) [11].
In what follows, we assume that the SG satisfies the CSC
property.

Normalcy [32] is a property of SGs, which is a necessary
condition for their implementability in theCG architecture
using gates without input inversions, i.e. whose characteristic
function is either monotonic or a negation of a monotonic
function. Normalcy violations can be detected by model check-
ing, and sometimes resolved by insertion of new signals [22].
However, the latter is not always possible, as the sought signal
insertions might not exist or cause further normalcy violations,
and even if this is possible, the circuit becomes more complic-
ated due to the additional logic needed to implement the new
signals.

There are a number of tools that support asynchronous syn-
thesis, e.g. PETRIFY and MPSAT. They both support complex-
gate synthesis and derivation of set and reset functions, includ-
ing monotonic covers, and so can be used to automate any of
the described asynchronous architectures. The main problem
in synthesis is thestate space explosion:a relatively small
specification can (and often does) yield a huge state graph;

3The result is well-known for the former three architectures, andgRS and
stdRS implementations use the same set and reset functions asgC andstdC,
respectively.

(a) Initial STG (b) CSC conflicts resolved

Figure 10: STG specification of the example controller

this puts a practical limit on the size of circuits that can be
synthesised. To alleviate this problem, PETRIFY uses BDDs,
and usually can synthesise circuits with up to 20-30 signals.
MPSAT avoids generating the state graph altogether, and works
on STG unfoldings instead; it usually can synthesise circuits
with up to 150-200 signals.

IV. CASE STUDY

Figure 10(a) shows an STG specification of a typical asyn-
chronous pipeline controller from [11] which synchronises
two handshakes(Ri , Ao) and (Ro, Ai) managing adjacent
pipeline stages. RequestRi+ informs the controller about
availability of data in the current pipeline stage. In response,
the controller immediately prompts the next stage to latch the
data (Ro+) and sends an acknowledgement back to the current
stage (Ao+). Then the handshakes are reset concurrently
(Ri− → Ao− and Ai+ → Ro− → Ai−) for the next data
transfer round. In order to satisfy the CSC property it is
necessary to introduce two internal signalscsc0 andcsc1 as
shown in Figure 10(b); this is done automatically – see details
in [11].

csc0

csc1

Ro

Ao

Ai

i5

i4

i3

i2

Ri

i1

Ao

Ro

4

4

3

42

Figure 11:Complex-gates implementation

Now it is possible to use PETRIFY or MPSAT synthesis tool
to generate aCG implementation of the STG. The obtained
circuit is presented in Figure 11; note that input bubbles of
the derived complex-gates are explicitly shown as inverters
i1 − i5 . In a normal operating mode it is commonly assumed
that these inverters are faster than any other gate. However,
if the controller operates under a sub-threshold voltage the

S

R

Q

Q

Ao

S

R

Q

Q
^

Ro

S

R

Q

Q
^

csc0

S

R

Q

Q
^

csc1

Ao

Ro

Ai

Ri

2

2

2

3

2

2

2

2

Figure 13:stdRS implementation

increased delay variations can easily violate this assumption,
thus breaking the speed-independence of the circuit. Consider
the following sequence of events:

Ri+, Ro+, Ao+, i2−, i3−, csc0−

i4+, Ai+, i5−, csc1−, i1+, Ro−, i2+

Ri−, Ao−, i3+, Ai−, i5+, csc1+

At this point there is a race between eventsi1− andcsc0+:
if inverter i1 happens to be slower than gatecsc0 , there will
be an unspecified enabling ofAo+ which creates a hazard on
wire Ao and breaks the environment protocol. At the system
level this can easily lead to a global deadlock. Figure 12 shows
simulation of the circuit behaviour under different supply
voltages. At nominal 1V power supply we get no sign of the
hazard. This hazard-free behaviour continues all the way down
to 600mV. The hazard becomes visible at 575mV and reaches
incorrect voltage levels for output Ao at about 550mV. This
is a perfect illustration of how quickly things can go wrong
in the sub-threshold domain.

The problem can be solved by applying the dual-rail expan-
sion to all signals, thus removing all the dangerous inverters.
The stdRS implementation of the controller is shown in Fig-
ure 13; as expected, it contains no inverters. Another important
advantage is that it is built of much simpler gates which are
very likely to be present in most technology libraries. Large 4-
and 5-input gates of theCG implementation will probably re-
quire decomposition into smaller gates, potentially introducing
new sources of hazards and adding more overheads.

A. Analysis of wire forks

Note that although the number of wires in the dual-rail
implementation has doubled, each wire has less load as it
has become distributed over two rails. For example, signal
csc0 in the single-rail implementation has 4 gates in its fanout
(this fact is denoted as4© in Figure 11), while both signals
csc0 and ĉsc0 in the dual-rail controller have fanout 2, thus
jointly consuming the same amount of energy but switching
faster. This also decreases the degree of ‘forking’: instead of
having to balance 4 wire delays to satisfy the isochronic fork
assumption during circuit layout, one has to balance only two
pairs of wires, which is considerably easier.

(a) Supply voltage = 600mV (b) Supply voltage = 575mV (c) Supply voltage = 550mV

Figure 12: Simulation of a hazard in single-rail implementation

Overall, in theCG implementation there are wire forks of
the following degrees: 2, 3, 4, 4, 4. The fork degrees of the
stdRS implementation are 2, 2, 2, 2, 2, 2, 2, 3. In order to
compare the controllers in terms of the effort required for fork
balancing we introduce the following measure.

Consider a fork withk branches. There are
(
k
2

)
= k(k−1)

2
pairs of wires and each pair, if unbalanced, can lead to a
hazard in the controller. Therefore, the overall fork balancing
effort will be proportional tof(C) =

∑
w∈C

(
kw

2

)
, whereC

is a given controller andw iterates over all its wires. For the
example at hand the comparison measure gives the following
result:

f(CG) =

(
2

2

)
+

(
3

2

)
+ 3

(
4

2

)
= 22

f(stdRS) = 7

(
2

2

)
+

(
3

2

)
= 10

Hence, one can conclude that the single-rail version of the
controller requires roughly twice as much effort for fork
balancing as the dual-rail one. In the next section we will
demonstrate that this is a typical situation.

V. EXPERIMENTS

Table I presents a summary of experimental results. We
have taken several standard asynchronous controllers, some
of which are scalable, and synthesised their implementations
using PUNF and MPSAT synthesis tools. Despite the large state
spaces (up to1013 states) the processing times were in the
order of several seconds.

Each benchmark controller is described with three paramet-
ers:|I|, |O| and|S| being counts of the circuit inputs, outputs
and states, respectively. Columns ‘Inv.’ report numbers ofinput
inverters inCG and stdC single-rail implementations; dual-
rail stdRS andgRS implementations are ‘bubble-free’. Area
of a particular implementation is estimated as its size in terms

of literals (a gate bubble is also counted as a literal because
it has to be implemented separately from the gate, hence
occupying additional area). Power consumption is estimated
similarly, with the exception that a bubble is given smaller
weight of 0.5, because an input inverter drives only a single
wire and thus consumes less power than an average circuit
gate. Power and area estimates are normalised over theCG
implementation for easier comparison; average values across
all benchmarks are given in the bottom row.
Lmax represents complexity of the largest gate in an imple-

mentation in terms of literals (note thatLmax for stdC and
stdRS implementations are the same). Larger values ofLmax

correspond to circuits which are more difficult for technology
mapping. Roughly speaking any gate containing more than 6
literals is very unlikely to be present in a technology library;
some libraries are even limited to 3-literal gates only. Onecan
see that dual-rail implementations tend to have simpler gates,
therefore being easier for decomposition. Another relevant
parameterLavg (average gate complexity) is not shown in the
table due to lack of space, but we observed that in general
Lavg is twice larger for single-rail implementations.

Figure 14 shows a comparison ofCG, gRS and stdRS
implementations in terms of the fork balancing effort. One can
see that single-rail controllers are consistently more expensive
in this respect: on average, the effort of balancing forks in
gRS (resp.stdRS) implementation is only 50% (resp. 54%)
of that of theCG implementation. This also means that the
average load on a single-rail wire is the double of that on a
dual-rail wire. Intuitively, this is because a single-railwire is
used by both positive and negative value ‘consumers’.

Overall we can conclude that dual-railgRS implementation
has no penalty in terms of power and only 15% overhead in
terms of area in comparison toCG single-rail implementation.
Dual-rail is more robust though as there are no potentially dan-
gerous inverters and wires have less load and forks. Moreover

Benchmark Single-rail implementations Dual-rail implementations
circuit CG stdC stdRS gRS

Name |I|/|O| |S| Inv. Lmax Power Area Inv. Lmax Power Area Power Area Lmax Power Area

LazyRing 5/7 187 10 6 38 33 15 5 223.7% 234.8% 165.8% 190.9% 5 121.1% 139.4%
Ring 11/18 16320 56 14 196 168 72 10 164.3% 170.2% 118.4% 138.1% 10 92.9% 108.3%

Dup4phCsc 12/15 171 50 13 178 153 67 10 169.7% 175.5% 123.6% 143.8% 10 98.9% 115.0%
Dup4phMtrCsc 10/16 149 49 10 165 141 64 10 181.2% 190.0% 132.7% 155.9% 10 105.5% 123.8%
DupMtrModCsc 10/17 321 65 14 186 154 68 13 160.2% 172.0% 114.5% 138.8% 12 89.2% 108.1%
CfAsymCscA 8/26 147684 57 9 194 166 85 7 189.2% 196.1% 132.0% 154.7% 7 105.2% 123.3%
CfAsymCscB 8/24 147684 64 9 205 173 88 7 177.6% 185.0% 122.9% 145.7% 7 99.5% 117.9%
CfSymCscA 8/14 6672 62 21 210 179 86 17 158.1% 161.5% 110.5% 129.6% 17 91.4% 107.3%
CfSymCscB 8/8 690 14 8 56 49 22 5 189.3% 193.9% 135.7% 155.1% 4 103.6% 118.4%
CfSymCscC 8/10 2416 38 11 114 95 46 7 159.6% 167.4% 110.5% 132.6% 7 91.2% 109.5%
CfSymCscD 4/10 414 8 5 34 30 16 5 300.0% 313.3% 223.5% 253.3% 5 158.8% 180.0%

PpWkCsc(2,3) 0/7 128 10 5 37 32 12 2 191.9% 203.1% 140.5% 162.5% 2 102.7% 118.8%
PpWkCsc(2,6) 0/13 8192 22 5 79 68 24 2 173.4% 183.8% 126.6% 147.1% 2 93.7% 108.8%
PpWkCsc(2,9) 0/19 >5 · 105 34 5 121 104 36 2 167.8% 177.9% 122.3% 142.3% 2 90.9% 105.8%
PpWkCsc(2,12) 0/25 >3 · 107 44 5 161 139 48 2 167.1% 176.3% 121.7% 141.0% 2 90.7% 105.0%
PpWkCsc(3,3) 0/10 1024 15 7 55 48 18 3 189.1% 200.0% 138.2% 160.0% 3 101.8% 117.9%
PpWkCsc(3,6) 0/19 >5 · 105 33 7 118 102 36 3 172.0% 182.3% 125.4% 145.8% 3 93.2% 108.4%
PpWkCsc(3,9) 0/28 >2 · 108 51 7 181 156 54 3 166.9% 176.8% 121.5% 141.5% 3 90.6% 105.5%
PpWkCsc(3,12) 0/37 >1011 66 7 241 208 72 3 166.4% 175.5% 121.2% 140.4% 3 90.5% 104.8%
PpArbCsc(2,3) 2/13 3312 22 8 82 71 30 6 186.6% 194.4% 134.1% 154.9% 6 100.0% 115.5%
PpArbCsc(2,6) 2/19 >2 · 105 34 8 124 107 42 6 176.6% 185.0% 127.4% 147.7% 6 95.2% 110.3%
PpArbCsc(2,9) 2/25 >107 44 8 164 142 54 6 173.8% 181.7% 125.6% 145.1% 6 93.9% 108.5%
PpArbCsc(2,12) 2/31 >8 · 108 56 8 206 178 66 6 170.4% 178.7% 123.3% 142.7% 6 92.2% 106.7%
PpArbCsc(3,3) 3/19 77032 33 12 129 113 51 9 185.3% 189.8% 131.0% 150.2% 9 99.2% 113.8%
PpArbCsc(3,6) 3/28 >3 · 107 51 12 192 167 69 9 176.0% 182.3% 125.5% 144.7% 9 94.8% 109.3%
PpArbCsc(3,9) 3/37 >1010 66 12 252 219 87 9 173.4% 179.7% 124.2% 142.9% 9 93.7% 107.8%
PpArbCsc(3,12) 3/46 >1013 84 12 315 273 105 9 170.2% 177.1% 122.2% 141.0% 9 92.1% 106.2%

Average 100% 100% 180.7% 189.0% 130.4% 151.4% 99.0% 115.0%

Table I: Summary of experimental results

dual-rail controllers contain simpler gates and are easierfor
hazard-free technology mapping.stdRS implementation gives
even simpler gates (as they are separated from RS-latches),
but has larger overheads: 30% and 51% in terms of power
consumption and area, respectively. Corresponding single-rail
controllers (stdC) have the largest overheads (81% and 89%,
respectively).

VI. CONCLUSIONS

This paper presented an automated approach to synthesis
of robust controllers for sub-threshold digital systems. The
approach is based on dual-rail implementation of control logic
which eliminates inverters, reduces forks and wire load without
introducing significant overheads in terms of area, latencyand
power consumption.

Future work includes optimisation of set/reset functions for
robustness (to minimise the period in which both functions are
zero), and further in-depth analysis of testability of RS-latch
based design.

Acknowledgement
This work was supported by EPSRC grants EP/G037809/1

(VERDAD), EP/J008133/1 (TrAmS-2) and EP/I038306/1
(GAELS).

REFERENCES

[1] O.C. Akgun, J. Rodrigues, and J. Sparsoe and. Minimum-energy sub-
threshold self-timed circuits: Design methodology and a case study. In
Symposium on Asynchronous Circuits and Systems (ASYNC), 2010.

[2] Omer Can Akgun and Yusuf Leblebici. Energy Efficiency Comparison of
Asynchronous and Synchronous Circuits Operating in the Sub-Threshold
Regime.Journal of Low Power Electronics, 3:320–336, 2008.

[3] H. Bakoglu and James Meindl. Optimal interconnection circuits for
VLSI. IEEE Transactions on Electron Devices, 32(5):903–909, 1985.

[4] A. Baz, D. Shang, F. Xia, and A. Yakovlev. Self-Timed SRAMfor
energy harvesting applications. InPATMOS, 2010.

[5] P.A. Beerel, C.J. Myers, and T.H.-Y. Meng. Covering Conditions and
Algorithms for the Synthesis of Speed-Independent Circuits. IEEE
Trans. on CAD, 1998.

[6] Peter A. Beerel and Marly Roncken. Low power and energy efficient
asynchronous design.J. Low Power Electronics, 3(3):234–253, 2007.

[7] David Bol, Dina Kamel, Denis Flandre, and Jean-Didier Legat. Nanome-
ter MOSFET effects on the minimum-energy point of 45nm subthreshold
logic. In ISLPED ’09: Proceedings of the 14th ACM/IEEE international
symposium on Low power electronics and design, pages 3–8, 2009.

[8] Vikas Chandra and Robert C. Aitken. Impact of voltage scaling on
nanoscale SRAM reliability. InDATE ’09: Proceedings of the conference
on Design, automation and test in Europe, pages 387–392, 2009.

[9] J.F. Christmann, E. Beigne and, C. Condemine, N. Leblond, P. Vivet,
G. Waltisperger, and J. Willemin. Bringing robustness and power effi-
ciency to autonomous energy harvesting microsystems. InSymposium
on Asynchronous Circuits and Systems (ASYNC), 2010.

[10] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, Lab. for Comp. Sci., MIT, 1987.

[11] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Logic synthesis of asynchronous controllers and interfaces.
Advanced Microelectronics. Springer-Verlag, 2002.

[12] I. David, R. Ginosar, and M. Yoeli. An efficient implementation
of boolean functions as self-timed circuits.IEEE Transactions on
Computers, 41:2–11, 1992.

[13] Rostislav (Reuven) Dobkin, Ran Ginosar, and Avinoam Kolodny. QNoC
asynchronous router.Integr. VLSI J., 42(2):103–115, 2009.

[14] Victor I. Varshavsky (Editor).Self-Timed Control of Concurrent Pro-
cesses. Kluwer Academic Publishers, 1990.

[15] K. Fant and S.A. Brandt. Null conventional logic: A complete and

0

100

200

300

400

500

600

700

800

900

1000

CG

gRS

stdRS

Figure 14:Analysis of fork balancing effort

consistent logic for asynchronous digital circuit synthesis. In Proc. Int’l
Conf. Application-Specific Systems, Architectures, and Processors, 1996.

[16] C. Jeong and S.M. Nowick. Technology mapping and cell merger for
asynchronous threshold networks.IEEE Trans. on CAD, 2008.

[17] Sean Keller, Siddarth Bhargav, Chris Moore, and Alain J. Martin.
Reliable Minimum Energy CMOS Circuit Design. InVari’11: 2nd
European Workshop on CMOS Variability, 2011.

[18] Victor Khomenko, Maciej Koutny, and Alexandre Yakovlev. Logic
Synthesis for Asynchronous Circuits Based on STG Unfoldings and
Incremental SAT.Fundamenta Informaticae, 70(1-2):49–73, 2006.

[19] A. Kondratyev, M. Kishinevsky, and A. Yakovlev. Hazard-free imple-
mentation of speed-independent circuits.IEEE Transactions on CAD of
Integrated Circuits and Systems, 17(9):749–771, sep. 1998.

[20] Alex Kondratyev and Kelvin Lwin. Design of asynchronous circuits
using synchronous CAD tools.IEEE Transactions on Computers, 2002.

[21] J.P. Kulkarni, K. Kim, and K. Roy. A 160 mV Robust SchmittTrigger
Based Subthreshold SRAM.IEEE Journal of Solid-State Circuits,
42(10):2303–2313, 2007.

[22] Agnes Madalinski.Interactive Synthesis of Asynchronous Systems based
on Partial Order Semantics. PhD thesis, Newcastle University, 2006.

[23] A.J. Martin. Programming in VLSI: From Communicating Processes
to Delay-Insensitive Circuits. InDevelopments in Concurrency and
Communication, UT Year of Prog. Series, pages 1–64, 1990.

[24] A. Mokhov, V. Khomenko, D. Sokolov, and A. Yakovlev. On Dual-
Rail Control Logic for Enhanced Circuit Robustness. Technical Report
NCL-EECE-MSD-TR-2010-162, Newcastle University, 2010.

[25] D. Muller and W. Bartky. A Theory of Asynchronous Circuits. In Proc.
Int. Symp. of the Theory of Switching, pages 204–243, 1959.

[26] Ankireddy Nalamalpu and Wayne Burleson. Repeater insertion in
deep sub-micron cmos: Ramp-based analytical model and placement
sensitivity analysis. InIn IEEE International Symposium on Circuits
and Systems, pages 766–769, 2000.

[27] Steven Nowick. Automatic Synthesis of Burst-Mode Asynchronous
Controllers. PhD thesis, Stanford University, 1993.

[28] M.-D. Shieh, C.-L. Wey, and P.D. Fisher. A scan design for asyn-

chronous sequential logic circuits using SR-latches. InSymposium on
Circuits and Systems, volume 2, pages 1300–1303, 1993.

[29] Danil Sokolov, Julian Murphy, Alexander Bystrov, and Alex Yakovlev.
Design and analysis of dual-rail circuits for security applications. IEEE
Transactions on Computers, 54:449 – 460, 2005.

[30] Jens Sparsoe and Steve Furber.Principles of Asynchronous Circuit
Design: A Systems Perspective.Kluwer Academic Publishers, 2001.

[31] N. Starodoubtsev and S. Bystrov. Behavior and synthesis of two-input-
gate asynchronous circuits. InSymposium on Asynchronous Circuits and
Systems (ASYNC’2005), pages 190–200, 2005.

[32] N. Starodoubtsev, S. Bystrov, M. Goncharov, I. Klotchkov, and
A. Smirnov. Towards synthesis of monotonic asynchronous circuits from
signal transition graphs. InProceedings of the Second International
Conference on Application of Concurrency to System Design, 2001.

[33] Z.Al Tarawneh, G.Russell, and A.Yakovlev. An analysisof SEU
robustness and performance of C-element structures implemented in bulk
CMOS and SOI technologies. Technical report, Newcastle University,
2010.

[34] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology
for a Secure DPA Resistant ASIC or FPGA Implementation. InDATE
’04: Proceedings of the conference on Design, automation and test in
Europe, page 10246. IEEE Computer Society, 2004.

[35] E. Tuncer, J. Cortadella, and L. Lavagno. Enabling adaptability through
elastic clocks. InDAC ’09: Proceedings of the 46th Annual Design
Automation Conference, pages 8–10, 2009.

[36] E. Vittoz. Low Power electronics design, Chapter 16. CRC Press, 2004.
[37] A. Wang and A. Chandrakasan. A 180mV FFT processor usingsub-

threshold circuit techniques. InSolid-State Circuits Conference, 2004.

