
Shortest Violation Tra
es in Model Che
kingBased on Petri Net Unfoldings and SAT?Vi
tor KhomenkoS
hool of Computing S
ien
e, University of New
astleNew
astle upon Tyne NE1 7RU, U.K.e-mail: Vi
tor.Khomenko�n
l.a
.ukAbstra
t. Model
he
king based on the
ausal partial order semanti
sof Petri nets is an approa
h widely applied to
ope with the state spa
eexplosion problem. One of the possibilities for the veri�
ation pro
ess isto build a �nite and
omplete pre�x and use it for
onstru
ting a Booleanformula su
h that any satisfying assignment to its variables yields a tra
eviolating the property being
he
ked. (And if there are no satisfyingassignments then the property holds.)In this paper a method for
omputing the shortest violation tra
es (whi
h
an greatly fa
ilitate debugging) is proposed. Experimental results de-monstrate that it
an a
hieve signi�
ant redu
tions in the size of theBoolean formula as well as in the time required to
ompute a shortestviolation tra
e, when
ompared with a na��ve approa
h.Keywords: Shortest tra
e, model
he
king, Petri net unfolding, SAT,Boolean
ir
uit.1 Introdu
tion and basi
 notionsA distin
tive
hara
teristi
 of rea
tive
on
urrent systems is that their sets oflo
al states have des
riptions whi
h are both short and manageable, and the
omplexity of their behaviour
omes from highly
ompli
ated intera
tions withthe external environment rather than from
ompli
ated data stru
tures and ma-nipulations thereon. One way of
oping with this
omplexity problem is to useformal methods and, espe
ially,
omputer aided veri�
ation tools implementingmodel
he
king | a te
hnique in whi
h the veri�
ation of a system is
arriedout using a �nite representation of its state spa
e.The main drawba
k of model
he
king is that it su�ers from the state spa
eexplosion problem. That is, even a relatively small system spe
i�
ation
an (andoften does) yield a very large state spa
e. To
ope with this, several te
hniqueshave been developed, whi
h usually aim either at a
ompa
t representation ofthe full state spa
e of the system, or at the generation of its redu
ed (thoughsuÆ
ient for a given veri�
ation task) state spa
e. Among them, a prominentte
hnique is M
Millan's (�nite pre�xes of) Petri Net unfoldings (see, e.g., [5, 7℄).They rely on the partial order view of
on
urrent
omputation, and representsystem states impli
itly, using an a
y
li
 net,
alled a pre�x.Most of `interesting' problems for safe Petri nets are PSPACE-
omplete [2℄,but the same problems for pre�xes are often in NP or even P . Though the size? The full version of this paper [6℄ is available on-line.

of a �nite and
omplete unfolding pre�x
an be exponential in the size of theoriginal Petri net, in pra
ti
e it is often relatively small.A model
he
king problem formulated for a pre�x
an usually be translatedinto some
anoni
al problem, e.g., Boolean satis�ability (SAT). Then an o�-the-shelf SAT solver
an be used for eÆ
iently solving it. Su
h a
ombination`unfolder & solver' turns out to be quite powerful in pra
ti
e.Petri nets A net is a triple N df= (P; T; F) su
h that P and T are disjoint sets ofrespe
tively pla
es and transitions, and F � (P �T)[(T �P) is a
ow relation.A marking of N is a multiset M of pla
es, i.e., M : P ! N df= f0; 1; 2; : : :g.The standard rules about drawing nets are adopted in this paper, viz. pla
esare represented as
ir
les, transitions as boxes, the
ow relation by ar
s, and themarking is shown by pla
ing tokens within
ir
les. As usual, �z df= fy j (y; z) 2 Fgand z� df= fy j (z; y) 2 Fg denote the pre- and postset of z 2 P [T , and�Z df= Sz2Z �z and Z� df= Sz2Z z�, for all Z � P [T . In this paper, the presetsof transitions are restri
ted to be non-empty, i.e., �t 6= ; for every t 2 T . A netsystem is a pair � df= (N;M0)
omprising a �nite net N and an initial markingM0. It is assumed that the reader is familiar with the standard notions of thePetri nets theory, su
h as the enabledness and �ring of a transition, markingrea
hability and deadlo
k.Unfolding pre�x A �nite and
omplete unfolding pre�x � of a Petri net � is a�nite a
y
li
 net whi
h impli
itly represents all the rea
hable states of � togetherwith transitions enabled at those states. Intuitively, it
an be obtained throughunfolding � , by su

essive �rings of transition, under the following assumptions:(a) for ea
h new �ring a fresh transition (
alled an event) is generated; (b) forea
h newly produ
ed token a fresh pla
e (
alled a
ondition) is generated. Theunfolding is in�nite whenever � has an in�nite run; however, if � has �nitelymany rea
hable states then the unfolding eventually starts to repeat itself and
an be trun
ated (by identifying a set of
ut-o� events) without loss of infor-mation, yielding a �nite and
omplete pre�x. The sets of
onditions, events and
ut-o� events of the pre�x are denoted by B, E and E
ut , respe
tively. (Notethat E
ut � E).EÆ
ient algorithms exist for building su
h pre�xes [5℄, whi
h ensure that thenumber of non-
ut-o� events jE n E
ut j in a
omplete pre�x
an never ex
eedthe number of rea
hable states of � . Moreover,
omplete pre�xes are often ex-ponentially smaller than the
orresponding state graphs, espe
ially for highly
on
urrent Petri nets, be
ause they represent
on
urren
y dire
tly rather thanby multidimensional `diamonds' as it is done in state graphs. For example, if theoriginal Petri net
onsists of 100 transitions whi
h
an �re on
e in parallel, thestate graph will be a 100-dimensional hyper
ube with 2100 verti
es, whereas the
omplete pre�x will
oin
ide with the net itself. Another example, viz. a Petrinet modelling two dining philosophers, and a �nite and
omplete pre�x of itsunfolding, are shown in Fig. 1. One
an observe that if this example is s
aled up,the size of the pre�x is linear in the number of dining philosophers, even thoughthe number of rea
hable states grows exponentially.

p1p2p3
p4
p5p6t1 t2

t3 t4t5 p7
p8 p9p10p11

p12
p13p14 t6t7

t8t9 t10
(a)
1p1
2p7
3p8
4p9

5p2

6p3
7p10

8p11

9p4
10p5
11p12
12p13

13p6

14p14

15 p1
16 p7
17 p8
18 p7
19 p8
20 p9
e1t1
e2t6

e3t2e4t3e5t7e6t8
e7t4
e8t9

e9t5
ut-o�
e10t10
ut-o�(b)Fig. 1. A Petri net modelling two dining philosophers (a) and a �nite and
ompletepre�x of its unfolding (b).Sin
e � is a
y
li
, the transitive
losure of its
ow relation is a partial order< on B [E,
alled the
ausality relation. (The re
exive order
orrespondingto < will be denoted by �.) Intuitively, all the events whi
h are smaller thanan event e 2 E w.r.t. < must pre
ede e in any valid exe
ution
ontaining e.Two nodes x; y 2 B [E are in
on
i
t, denoted x#y, if there are distin
tevents e; f 2 E su
h that �e \ �f 6= ; and e � x and f � y. Intuitively, novalid exe
ution
an
ontain two events in
on
i
t. Two nodes x; y 2 B [E are
on
urrent, denoted x
o y, if neither y#y0 nor y � y0 nor y0 � y. Intuitively,two
on
urrent events
an be enabled simultaneously, and exe
uted in any order,or even
on
urrently. For example, in the pre�x shown in Fig. 1(b) the followingrelationships hold: e1 < e7, e7#e8 (due to the
hoi
es at
2 and
3) and e3
o e4.The rea
hable markings of �
an be represented using
on�gurations of �. A
on�guration is a set of events C � E nE
ut su
h that for all e; f 2 C, :(e#f)and, for every e 2 C, f < e implies f 2 C. For example, in the net shown inFig. 1(b), fe1; e3; e4g is a
on�guration, whereas fe1; e2; e3; e5g and fe1; e3; e7g

x1x2
x3x4 _̂ �g1g2 g3 [g1 $ (:x1 _ x2 _ x3 _ x4)℄^[g2 $ (x1 ^ x2 ^ x3 ^ x4)℄^[g3 $ (g1 � g2)℄�[(:g1 _ :x1 _ x2 _ x3 _ x4)^(g1 _ x1) ^ (g1 _ :x2)^(g1 _ :x3) ^ (g1 _ :x4)℄^[(g2 _ :x1 _ :x2 _ :x3 _ :x4)^(:g2 _ x1) ^ (:g2 _ x2)^(:g2 _ x3) ^ (:g2 _ x4)℄^[(:g1 _ :g2 _ :g3) ^ (:g1 _ g2 _ g3)^(g1 _ :g2 _ g3) ^ (g1 _ g2 _ :g3)℄Fig. 2. Conversion of a Boolean
ir
uit into a Boolean expression in the CNF.are not (the former in
ludes events in
on
i
t, e3#e5, while the latter does notin
lude e4 < e7). Intuitively, a
on�guration is a partial-order exe
ution, i.e., anexe
ution where the order of �ring of some of its events (viz.
on
urrent ones) isnot important; e.g., the
on�guration fe1; e3; e4; e7g
orresponds to two totallyordered exe
utions: e1e3e4e7 and e1e4e3e7. Sin
e a
on�guration
an
orrespondto multiple exe
utions, it is often mu
h more eÆ
ient in model
he
king toexplore
on�gurations rather than exe
utions.After starting � from the impli
it initial marking (whereby one puts a singletoken in ea
h
ondition whi
h does not have an in
oming ar
) and exe
uting allthe events in C, one rea
hes the marking denoted by Cut(C). Mark (C) denotesthe
orresponding marking of � , rea
hed by �ring a transition sequen
e
orre-sponding to the events in C. It is remarkable that ea
h rea
hable marking of� is Mark (C) for some
on�guration C of �, and,
onversely, ea
h
on�gura-tion C of � generates a rea
hable marking Mark (C). Thus various behaviouralproperties of �
an be re-stated as the
orresponding properties of �, and then
he
ked, often mu
h more eÆ
iently.Boolean satis�ability The Boolean satis�ability problem (SAT)
onsists in�nding a satisfying assignment, i.e., a mapping A : Var' ! f0; 1g de�ned onthe set of variables Var' o

urring in a given Boolean expression ' su
h that 'evaluates to 1. This expression is often assumed to be given in the
onjun
tivenormal form (CNF) ' = Vni=1Wl2Li l, i.e., it is represented as a
onjun
tion of
lauses, whi
h are disjun
tions of literals, ea
h literal l being either a variable orthe negation of a variable. It is assumed that no two literals in the same
lause
orrespond to the same variable.In order to solve a Boolean satis�ability problem, SAT solvers perform ex-haustive sear
h assigning the values 0 or 1 to the variables, using heuristi
s toredu
e the sear
h spa
e [10℄. Some of the leading SAT solvers, e.g., zChaff [8℄,
an be used in the in
remental mode, i.e., after solving a parti
ular SAT instan
ethe user
an slightly
hange it (e.g., by adding and/or removing a small num-ber of
lauses) and exe
ute the solver again. This is often mu
h more eÆ
ientthan solving these related instan
es as independent problems, be
ause on thesubsequent runs the solver
an use some of the useful information (e.g., learnt
lauses [10℄)
olle
ted so far.Boolean
ir
uits A Boolean
ir
uit (see, e.g., [9℄)
omputes a multiple-outputBoolean fun
tion of Boolean input variables x1; : : : ; xn. It
onsists of a �nite

number k of gates G1; : : : ; Gk . Ea
h gate Gi is labelled by a Boolean fun
tion fi
hosen from some �xed set of Boolean fun
tions F . (In this paper, F
omprisesall the unary and binary Boolean fun
tions and
onjun
tions and disjun
tionsof arbitrary arity with arbitrary input inversions.) A Boolean
ir
uit
an berepresented by an a
y
li
 dire
ted graph, where the input variables and the
onstants 0 and 1 are its sour
es, and the vertex representing the gate Gi hasarity(fi) numbered in
oming edges from its prede
essors in the graph. (If fi is
ommutative, the numbering of edges does not have to be spe
i�ed.) In pi
tures,ea
h gate is represented as a
ir
le with the fun
tion shown within it, and inputinversions are shown as `bubbles'. Note that F is
losed w.r.t. input inversions,and so they
an be in
orporated into the
orresponding gate fun
tion.The Boolean fun
tion fv
omputed at a vertex v of this a
y
li
 graph is de-�ned indu
tively as follows. If v is an input variable xj then fv(x1; : : : ; xn) df= xj ,and if it is a
onstant
 2 f0; 1g then fv(x1; : : : ; xn) df=
. Otherwise, the vertex issome gate Gi, and fv(x1; : : : ; xn) df= fi(p1; : : : ; parity(fi)), where p1; : : : ; parity(fi)are the fun
tions
omputed at the prede
essors of this vertex in the graph. Theoutput ve
tor (v1; : : : ; vm), where vi is some vertex of the graph, des
ribes whatthe
ir
uit
omputes, viz. the multiple-output Boolean fun
tion (fv1 ; : : : ; fvm).In parti
ular, any Boolean formula over the signature F
an be represented asa
ir
uit.It turns out that a Boolean
ir
uit
an be eÆ
iently en
oded by a Booleanexpression ' in the CNF depending on the variables Var'
orresponding to theverti
es of the graph representing the
ir
uit (ex
ept 0 and 1) su
h that for anyassignment A : Var' ! f0; 1g, A is a satisfying assignment of ' i� for everyv 2 Var', fv(A(x1); : : : ; A(xn)) = A(v) (where the variables are denoted bythe same symbol as the
orresponding verti
es of the graph) and A(0) df= 0 andA(1) df= 1.The expression ' is
onstru
ted as follows. For ea
h gate Gi, a new Booleanvariable gi representing its output is
reated, a Boolean equation relating gi tothe inputs of Gi is written down, and these equations are
onverted into theCNF. This pro
ess is illustrated in Fig. 2. Note that for a gate labelled with aBoolean fun
tion of bounded arity, the size of the
orresponding equation (andits CNF) is bounded by a
onstant; moreover, for a gate labelled with a multiple-input
onjun
tion or disjun
tion, the size of the equation (and its CNF) is linearin the number of gate inputs. Thus the size of the resulting Boolean expressionin the CNF is linear in the size of the
ir
uit.Model
he
king based on Petri net unfoldings This paper
on
entrateson the following approa
h to model
he
king. First, a �nite and
omplete pre�xof the Petri net unfolding is built, and it is then used for
onstru
ting a Booleanformula en
oding the model
he
king problem at hand. (It is assumed that theproperty being
he
ked is the unrea
hability of some `bad' states, e.g., dead-lo
ks.) This formula is unsatis�able i� the property holds, and su
h that anysatisfying assignment to its variables yields a tra
e violating the property being
he
ked.

Typi
ally su
h a formula would have for ea
h non-
ut-o� event e of the pre�xa variable
onfe (the formula might also
ontain other variables), and for everysatisfying assignment A, the set of events C df= fe j
onfe = 1g is a
on�gurationsu
h that Mark (C) violates the property being
he
ked. The formula often hasthe form CONF ^ VIOL. The role of the
on�guration
onstraint, CONF , isto ensure that C is a
on�guration of the pre�x (not just an arbitrary set ofevents). CONF
an be de�ned as the
onjun
tion of the formulae^e2EnE
ut ^f2�(�e)(
onfe !
onff) and ^e2EnE
ut ^f2((�e)�nfeg)nE
ut:(
onfe ^
onff) :The former formula ensures that if e 2 C then its immediate prede
essors arealso in C, i.e., C is downward
losed w.r.t. <. The latter one ensures that C
ontains no
on
i
ts. CONF
an be transformed into the CNF by applying therules x ! y � :x _ y and :(x ^ y) � :x _ :y. For example, the
on�guration
onstraint for the pre�x shown in Fig. 1(b) is(
onfe3!
onfe1)^(
onfe4!
onfe1)^(
onfe5!
onfe2)^(
onfe6!
onfe2)^(
onfe7!
onfe3)^(
onfe7!
onfe4)^(
onfe8!
onfe5)^(
onfe8!
onfe6)^:(
onfe3^
onfe5)^:(
onfe4^
onfe6) :The role of the violation
onstraint, VIOL, is to express the property viola-tion
ondition for a
on�guration C, so that if a
on�guration C satisfying this
onstraint is found then the property does not hold, and any ordering of eventsin C
onsistent with < is a violation tra
e. For example, for deadlo
k
he
kingVIOL
an be de�ned aŝe2E � _f2�(�e):
onff _ _f2(�e)�nE
ut
onff� :This formula requires for ea
h event e (in
luding
ut-o� events) that some of thedire
t
ausal prede
essors of e has not �red or some of the non-
ut-o� events(in
luding e unless it is
ut-o�)
onsuming tokens from �e has �red, and thus eis not enabled. This formula is already in the CNF. For example, the violation
onstraint for the deadlo
k
he
king problem formulated for the pre�x shown inFig. 1(b) is
onfe1^
onfe2^(:
onfe1_
onfe3)^(:
onfe1_
onfe4)^(:
onfe2_
onfe5)^(:
onfe2_
onfe6)^(:
onfe3_:
onfe4_
onfe7)^(:
onfe5_:
onfe6_
onfe8)^:
onfe7^:
onfe8 :Shortest violation tra
es Note that in general the
omputed violation tra
e
an be quite long, whi
h might make it diÆ
ult to lo
ate the error, as the designerhas to inspe
t this tra
e in order to �nd and eliminate the sour
e of the problem.(And parts of su
h long tra
es often des
ribe in
idental system a
tivity whi
his unrelated to the problem.) Thus
omputing shortest possible violation tra
es
an greatly fa
ilitate the debugging pro
ess.A quite obvious algorithm for
omputing the shortest violation tra
e is shownin Fig. 3, where SAT Assignment(') is a fun
tion
omputing a satisfying as-signment for a Boolean formula ' and returning UNSAT in
ase ' is unsat-is�able (it is usually implemented by a
all to some o�-the-shelf SAT solver,

input : ' | a Boolean formulaoutput : T | the shortest violation tra
e or UNSATA SAT Assignment(')if A = UNSATthenT UNSATstopT Extra
t Tra
e(A)r jT jl 0while l < r dot d(l+ r)=2eA SAT Assignment(' ^ Threshold t)if A = UNSATthenl = t+ 1elseT Extra
t Tra
e(A)r jT jFig. 3. An algorithm for
omputing shortest violation tra
es.e.g., zChaff [8℄), Extra
t Tra
e(A) is a fun
tion extra
ting the violation tra
efrom a satisfying Boolean assignment A, and Threshold t is the threshold
on-straint jfe j
onfe = 1gj � t. This algorithm uses a binary sear
h to
omputethe length of the shortest tra
e still exhibiting the violation. If the propertyholds (i.e., if ' is unsatis�able) then this algorithm does not have any additionaloverhead
ompared with the original model
he
king algorithm, but in the
aseof errors the SAT solver is
alled several times with larger formulae, and so theoverhead might be quite signi�
ant. This situation is somewhat alleviated bythe fa
t that SAT instan
es are very similar to ea
h other (in fa
t, even the for-mulae of the form Threshold t, des
ribed in detail further in this paper,
hangevery little when t
hanges) and thus
an be eÆ
iently solved in the in
rementalmode. Moreover, the user always
an terminate the exe
ution of the algorithmand get the shortest violation tra
e
omputed so far.What still needs des
ribing is the
onstru
tion of the formula Threshold t for agiven t. It turns out that one
an exploit some problem-spe
i�
 optimisations inorder to signi�
antly redu
e the size of this formula as well as the
omputatione�ort required for solving the
orresponding SAT instan
es. This is the maintopi
 of this paper.2 Basi
 translation of a threshold
onstraintThreshold t
an be expressed as a pseudo-Boolean
onstraintPe2EnE
ut
onfe � t,where arithmeti
al operations are used instead of logi
al ones. The other
on-straints
an also be
onverted into a similar form, and the problem
an be solvedby a 0{1 integer linear programming solver. However, SAT solvers tend to be

x1 � � � xnCounter�tz
(a) y1 y2 y3 � � � yk1 f1 f2 f3 � � � fk zfi df= �^ if ti = 0_ otherwise

(b)

x1 x2�1 x3 x4�1 x5 x6�1 x7 x8�1�2 �2
z�3

(
)
x1 y1

z1h/a x2 y2
z2f/a � � �� � � xk yk

zkf/a zk+1
(d)

x y� _z
o(e) x yh/a
i zh/a _
o(f)Fig. 4. Implementations of a threshold
onstraint (a); a
omparator (b), where theinputs y1; : : : ; yk are interpreted as the binary representation of a non-negative integer(least signi�
ant digit �rst) and t1; : : : ; tk is the binary representation of t; a
ounter asa balan
ed tree of adders (
); a k-bit adder �k
omprising a half-adder
ell and k � 1full-adder
ells (d); and half-adder and full-adder
ells (e,f).

more eÆ
ient in pra
ti
e, and so in many
ases it would be advantageous toexpress Threshold t as a purely Boolean
onstraint.A possible implementation of Threshold t as a Boolean
ir
uit is shown inFig. 4(a). It
onsists of two parts: the
ounter and the
omparator. The
ounter
ir
uit has n inputs and dlog2 ne + 1 outputs, and its purpose is to
ount thenumber of ones among its inputs and return the result as a binary number. Thepurpose of the
omparator is to
ompare this number with a given
onstant t.Note that the
ounter
ir
uit does not depend on t and so the
orrespond-ing part of the formula does not have to be
hanged between the
alls to theSAT solver in the algorithm shown in Fig. 3. A possible implementation of the
omparator is shown in Fig. 4(b). Note that it does depend on t, and so the
orresponding part of the formula has to be amended from
all to
all. How-ever, the size of the
omparator is just O(logn). Thus this implementation ofthe threshold
onstraint is bene�
ial if the SAT solver is used in the in
rementalmode. The rest of this se
tion is devoted to the
ounter
ir
uit.Fig. 4(
) illustrates an implementation of the
ounter as a tree of adders,where ea
h adder is built of half-adder and full-adder
ells, as shown in Fig. 4(d).A half-adder
ell adds up two one-bit numbers, produ
ing a one-bit result anda
arry bit. A full-adder
ell adds up two one-bit numbers and a
arry from theprevious
ell of the adder, produ
ing a one-bit result and a
arry bit. Fig. 4(e,f)shows possible implementations of these
ells.The des
ribed
ir
uit
an be
onverted to a linear-size formula in the CNF,as des
ribed in Se
tion 1. However, somewhat shorter formulae
an be obtainedusing Boolean minimisation when translating half-adder and full-adder
ells. Ityields the formulae(:x_:y_:z)^(x_:y_z)^(x_y_:z)^(y_:
o)^(:x_
o_z)^(:
o_:z)with 2 new variables, 6
lauses and 16 literals for a half-adder
ell, and(
i_:x_y_z)^(
i_x_:y_z)^(:
i_:x_y_:z)^(:
i_x_:y_:z)^(:
i_
o_z)^(
i_:
o_:z)^(:x_:y_
o)^(x_y_:
o)^(:
i_:x_:y_z)^(
i_x_y_:z)with 2 new variables, 10
lauses and 36 literals for a full-adder
ell.It is shown in [6℄ that if n is a power of 2 then the resulting CNF formula forthe
ounter
ontains 4n� 2 log2 n� 4 auxiliary variables (
orresponding to gateoutputs), 16n� 10 log2 n� 16
lauses and 52n� 36 log2 n� 52 literals, i.e., eventhough the size of the formula is linear in the number of the
ir
uit's inputs, themultipli
ative
onstants hidden in this O(n) translation are quite large. Nextse
tion tries to remedy this situation by exploiting the stru
ture of the pre�x toimprove the des
ribed translation.3 Exploiting the stru
ture of the pre�xThe
ontent of this se
tion is the main
ontribution of this paper. It turns outthat the stru
ture of the pre�x
an be exploited to redu
e the size of the
ounter
ir
uit. Below, two heuristi
s are des
ribed, one utilising the
on
i
ts betweenthe events in the pre�x, and the other making use of the
ausality relation.

Exploiting the
on
i
ts One
an observe that if E0 � E n E
ut is a set ofevents whi
h are in
on
i
t with ea
h other (i.e., E0 is a
lique in the graph
orresponding to the relation #) then no two events from E0
an belong to thesame
on�guration. The
on�guration
onstraint ensures that at most one ofthe variables
onfe
orresponding to the events in E0 is assigned the value 1,i.e., 1 � jfe 2 E0 j
onfe = 1gj = We2E0
onfe, and so a single _-gate is suÆ
ientto
ount the number of variables assigned the value 1.De�nition 1 (#-
luster). A set of events E0 � E nE
ut is a #-
luster if forall distin
t events e; f 2 E0, e#f .Thus the non-
ut-o� events of the pre�x are partitioned into #-
lusters, then_-gates are used to
ount in ea
h #-
luster the number of variables
orrespondingto its events and assigned the value 1, and a
ounter (hopefully, of a mu
hsmaller size) is used to
ount the number of outputs of these _-gates having thevalue 1. Sin
e the translation of an _-gate into a Boolean expression is mu
hsmaller than the translation of a
ounter, one
an expe
t redu
tions in the sizeof the resulting formula. For example, ffe1g; fe2g; fe3; e5g; fe4; e6g; fe7; e8gg isa possible partition into #-
lusters of the non-
ut-o� events of the pre�x shownin Fig. 1(b).When partitioning the non-
ut-o� events of the pre�x into #-
lusters, it isadvantageous to make the number of su
h #-
lusters as small as possible. (Whenthe number of #-
lusters is large, the size of the
ounter grows; in parti
ular, forthe trivial partition with ea
h event forming its own #-
luster the translationdegrades to the one des
ribed in the previous se
tion.) Thus one
an formulatean optimisation problem of partitioning the non-
ut-o� events of a pre�x into thesmallest number of #-
lusters. Unfortunately, a de
ision version of this problemturns out to be NP-
omplete.Proposition 1 (NP-
ompleteness of the Partition into #-
lusters prob-lem). Given an unfolding pre�x � and a k 2 N, the problem of de
iding whetherthe set of non-
ut-o� events of �
an be partitioned into at most k #-
lusters isNP-
omplete.The proof is by redu
tion from the Partition into Cliques problem, whi
h isknown to be NP-
omplete [3, Problem GT15℄, and
an be found in [6℄.When
omputing the shortest violation tra
e, one does not want to spend toomu
h e�ort on building the threshold
onstraints, as the pro
ess of building them
an easily be
ome more time
onsuming then model
he
king itself. Therefore,in the a
tual implementation, a fast `greedy' algorithm for partitioning the set ofevents into #-
lusters was adopted, whi
h is justi�able in the view of the aboveresult. This algorithm is des
ribed in [6℄.Exploiting the
ausality relation The method des
ribed above allowed forsimpli�
ation of the threshold
onstraint by exploiting the
on
i
t relation be-tween the events in the pre�x. It turns out that the
ausality relation
an alsobe exploited to redu
e the size of the translation even further.

y1 y2 y3 y4 y5 y6 y7 y8
z4z3z2z1

^^ ^_ ^^ ^ ^_ zi df=� k�2i�12i �_j=0 y2i(j+ 12)^:y2i(j+1)i 2 f1; : : : ; dlog2 ke+ 1gyk0 df= 0 if k0 > k
Fig. 5. An implementation of an eight-input
ounter with the values of inputs
on-strained to be in a non-in
reasing order.De�nition 2. Let Cl and Cl 0 be two #-
lusters. Cl � Cl 0 if for ea
h evente0 2 Cl 0 there exists an event e 2 Cl su
h that e < e0. A sequen
e of #-
lustersCl1 � Cl2 � � � � � Clk is
alled a �-
hain.For example, fe4; e6g � fe7; e8g is a �-
hain of the pre�x shown in Fig. 1(b).It follows from this de�nition that if Cl � Cl 0 and an event e0 2 Cl 0 be-longs to a
on�guration C then some event e 2 Cl also belongs to C. SupposeCl1 � Cl2 � � � � � Clk is a �-
hain and y1; : : : ; yk are the outputs of the_-gates
orresponding to these #-
lusters. The
on�guration
onstraint ensuresthat in any satisfying assignment the sequen
e of values of y1; : : : ; yk is non-in
reasing. This allows one to
ount the number of ones among these valuesmu
h more eÆ
iently than by a
ounter des
ribed in the previous se
tion. In-deed, the en
oding of the inputs is very similar to the 1-hot en
oding, whi
h
an be obtained from y1; : : : ; yk as :y1; y1 ^ :y2; y2 ^ :y3; : : : ; yk�1 ^ :yk; ykand subsequently
onverted into the binary
ode using an en
oder. A somewhatsmaller
ir
uit is shown in Fig. 5.Thus one
an partition the a
y
li
 dire
ted graphG�
orresponding to the�relation on the #-
lusters into �-
hains, then build for ea
h �-
hain a
ir
uitsimilar to the one shown in Fig. 5, and �nally
onstru
t an adder tree similarto that in Fig. 4(
), but with the bottom layer
omprised of the built
oun-ters rather than half-adders. The algorithm shown in Fig. 6 does this tryingto balan
e the resulting adder tree. Extra
tMin(Q) extra
ts and returns a pair(
;m) 2 Q (where
 is a
ir
uit and m 2 N is the maximum value this
ir
uit
an output) with the minimum value of m, and Add(
1;
2)
onstru
ts a
ir
uitwhi
h
omputes the sum of values
omputed by
1 and
2 (i.e., an adder is put`on top' of
1 and
2). Note that Q is a priority queue and
an be eÆ
ientlyimplemented as either a binary heap or by keeping a list of
ir
uits for ea
h m.When partitioning G� into�-
hains, it is advantageous to make the numberof su
h�-
hains as small as possible, in order to redu
e the number of adders inthe adder tree. Thus one
an formulate an optimisation problem of partitioning

input : Q | a non-empty set of pairs (
;m), where
 is a
ir
uit and m 2 Noutput :
 | a
ir
uitwhile jQj > 1 do(
1;m1) Extra
tMin(Q)(
2;m2) Extra
tMin(Q)Q Q [f(Add(
1;
2);m1 +m2)g/* now jQj=1 */(
;m) Extra
tMin(Q)return
 Fig. 6. An algorithm for building a tree of adders.G� into the smallest number of �-
hains. This is essentially the well-knownminimum vertex-disjoint path
over problem (zero-length paths
omprising asingle vertex are admissible).This problem is NP-
omplete for general graphs, sin
e
he
king the existen
eof a Hamiltonian path is equivalent to
he
king whether it is possible to
over theverti
es of a given graph by a single vertex-disjoint path. Nevertheless, for a
y
li
graphs (note that G� is a
y
li
) it
an be redu
ed to the maximum mat
hingproblem on a bipartite graph, and solved in polynomial time [4℄. However, oneshould bear in mind that G� is given impli
itly, and
an be very large. (It isnot un
ommon to have an unfolding pre�x with hundreds thousands events.)Therefore, using an exa
t algorithm for solving this problem might be either toomemory demanding (if G� is built expli
itly), or too slow due to the need ofworking with an impli
itly represented graph (
he
king whether there is an ar
between two verti
es of G� is quite expensive in su
h a
ase, as one might haveto traverse the whole pre�x). Thus a fast `greedy' algorithm for partitioning theset of #-
lusters into �-
hains has been designed. It is des
ribed in [6℄.4 Experimental resultsThe proposed method has been tested with the zChaff SAT solver [8℄, andthe popular set of deadlo
k
he
king ben
hmarks
olle
ted by J.C. Corbett [1℄has been attempted. (For obvious reasons, only examples with deadlo
ks fromthis
olle
tion were used.) All the experiments were
ondu
ted on a PC with aPentiumTM IV/2.8GHz pro
essor and 512M RAM.The experimental results are shown in Table 1, where the meaning of the
olumns is as follows (from left to right): the name of the problem; the num-ber of non-
ut-o� events in the pre�x; the lengths of the �rst
omputed and ashortest violation tra
es; the number of #-
lusters and �-
hains
omputed bythe heuristi
 algorithms des
ribed in [6℄; the size (the number of new variables,
lauses and literals) of the translation of the
ounter
ir
uit for the basi
 trans-lation des
ribed in Se
tion 2 and for the improved one des
ribed in Se
tion 3;and the time taken by the SAT solver to
ompute the �rst violation tra
e andthe time taken by the algorithm in Fig. 3 to
ompute a shortest violation tra
eusing the basi
 and the improved translations of the
ounter.

Problem Pre�x Tra
e Partitions Translation of
ounter TimeBasi
 ImprovedjEnE
ut j 1st shtst #-
l �-
h vars
ls lits vars
ls lits 1st Bas. Imp.Q 7229 75 21 179 25 28881 115479 375221 520 8781 26031 <1 3 1Speed 1663 24 4 30 9 6620 26436 85832 98 1952 5806 <1 1 <1Da
(6) 53 6 6 23 11 195 761 2437 72 279 833 <1 <1 <1Da
(9) 95 9 9 35 17 359 1409 4527 116 460 1372 <1 <1 <1Da
(12) 146 12 12 47 23 564 2236 7230 160 662 2000 <1 <1 <1Da
(15) 206 43 15 59 29 802 3182 10292 205 864 2600 <1 <1 <1Dp(6) 66 6 6 18 6 247 973 3135 55 222 628 <1 <1 <1Dp(8) 120 8 8 24 8 461 1823 5885 75 341 987 <1 <1 <1Dp(10) 190 10 10 30 10 737 2919 9431 96 475 1381 <1 <1 <1Dp(12) 276 12 12 36 12 1082 4306 13954 119 635 1861 <1 <1 <1Elev(1) 98 9 9 16 5 374 1478 4770 43 222 640 <1 <1 <1Elev(2) 496 22 12 24 7 1960 7812 25336 65 685 2017 <1 <1 <1Elev(3) 2266 30 15 32 9 9033 36095 117239 94 2549 7607 <1 <1 <1Elev(4) 9598 23 18 40 11 38354 153366 498344 117 9950 29798 2 27 3Hart(25) 101 26 26 76 26 385 1519 4897 218 826 2528 <1 <1 <1Hart(50) 201 51 51 151 51 783 3109 10061 440 1684 5188 <1 <1 <1Hart(75) 301 76 76 226 76 1180 4692 15196 666 2566 7942 <1 <1 <1Hart(100) 401 101 101 301 101 1581 6299 20425 888 3424 10602 <1 <1 <1Key(2) 454 52 42 103 18 1792 7140 23152 285 1309 3761 <1 <1 <1Key(3) 4057 53 43 223 41 16194 64730 210284 680 6123 18051 <1 20 2Key(4) 35905 65 44 407 82 143582 574286 1866352 1269 39797 118855 <1 548 224Mmgt(1) 38 6 6 11 2 136 528 1686 25 98 250 <1 <1 <1Mmgt(2) 385 8 8 26 7 1518 6050 19622 80 618 1806 <1 <1 <1Mmgt(3) 3312 10 10 36 6 13217 52831 171631 98 3584 10658 <1 <1 <1Mmgt(4) 25945 12 12 44 7 103741 414915 1348381 119 26273 78693 77 86 80Sent(25) 176 34 3 40 3 684 2716 8790 69 370 1028 <1 <1 <1Sent(50) 201 59 3 65 3 783 3109 10061 98 480 1302 <1 <1 <1Sent(75) 226 84 3 90 3 883 3509 11361 123 579 1549 <1 <1 <1Sent(100) 251 109 3 115 3 980 3888 12574 149 681 1803 <1 <1 <1Table 1. Experimental results for deadlo
k
he
king.The experiments show that in many
ases the �rst
omputed violation tra
ewas mu
h longer than a shortest one, with the results for the Sent ben
hmarksbeing parti
ularly impressive. This
on�rms that in pra
ti
e
omputing shortestviolation tra
es
an indeed greatly fa
ilitate the debugging pro
ess.One
an see that the number of #-
lusters and �-
hains is usually quitesmall
ompared to the number of non-
ut-o� events in the pre�x, and thus theredu
tion in the size of the formula is quite signi�
ant. It is possible to evaluatethe maximum redu
tion whi
h
an be a
hieved by the improved translation overthe basi
 one as follows. In the ideal
ase, all the events in the pre�x would bein
on
i
t with ea
h other, and so the
ounter
ir
uit
an be implemented as asingle _-gate. Su
h an implementation results in one new variable (for the gate'soutput), n + 1
lauses and 3n + 1 literals in the
orresponding CNF formula,where n = jE n E
ut j. The
orresponding parameters for the basi
 translationare given in Se
tion 2, and the improvement ratios for new variables,
lausesand literals are (4n� 2 log2 n� 4)=1 � 4n, (16n� 10 log2 n� 16)=(n+ 1) � 16and (52n�36 log2 n�52)=(3n+1) � 17 13 , respe
tively. Thus the redu
tion ratiofor variables
an grow unboundedly with n, whereas for
lauses and literals it isbounded by 16 and 17 13 , respe
tively.The improvement ratios for the ben
hmarks in Table 1 are plotted in Fig. 7.One
an see that for the number of new variables, the redu
tion ratio indeedgrows with the size of the pre�x (though not as fast as in the ideal
ase), and is

Fig. 7. Improvement ratios.between two and three orders of magnitude for large ben
hmarks. For
lauses andliterals, the improvement rate also grows with the size of the pre�x, and
omessurprisingly
lose to the best possible ratio for large ben
hmarks. Moreover, itshould be noted that sin
e the improved translation uses a lot of multiple-input_-gates, the
orresponding CNF formula has many
lauses of length two, whi
hmakes the SAT instan
e easier for the solver.The
omparison of the running times of the algorithms shows that, ex
eptone test
ase, it was not too time-
onsuming to
ompute a shortest violationtra
e. (This is probably due to the fa
t that only a few ben
hmarks are large.)Moreover, the improved approa
h has a
lear advantage over the basi
 one interms of time. The only ben
hmark where
omputing the shortest violation tra
eby the improved method took signi�
antly more time than just solving the orig-inal model
he
king problem was Key(4). (Note that for Mmgt(4) the in
reasein time was quite modest, whi
h
an be explained by the fa
t that the �rst
om-puted violation tra
e was already optimal and very short.) In general, however,one
an expe
t a signi�
ant in
rease in time when
omputing the shortest viola-tion tra
es, due to the following phenomenon, related to phase transition. Let t�be the length of the shortest violation tra
e. If t is signi�
antly larger than t�,adding the
onstraint Threshold t to the formula will ex
lude only a few satisfy-ing assignments, and the resulting formula will not be mu
h harder for the solverthan the original one. On the other hand, if t is signi�
antly smaller than t�,adding Threshold t to the formula will yield an over
onstrained SAT instan
ewhi
h usually
an be qui
kly proven unsatis�able. A hard situation
an o

urwhen t is
lose to t�. In su
h a
ase, if the SAT instan
e is satis�able, it oftenhas only a small number of satisfying assignments (and thus su
h an assignmentmight be diÆ
ult to �nd), and if it is unsatis�able, it might be hard to show

this. The last part of Se
tion 1 dis
usses how the impa
t of this phenomenon
an be alleviated in pra
ti
e.5 Con
lusions and future workAlthough performed testing was limited in s
ope, one
an draw some
on
lusionsabout the eÆ
ien
y of the proposed approa
h. Computing shortest violationtra
es
an fa
ilitate the debugging pro
ess and save a lot of designer's time,sin
e in many
ases the �rst
omputed violation tra
e is mu
h longer than ashortest one. A

ording to the experimental results, for large problem instan
esit
an redu
e the number of new variables in the formula by two{three ordersof magnitude, and a
hieve almost optimal redu
tion in the number of
lausesand literals, i.e., the length of the CNF formula
orresponding to the threshold
onstraint was surprisingly
lose to that for a single multiple-input _-gate!The possible dire
tions for future resear
h in
lude using a Boolean minimiserto derive short formulae not only for half-adder and full-adder
ells but also foradders with a small number of inputs, and exploiting the stru
ture of the pre�xto redu
e the size of other pseudo-Boolean
onstraints en
ountered when dealingwith various model
he
king problems.A
knowledgements The author would like to thank Keijo Heljanko for fruitfuldis
ussions. This resear
h was supported by an EC IST grant 511599 (Rodin).Referen
es1. J. C. Corbett: Evaluating Deadlo
k Dete
tion Methods for Con
urrent Software.IEEE Transa
tions on Software Engineering 22(3) (1996) 161{180.2. J. Esparza: De
idability and Complexity of Petri Net Problems | an Introdu
tion.Le
tures on Petri Nets I: Basi
 Models. LNCS 1491 (1998) 374{428.3. M.Garey and D. Johnson: Computers and Intra
tability | A Guide to the Theoryof NP-
ompleteness. Freeman (1979).4. J. E. Hop
roft and R.M.Karp: An n5=2 Algorithm for Maximum Mat
hing in Bi-partite Graphs. SIAM Journal on Computing 2(4) (1973) 225{231.5. V.Khomenko: Model Che
king Based on Pre�xes of Petri Net Unfoldings. S
hoolof Comp. S
i., Univ. of New
astle (2003).6. V.Khomenko: Computing Shortest Violation Tra
es in Model Che
king Based onPetri Net Unfoldings and SAT. TRep. CS-TR-841, S
hool of Comp. S
i., Univ.of New
astle (2004). URL: http://homepages.
s.n
l.a
.uk/vi
tor.khomenko/home.formal/papers/papers.html7. K. L.M
Millan: Using Unfoldings to Avoid State Explosion Problem in the Veri�-
ation of Asyn
hronous Cir
uits. Pro
. of CAV'1992, LNCS 663 (1992) 164{174.8. S.Moskewi
z, C.Madigan, Y. Zhao, L. Zhang and S.Malik: Chaff: Engineering anEÆ
ient SAT Solver. Pro
. of DAC'2001, ASME Te
hn. Publ. (2001) 530{535.9. I.Wegener: The Complexity of Boolean Fun
tions. Wiley-Teubner Series in Com-puter S
ien
e (1987).10. L. Zhang and S.Malik: The Quest for EÆ
ient Boolean Satis�ability Solvers. Pro
.of CAV'2002, E. Brinksma and K.G. Larsen (Eds.). LNCS 2404 (2002) 582{595.

