
WAITX: An Arbiter for Non-Persistent Signals
Victor Khomenko, Danil Sokolov, Andrey Mokhov, Alex Yakovlev

{Victor.Khomenko, Danil.Sokolov, Andrey.Mokhov, Alex.Yakovlev}@ncl.ac.uk
Newcastle University, United Kingdom

Abstract—The paper introduces a new reusable asynchronous
component, called WAITX element, that arbitrates between two
requests. In contrast to the traditional mutex, the requests are
not required to be persistent, i.e. can be withdrawn at any
moment, have hazards or even have high-frequency bursts; e.g.
they can be outputs of voltage comparators. It is guaranteed
that (i) hazards will never propagate past WAITX; and (ii)
when requests are well-behaved, WAITX correctly arbitrates
between them. As an additional minor contribution we also
design a SAMPLE element on the basis of WAITX; in contrast
to previous designs in literature, this SAMPLE is fully speed-
independent and unconditionally guarantees that the hazards will
not propagate past it.

I. INTRODUCTION

Arbiters [7] are basic blocks guarding access to shared
resources and, as such, they play a very important role in
asynchronous circuits design. Hence their efficient and correct
implementation is essential. The specification of a 2-way
arbiter, in the form of a Signal Transition Graph (STGs
are explained below) is shown in Fig. 1(left). There are
two clients using a shared resource in a mutually exclusive
way – the behaviour of a client is shown in Fig. 1(right).
Before accessing the resource, the ith client sends a request
to the arbiter (by raising signal ri). Such requests can be sent
concurrently by different clients. In response, the arbiter issues
a grant (by raising signal gi). At most one grant can be high at
any time, no matter how many concurrent requests have been
received by the arbiter. Upon receipt of the grant, a client can
safely use the resource, with the guarantee that no interference
from the other client is possible. Having finished using the
resource, the client lowers its request, and in response the
arbiter lowers the corresponding grant. At this point the arbiter
can issue a grant to the other client.

Figure 1. Interface protocols of a 2-way arbiter and a client.

The arbiter protocol in Fig. 1(left) assumes that the requests
are well-behaved: they must be digital signals and must not be
withdrawn prematurely, i.e. before the arbitration is completed
and the corresponding grant is issued (examples of simulation
traces of arbiters in misbehaving environments can be found
in [12]). This assumption is restrictive in the situations when

Figure 2. The notation and specification of the interface protocol of WAITX.

requests are produced by analogue circuitry. For example, the
requests are often outputs of voltage comparators implemented
using differential amplifiers: in such a case short pulses can
be generated due to noise if the voltages being compared are
close. This paper sets out to solve this problem by designing an
Exclusive Wait (WAITX) element that safely arbitrates between
non-persistent requests.

The notation and interface protocol of WAITX is shown
in Fig. 2 (the semantics of the ε transitions is similar to
that of ε in non-deterministic finite automata and they can be
removed by determinisation – see also the discussion of WAIT
element below). Upon receiving ctrl+, WAITX starts waiting
for either of requests sig1 or sig2 which may change their
values at any time without any restrictions. Once at least one
of them goes high and stays above the threshold for sufficiently
long time to be registered, the arbitration starts and a grant,
either g1 or g2, is issued on the mutually exclusive basis.
Then WAITX is reset by ctrl- and will remain dormant until
ctrl+ starts the next cycle of arbitration. Crucially, WAITX
unconditionally guarantees that the grants are always well-
behaved, i.e. bad behaviour (hazards, short pulses, bursts of
high-frequency jitter, analogue signals, etc.) of the requests
never propagates beyond WAITX. Note that:

• requests are not required to wait for the corresponding
grants and can be asserted or withdrawn at any time;

• short pulses on requests may be ignored (this is unavoid-
able as a sufficiently short pulse cannot be registered even
in principle), but a persistent (or sufficiently long) request
cannot be ignored indefinitely and will be eventually
registered, though it may still lose to the other request;

• a grant cannot be issued unless the corresponding request
was above the threshold for at least some time during the
current arbitration cycle or shortly before it (note that



there is a race between ctrl+ and sig1-/sig2-, and the out-
come of the arbitration is not necessarily consistent with
the ‘ideal’ arrival times, especially that these signals have
to propagate through some gates before the arbitration is
performed);

• the grants are mutually exclusive.
We applied WAITX in the asynchronous multiphase buck con-
troller presented in [17] to arbitrate between the undervoltage
and overvoltage conditions. However, we believe it is a generic
component that can be useful in many other designs to safely
arbitrate between non-persistent requests, in particular in de-
fensive interfaces between ‘dirty’ analogue and ‘clean’ digital
worlds. Moreover, interfaces between differently powered and
clocked digital domains (e.g. using interrupt and wake-up
signals) in modern highly heterogeneous ICs will increasingly
require synchronization elements that can withstand variations
and mismatches in terms of their delays and voltage levels.

II. BACKGROUND

Speed-independence and Signal Transition Graphs

The WAITX implementation presented in this paper falls
within an important class of speed-independent (SI) asyn-
chronous circuits, where, following the classical Muller’s
approach [10], each gate is regarded as an atomic evaluator of
a Boolean function with a delay associated with its output.1 In
the SI framework this delay is positive and finite, but variable
and unbounded. The circuit must work correctly regardless
of its gates’ delays, and the wires are assumed to have
negligible delays. Alternatively, one can regard (some) wire
forks as isochronic and adjoin wire delays to their driver gate
delays (Quasi-Delay Insensitive (QDI) circuit class [8]).

Signal Transition Graphs (STGs) [1][15] are a formalism
for specifying such circuits. They are Petri nets [11] in which
transitions are labelled with the rising and falling edges of
circuit signals. The details of circuit synthesis from STGs can
be found in [2]. The semantics of an STG coincides with that
of its state graph, so STGs can be considered as ‘syntax sugar’
for compact representation of state graphs. This representation
is particularly beneficial for highly concurrent specifications,
where state graphs suffer from state space explosion [19].

Graphically, the places are represented as circles, transitions
as textual labels, consuming/producing arcs are shown by
arrows, read arcs (testing for the presence of a token without
consuming it) are shown by lines without arrowheads, and
tokens are depicted by dots. For simplicity, the places with
one incoming and one outgoing arc are often hidden, allowing
arcs (with implicit places) between pairs of transitions.

Mutex and WAIT

Arbiters are usually constructed using the basic 2-way
mutual exclusion element, or just mutex, see Fig. 3. Note that

1The original Muller’s theory did not consider circuits with arbitration
elements, nor the behaviour of inputs being non-persistent. Therefore our
notion of SI goes beyond that of Muller in the sense that the set of components
subject to the requirement of correct operation under variable output delays
includes logic gates as well as WAIT and mutex (introduced below).

in particular it implements a 2-way arbiter, but also allows for
some additional behaviour of the environment, in particular
the losing request can be withdrawn before the winning one,
e.g. the trace r1+ r2+ g1+ r2- can be performed by the mutex
but not by the 2-way arbiter in Fig. 1. This turns out to be
useful for the purposes of this paper.

Figure 3. Mutex notation (left) and behaviour specification allowing the early
withdrawal of the losing request (right).

It is a well-known fact that one cannot construct even a 2-
way arbiter using only digital logic gates [4]. Indeed, when the
two requests arrive almost simultaneously, the mutex, like Bur-
idan’s ass, has to make an arbitrary choice between them [7]. It
enters a metastable state, in which it can stay indefinitely: The
response time of a mutex follows the exponential distribution,
i.e. this time is short in most cases but there is no upper bound
on it. To prevent the mutex from outputting the near-threshold
values during the metastability resolution process, an analogue
filter is used in the CMOS implementation [9], [16].

To cope with non-persistent inputs, WAIT element shown in
Fig. 4 was proposed and implemented with a mutex in [18]
to sanitise such ‘dirty’ signals (a similar design but with an
old-style metastability filter based on a NOR4 gate with fused
inputs was proposed in [5, Fig. 6b]). Its interface comprises:
• Input sig, which may be non-persistent, e.g. the output

of an analogue voltage comparator. As can be seen from
the protocol STG, sig may go high and low at any time
without any restrictions.

• Input ctrl, whose rising transition brings the WAIT ele-
ment into the waiting mode and falling transition returns
it back to the dormant mode.

• Output san, which is insensitive to sig in the dormant
mode, and goes high as soon as sig+ is detected and
latched in the waiting mode (i.e. sig crosses the threshold
and stays above it for sufficiently long time): unlike input
sig, output san is persistent and well-behaved – it is
not reset until ctrl- indicates the receipt of san+. Pair
(ctrl, san) thus forms a ‘clean’ asynchronous handshake
controlled by the ‘dirty’ sig input.

The semantics of the ε transition is similar to that of ε in
non-deterministic finite automata. Its role is to make sure that
the STG generates the correct set of traces, in particular the
trace ctrl+ sig+ sig- san+ should be allowed: It is possible
for a short pulse on the input sig to be occasionally latched,
with the output san+ being observed after sig-. Note that
this STG is not output-determinate [6], which is an important
correctness criterion. That is, there are two different states



optional output

can be removed

Figure 4. WAIT element: Notation, STG specification of the interface
protocol, its determinised and minimised state graph, mutex-based imple-
mentation (the ‘bubble’ can be detached as an inverter), and a transistor-level
implementation.

reachable via the observable trace ctrl+ sig+ sig- , with one of
them enabling san+ and the other not, depending on whether
the unobservable ε transition fired between sig+ and sig-.
However, in this particular case there is no contradiction as
output san+ is optional after this trace. Note that the semantics
of STGs is defined so that an enabled output must either
fire or be disabled by another signal [6], i.e. outputs are
always compulsory. Hence, a formalism with ‘may fire’ and
‘must fire’ modalities (see e.g. [20]) is required to capture this
phenomenon. However, the issue is encapsulated inside WAIT,
so will not affect the rest of this paper.

The determinised and minimised state graph of this STG
is shown in Fig. 4. The two states violating the output-
determinacy are now fused, and output san+ enabled at this
fused state (the dashed arc) is optional.

Note that there is a read-consume conflict between trans-
itions sig- and the silent transition ε triggering san+. This
conflict can be resolved using a mutex with one inverted input.
The intuition is that when ctrl+ arrives, it cannot propagate
to the output san until the mutex is released by sig+. Once
san+ is asserted, the mutex becomes insensitive to changes
of sig until ctrl- releases it. Interestingly, a hazard on output
g1 is possible as sig- may disable it before the metastability
inside the mutex is resolved. However, this output is unused
and can be removed together with the corresponding part of
the metastability filter in the CMOS implementation as shown
in Fig. 4.

Consider the ‘bubble’ on one of the mutex’s inputs in the

implementation of WAIT:
• Removing it yields another important component, called

WAIT0, that waits for sig- rather than sig+.
• It can be detached as an inverter without affecting the

correctness of the circuit: Though the output of this
inverter is ‘dirty’, the non-persistence will not propagate
through the remaining WAIT0.

WAIT solves the problem of listening to a single non-persistent
signal, but it cannot arbitrate between a pair of such signals.

III. THEORETICAL POWER OF WAITX

One can see that WAITX is at least as powerful as a 2-
way arbiter, as the latter can be implemented via the former
as shown in Fig. 5 – this implementation also supports
the extended protocol in Fig. 3(right) permitting the early
withdrawal of the losing request. Furthermore, WAITX is at
least as powerful as WAIT – the latter can be implemented
via the former by grounding one of the requests and ignoring
the corresponding grant.

Figure 5. An implementation of a 2-way arbiter with WAITX.

IV. DESIGN AND IMPLEMENTATION OF WAITX

The natural implementation idea for WAITX is to accept
non-persistent sig1 and sig2 using two WAITs, and then use
a mutex arbitrating between the outputs of these WAITs, i.e.
between the sanitised requests. However, there is a problem:
WAIT can be reset only after its sig has arrived and been
latched. Unfortunately, there is no guarantee that the losing
request of WAITX will ever arrive, and just withdrawing ctrl
input of the corresponding WAIT may lead to a hazard if
the request does arrive at that moment. This problem can
be solved by making the winner help the loser – by ORing
the winning grant of the mutex with the input request of the
loosing WAIT. This guarantees that the input of the losing
WAIT will eventually arrive. Though the introduced OR gate
may produce hazards, they will not propagate beyond WAIT.
This is illustrated in Fig. 7 showing the structure of WAITX
(NORs and WAIT0s are used instead of ORs and WAITs to
save a few transistors and improve the response time).

STG specification of CONTROL

The CONTROL block in Fig. 7 was specified, synthesised
and formally verified using WORKCRAFT framework [13],
[21]. The STG in Fig. 6 specifies the behaviour of CONTROL.
To resolve encoding conflicts and simplify the circuit an in-
ternal signal csc was inserted into the STG, together with four



Figure 6. The STG specification of CONTROL with a new internal signal csc and four concurrency reductions (thick arcs) added to resolve encoding conflicts
and simplify the circuit.

Figure 7. The top-level structure of WAITX.

concurrency reductions shown as thick arcs. The important
things to note are:

• The extended mutex protocol shown in Fig. 3 is exploited
in this design, i.e. the output of the losing WAIT0 never
propagates through the mutex. We also explored the
alternative design allowing the losing request to propagate
through the mutex, but this resulted in an inferior circuit
– both in terms of performance (due to longer signal
switching sequences) and area.

• The two WAIT0s must be reset in the correct order – first
the loser and then the winner. This prevents the possibility
of the losing request to briefly propagate through the
mutex after the winning request is withdrawn and cause
a hazard on an output of the mutex.

• The reset sequence seems quite long – 5 gate delays
between e.g. g1+ and g1-. However, the circuit starts
resetting immediately after issuing a grant, without wait-
ing for ctrl-. Therefore, the reset phase is concurrent to
the environment’s consuming the grant, and so is likely
to be absorbed by the slack.

Figure 8. The circuit implementation of CONTROL.

Circuit implementation

The synthesised implementation of CONTROL in Fig. 7 is
shown in Fig. 8. This circuit is symmetric w.r.t. the requests
and grants and relatively simple. Note that the two leftmost
C-elements can be made asymmetric to save a couple of
transistors and improve the response time – the SET and
RESET functions are wini and ctrl · wini, respectively.

Initialisation

This circuit needs initialisation. One has to set the output
of the inverted C-element in the middle to 1 (as the initial
values of its two inputs are different); if no C-element with
an initialisation pin is available then one can instead reset the
output of the preceding NAND2 to 0. Furthermore, one of the
gates producing wctrl1 or wctrl2 must be reset to 0. These are
sufficient for the correct initial values to propagate throughout
the circuit. Note that the initialisation does not have to be SI.

Generalisation to multiple inputs

The WAITX circuit is symmetric and can be scaled to any
number of inputs, e.g. Fig. 8 shows an SI implementation of



Figure 9. 3-way WAITX.

a 3-way WAITX. Note that:

• The input NORs can be decomposed and their common
sub-terms shared, as they do not have to be persistent.

• An N -way arbiter is used instead of a mutex. It must
allow early withdrawal of losing requests – we are not
aware of any published designs that explicitly address this
requirement, but we believe such a design is not difficult
and can be implemented on the basis of e.g. a ring arbiter
or an arbiter based on global locking.

• The N -input OR in the middle has one-hot inputs and
thus can be decomposed into a tree of 2-input ORs.

• The N -input NAND in the middle cannot be easily
decomposed in an SI way. Hence, if the gate library has
no N -input NAND, one will have rely on relative timing
assumptions. In practice, this is likely to be a smaller
problem than implementing an N -way arbiter allowing
early withdrawal of losing requests.

• The majority gates can be replaced by simpler asymmet-
ric elements: The inputs of ith such element are grant
gi and the outputs xj of the AND-OR gates such that
j 6= i, and its SET and RESET functions are

∧
j 6=i xj and

gi·
∧

j 6=i xj+
∧

j 6=i xj , respectively. It would be interesting
to find an SI decomposition of these elements, although

in practice N is likely to be small and an implementation
with relative timing assumptions may be adequate.

V. VERIFICATION

With the help of WORKCRAFT framework we formally
verified the essential correctness properties of the proposed
WAITX design as described below.

Verification of CONTROL STG

The following standard correctness properties have been
verified for the STG in Fig. 6:

Deadlock freeness: every reachable marking enables at
least one transition.

Consistency: the ‘+’ and ‘–’ transitions of every signal
alternate in every possible execution, always starting with the
same sign.

Output persistence: an enabled output or internal signal
cannot be disabled by any other signal (note that the outputs
of the mutex and WAIT0s are CONTROL’s inputs).

Input properness: an input cannot be disabled by an output
or internal signal, and cannot be triggered by an internal signal.

In addition, we have verified the custom property that grants
g1 and g2 cannot be high simultaneously.



Verification of CONTROL circuit

The following standard correctness properties have been
verified for the circuit in Fig. 8 implementing the CONTROL
block of WAITX using the STG in Fig. 6 as the environment:

Deadlock freeness: every reachable state in the composi-
tion of the circuit with its environment enables at least one
transition.

Hazard freeness: an excited gate cannot be prematurely
disabled by any other signal; this property is essentially the
circuit version of output persistence.

Conformation: the circuit never produces outputs that are
unexpected by the environment [3] (in our model the circuits
before the composition with the environment are receptive,
i.e. the inputs can change at any time; hence the dual check
included into the notion of conformation in [3] always holds
and does not have to be verified).

Verification of the overall circuit

We also verified the whole WAITX circuit in an environment
that correctly executes the handshake (ctrl, g1/ g2) and can
change the values of sig1 and sig2 at any moment.

WAIT0 was modelled by a discrete element with the SET
function ctrl · sig and the RESET function ctrl, followed by
a buffer – the latter is necessary to allow the trace ctrl+ sig-
sig+ san+, i.e. the signal between the element and the buffer
implements the ε-transition in the STG in Fig. 4. In principle,
such a buffer is unnecessary in the usual case when there is
no gate whose fanin includes both sig and san (under the SI
assumptions only such a gate could distinguish between the
traces ...sig- sig+ san+... and ...sig- san+ sig+...). Neverthe-
less, to gain more confidence in the design, we verified the
circuit both with and without such a buffer.

The correctness properties listed above for CONTROL still
hold for the overall circuit (except the ‘dirty’ input NORs).
To verify that there are no hazards on the outputs of the two
WAIT0s due to a premature withdrawal of ctrl we projected
the behaviour of WAITX to the ctrl / san interface of one
of these WAIT0s – the resulting STG models a handshake
for this two signals as expected (no need to do that for the
other WAIT0 due to the symmetry of the circuit). Note that the
projection of the behaviour onto the whole interface of WAIT0
yields a large and messy STG as the rest of the circuit imposes
complicated constraints on the behaviour of sig; however, this
is unnecessary as WAIT0 tolerates arbitrary behaviour of sig
as long as the ctrl / san handshake is executed correctly.

To verify that the hazards on the outputs of the mutex due
to a premature withdrawal of its requests are impossible we
projected the behaviour of WAITX to the interface of the
mutex – the resulting STG is shown in Fig. 10. The behaviour
of the mutex shown in Fig. 3 conforms to this STG – the only
difference is that inside WAITX the loosing request of the
mutex is always withdrawn whereas the mutex STG in Fig. 3
allows this as an option but does not require it.

Figure 10. The projection of the WAITX behaviour to the interface of its
mutex.

VI. PERFORMANCE ANALYSIS

To measure the delays along the critical paths of 2-way
WAITX we implemented it in UMC 90nm technology using
FARADAY gate library. Table I shows these delays obtained
via SPECTRE transistor-level simulation. Delays of some of
the basic components are also provided for reference. Note
that:
• Most of the reset phase is concurrent to the environment’s

consuming the grant, i.e. happens before ctrl-; thus only
the delay from ctrl- to g1- / g2- is critical.

• Mutex and WAIT0 can have unbounded delays due to
metastability resolution, so we only consider scenarios
without metastability.

• The two leftmost C-elements in Fig. 8 were implemented
as asymmetric C-elements.

• C-element in the middle of Fig. 8 was implemented on
the basis of a majority gate – this could be improved by
a custom C-element design.

• The delays along the symmetric paths of WAITX are
slightly different due to asymmetric initialisation cir-
cuitry, see Section IV.

Element Transition / Path Delay [ps]

INV i+→ o− 8
i− → o+ 14

NAND2
i1+→ o− 33
i2+→ o− 22
ij− → o+ 24

C-element

i1+→ o− 44
i2+→ o− 47
i1− → o+ 58
i2− → o+ 61

mutex ri+→ gi+ 33
ri− → gi− 29

WAIT0
sig− → san+ (ctrl+ ready in advance) 58
ctrl+→ san+ (sig− ready in advance) 32
ctrl− → san− 27

WAITX

sigi+→ gi+ (ctrl+ ready in advance) 210
ctrl+→ g1+ (sig1+ ready in advance) 329
ctrl+→ g2+ (sig2+ ready in advance) 320
ctrl− → gi− 52

Table I
SIMULATION RESULTS.



VII. SAMPLE ELEMENT

The purpose of SAMPLE is to check whether the voltage
on a wire is above the threshold. Its notation and interface
protocol are shown in Fig. 11, together with an implementation
based on WAITX.

Figure 11. The interface protocol and notation of SAMPLE, and its imple-
mentation based on WAITX.

Upon receiving ctrl+, SAMPLE responds with either d0+ or
d1+ depending on whether sig is below or above the threshold.
Note that:

• sig usually comes from an analogue environment and is
not required to be persistent;

• d0 and d1 can never be high simultaneously;
• if sig is crossing the threshold during sampling, the value

returned by SAMPLE is allowed to be arbitrary; however,
under no circumstances the non-persistence of sig is
allowed to propagate beyond SAMPLE into the digital
core of the system.

Hence, (ctrl, d0 / d1) is a ‘clean’ asynchronous handshake
controlled by the ‘dirty’ sig input. The performance analysis
shows that the delays along SAMPLE’s critical paths from
ctrl+ to d0+ / d1+ and from ctrl- to d0- / d1- are the same as
for the corresponding paths of WAITX in Table I (assuming
sig is stable when ctrl+ arrives, as otherwise metastability is
possible that can take arbitrary long time to resolve).

It should be noted that various SAMPLE designs were
proposed in the past. However, they usually make restrictive
assumptions about the behaviour of sig (that the frequency
of its transitions is limited or the length of positive or
negative pulses is greater than a certain minimum) and do
not offer an absolute guarantee that the non-persistence can
never propagate to the outputs. Moreover, they are usually
meant to work in a synchronous environment and depend on
various timing assumptions. As an example, consider the Q-

x
y

Figure 12. The Q-flop (adapted from [14] [7]).

flop in Fig.12.2 Note that the cross-coupled NANDs with the
subsequent transistors form a mutex with an extra enabling
input. One can see that the trace ctrl+ sig+ y- x- y+ can
generate a short pulse on the output y of the upper NAND3
gate (and so on the primary output d1) due to the premature
withdrawal of the request from its upper pin. Hence Q-flop
depends on the restrictive timing assumptions that ctrl is
controlled by the clock and sig can change at most once during
the clock cycle.

VIII. CONCLUSIONS

We proposed a new reusable asynchronous component,
called WAITX element, that can safely arbitrate between non-
persistent requests – it is guaranteed that the non-persistence
and other bad behaviour on its inputs can never propagate
to the outputs. The intended application is in the interfaces
between analogue and digital domains, e.g. we applied it in
an asynchronous multiphase buck controller [17] to arbitrate
between the undervoltage and overvoltage conditions. We de-
signed a speed-independent circuit implementation of WAITX,
and formally verified it using WORKCRAFT.

We also proposed a new implementation of SAMPLE
element based on WAITX. In contrast to previous designs it is
unconditionally safe – i.e. the non-persistence and other bad
behaviour on its input can never propagate to its outputs.

Our future work includes an industrial validation of the
developed components. It would also be interesting to design
a SAMPLE that combines the robustness of the proposed
design with guaranteed bounded response time after the input
stabilises.

Acknowledgements

The authors would like to thank David Lloyd and Dialog
Semiconductor (UK) for inspiring this work by providing an
interesting real-life case study. This research was supported
by EPSRC grants EP/L025507/1 “A4A: Asynchronous design
for Analogue electronics”.

2Other solutions exist, e.g. Synchronizer from [12] has similar functionality
to SAMPLE, but its hand-designed implementation uses a combination of
CMOS transistor level meshes and Schmitt triggers – such designs depend on
analogue characteristics of their components and are very difficult to verify
formally. In the proposed design the only analogue-level assumption is that
the (well studied) metastability filter inside mutex works reliably (WAIT0
can be implemented on the basis of mutex and so does not require any new
analogue-level assumptions).



REFERENCES

[1] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic
specifications. PhD thesis, 1987.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. PETRIFY: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers. IEICE Transactions on
Information and Systems, E80-D(3):315–325, 1997.

[3] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of
Speed-independent Circuits. MIT Press, Cambridge, MA, USA, 1989.

[4] Victor I. Varshavsky (Editor). Self-Timed Control of Concurrent Pro-
cesses. Kluwer Academic Publishers, 1990.

[5] J. Kessels and P. Marston. Designing asynchronous standby circuits for
a low-power pager. Proceedings of the IEEE, 87(2), 1999.

[6] V. Khomenko, M. Schaefer, and W. Vogler. Output-determinacy and
asynchronous circuit synthesis. Fundamenta Informaticae, 88:541–579,
2008.

[7] D. J. Kinniment. Synchronization and Arbitration in Digital Systems.
John Wiley and Sons, 2008. ISBN: 978-0-470-51082-7.

[8] A. Martin. Compiling communicating processes into delay-insensitive
VLSI circuits. Distributed computing, 1(4):226–234, 1986.

[9] A. Martin. Developments in Concurrency and Communication, chapter
Programming in VLSI: From Communicating Processes to Delay-
Insensitive Circuits, pages 1–64. Addison-Wesley, 1990.

[10] D. Muller and W. Bartky. A Theory of Asynchronous Circuits. In Proc.
Int. Symp. of the Theory of Switching, pages 204–243, 1959.

[11] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, 1989.

[12] M. Nyström and A.J. Martin. Crossing the synchronous-asynchronous
divide. In Workshop on Complexity-Effective Design (WCED), 2002.

[13] I. Poliakov, V. Khomenko, and A. Yakovlev. WORKCRAFT – a
framework for interpreted graph models. In Proc. Petri Nets, volume
5606 of LNCS, 2009.

[14] F.U. Rosenberger, C.E. Molnar, T.J. Chaney, and T.-P. Fang. Q-modules:
internally clocked delay-insensitive modules. IEEE Transactions on
Computers, 37(9):1005–1018, 1988.

[15] L. Rosenblum and A. Yakovlev. Signal graphs: from self-timed to timed
ones. In International Workshop on Timed Petri Nets, 1985.

[16] C.L. Seitz. Ideas about arbiters. Lambda, 1:10–14, 1980.
[17] D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and

A. Yakovlev. Benefits of asynchronous control for analog electronics:
Multiphase buck case study. In Proc. DATE, 2017. To appear.

[18] D. Sokolov, V. Khomenko, A. Mokhov, A. Yakovlev, and D. Lloyd.
Design and verification of speed-independent multiphase buck controller.
In Proc. ASYNC, 2015.

[19] A. Valmari. The state explosion problem. In Lectures on Petri Nets I:
Basic Models, Advances in Petri Nets, pages 429–528. Springer, 1998.

[20] T. Verhoeff. Analyzing specifications for delay-insensitive circuits. In
Proc. ASYNC’98, 1998.

[21] WORKCRAFT homepage, URL: http://www.workcraft.org.


