
Shortest Violation Traes in Model ChekingBased on Petri Net Unfoldings and SAT?Vitor KhomenkoShool of Computing Siene, University of NewastleNewastle upon Tyne NE1 7RU, U.K.e-mail: Vitor.Khomenko�nl.a.ukAbstrat. Model heking based on the ausal partial order semantisof Petri nets is an approah widely applied to ope with the state spaeexplosion problem. One of the possibilities for the veri�ation proess isto build a �nite and omplete pre�x and use it for onstruting a Booleanformula suh that any satisfying assignment to its variables yields a traeviolating the property being heked. (And if there are no satisfyingassignments then the property holds.)In this paper a method for omputing the shortest violation traes (whihan greatly failitate debugging) is proposed. Experimental results de-monstrate that it an ahieve signi�ant redutions in the size of theBoolean formula as well as in the time required to ompute a shortestviolation trae, when ompared with a na��ve approah.Keywords: Shortest trae, model heking, Petri net unfolding, SAT,Boolean iruit.1 Introdution and basi notionsA distintive harateristi of reative onurrent systems is that their sets ofloal states have desriptions whih are both short and manageable, and theomplexity of their behaviour omes from highly ompliated interations withthe external environment rather than from ompliated data strutures and ma-nipulations thereon. One way of oping with this omplexity problem is to useformal methods and, espeially, omputer aided veri�ation tools implementingmodel heking | a tehnique in whih the veri�ation of a system is arriedout using a �nite representation of its state spae.The main drawbak of model heking is that it su�ers from the state spaeexplosion problem. That is, even a relatively small system spei�ation an (andoften does) yield a very large state spae. To ope with this, several tehniqueshave been developed, whih usually aim either at a ompat representation ofthe full state spae of the system, or at the generation of its redued (thoughsuÆient for a given veri�ation task) state spae. Among them, a prominenttehnique is MMillan's (�nite pre�xes of) Petri Net unfoldings (see, e.g., [5, 7℄).They rely on the partial order view of onurrent omputation, and representsystem states impliitly, using an ayli net, alled a pre�x.Most of `interesting' problems for safe Petri nets are PSPACE-omplete [2℄,but the same problems for pre�xes are often in NP or even P . Though the size? The full version of this paper [6℄ is available on-line.

of a �nite and omplete unfolding pre�x an be exponential in the size of theoriginal Petri net, in pratie it is often relatively small.A model heking problem formulated for a pre�x an usually be translatedinto some anonial problem, e.g., Boolean satis�ability (SAT). Then an o�-the-shelf SAT solver an be used for eÆiently solving it. Suh a ombination`unfolder & solver' turns out to be quite powerful in pratie.Petri nets A net is a triple N df= (P; T; F) suh that P and T are disjoint sets ofrespetively plaes and transitions, and F � (P �T)[(T �P) is a ow relation.A marking of N is a multiset M of plaes, i.e., M : P ! N df= f0; 1; 2; : : :g.The standard rules about drawing nets are adopted in this paper, viz. plaesare represented as irles, transitions as boxes, the ow relation by ars, and themarking is shown by plaing tokens within irles. As usual, �z df= fy j (y; z) 2 Fgand z� df= fy j (z; y) 2 Fg denote the pre- and postset of z 2 P [T , and�Z df= Sz2Z �z and Z� df= Sz2Z z�, for all Z � P [T . In this paper, the presetsof transitions are restrited to be non-empty, i.e., �t 6= ; for every t 2 T . A netsystem is a pair � df= (N;M0) omprising a �nite net N and an initial markingM0. It is assumed that the reader is familiar with the standard notions of thePetri nets theory, suh as the enabledness and �ring of a transition, markingreahability and deadlok.Unfolding pre�x A �nite and omplete unfolding pre�x � of a Petri net � is a�nite ayli net whih impliitly represents all the reahable states of � togetherwith transitions enabled at those states. Intuitively, it an be obtained throughunfolding � , by suessive �rings of transition, under the following assumptions:(a) for eah new �ring a fresh transition (alled an event) is generated; (b) foreah newly produed token a fresh plae (alled a ondition) is generated. Theunfolding is in�nite whenever � has an in�nite run; however, if � has �nitelymany reahable states then the unfolding eventually starts to repeat itself andan be trunated (by identifying a set of ut-o� events) without loss of infor-mation, yielding a �nite and omplete pre�x. The sets of onditions, events andut-o� events of the pre�x are denoted by B, E and Eut , respetively. (Notethat Eut � E).EÆient algorithms exist for building suh pre�xes [5℄, whih ensure that thenumber of non-ut-o� events jE n Eut j in a omplete pre�x an never exeedthe number of reahable states of � . Moreover, omplete pre�xes are often ex-ponentially smaller than the orresponding state graphs, espeially for highlyonurrent Petri nets, beause they represent onurreny diretly rather thanby multidimensional `diamonds' as it is done in state graphs. For example, if theoriginal Petri net onsists of 100 transitions whih an �re one in parallel, thestate graph will be a 100-dimensional hyperube with 2100 verties, whereas theomplete pre�x will oinide with the net itself. Another example, viz. a Petrinet modelling two dining philosophers, and a �nite and omplete pre�x of itsunfolding, are shown in Fig. 1. One an observe that if this example is saled up,the size of the pre�x is linear in the number of dining philosophers, even thoughthe number of reahable states grows exponentially.

p1p2p3
p4
p5p6t1 t2

t3 t4t5 p7
p8 p9p10p11

p12
p13p14 t6t7

t8t9 t10
(a)1p1 2p7 3p8 4p9

5p2
6p3 7p10
8p11

9p410p511p1212p13
13p6
14p14

15 p116 p717 p818 p719 p820 p9
e1t1
e2t6

e3t2e4t3e5t7e6t8
e7t4
e8t9

e9t5ut-o�
e10t10ut-o�(b)Fig. 1. A Petri net modelling two dining philosophers (a) and a �nite and ompletepre�x of its unfolding (b).Sine � is ayli, the transitive losure of its ow relation is a partial order< on B [E, alled the ausality relation. (The reexive order orrespondingto < will be denoted by �.) Intuitively, all the events whih are smaller thanan event e 2 E w.r.t. < must preede e in any valid exeution ontaining e.Two nodes x; y 2 B [E are in onit, denoted x#y, if there are distintevents e; f 2 E suh that �e \ �f 6= ; and e � x and f � y. Intuitively, novalid exeution an ontain two events in onit. Two nodes x; y 2 B [E areonurrent, denoted x o y, if neither y#y0 nor y � y0 nor y0 � y. Intuitively,two onurrent events an be enabled simultaneously, and exeuted in any order,or even onurrently. For example, in the pre�x shown in Fig. 1(b) the followingrelationships hold: e1 < e7, e7#e8 (due to the hoies at 2 and 3) and e3 o e4.The reahable markings of � an be represented using on�gurations of �. Aon�guration is a set of events C � E nEut suh that for all e; f 2 C, :(e#f)and, for every e 2 C, f < e implies f 2 C. For example, in the net shown inFig. 1(b), fe1; e3; e4g is a on�guration, whereas fe1; e2; e3; e5g and fe1; e3; e7g

x1x2
x3x4 _̂ �g1g2 g3 [g1 $ (:x1 _ x2 _ x3 _ x4)℄^[g2 $ (x1 ^ x2 ^ x3 ^ x4)℄^[g3 $ (g1 � g2)℄�[(:g1 _ :x1 _ x2 _ x3 _ x4)^(g1 _ x1) ^ (g1 _ :x2)^(g1 _ :x3) ^ (g1 _ :x4)℄^[(g2 _ :x1 _ :x2 _ :x3 _ :x4)^(:g2 _ x1) ^ (:g2 _ x2)^(:g2 _ x3) ^ (:g2 _ x4)℄^[(:g1 _ :g2 _ :g3) ^ (:g1 _ g2 _ g3)^(g1 _ :g2 _ g3) ^ (g1 _ g2 _ :g3)℄Fig. 2. Conversion of a Boolean iruit into a Boolean expression in the CNF.are not (the former inludes events in onit, e3#e5, while the latter does notinlude e4 < e7). Intuitively, a on�guration is a partial-order exeution, i.e., anexeution where the order of �ring of some of its events (viz. onurrent ones) isnot important; e.g., the on�guration fe1; e3; e4; e7g orresponds to two totallyordered exeutions: e1e3e4e7 and e1e4e3e7. Sine a on�guration an orrespondto multiple exeutions, it is often muh more eÆient in model heking toexplore on�gurations rather than exeutions.After starting � from the impliit initial marking (whereby one puts a singletoken in eah ondition whih does not have an inoming ar) and exeuting allthe events in C, one reahes the marking denoted by Cut(C). Mark (C) denotesthe orresponding marking of � , reahed by �ring a transition sequene orre-sponding to the events in C. It is remarkable that eah reahable marking of� is Mark (C) for some on�guration C of �, and, onversely, eah on�gura-tion C of � generates a reahable marking Mark (C). Thus various behaviouralproperties of � an be re-stated as the orresponding properties of �, and thenheked, often muh more eÆiently.Boolean satis�ability The Boolean satis�ability problem (SAT) onsists in�nding a satisfying assignment, i.e., a mapping A : Var' ! f0; 1g de�ned onthe set of variables Var' ourring in a given Boolean expression ' suh that 'evaluates to 1. This expression is often assumed to be given in the onjuntivenormal form (CNF) ' = Vni=1Wl2Li l, i.e., it is represented as a onjuntion oflauses, whih are disjuntions of literals, eah literal l being either a variable orthe negation of a variable. It is assumed that no two literals in the same lauseorrespond to the same variable.In order to solve a Boolean satis�ability problem, SAT solvers perform ex-haustive searh assigning the values 0 or 1 to the variables, using heuristis toredue the searh spae [10℄. Some of the leading SAT solvers, e.g., zChaff [8℄,an be used in the inremental mode, i.e., after solving a partiular SAT instanethe user an slightly hange it (e.g., by adding and/or removing a small num-ber of lauses) and exeute the solver again. This is often muh more eÆientthan solving these related instanes as independent problems, beause on thesubsequent runs the solver an use some of the useful information (e.g., learntlauses [10℄) olleted so far.Boolean iruits A Boolean iruit (see, e.g., [9℄) omputes a multiple-outputBoolean funtion of Boolean input variables x1; : : : ; xn. It onsists of a �nite

number k of gates G1; : : : ; Gk . Eah gate Gi is labelled by a Boolean funtion fihosen from some �xed set of Boolean funtions F . (In this paper, F omprisesall the unary and binary Boolean funtions and onjuntions and disjuntionsof arbitrary arity with arbitrary input inversions.) A Boolean iruit an berepresented by an ayli direted graph, where the input variables and theonstants 0 and 1 are its soures, and the vertex representing the gate Gi hasarity(fi) numbered inoming edges from its predeessors in the graph. (If fi isommutative, the numbering of edges does not have to be spei�ed.) In pitures,eah gate is represented as a irle with the funtion shown within it, and inputinversions are shown as `bubbles'. Note that F is losed w.r.t. input inversions,and so they an be inorporated into the orresponding gate funtion.The Boolean funtion fv omputed at a vertex v of this ayli graph is de-�ned indutively as follows. If v is an input variable xj then fv(x1; : : : ; xn) df= xj ,and if it is a onstant 2 f0; 1g then fv(x1; : : : ; xn) df= . Otherwise, the vertex issome gate Gi, and fv(x1; : : : ; xn) df= fi(p1; : : : ; parity(fi)), where p1; : : : ; parity(fi)are the funtions omputed at the predeessors of this vertex in the graph. Theoutput vetor (v1; : : : ; vm), where vi is some vertex of the graph, desribes whatthe iruit omputes, viz. the multiple-output Boolean funtion (fv1 ; : : : ; fvm).In partiular, any Boolean formula over the signature F an be represented asa iruit.It turns out that a Boolean iruit an be eÆiently enoded by a Booleanexpression ' in the CNF depending on the variables Var' orresponding to theverties of the graph representing the iruit (exept 0 and 1) suh that for anyassignment A : Var' ! f0; 1g, A is a satisfying assignment of ' i� for everyv 2 Var', fv(A(x1); : : : ; A(xn)) = A(v) (where the variables are denoted bythe same symbol as the orresponding verties of the graph) and A(0) df= 0 andA(1) df= 1.The expression ' is onstruted as follows. For eah gate Gi, a new Booleanvariable gi representing its output is reated, a Boolean equation relating gi tothe inputs of Gi is written down, and these equations are onverted into theCNF. This proess is illustrated in Fig. 2. Note that for a gate labelled with aBoolean funtion of bounded arity, the size of the orresponding equation (andits CNF) is bounded by a onstant; moreover, for a gate labelled with a multiple-input onjuntion or disjuntion, the size of the equation (and its CNF) is linearin the number of gate inputs. Thus the size of the resulting Boolean expressionin the CNF is linear in the size of the iruit.Model heking based on Petri net unfoldings This paper onentrateson the following approah to model heking. First, a �nite and omplete pre�xof the Petri net unfolding is built, and it is then used for onstruting a Booleanformula enoding the model heking problem at hand. (It is assumed that theproperty being heked is the unreahability of some `bad' states, e.g., dead-loks.) This formula is unsatis�able i� the property holds, and suh that anysatisfying assignment to its variables yields a trae violating the property beingheked.

Typially suh a formula would have for eah non-ut-o� event e of the pre�xa variable onfe (the formula might also ontain other variables), and for everysatisfying assignment A, the set of events C df= fe j onfe = 1g is a on�gurationsuh that Mark (C) violates the property being heked. The formula often hasthe form CONF ^ VIOL. The role of the on�guration onstraint, CONF , isto ensure that C is a on�guration of the pre�x (not just an arbitrary set ofevents). CONF an be de�ned as the onjuntion of the formulae^e2EnEut ^f2�(�e)(onfe ! onff) and ^e2EnEut ^f2((�e)�nfeg)nEut:(onfe ^ onff) :The former formula ensures that if e 2 C then its immediate predeessors arealso in C, i.e., C is downward losed w.r.t. <. The latter one ensures that Contains no onits. CONF an be transformed into the CNF by applying therules x ! y � :x _ y and :(x ^ y) � :x _ :y. For example, the on�gurationonstraint for the pre�x shown in Fig. 1(b) is(onfe3!onfe1)^(onfe4!onfe1)^(onfe5!onfe2)^(onfe6!onfe2)^(onfe7!onfe3)^(onfe7!onfe4)^(onfe8!onfe5)^(onfe8!onfe6)^:(onfe3^onfe5)^:(onfe4^onfe6) :The role of the violation onstraint, VIOL, is to express the property viola-tion ondition for a on�guration C, so that if a on�guration C satisfying thisonstraint is found then the property does not hold, and any ordering of eventsin C onsistent with < is a violation trae. For example, for deadlok hekingVIOL an be de�ned aŝe2E � _f2�(�e):onff _ _f2(�e)�nEutonff� :This formula requires for eah event e (inluding ut-o� events) that some of thediret ausal predeessors of e has not �red or some of the non-ut-o� events(inluding e unless it is ut-o�) onsuming tokens from �e has �red, and thus eis not enabled. This formula is already in the CNF. For example, the violationonstraint for the deadlok heking problem formulated for the pre�x shown inFig. 1(b) isonfe1^onfe2^(:onfe1_onfe3)^(:onfe1_onfe4)^(:onfe2_onfe5)^(:onfe2_onfe6)^(:onfe3_:onfe4_onfe7)^(:onfe5_:onfe6_onfe8)^:onfe7^:onfe8 :Shortest violation traes Note that in general the omputed violation traean be quite long, whih might make it diÆult to loate the error, as the designerhas to inspet this trae in order to �nd and eliminate the soure of the problem.(And parts of suh long traes often desribe inidental system ativity whihis unrelated to the problem.) Thus omputing shortest possible violation traesan greatly failitate the debugging proess.A quite obvious algorithm for omputing the shortest violation trae is shownin Fig. 3, where SAT Assignment(') is a funtion omputing a satisfying as-signment for a Boolean formula ' and returning UNSAT in ase ' is unsat-is�able (it is usually implemented by a all to some o�-the-shelf SAT solver,

input : ' | a Boolean formulaoutput : T | the shortest violation trae or UNSATA SAT Assignment(')if A = UNSATthenT UNSATstopT Extrat Trae(A)r jT jl 0while l < r dot d(l+ r)=2eA SAT Assignment(' ^ Threshold t)if A = UNSATthenl = t+ 1elseT Extrat Trae(A)r jT jFig. 3. An algorithm for omputing shortest violation traes.e.g., zChaff [8℄), Extrat Trae(A) is a funtion extrating the violation traefrom a satisfying Boolean assignment A, and Threshold t is the threshold on-straint jfe j onfe = 1gj � t. This algorithm uses a binary searh to omputethe length of the shortest trae still exhibiting the violation. If the propertyholds (i.e., if ' is unsatis�able) then this algorithm does not have any additionaloverhead ompared with the original model heking algorithm, but in the aseof errors the SAT solver is alled several times with larger formulae, and so theoverhead might be quite signi�ant. This situation is somewhat alleviated bythe fat that SAT instanes are very similar to eah other (in fat, even the for-mulae of the form Threshold t, desribed in detail further in this paper, hangevery little when t hanges) and thus an be eÆiently solved in the inrementalmode. Moreover, the user always an terminate the exeution of the algorithmand get the shortest violation trae omputed so far.What still needs desribing is the onstrution of the formula Threshold t for agiven t. It turns out that one an exploit some problem-spei� optimisations inorder to signi�antly redue the size of this formula as well as the omputatione�ort required for solving the orresponding SAT instanes. This is the maintopi of this paper.2 Basi translation of a threshold onstraintThreshold t an be expressed as a pseudo-Boolean onstraintPe2EnEut onfe � t,where arithmetial operations are used instead of logial ones. The other on-straints an also be onverted into a similar form, and the problem an be solvedby a 0{1 integer linear programming solver. However, SAT solvers tend to be

x1 � � � xnCounter�tz
(a) y1 y2 y3 � � � yk1 f1 f2 f3 � � � fk zfi df= �^ if ti = 0_ otherwise

(b)

x1 x2�1 x3 x4�1 x5 x6�1 x7 x8�1�2 �2
z�3

()
x1 y1

z1h/a x2 y2
z2f/a � � �� � � xk yk

zkf/a zk+1
(d)

x y� _z o(e) x yh/ai zh/a _ o(f)Fig. 4. Implementations of a threshold onstraint (a); a omparator (b), where theinputs y1; : : : ; yk are interpreted as the binary representation of a non-negative integer(least signi�ant digit �rst) and t1; : : : ; tk is the binary representation of t; a ounter asa balaned tree of adders (); a k-bit adder �k omprising a half-adder ell and k � 1full-adder ells (d); and half-adder and full-adder ells (e,f).

more eÆient in pratie, and so in many ases it would be advantageous toexpress Threshold t as a purely Boolean onstraint.A possible implementation of Threshold t as a Boolean iruit is shown inFig. 4(a). It onsists of two parts: the ounter and the omparator. The ounteriruit has n inputs and dlog2 ne + 1 outputs, and its purpose is to ount thenumber of ones among its inputs and return the result as a binary number. Thepurpose of the omparator is to ompare this number with a given onstant t.Note that the ounter iruit does not depend on t and so the orrespond-ing part of the formula does not have to be hanged between the alls to theSAT solver in the algorithm shown in Fig. 3. A possible implementation of theomparator is shown in Fig. 4(b). Note that it does depend on t, and so theorresponding part of the formula has to be amended from all to all. How-ever, the size of the omparator is just O(logn). Thus this implementation ofthe threshold onstraint is bene�ial if the SAT solver is used in the inrementalmode. The rest of this setion is devoted to the ounter iruit.Fig. 4() illustrates an implementation of the ounter as a tree of adders,where eah adder is built of half-adder and full-adder ells, as shown in Fig. 4(d).A half-adder ell adds up two one-bit numbers, produing a one-bit result anda arry bit. A full-adder ell adds up two one-bit numbers and a arry from theprevious ell of the adder, produing a one-bit result and a arry bit. Fig. 4(e,f)shows possible implementations of these ells.The desribed iruit an be onverted to a linear-size formula in the CNF,as desribed in Setion 1. However, somewhat shorter formulae an be obtainedusing Boolean minimisation when translating half-adder and full-adder ells. Ityields the formulae(:x_:y_:z)^(x_:y_z)^(x_y_:z)^(y_:o)^(:x_o_z)^(:o_:z)with 2 new variables, 6 lauses and 16 literals for a half-adder ell, and(i_:x_y_z)^(i_x_:y_z)^(:i_:x_y_:z)^(:i_x_:y_:z)^(:i_o_z)^(i_:o_:z)^(:x_:y_o)^(x_y_:o)^(:i_:x_:y_z)^(i_x_y_:z)with 2 new variables, 10 lauses and 36 literals for a full-adder ell.It is shown in [6℄ that if n is a power of 2 then the resulting CNF formula forthe ounter ontains 4n� 2 log2 n� 4 auxiliary variables (orresponding to gateoutputs), 16n� 10 log2 n� 16 lauses and 52n� 36 log2 n� 52 literals, i.e., eventhough the size of the formula is linear in the number of the iruit's inputs, themultipliative onstants hidden in this O(n) translation are quite large. Nextsetion tries to remedy this situation by exploiting the struture of the pre�x toimprove the desribed translation.3 Exploiting the struture of the pre�xThe ontent of this setion is the main ontribution of this paper. It turns outthat the struture of the pre�x an be exploited to redue the size of the ounteriruit. Below, two heuristis are desribed, one utilising the onits betweenthe events in the pre�x, and the other making use of the ausality relation.

Exploiting the onits One an observe that if E0 � E n Eut is a set ofevents whih are in onit with eah other (i.e., E0 is a lique in the graphorresponding to the relation #) then no two events from E0 an belong to thesame on�guration. The on�guration onstraint ensures that at most one ofthe variables onfe orresponding to the events in E0 is assigned the value 1,i.e., 1 � jfe 2 E0 j onfe = 1gj = We2E0 onfe, and so a single _-gate is suÆientto ount the number of variables assigned the value 1.De�nition 1 (#-luster). A set of events E0 � E nEut is a #-luster if forall distint events e; f 2 E0, e#f .Thus the non-ut-o� events of the pre�x are partitioned into #-lusters, then_-gates are used to ount in eah #-luster the number of variables orrespondingto its events and assigned the value 1, and a ounter (hopefully, of a muhsmaller size) is used to ount the number of outputs of these _-gates having thevalue 1. Sine the translation of an _-gate into a Boolean expression is muhsmaller than the translation of a ounter, one an expet redutions in the sizeof the resulting formula. For example, ffe1g; fe2g; fe3; e5g; fe4; e6g; fe7; e8gg isa possible partition into #-lusters of the non-ut-o� events of the pre�x shownin Fig. 1(b).When partitioning the non-ut-o� events of the pre�x into #-lusters, it isadvantageous to make the number of suh #-lusters as small as possible. (Whenthe number of #-lusters is large, the size of the ounter grows; in partiular, forthe trivial partition with eah event forming its own #-luster the translationdegrades to the one desribed in the previous setion.) Thus one an formulatean optimisation problem of partitioning the non-ut-o� events of a pre�x into thesmallest number of #-lusters. Unfortunately, a deision version of this problemturns out to be NP-omplete.Proposition 1 (NP-ompleteness of the Partition into #-lusters prob-lem). Given an unfolding pre�x � and a k 2 N, the problem of deiding whetherthe set of non-ut-o� events of � an be partitioned into at most k #-lusters isNP-omplete.The proof is by redution from the Partition into Cliques problem, whih isknown to be NP-omplete [3, Problem GT15℄, and an be found in [6℄.When omputing the shortest violation trae, one does not want to spend toomuh e�ort on building the threshold onstraints, as the proess of building theman easily beome more time onsuming then model heking itself. Therefore,in the atual implementation, a fast `greedy' algorithm for partitioning the set ofevents into #-lusters was adopted, whih is justi�able in the view of the aboveresult. This algorithm is desribed in [6℄.Exploiting the ausality relation The method desribed above allowed forsimpli�ation of the threshold onstraint by exploiting the onit relation be-tween the events in the pre�x. It turns out that the ausality relation an alsobe exploited to redue the size of the translation even further.

y1 y2 y3 y4 y5 y6 y7 y8
z4z3z2z1

^^ ^_ ^^ ^ ^_ zi df=� k�2i�12i �_j=0 y2i(j+ 12)^:y2i(j+1)i 2 f1; : : : ; dlog2 ke+ 1gyk0 df= 0 if k0 > k
Fig. 5. An implementation of an eight-input ounter with the values of inputs on-strained to be in a non-inreasing order.De�nition 2. Let Cl and Cl 0 be two #-lusters. Cl � Cl 0 if for eah evente0 2 Cl 0 there exists an event e 2 Cl suh that e < e0. A sequene of #-lustersCl1 � Cl2 � � � � � Clk is alled a �-hain.For example, fe4; e6g � fe7; e8g is a �-hain of the pre�x shown in Fig. 1(b).It follows from this de�nition that if Cl � Cl 0 and an event e0 2 Cl 0 be-longs to a on�guration C then some event e 2 Cl also belongs to C. SupposeCl1 � Cl2 � � � � � Clk is a �-hain and y1; : : : ; yk are the outputs of the_-gates orresponding to these #-lusters. The on�guration onstraint ensuresthat in any satisfying assignment the sequene of values of y1; : : : ; yk is non-inreasing. This allows one to ount the number of ones among these valuesmuh more eÆiently than by a ounter desribed in the previous setion. In-deed, the enoding of the inputs is very similar to the 1-hot enoding, whihan be obtained from y1; : : : ; yk as :y1; y1 ^ :y2; y2 ^ :y3; : : : ; yk�1 ^ :yk; ykand subsequently onverted into the binary ode using an enoder. A somewhatsmaller iruit is shown in Fig. 5.Thus one an partition the ayli direted graphG� orresponding to the�relation on the #-lusters into �-hains, then build for eah �-hain a iruitsimilar to the one shown in Fig. 5, and �nally onstrut an adder tree similarto that in Fig. 4(), but with the bottom layer omprised of the built oun-ters rather than half-adders. The algorithm shown in Fig. 6 does this tryingto balane the resulting adder tree. ExtratMin(Q) extrats and returns a pair(;m) 2 Q (where is a iruit and m 2 N is the maximum value this iruitan output) with the minimum value of m, and Add(1; 2) onstruts a iruitwhih omputes the sum of values omputed by 1 and 2 (i.e., an adder is put`on top' of 1 and 2). Note that Q is a priority queue and an be eÆientlyimplemented as either a binary heap or by keeping a list of iruits for eah m.When partitioning G� into�-hains, it is advantageous to make the numberof suh�-hains as small as possible, in order to redue the number of adders inthe adder tree. Thus one an formulate an optimisation problem of partitioning

input : Q | a non-empty set of pairs (;m), where is a iruit and m 2 Noutput : | a iruitwhile jQj > 1 do(1;m1) ExtratMin(Q)(2;m2) ExtratMin(Q)Q Q [f(Add(1; 2);m1 +m2)g/* now jQj=1 */(;m) ExtratMin(Q)return Fig. 6. An algorithm for building a tree of adders.G� into the smallest number of �-hains. This is essentially the well-knownminimum vertex-disjoint path over problem (zero-length paths omprising asingle vertex are admissible).This problem is NP-omplete for general graphs, sine heking the existeneof a Hamiltonian path is equivalent to heking whether it is possible to over theverties of a given graph by a single vertex-disjoint path. Nevertheless, for ayligraphs (note that G� is ayli) it an be redued to the maximum mathingproblem on a bipartite graph, and solved in polynomial time [4℄. However, oneshould bear in mind that G� is given impliitly, and an be very large. (It isnot unommon to have an unfolding pre�x with hundreds thousands events.)Therefore, using an exat algorithm for solving this problem might be either toomemory demanding (if G� is built expliitly), or too slow due to the need ofworking with an impliitly represented graph (heking whether there is an arbetween two verties of G� is quite expensive in suh a ase, as one might haveto traverse the whole pre�x). Thus a fast `greedy' algorithm for partitioning theset of #-lusters into �-hains has been designed. It is desribed in [6℄.4 Experimental resultsThe proposed method has been tested with the zChaff SAT solver [8℄, andthe popular set of deadlok heking benhmarks olleted by J.C. Corbett [1℄has been attempted. (For obvious reasons, only examples with deadloks fromthis olletion were used.) All the experiments were onduted on a PC with aPentiumTM IV/2.8GHz proessor and 512M RAM.The experimental results are shown in Table 1, where the meaning of theolumns is as follows (from left to right): the name of the problem; the num-ber of non-ut-o� events in the pre�x; the lengths of the �rst omputed and ashortest violation traes; the number of #-lusters and �-hains omputed bythe heuristi algorithms desribed in [6℄; the size (the number of new variables,lauses and literals) of the translation of the ounter iruit for the basi trans-lation desribed in Setion 2 and for the improved one desribed in Setion 3;and the time taken by the SAT solver to ompute the �rst violation trae andthe time taken by the algorithm in Fig. 3 to ompute a shortest violation traeusing the basi and the improved translations of the ounter.

Problem Pre�x Trae Partitions Translation of ounter TimeBasi ImprovedjEnEut j 1st shtst #-l �-h vars ls lits vars ls lits 1st Bas. Imp.Q 7229 75 21 179 25 28881 115479 375221 520 8781 26031 <1 3 1Speed 1663 24 4 30 9 6620 26436 85832 98 1952 5806 <1 1 <1Da(6) 53 6 6 23 11 195 761 2437 72 279 833 <1 <1 <1Da(9) 95 9 9 35 17 359 1409 4527 116 460 1372 <1 <1 <1Da(12) 146 12 12 47 23 564 2236 7230 160 662 2000 <1 <1 <1Da(15) 206 43 15 59 29 802 3182 10292 205 864 2600 <1 <1 <1Dp(6) 66 6 6 18 6 247 973 3135 55 222 628 <1 <1 <1Dp(8) 120 8 8 24 8 461 1823 5885 75 341 987 <1 <1 <1Dp(10) 190 10 10 30 10 737 2919 9431 96 475 1381 <1 <1 <1Dp(12) 276 12 12 36 12 1082 4306 13954 119 635 1861 <1 <1 <1Elev(1) 98 9 9 16 5 374 1478 4770 43 222 640 <1 <1 <1Elev(2) 496 22 12 24 7 1960 7812 25336 65 685 2017 <1 <1 <1Elev(3) 2266 30 15 32 9 9033 36095 117239 94 2549 7607 <1 <1 <1Elev(4) 9598 23 18 40 11 38354 153366 498344 117 9950 29798 2 27 3Hart(25) 101 26 26 76 26 385 1519 4897 218 826 2528 <1 <1 <1Hart(50) 201 51 51 151 51 783 3109 10061 440 1684 5188 <1 <1 <1Hart(75) 301 76 76 226 76 1180 4692 15196 666 2566 7942 <1 <1 <1Hart(100) 401 101 101 301 101 1581 6299 20425 888 3424 10602 <1 <1 <1Key(2) 454 52 42 103 18 1792 7140 23152 285 1309 3761 <1 <1 <1Key(3) 4057 53 43 223 41 16194 64730 210284 680 6123 18051 <1 20 2Key(4) 35905 65 44 407 82 143582 574286 1866352 1269 39797 118855 <1 548 224Mmgt(1) 38 6 6 11 2 136 528 1686 25 98 250 <1 <1 <1Mmgt(2) 385 8 8 26 7 1518 6050 19622 80 618 1806 <1 <1 <1Mmgt(3) 3312 10 10 36 6 13217 52831 171631 98 3584 10658 <1 <1 <1Mmgt(4) 25945 12 12 44 7 103741 414915 1348381 119 26273 78693 77 86 80Sent(25) 176 34 3 40 3 684 2716 8790 69 370 1028 <1 <1 <1Sent(50) 201 59 3 65 3 783 3109 10061 98 480 1302 <1 <1 <1Sent(75) 226 84 3 90 3 883 3509 11361 123 579 1549 <1 <1 <1Sent(100) 251 109 3 115 3 980 3888 12574 149 681 1803 <1 <1 <1Table 1. Experimental results for deadlok heking.The experiments show that in many ases the �rst omputed violation traewas muh longer than a shortest one, with the results for the Sent benhmarksbeing partiularly impressive. This on�rms that in pratie omputing shortestviolation traes an indeed greatly failitate the debugging proess.One an see that the number of #-lusters and �-hains is usually quitesmall ompared to the number of non-ut-o� events in the pre�x, and thus theredution in the size of the formula is quite signi�ant. It is possible to evaluatethe maximum redution whih an be ahieved by the improved translation overthe basi one as follows. In the ideal ase, all the events in the pre�x would bein onit with eah other, and so the ounter iruit an be implemented as asingle _-gate. Suh an implementation results in one new variable (for the gate'soutput), n + 1 lauses and 3n + 1 literals in the orresponding CNF formula,where n = jE n Eut j. The orresponding parameters for the basi translationare given in Setion 2, and the improvement ratios for new variables, lausesand literals are (4n� 2 log2 n� 4)=1 � 4n, (16n� 10 log2 n� 16)=(n+ 1) � 16and (52n�36 log2 n�52)=(3n+1) � 17 13 , respetively. Thus the redution ratiofor variables an grow unboundedly with n, whereas for lauses and literals it isbounded by 16 and 17 13 , respetively.The improvement ratios for the benhmarks in Table 1 are plotted in Fig. 7.One an see that for the number of new variables, the redution ratio indeedgrows with the size of the pre�x (though not as fast as in the ideal ase), and is

Fig. 7. Improvement ratios.between two and three orders of magnitude for large benhmarks. For lauses andliterals, the improvement rate also grows with the size of the pre�x, and omessurprisingly lose to the best possible ratio for large benhmarks. Moreover, itshould be noted that sine the improved translation uses a lot of multiple-input_-gates, the orresponding CNF formula has many lauses of length two, whihmakes the SAT instane easier for the solver.The omparison of the running times of the algorithms shows that, exeptone test ase, it was not too time-onsuming to ompute a shortest violationtrae. (This is probably due to the fat that only a few benhmarks are large.)Moreover, the improved approah has a lear advantage over the basi one interms of time. The only benhmark where omputing the shortest violation traeby the improved method took signi�antly more time than just solving the orig-inal model heking problem was Key(4). (Note that for Mmgt(4) the inreasein time was quite modest, whih an be explained by the fat that the �rst om-puted violation trae was already optimal and very short.) In general, however,one an expet a signi�ant inrease in time when omputing the shortest viola-tion traes, due to the following phenomenon, related to phase transition. Let t�be the length of the shortest violation trae. If t is signi�antly larger than t�,adding the onstraint Threshold t to the formula will exlude only a few satisfy-ing assignments, and the resulting formula will not be muh harder for the solverthan the original one. On the other hand, if t is signi�antly smaller than t�,adding Threshold t to the formula will yield an overonstrained SAT instanewhih usually an be quikly proven unsatis�able. A hard situation an ourwhen t is lose to t�. In suh a ase, if the SAT instane is satis�able, it oftenhas only a small number of satisfying assignments (and thus suh an assignmentmight be diÆult to �nd), and if it is unsatis�able, it might be hard to show

this. The last part of Setion 1 disusses how the impat of this phenomenonan be alleviated in pratie.5 Conlusions and future workAlthough performed testing was limited in sope, one an draw some onlusionsabout the eÆieny of the proposed approah. Computing shortest violationtraes an failitate the debugging proess and save a lot of designer's time,sine in many ases the �rst omputed violation trae is muh longer than ashortest one. Aording to the experimental results, for large problem instanesit an redue the number of new variables in the formula by two{three ordersof magnitude, and ahieve almost optimal redution in the number of lausesand literals, i.e., the length of the CNF formula orresponding to the thresholdonstraint was surprisingly lose to that for a single multiple-input _-gate!The possible diretions for future researh inlude using a Boolean minimiserto derive short formulae not only for half-adder and full-adder ells but also foradders with a small number of inputs, and exploiting the struture of the pre�xto redue the size of other pseudo-Boolean onstraints enountered when dealingwith various model heking problems.Aknowledgements The author would like to thank Keijo Heljanko for fruitfuldisussions. This researh was supported by an EC IST grant 511599 (Rodin).Referenes1. J. C. Corbett: Evaluating Deadlok Detetion Methods for Conurrent Software.IEEE Transations on Software Engineering 22(3) (1996) 161{180.2. J. Esparza: Deidability and Complexity of Petri Net Problems | an Introdution.Letures on Petri Nets I: Basi Models. LNCS 1491 (1998) 374{428.3. M.Garey and D. Johnson: Computers and Intratability | A Guide to the Theoryof NP-ompleteness. Freeman (1979).4. J. E. Hoproft and R.M.Karp: An n5=2 Algorithm for Maximum Mathing in Bi-partite Graphs. SIAM Journal on Computing 2(4) (1973) 225{231.5. V.Khomenko: Model Cheking Based on Pre�xes of Petri Net Unfoldings. Shoolof Comp. Si., Univ. of Newastle (2003).6. V.Khomenko: Computing Shortest Violation Traes in Model Cheking Based onPetri Net Unfoldings and SAT. TRep. CS-TR-841, Shool of Comp. Si., Univ.of Newastle (2004). URL: http://homepages.s.nl.a.uk/vitor.khomenko/home.formal/papers/papers.html7. K. L.MMillan: Using Unfoldings to Avoid State Explosion Problem in the Veri�-ation of Asynhronous Ciruits. Pro. of CAV'1992, LNCS 663 (1992) 164{174.8. S.Moskewiz, C.Madigan, Y. Zhao, L. Zhang and S.Malik: Chaff: Engineering anEÆient SAT Solver. Pro. of DAC'2001, ASME Tehn. Publ. (2001) 530{535.9. I.Wegener: The Complexity of Boolean Funtions. Wiley-Teubner Series in Com-puter Siene (1987).10. L. Zhang and S.Malik: The Quest for EÆient Boolean Satis�ability Solvers. Pro.of CAV'2002, E. Brinksma and K.G. Larsen (Eds.). LNCS 2404 (2002) 582{595.

