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Abstract. Model checking based on the causal partial order semantics
of Petri nets is an approach widely applied to cope with the state space
explosion problem. One of the possibilities for the verification process is
to build a finite and complete prefix and use it for constructing a Boolean
formula such that any satisfying assignment to its variables yields a trace
violating the property being checked. (And if there are no satisfying
assignments then the property holds.)

In this paper a method for computing the shortest violation traces (which
can greatly facilitate debugging) is proposed. Experimental results de-
monstrate that it can achieve significant reductions in the size of the
Boolean formula as well as in the time required to compute a shortest
violation trace, when compared with a naive approach.

Keywords: Shortest trace, model checking, Petri net unfolding, SAT,
Boolean circuit.

1 Introduction and basic notions

A distinctive characteristic of reactive concurrent systems is that their sets of
local states have descriptions which are both short and manageable, and the
complexity of their behaviour comes from highly complicated interactions with
the external environment rather than from complicated data structures and ma-
nipulations thereon. One way of coping with this complexity problem is to use
formal methods and, especially, computer aided verification tools implementing
model checking — a technique in which the verification of a system is carried
out using a finite representation of its state space.

The main drawback of model checking is that it suffers from the state space
explosion problem. That is, even a relatively small system specification can (and
often does) yield a very large state space. To cope with this, several techniques
have been developed, which usually aim either at a compact representation of
the full state space of the system, or at the generation of its reduced (though
sufficient for a given verification task) state space. Among them, a prominent
technique is McMillan’s (finite prefixes of) Petri Net unfoldings (see, e.g., [5,7]).
They rely on the partial order view of concurrent computation, and represent
system states implicitly, using an acyclic net, called a prefiz.

Most of ‘interesting’ problems for safe Petri nets are PSP.ACE-complete [2],
but the same problems for prefixes are often in A”P or even P. Though the size
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of a finite and complete unfolding prefix can be exponential in the size of the
original Petri net, in practice it is often relatively small.

A model checking problem formulated for a prefix can usually be translated
into some canonical problem, e.g., Boolean satisfiability (SAT). Then an off-
the-shelf SAT solver can be used for efficiently solving it. Such a combination
‘unfolder & solver’ turns out to be quite powerful in practice.

Petri nets A net is a triple N = (P, T, F) such that P and T are disjoint sets of
respectively places and transitions, and F' C (P x T)U(T x P) is a flow relation.
A marking of N is a multiset M of places, ie., M : P - N £ {0,1,2,...}.
The standard rules about drawing nets are adopted in this paper, viz. places
are represented as circles, transitions as boxes, the flow relation by arcs, and the
marking is shown by placing tokens within circles. As usual, *z = {y | (y,2) € F}
and z* = {y | (z,y) € F} denote the pre- and postset of z € P UT, and
ez U.cz *z and Z° £ U.cz 2% for all Z C PUT. In this paper, the presets
of transitions are restricted to be non-empty, i.e., *t # @ for every t € T. A net
system is a pair 7 = (N, My) comprising a finite net N and an initial marking
Mjy. Tt is assumed that the reader is familiar with the standard notions of the
Petri nets theory, such as the enabledness and firing of a transition, marking
reachability and deadlock.

Unfolding prefix A finite and complete unfolding prefix m of a Petri net 7 is a
finite acyclic net which implicitly represents all the reachable states of 7" together
with transitions enabled at those states. Intuitively, it can be obtained through
unfolding T, by successive firings of transition, under the following assumptions:
(a) for each new firing a fresh transition (called an event) is generated; (b) for
each newly produced token a fresh place (called a condition) is generated. The
unfolding is infinite whenever 7" has an infinite run; however, if 7" has finitely
many reachable states then the unfolding eventually starts to repeat itself and
can be truncated (by identifying a set of cut-off events) without loss of infor-
mation, yielding a finite and complete prefix. The sets of conditions, events and
cut-off events of the prefix are denoted by B, E and E.,;, respectively. (Note
that Feu C E).

Efficient algorithms exist for building such prefixes [5], which ensure that the
number of non-cut-off events |E \ E.,| in a complete prefix can never exceed
the number of reachable states of 1. Moreover, complete prefixes are often ex-
ponentially smaller than the corresponding state graphs, especially for highly
concurrent Petri nets, because they represent concurrency directly rather than
by multidimensional ‘diamonds’ as it is done in state graphs. For example, if the
original Petri net consists of 100 transitions which can fire once in parallel, the
state graph will be a 100-dimensional hypercube with 2'%° vertices, whereas the
complete prefix will coincide with the net itself. Another example, viz. a Petri
net modelling two dining philosophers, and a finite and complete prefix of its
unfolding, are shown in Fig. 1. One can observe that if this example is scaled up,
the size of the prefix is linear in the number of dining philosophers, even though
the number of reachable states grows exponentially.



Fig. 1. A Petri net modelling two dining philosophers (a) and a finite and complete
prefix of its unfolding (b).

Since 7 is acyclic, the transitive closure of its flow relation is a partial order
< on BU E, called the causality relation. (The reflexive order corresponding
to < will be denoted by <.) Intuitively, all the events which are smaller than
an event e € F w.r.t. < must precede e in any valid execution containing e.
Two nodes =,y € B U FE are in conflict, denoted z#y, if there are distinct
events e, f € E such that *enN®f # 0 and e < z and f < y. Intuitively, no
valid execution can contain two events in conflict. Two nodes z,y € BU E are
concurrent, denoted x co y, if neither y#y' nor y < gy’ nor y' < y. Intuitively,
two concurrent events can be enabled simultaneously, and executed in any order,
or even concurrently. For example, in the prefix shown in Fig. 1(b) the following
relationships hold: e; < er, er#tes (due to the choices at ¢ and ¢3) and e3 co eq.

The reachable markings of 7" can be represented using configurations of w. A
configuration is a set of events C C E \ E.,; such that for all e, f € C, =(e#f)
and, for every e € C, f < e implies f € C. For example, in the net shown in
Fig. 1(b), {e1,e3,e4} is a configuration, whereas {e1,eq2,e3,e5} and {e1,e3,e7}
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Fig. 2. Conversion of a Boolean circuit into a Boolean expression in the CNF.

are not (the former includes events in conflict, es#es, while the latter does not
include e4 < e7). Intuitively, a configuration is a partial-order execution, i.e., an
execution where the order of firing of some of its events (viz. concurrent ones) is
not important; e.g., the configuration {e;, e, eq,e7} corresponds to two totally
ordered executions: ejezeqer; and ejeqezer. Since a configuration can correspond
to multiple executions, it is often much more efficient in model checking to
explore configurations rather than executions.

After starting 7 from the implicit initial marking (whereby one puts a single
token in each condition which does not have an incoming arc) and executing all
the events in C, one reaches the marking denoted by Cut(C). Mark(C) denotes
the corresponding marking of 7', reached by firing a transition sequence corre-
sponding to the events in C'. It is remarkable that each reachable marking of
Y is Mark(C) for some configuration C' of 7, and, conversely, each configura-
tion C of 7 generates a reachable marking Mark(C). Thus various behavioural
properties of 7" can be re-stated as the corresponding properties of 7, and then
checked, often much more efficiently.

Boolean satisfiability The Boolean satisfiability problem (SAT) consists in
finding a satisfying assignment, i.e., a mapping A : Var, — {0,1} defined on
the set of variables Var, occurring in a given Boolean expression ¢ such that ¢
evaluates to 1. This expression is often assumed to be given in the conjunctive
normal form (CNF) ¢ = NI, vleLi l, i.e., it is represented as a conjunction of
clauses, which are disjunctions of literals, each literal [ being either a variable or
the negation of a variable. It is assumed that no two literals in the same clause
correspond to the same variable.

In order to solve a Boolean satisfiability problem, SAT solvers perform ex-
haustive search assigning the values 0 or 1 to the variables, using heuristics to
reduce the search space [10]. Some of the leading SAT solvers, e.g., ZCHAFF [8],
can be used in the incremental mode, i.e., after solving a particular SAT instance
the user can slightly change it (e.g., by adding and/or removing a small num-
ber of clauses) and execute the solver again. This is often much more efficient
than solving these related instances as independent problems, because on the
subsequent runs the solver can use some of the useful information (e.g., learnt
clauses [10]) collected so far.

Boolean circuits A Boolean circuit (see, e.g., [9]) computes a multiple-output
Boolean function of Boolean input variables x1,...,x,. It consists of a finite



number k of gates G4, .. .,Gy. Each gate G; is labelled by a Boolean function f;
chosen from some fixed set of Boolean functions F. (In this paper, F comprises
all the unary and binary Boolean functions and conjunctions and disjunctions
of arbitrary arity with arbitrary input inversions.) A Boolean circuit can be
represented by an acyclic directed graph, where the input variables and the
constants 0 and 1 are its sources, and the vertex representing the gate G; has
arity(f;) numbered incoming edges from its predecessors in the graph. (If f; is
commutative, the numbering of edges does not have to be specified.) In pictures,
each gate is represented as a circle with the function shown within it, and input
inversions are shown as ‘bubbles’. Note that F is closed w.r.t. input inversions,
and so they can be incorporated into the corresponding gate function.

The Boolean function f, computed at a vertex v of this acyclic graph is de-

fined inductively as follows. If v is an input variable z; then fy(z1,...,2y) £ zj,

and if it is a constant ¢ € {0,1} then f,(z1,...,2z,) £ ¢. Otherwise, the vertex is
df

some gate Gy, and fy(z1,...,20) = fi(P1,- -, Parity(£;))» Where pi, ..., Darity(f:)
are the functions computed at the predecessors of this vertex in the graph. The
output vector (vi,...,v,), where v; is some vertex of the graph, describes what
the circuit computes, viz. the multiple-output Boolean function (f,,,..., fu,.)-
In particular, any Boolean formula over the signature F can be represented as
a circuit.

It turns out that a Boolean circuit can be efficiently encoded by a Boolean
expression ¢ in the CNF depending on the variables Var, corresponding to the
vertices of the graph representing the circuit (except 0 and 1) such that for any
assignment A : Var, — {0,1}, A is a satisfying assignment of ¢ iff for every
v € Vary, fo(Az1),..., A(z,)) = A(v) (where the variables are denoted by
the same symbol as the corresponding vertices of the graph) and A(0) = 0 and
A1) = 1.

The expression ¢ is constructed as follows. For each gate GG;, a new Boolean
variable g; representing its output is created, a Boolean equation relating g; to
the inputs of G; is written down, and these equations are converted into the
CNF. This process is illustrated in Fig. 2. Note that for a gate labelled with a
Boolean function of bounded arity, the size of the corresponding equation (and
its CNF) is bounded by a constant; moreover, for a gate labelled with a multiple-
input conjunction or disjunction, the size of the equation (and its CNF) is linear
in the number of gate inputs. Thus the size of the resulting Boolean expression
in the CNF is linear in the size of the circuit.

Model checking based on Petri net unfoldings This paper concentrates
on the following approach to model checking. First, a finite and complete prefix
of the Petri net unfolding is built, and it is then used for constructing a Boolean
formula encoding the model checking problem at hand. (It is assumed that the
property being checked is the unreachability of some ‘bad’ states, e.g., dead-
locks.) This formula is unsatisfiable iff the property holds, and such that any
satisfying assignment to its variables yields a trace violating the property being
checked.



Typically such a formula would have for each non-cut-off event e of the prefix
a variable conf, (the formula might also contain other variables), and for every
satisfying assignment A, the set of events C' = {e | conf, = 1} is a configuration
such that Mark(C) violates the property being checked. The formula often has
the form CONF A VIOL. The role of the configuration constraint, CONF, is
to ensure that C is a configuration of the prefix (not just an arbitrary set of
events). CONF can be defined as the conjunction of the formulae

/\ /\ (conf. — conf;) and /\ /\ —(conf. A confy) .

e€F\Eu fE° (e e€F\Eeu fE((*e)*\{e})\ Eow
The former formula ensures that if e € C then its immediate predecessors are
also in C, i.e., C is downward closed w.r.t. <. The latter one ensures that C'
contains no conflicts. CONF can be transformed into the CNF by applying the
rules z —» y = -z Vy and —(x Ay) = -z V —~y. For example, the configuration
constraint for the prefix shown in Fig. 1(b) is

(conf, —conf,, )A(conf., —conf, )A(conf., —conf,,)A

(conf., —conf.,)A(conf., —conf.,)A(conf.,—conf.,)A
(conf., —conf,, )A(conf., —conf,)A—(conf., Aconf., ) A=(conf., Aconf,,) .

The role of the violation constraint, VZOL, is to express the property viola-
tion condition for a configuration C', so that if a configuration C' satisfying this
constraint is found then the property does not hold, and any ordering of events
in C consistent with < is a violation trace. For example, for deadlock checking
VZOL can be defined as

/\ ( \/ —|conff \Y \/ conff)
ecE  feo( ce)*\E ut
This formula requires for each event € (1nclud1ng cut-off events) that some of the
direct causal predecessors of e has not fired or some of the non-cut-off events
(including e unless it is cut-off) consuming tokens from ®e has fired, and thus e
is not enabled. This formula is already in the CNF. For example, the violation
constraint for the deadlock checking problem formulated for the prefix shown in
Fig. 1(b) is
confe, Aconfe, A(—conf,, Vconf,, )A(—conf,, Vconf,,)A
(—confe, Veonfe, )A(—conf,, Veonf,, )A(—confe, V—conf,, Vconf,,)A
(—conf., V-conf,,Vconf,., )A—conf,.. A—conf,, .
Shortest violation traces Note that in general the computed violation trace
can be quite long, which might make it difficult to locate the error, as the designer
has to inspect this trace in order to find and eliminate the source of the problem.
(And parts of such long traces often describe incidental system activity which
is unrelated to the problem.) Thus computing shortest possible violation traces
can greatly facilitate the debugging process.

A quite obvious algorithm for computing the shortest violation trace is shown
in Fig. 3, where SAT_Assignment(p) is a function computing a satisfying as-
signment for a Boolean formula ¢ and returning UNSAT in case ¢ is unsat-
isfiable (it is usually implemented by a call to some off-the-shelf SAT solver,



input : ¢ — a Boolean formula
output : T'— the shortest violation trace or UNSAT

A « SAT_Assignment(yp)
if A = UNSAT
then
T < UNSAT
stop
T < Egztract_Trace(A)
r+ |T|
[+ 0
while [ < r do
t— [(l+7r)/2]
A+ SAT _Assignment(p A Thresholdy)

if A = UNSAT

then
I=t+1

else
T < Eztract_Trace(A)
r+ |T|

Fig. 3. An algorithm for computing shortest violation traces.

e.g., ZCHAFF [8]), Extract_Trace(A) is a function extracting the violation trace
from a satisfying Boolean assignment A, and Threshold; is the threshold con-
straint |{e | conf, = 1}| < t¢. This algorithm uses a binary search to compute
the length of the shortest trace still exhibiting the violation. If the property
holds (i.e., if ¢ is unsatisfiable) then this algorithm does not have any additional
overhead compared with the original model checking algorithm, but in the case
of errors the SAT solver is called several times with larger formulae, and so the
overhead might be quite significant. This situation is somewhat alleviated by
the fact that SAT instances are very similar to each other (in fact, even the for-
mulae of the form Threshold;, described in detail further in this paper, change
very little when ¢ changes) and thus can be efficiently solved in the incremental
mode. Moreover, the user always can terminate the execution of the algorithm
and get the shortest violation trace computed so far.

What still needs describing is the construction of the formula Threshold, for a
given t. It turns out that one can exploit some problem-specific optimisations in
order to significantly reduce the size of this formula as well as the computation
effort required for solving the corresponding SAT instances. This is the main
topic of this paper.

2 Basic translation of a threshold constraint

Threshold; can be expressed as a pseudo-Boolean constraint ZeeE\Em conf, <'t,
where arithmetical operations are used instead of logical ones. The other con-
straints can also be converted into a similar form, and the problem can be solved
by a 0-1 integer linear programming solver. However, SAT solvers tend to be
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a balanced tree of adders (c); a k-bit adder Xy comprising a half-adder cell and k — 1
full-adder cells (d); and half-adder and full-adder cells (e,f).



more efficient in practice, and so in many cases it would be advantageous to
express Threshold; as a purely Boolean constraint.

A possible implementation of Threshold; as a Boolean circuit is shown in
Fig. 4(a). It consists of two parts: the counter and the comparator. The counter
circuit has n inputs and [log, n] + 1 outputs, and its purpose is to count the
number of ones among its inputs and return the result as a binary number. The
purpose of the comparator is to compare this number with a given constant ¢.

Note that the counter circuit does not depend on ¢ and so the correspond-
ing part of the formula does not have to be changed between the calls to the
SAT solver in the algorithm shown in Fig. 3. A possible implementation of the
comparator is shown in Fig. 4(b). Note that it does depend on ¢, and so the
corresponding part of the formula has to be amended from call to call. How-
ever, the size of the comparator is just O(logn). Thus this implementation of
the threshold constraint is beneficial if the SAT solver is used in the incremental
mode. The rest of this section is devoted to the counter circuit.

Fig. 4(c) illustrates an implementation of the counter as a tree of adders,
where each adder is built of half-adder and full-adder cells, as shown in Fig. 4(d).
A half-adder cell adds up two one-bit numbers, producing a one-bit result and
a carry bit. A full-adder cell adds up two one-bit numbers and a carry from the
previous cell of the adder, producing a one-bit result and a carry bit. Fig. 4(e,f)
shows possible implementations of these cells.

The described circuit can be converted to a linear-size formula in the CNF,
as described in Section 1. However, somewhat shorter formulae can be obtained
using Boolean minimisation when translating half-adder and full-adder cells. It
yields the formulae

(m2V-yV-z)A(@V-yV2)A(zVyV—2)A(yV—co )N (mxzV e V) A (e, V-z)
with 2 new variables, 6 clauses and 16 literals for a half-adder cell, and

(c;V=zVYyVz)A (e Ve —yVz) A(—e;V-axVYyV—2)A(—e; VeV —yV—z)A(—e; Ve, Vz) A
(c;V=eo,V=2)A(maV =y Ve ) A (xVyV=c ) A (= VaaV -y V2)A(e;VaVyV-z)

with 2 new variables, 10 clauses and 36 literals for a full-adder cell.

It is shown in [6] that if n is a power of 2 then the resulting CNF formula for
the counter contains 4n — 2log, n — 4 auxiliary variables (corresponding to gate
outputs), 16n — 101log, n — 16 clauses and 52n — 36 log, n — 52 literals, i.e., even
though the size of the formula is linear in the number of the circuit’s inputs, the
multiplicative constants hidden in this O(n) translation are quite large. Next
section tries to remedy this situation by exploiting the structure of the prefix to
improve the described translation.

3 Exploiting the structure of the prefix

The content of this section is the main contribution of this paper. It turns out
that the structure of the prefix can be exploited to reduce the size of the counter
circuit. Below, two heuristics are described, one utilising the conflicts between
the events in the prefix, and the other making use of the causality relation.



Exploiting the conflicts One can observe that if E' C E \ E.y; is a set of
events which are in conflict with each other (i.e., E' is a clique in the graph
corresponding to the relation #) then no two events from E’ can belong to the
same configuration. The configuration constraint ensures that at most one of
the variables conf, corresponding to the events in E’ is assigned the value 1,
ie,1>[{e€ E'|conf, =1} =\ .p confe, and so a single V-gate is sufficient
to count the number of variables assigned the value 1.

Definition 1 (#-cluster). A set of events E' C E \ E.y; is a #-cluster if for
all distinct events e, f € E', eftf.

Thus the non-cut-off events of the prefix are partitioned into #-clusters, then
V-gates are used to count in each #-cluster the number of variables corresponding
to its events and assigned the value 1, and a counter (hopefully, of a much
smaller size) is used to count the number of outputs of these V-gates having the
value 1. Since the translation of an V-gate into a Boolean expression is much
smaller than the translation of a counter, one can expect reductions in the size
of the resulting formula. For example, {{e1}, {e2}, {es,e5},{es, €6}, {e7,e5}} is
a possible partition into #-clusters of the non-cut-off events of the prefix shown
in Fig. 1(b).

When partitioning the non-cut-off events of the prefix into #-clusters, it is
advantageous to make the number of such #-clusters as small as possible. (When
the number of #-clusters is large, the size of the counter grows; in particular, for
the trivial partition with each event forming its own #-cluster the translation
degrades to the one described in the previous section.) Thus one can formulate
an optimisation problem of partitioning the non-cut-off events of a prefix into the
smallest number of #-clusters. Unfortunately, a decision version of this problem
turns out to be NP-complete.

Proposition 1 (NP-completeness of the Partition into #-clusters prob-
lem). Given an unfolding prefix m and a k € N, the problem of deciding whether
the set of non-cut-off events of © can be partitioned into at most k #-clusters is
NP-complete.

The proof is by reduction from the Partition into Cliques problem, which is
known to be NP-complete [3, Problem GT15], and can be found in [6].

When computing the shortest violation trace, one does not want to spend too
much effort on building the threshold constraints, as the process of building them
can easily become more time consuming then model checking itself. Therefore,
in the actual implementation, a fast ‘greedy’ algorithm for partitioning the set of
events into #-clusters was adopted, which is justifiable in the view of the above
result. This algorithm is described in [6].

Exploiting the causality relation The method described above allowed for
simplification of the threshold constraint by exploiting the conflict relation be-
tween the events in the prefix. It turns out that the causality relation can also
be exploited to reduce the size of the translation even further.
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Fig. 5. An implementation of an eight-input counter with the values of inputs con-
strained to be in a non-increasing order.

Definition 2. Let CI and Cl' be two #-clusters. Cl < ClI' if for each event
e' € Cl' there exists an event e € Cl such that e < €'. A sequence of #-clusters
Cli € Cly € -+ & Cly, is called a <-chain.

For example, {e4,e6} < {e7,es} is a «-chain of the prefix shown in Fig. 1(b).

It follows from this definition that if Cl < CI' and an event e’ € CI' be-
longs to a configuration C' then some event e € Cl also belongs to C'. Suppose
Cly € Cly € -+ K (Cly is a «-chain and yy, ...,y are the outputs of the
V-gates corresponding to these #-clusters. The configuration constraint ensures
that in any satisfying assignment the sequence of values of y1,...,yr is non-
increasing. This allows one to count the number of ones among these values
much more efficiently than by a counter described in the previous section. In-
deed, the encoding of the inputs is very similar to the 1-hot encoding, which
can be obtained from Yi,oo Yk @S Y, Y1 A Y2,¥2 A Y3, Yk—1 A Yk Yk
and subsequently converted into the binary code using an encoder. A somewhat
smaller circuit is shown in Fig. 5.

Thus one can partition the acyclic directed graph G« corresponding to the <
relation on the #-clusters into <-chains, then build for each «-chain a circuit
similar to the one shown in Fig. 5, and finally construct an adder tree similar
to that in Fig. 4(c), but with the bottom layer comprised of the built coun-
ters rather than half-adders. The algorithm shown in Fig. 6 does this trying
to balance the resulting adder tree. ExtractMin(Q)) extracts and returns a pair
(e,m) € @ (where c is a circuit and m € N is the maximum value this circuit
can output) with the minimum value of m, and Add(c;,cs) constructs a circuit
which computes the sum of values computed by ¢; and ¢o (i.e., an adder is put
‘on top’ of ¢; and ¢7). Note that @ is a priority queue and can be efficiently
implemented as either a binary heap or by keeping a list of circuits for each m.

When partitioning G« into <-chains, it is advantageous to make the number
of such «-chains as small as possible, in order to reduce the number of adders in
the adder tree. Thus one can formulate an optimisation problem of partitioning



input : Q — a non-empty set of pairs (¢, m), where c is a circuit and m € N
output : ¢ — a circuit

while |Q| > 1 do
(c1,m1) < EztractMin(Q)
(c2,m2) < EztractMin(Q)
Q+ QU {(Add(cl,CQ),Wh + MQ)}

OO

/* mow |Q|=1*/
(¢, m) < ExtractMin(Q)
return ¢

Fig. 6. An algorithm for building a tree of adders.

G« into the smallest number of «-chains. This is essentially the well-known
minimum vertez-disjoint path cover problem (zero-length paths comprising a
single vertex are admissible).

This problem is NP-complete for general graphs, since checking the existence
of a Hamiltonian path is equivalent to checking whether it is possible to cover the
vertices of a given graph by a single vertex-disjoint path. Nevertheless, for acyclic
graphs (note that G« is acyclic) it can be reduced to the maximum matching
problem on a bipartite graph, and solved in polynomial time [4]. However, one
should bear in mind that G« is given implicitly, and can be very large. (It is
not uncommon to have an unfolding prefix with hundreds thousands events.)
Therefore, using an exact algorithm for solving this problem might be either too
memory demanding (if G« is built explicitly), or too slow due to the need of
working with an implicitly represented graph (checking whether there is an arc
between two vertices of G« is quite expensive in such a case, as one might have
to traverse the whole prefix). Thus a fast ‘greedy’ algorithm for partitioning the
set of #-clusters into «-chains has been designed. It is described in [6].

4 Experimental results

The proposed method has been tested with the ZCHAFF SAT solver [8], and
the popular set of deadlock checking benchmarks collected by J.C. Corbett [1]
has been attempted. (For obvious reasons, only examples with deadlocks from
this collection were used.) All the experiments were conducted on a PC with a
PenTiuMT™ 1V /2.8GH7 processor and 512M RAM.

The experimental results are shown in Table 1, where the meaning of the
columns is as follows (from left to right): the name of the problem; the num-
ber of non-cut-off events in the prefix; the lengths of the first computed and a
shortest violation traces; the number of #-clusters and <-chains computed by
the heuristic algorithms described in [6]; the size (the number of new variables,
clauses and literals) of the translation of the counter circuit for the basic trans-
lation described in Section 2 and for the improved one described in Section 3;
and the time taken by the SAT solver to compute the first violation trace and
the time taken by the algorithm in Fig. 3 to compute a shortest violation trace
using the basic and the improved translations of the counter.



Problem | Prefix Trace [Partitions Translation of counter Time

Basic Improved

|E\E. .|| 1°° shtst|#-cl <-ch| vars cls lits |vars cls lits |1°* Bas. Imp.
Q 7229 75 21| 179 25( 28881 115479 375221 520 8781 26031|<1 3 1
SPEED 1663| 24 4| 30 9| 6620 26436 85832 98 1952 5806|<1 1 <1
Dac(6) 53] 6 6| 23 11 195 761 2437( 72 279 833(<1 <1 <1
Dac(9) 95| 9 9] 35 17 359 1409 4527| 116 460 1372|<1 <1 <1
Dac(12) 146| 12 12| 47 23 564 2236 7230| 160 662 2000|<1 <1 <1
Dac(15) 206| 43 15| 59 29 802 3182 10292| 205 864 2600(<1 <1 <1
Dr(6) 66 6 6| 18 6 247 973 3135( 55 222 628|<1 <1 <1
Dpr(8) 120 8 8| 24 8 461 1823 5885 75 341 987|<1 <1 <1
Dp(10) 190| 10 10| 30 10 737 2919 9431 96 475 1381|<1 <1 <1
Dpr(12) 276| 12 12| 36 12 1082 4306 13954| 119 635 1861|1<1 <1 <1
ELEV(1) 98| 9 9| 16 5 374 1478 47701 43 222 640|<1 <1 <1
ELEV(2) 496| 22 12| 24 7| 1960 7812 25336 65 685 2017|<1 <1 <1
ELEV(3) 2266| 30 15 32 9 9033 36095 117239| 94 2549 7607|<1 <1 <1
ELEV(4) 9598| 23 18| 40 11| 38354 153366 498344| 117 9950 29798 2 27 3
HART(25) 101| 26 26| 76 26 385 1519 4897| 218 826 2528|<1 <1 <1
HART(50) 201| 51 51| 151 51 783 3109 10061| 440 1684 5188(<1 <1 <1
HART(75) 301| 76 76| 226 76 1180 4692 15196| 666 2566 7942|<1 <1 <1
HART(100) 401({101 101| 301 101 1581 6299 20425| 888 3424 10602|<1 <1 <1
KEY(2) 454 52 42| 103 18 1792 7140 23152 285 1309 3761|<1 <1 <1
KEY(3) 4057| 53 43| 223 41| 16194 64730 210284| 680 6123 18051|<1 20 2
KEY(4) 35905| 65 44| 407 82(143582 574286 1866352|1269 39797 118855|<1 548 224
MwMGT(1) 38| 6 6] 11 2 136 528 1686| 25 98 250(<1 <1 <1
MwMGT(2) 385 8 8| 26 7| 1518 6050 19622 80 618 1806|<1 <1 <1
MmGT(3) 3312| 10 10| 36 6 13217 52831 171631 98 3584 10658|<1 <1 <1
MwmGT(4) 25945| 12 12| 44 7(103741 414915 1348381| 119 26273 78693| 77 86 80
SENT(25) 176| 34 3| 40 3 684 2716 8790 69 370 1028|<1 <1 <1
SENT(50) 201| 59 3| 65 3 783 3109 10061 98 480 1302(<1 <1 <1
SENT(75) 226| 84 3| 90 3 883 3509 11361| 123 579 1549(<1 <1 <1
SENT(100) 251|109 3| 115 3 980 3888 12574| 149 681 1803|<1 <1 <1

Table 1. Experimental results for deadlock checking.

The experiments show that in many cases the first computed violation trace
was much longer than a shortest one, with the results for the SENT benchmarks
being particularly impressive. This confirms that in practice computing shortest
violation traces can indeed greatly facilitate the debugging process.

One can see that the number of #-clusters and <-chains is usually quite
small compared to the number of non-cut-off events in the prefix, and thus the
reduction in the size of the formula is quite significant. It is possible to evaluate
the maximum reduction which can be achieved by the improved translation over
the basic one as follows. In the ideal case, all the events in the prefix would be
in conflict with each other, and so the counter circuit can be implemented as a
single V-gate. Such an implementation results in one new variable (for the gate’s
output), n + 1 clauses and 3n + 1 literals in the corresponding CNF formula,
where n = |E \ E.yu|. The corresponding parameters for the basic translation
are given in Section 2, and the improvement ratios for new variables, clauses
and literals are (4n — 2log,n —4)/1 ~ 4n, (16n — 10log,n — 16)/(n + 1) ~ 16
and (52n — 361log, n —52)/(3n+ 1) &~ 174, respectively. Thus the reduction ratio
for variables can grow unboundedly with n, whereas for clauses and literals it is
bounded by 16 and 171, respectively.

The improvement ratios for the benchmarks in Table 1 are plotted in Fig. 7.
One can see that for the number of new variables, the reduction ratio indeed
grows with the size of the prefix (though not as fast as in the ideal case), and is
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Fig. 7. Improvement ratios.

between two and three orders of magnitude for large benchmarks. For clauses and
literals, the improvement rate also grows with the size of the prefix, and comes
surprisingly close to the best possible ratio for large benchmarks. Moreover, it
should be noted that since the improved translation uses a lot of multiple-input
V-gates, the corresponding CNF formula has many clauses of length two, which
makes the SAT instance easier for the solver.

The comparison of the running times of the algorithms shows that, except
one test case, it was not too time-consuming to compute a shortest violation
trace. (This is probably due to the fact that only a few benchmarks are large.)
Moreover, the improved approach has a clear advantage over the basic one in
terms of time. The only benchmark where computing the shortest violation trace
by the improved method took significantly more time than just solving the orig-
inal model checking problem was KEY(4). (Note that for MMGT(4) the increase
in time was quite modest, which can be explained by the fact that the first com-
puted violation trace was already optimal and very short.) In general, however,
one can expect a significant increase in time when computing the shortest viola-
tion traces, due to the following phenomenon, related to phase transition. Let t*
be the length of the shortest violation trace. If ¢ is significantly larger than t*,
adding the constraint Threshold; to the formula will exclude only a few satisfy-
ing assignments, and the resulting formula will not be much harder for the solver
than the original one. On the other hand, if ¢ is significantly smaller than t*,
adding Threshold; to the formula will yield an overconstrained SAT instance
which usually can be quickly proven unsatisfiable. A hard situation can occur
when ¢t is close to t*. In such a case, if the SAT instance is satisfiable, it often
has only a small number of satisfying assignments (and thus such an assignment
might be difficult to find), and if it is unsatisfiable, it might be hard to show



this. The last part of Section 1 discusses how the impact of this phenomenon
can be alleviated in practice.

5 Conclusions and future work

Although performed testing was limited in scope, one can draw some conclusions
about the efficiency of the proposed approach. Computing shortest violation
traces can facilitate the debugging process and save a lot of designer’s time,
since in many cases the first computed violation trace is much longer than a
shortest one. According to the experimental results, for large problem instances
it can reduce the number of new variables in the formula by two—three orders
of magnitude, and achieve almost optimal reduction in the number of clauses
and literals, i.e., the length of the CNF formula corresponding to the threshold
constraint was surprisingly close to that for a single multiple-input V-gate!

The possible directions for future research include using a Boolean minimiser
to derive short formulae not only for half-adder and full-adder cells but also for
adders with a small number of inputs, and exploiting the structure of the prefix
to reduce the size of other pseudo-Boolean constraints encountered when dealing
with various model checking problems.
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