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Abstract
Signal Transition Graphs (STG) are a formalism for the

description of asynchronous circuit behaviour. In this pa-
per we propose (and justify) a formal semantics of non-
deterministic STGs with dummies and OR-causality. For
this, we introduce the concept of output-determinacy, which
is a relaxation of determinism, and argue that it is reason-
able and useful in the speed-independent context. With our
theory we improve an STG decomposition algorithm, which
can alleviate state explosion.
Keywords: output-determinacy, decomposition, asynchro-
nous circuits, STG, OR-causality.

1. Introduction
Asynchronous circuits are a promising type of digital

circuits. They have lower power consumption and electro-
magnetic emission, no problems with clock skew and re-
lated subtle issues, and are fundamentally more tolerant
of voltage, temperature and manufacturing process varia-
tions [2]. The International Technology Roadmap for Semi-
conductors report on Design [11] predicts that 22% of the
designs will be driven by handshake clocking (i.e., asyn-
chronous) in 2013, and this percentage will raise up to 40%
in 2020.

In this paper we are concerned with an important sub-
class of asynchronous circuits, called speed-independent
circuits, i.e., circuits which work correctly regardless of
their gates’ delays (the wires are assumed to have negli-
gible delays). Signal Transition Graphs (STGs) [7] are a
formalism for specification of such circuits. They are inter-
preted Petri nets where transitions are labelled with rising
and falling edges of circuit signals.

When a circuit is synthesised from an STG, it is often as-
sumed that the specification is deterministic (in the sense of
automata theory), and its semantics is the set of its possible
traces, i.e., its language. As the final implementation must
be deterministic, it may seem reasonable to confine oneself
to deterministic specifications only. However, sometimes
this turns out to be too restrictive in practice. There are sev-
eral situations which naturally give rise to non-deterministic
specifications which still can be synthesised:

Dummy transitions For convenience of modelling, the de-
signers often use dummy transitions in STGs, which are
‘silent’ transitions not corresponding to any signal change;
they make the STG non-deterministic.
OR-causality (see [21]) When modelling with a safe Petri
net that a system has to respond to any of several possible
stimuli in the same way, non-determinism naturally arises.
The figure below illustrates OR-causality (the ‘interesting’
part is framed): a+ and b+ are concurrent inputs, and x+ is
produced upon arrival of either of them. The x+-transitions
are in dynamic conflict, i.e., the STG is non-deterministic,
but it is implemented by the deterministic circuit [x]=a∨ b.
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inputs: a, b, c; outputs: x

A more practical example of OR-causality is a dual-rail
adder cell that can determine its carry-out as soon as two
of its three inputs signal the same value [13].
Hiding of signals Non-determinism naturally arises when
in a deterministic specification some signals are hidden, see
Figure 1. In fact, hiding of signals is an essential part of the
decomposition algorithm of [19,20], which we will improve
in the present paper.
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inputs: a, b, c, d; outputs: x

Figure 1. After hiding a and b, the STG is non-deter-
ministic, but is implemented by [x]= c (input d can be ig-
nored).

To the best of our knowledge, no satisfactory formal se-
mantics of non-deterministic STGs and, in particular, of
dummy transitions1 has been given so far – as we show be-

1In practical STGs, the designers intuitively avoid using dummies am-



low, the language is no longer a satisfactory semantics in
the non-deterministic case. In this paper we propose and
justify a formal semantics of non-deterministic STGs. For
this, we introduce the concept of output-determinacy, which
is a relaxation of determinism, and argue that it is reason-
able and useful in the speed-independent context; cf. for
example [16] for the concept of determinacy.

As an important application of our theory of output-de-
terminacy, we will generalise the decomposition algorithm
of [19, 20]. Below we describe how decomposition fits into
the design flow for synthesising asynchronous circuits from
STGs.

PETRIFY [8, 9] is one of the commonly used tools for
synthesis of asynchronous circuits from STGs. It employs
the state space of the STG, and so suffers from the com-
binatorial state space explosion problem. That is, even a
relatively small STG may (and often does) yield a very
large state space. This puts practical bounds on the size
of synthesisable circuits, which are often restrictive, espe-
cially if the specification is not constructed manually by a
designer but rather generated automatically from high-level
hardware descriptions. (For example, designing a control
circuit with more than 20–30 signals with PETRIFY is often
impossible.) Hence, this approach does not scale.

To cope with the state space explosion problem, Chu
suggested a nondeterministic method for decomposing an
STG into several smaller ones [7], see also [21]. The idea
is that all components together can be synthesised faster
than the original STG while the corresponding circuits per-
form together in the same way as the circuit directly synthe-
sised from the specification. While there are strong restric-
tions on the structure and labelling of STGs in [7], the im-
proved decomposition algorithm of Vogler, Wollowski and
Kangsah [19, 20] works under – comparatively moderate –
restrictions on the labelling only. In these previous papers,
the specifications had to be deterministic; here, we gener-
alise this to output-determinate specifications.

Our approach also allows to make the decomposition al-
gorithm more efficient. Each component is obtained from
the original STG by hiding some of the signals in it, and
then contracting the corresponding transitions. The suc-
cess of this algorithm depends on the ability to contract all
such transitions in a behaviour-preserving way. If this is
not possible, the algorithm of [19] has to backtrack and re-
introduce some of the signals into the component, even if
they are not really needed for implementation. In our new
version of the algorithm, one can leave such non-contracted
hidden transitions in the component and proceed with syn-
thesis for a component with fewer signals, which was ob-
tained in a shorter time. While previously the components
were deterministic and correct by construction, our com-

biguously. However, ambiguous situations do exist, in particular when
firing a dummy transition can disable other transitions.

ponents can be non-deterministic; to guarantee correctness,
they have to be checked for output-determinacy in the end.

Another way to cope with the state space explosion prob-
lem is to use syntax-directed translation of the specifica-
tion to a circuit, thus avoiding to build the state space;
cf. BALSA [10] and TANGRAM [1]. This technique, al-
though computationally efficient, often yields circuits with
large area and performance overheads compared with syn-
chronous counterparts, since the resulting circuits are highly
over-encoded.

For asynchronous circuits to be competitive, one has
somehow to combine the advantages of logic synthesis
(high quality of circuits) and syntax-directed translation
(guarantee of a solution, efficiency) while compensating
for their disadvantages. A natural way of doing this is to
apply logic synthesis to the control path extracted from a
BALSA specification. This control path can be partitioned
into smaller clusters which can be handled by logic syn-
thesis, and the clusters on which it fails (because of either
inability to find a solution in the given gate library or ex-
ceeding memory or time constraints) are implemented using
the syntax-directed translation. The initial experiments con-
ducted in [5] showed that this combined approach can half
the area devoted to control flow and improve its latency.

The approach of [5] uses an integer linear programming
(ILP) technique to resolve CSC conflicts (see [9]) in the
specification; the resulting STG is decomposed into smaller
components such that they are also free of CSC conflicts,
as described in [4]. Then these components are synthe-
sised one-by-one using PETRIFY. This approach can handle
much larger specifications than PETRIFY alone, but its scal-
ability is still limited since ILP is an NP-complete problem.

Our decomposition algorithm follows a more scalable
approach, which avoids performing expensive operations
on the original specification. Observe that our check for
output-determinacy is also computationally hard, but it is
performed on small components; in contrast, in [5] the NP-
complete ILP-problems are solved for the full specification.
The resulting components in our approach, unlike those in
the technique described above, are generally not free of
CSC conflicts. If a component has a CSC conflict, it can
happen due to one of the following two reasons: (i) this
conflict was present already in the original STG; or (ii) this
conflict was introduced because some of the signals pre-
venting it in the original STG are not in the component.
The technique described in [14] allows one to check which
of these two reasons applies, and in case (ii) to find signals
which need to be added to the component to prevent such
conflicts. Finally, before synthesis, the remaining CSC con-
flicts are resolved in each component.

The paper is organised as follows: in the next section
we introduce the basic concepts of Petri nets and STGs. In
Section 3, the new notion of output-determinacy is intro-



duced and justified; we give a list of semantics-preserving
transformations, and we analyse the complexity of checking
output-determinacy. In the following section, we present
our STG-decomposition algorithm and state its correctness.
We close with some initial experimental results and a con-
clusion. The proofs and further details can be found in the
technical report [15].

2. Basic definitions
A Petri net is a 4-tuple N = (P, T,W,MN ) where P

is a finite set of places and T a finite set of transitions with
P ∩T = ∅. W : P×T ∪T×P → N0 is the weight function
and MN is the initial marking. In addition to the standard
rules about drawing nets, the following short-hand notation
is used: a transition can be connected directly to another
transition if the place ‘in the middle of the arc’ has exactly
one incoming and one outgoing arc. We assume that the
reader is familiar with the notions marking, preset •x, post-
set x•, firing rule for transitions (M [t〉M ′) and sequences,
reachability, boundedness and safeness.

An STG is a tuple N = (P, T,W, MN , In,Out, l) where
(P, T,W, MN ) is a Petri net and In and Out are disjoint
sets of input and output signals. For Sig

df= In ∪ Out be-
ing the set of all signals, l : T → Sig × {+,−} ∪ {λ} is
the labelling function. Sig × {+,−} or short Sig± is the
set of signal edges or signal transitions; its elements are de-
noted as s+, s− resp. instead of (s,+), (s,−) resp. A plus
sign denotes that a signal value changes from logical low to
logical high , and a minus sign denotes the other direction.
We write s± if it is not important or unknown which direc-
tion takes place; if such a term appears more than once in
the same context, it always denotes the same direction. To
keep the notation short, input/output signal edges are just
called input/output edges. An STG may contain transitions
labelled with the empty word λ, which do not correspond to
any signal change; they are called dummy-transitions.

We lift the notion of enabledness to transition labels:
we write M [l(t)〉〉M ′ if M [t〉M ′. This is extended to
sequences as usual – since λ is the empty word, e.g.,
M [s±〉〉M ′ means that a sequence of transitions fires,
where one of them is labelled s± while the others (if any)
are λ-labelled. A sequence v ∈ (Sig±)∗ is called a trace
of N if MN [v〉〉. The language L(N) of N is the set of all
traces of N .

Often, nets are considered to have the same behaviour if
they are language equivalent. Another, more detailed be-
haviour equivalence is bisimilarity [16]. Intuitively, bisimi-
lar STGs can work side by side such that in each stage each
STG can simulate the signals of the other.

An STG is called consistent if for each signal s the edges
s+ and s− alternate in all traces, always beginning with the
same signal edge. Only from consistent STGs a circuit can
be synthesised.

An STG has a dynamic conflict if there are different tran-
sitions t1 and t2 such that for some reachable marking M :
M [t1〉 and M [t2〉, but ∃p ∈ P : M(p) < W (p, t1) +
W (p, t2). A dynamic conflict implies a structural conflict,
i.e., •t1 ∩ •t2 6= ∅. The conflict is called an auto-conflict if
l(t1) = l(t2) 6= λ.

The reachability graph RGN of an STG N is an edge-
labelled directed graph on the reachable markings with MN

as root; there is an edge from M to M ′ labelled l(t) when-
ever M [t〉M ′. RGN can be seen as a finite automaton
(where all states are accepting), and L(N) is the language of
this automaton. N is deterministic if its reachability graph
is deterministic, i.e., if it contains no λ-transitions and for
each reachable marking M and each signal edge s± there is
at most one M ′ with M [s±〉〉M ′.

If RGN is not deterministic, one can turn it into a de-
terministic automaton with accepting states only by well-
known methods. (Note: this version of a deterministic au-
tomaton is in general not complete.) Thus, the λ-edges of
the reachability graph resulting from the λ-transitions are
removed by automata-theoretic methods. We call this oper-
ation determinisation and denote the resulting deterministic
finite automaton by DA(N). Observe that automata with ac-
cepting states only can be regarded as STGs (with the states
as places, the initial state being the only marked place etc.);
hence, all definitions for STGs also apply to automata.

In the following definition of parallel composition ‖, we
will have to consider the distinction between input and out-
put signals. The idea of parallel composition is that the
composed systems run in parallel and synchronise on com-
mon signals – corresponding to circuits that are connected
on signals with the same name. Since a system controls its
outputs, we cannot allow a signal to be an output of more
than one component; input signals, on the other hand, can
be shared. An output signal of one component can be an
input of one or several others, and in any case it is an output
of the composition. A composition can also be ill-defined
due computation interference; this is a semantic problem,
and we will not consider it here, but later in the definition
of correctness.

The parallel composition of STGs N1 and N2 is defined
if Out1 ∩ Out2 = ∅. Let A = Sig1 ∩ Sig2 be the set of
common signals. If e.g., s is an output of N1 and an input of
N2, then an occurrence of an edge s± in N1 is ‘seen’ by N2,
i.e., it must be accompanied by an occurrence of s± in N2.
Since we do not know a priori which s±-labelled transition
of N2 will occur together with some s±-labelled transition
of N1, we have to allow for each possible pairing. Thus, the
parallel composition N = N1 ‖ N2 is obtained from the
disjoint union of N1 and N2 by combining each s±-labelled
transition of N1 with each s±-labelled transition from N2 if
s ∈ A.

Since composition is associative and commutative up to



isomorphism, we can define the parallel composition of a
finite family (or collection) (Ci)i∈I of STGs as ‖i∈I Ci,
provided that no signal is an output signal of more than
one of the Cis. Since the place set of the composition
is the disjoint union of the place sets of the components
we can consider markings of the composition (regarded as
multisets) as the disjoint union of markings of the com-
ponents and write a marking of the composition (Ci)i∈I

as a tuple (M1, . . . ,Mn) if Mi is a marking of Ci for
i ∈ I = {1, ..., n}. The formal definition and an exam-
ple can be found e.g., in [20].

We now introduce transition contraction (see e.g., [3] for
an early reference), which will be most important in our
decomposition procedure; see [19] for further discussions.
In an STG N , a λ-labelled transition t can be contracted,
yielding the STG N̄ , if •t and t• are disjoint and t is not
adjacent to arcs with weight greater than 1. The transition
t is deleted and •t and t• are replaced by their Cartesian
product; cf. Figure 2. Every new place (p, p′) inherits the
tokens and the connections to other transitions (except t)
from p and p′. A contraction is called type-1 secure (or
just type-1) if (•t)• ⊆ {t}, or type-2 secure (or just type-
2) if •(t•) = {t} and MN (p) = 0 for some p ∈ t•.

a+

p1

b+ λ

p2 p3

c+ x+

a+

(p1, p2) (p1, p3)

b+c+ x+

Figure 2. Before and after contraction of the λ-transition.

For two different transitions t1, t2 with t1 6= t 6= t2, we
call the unordered pair {t1, t2} a new conflict pair whenever
•t∩•t1 6= ∅ and t•∩•t2 6= ∅ in N (or vice versa); if l(t1) =
l(t2) 6= λ, we speak of a new structural auto-conflict. In
Figure 2 the b+- and the c+-labelled transition form a new
conflict pair.

Another operation that can be used in our decomposition
algorithm is the deletion of redundant transitions and places.
A redundant transition is a λ-transition t, where either each
place p ∈ •t ∪ t• forms a loop with t with two arcs of
the same weight (t is a loop-only transition) or some other
λ-transition has arcs to and from the same places with the
same weight as t (which is a duplicate transition). In this
paper, we also speak of a duplicate transition if the two tran-
sitions in question are labelled with the same signal edge.
(Structurally) redundant places are defined e.g., in [3].

These deletions and type-1 contractions preserve the be-
haviour in a strong sense:

Proposition 2.1 If N ′ is obtained from an STG N by
deleting a redundant transition or place or by a type-1 con-
traction then N and N ′ are bisimilar.

3. Output-determinacy
In this section, we define in a natural way when a deter-

ministic STG can be regarded as a correct implementation
of a specification STG N ; we only consider deterministic
implementations here, since the final implementation of N
will be a circuit, which is deterministic by nature. Consid-
ering the case that N is non-deterministic, we introduce the
concept of output-determinacy, which is a relaxation of de-
terminism. It turns out that output-determinate STGs are ex-
actly the STGs which have correct implementations accord-
ing to our notion. Hence, non-output-determinate STGs are
ill-formed (in particular, they cannot be correctly imple-
mented by a circuit). This shows that the language is not
a satisfactory semantics of non-deterministic STGs in gen-
eral; in particular, synthesising the determinised state graph
of a non-output-determinate STG may either fail or result in
an incorrect circuit.

For the class of output-determinate STGs we show that
their language is an adequate semantics, and re-formulate
the notion of correct implementation purely in terms of the
language. As an important application, output-determinacy
plays an important role in our STG decomposition algo-
rithm described in Section 4 and as part of the invariant
in its correctness proof. Moreover, we introduce a set of
semantics-preserving STG transformations, which are used
in our decomposition algorithm. This set can easily be ex-
tended since the definition of ‘semantics-preserving’ is sim-
ple. We also give a result about the computational com-
plexity of checking output-determinacy.

3.1. Correct implementations

An STG N specifies the behaviour of a system in the
sense that the system must provide all and only the speci-
fied outputs and that it must allow at least the specified in-
puts. As a consequence, the system must be able to perform
at least all traces of N . In fact, N also describes assump-
tions about the environment the system will interact with;
namely, the environment will only produce the inputs spec-
ified by N . A correct implementation of N may allow addi-
tional inputs, but these inputs and subsequent behaviour will
never occur in the envisaged environment. In other words,
when the system runs in a proper environment, only traces
of N occur.

The implementation may actually have fewer input sig-
nals than N , keeping only those that are relevant for produc-
ing the required outputs. In this case, the environment may
provide irrelevant inputs, but the implementation simply ig-
nores them — and in this sense, they are always allowed
(e.g., in the STG in Figure 1, inputs a, b and d are irrelevant
for producing x and can be ignored).

The following definition assumes a deterministic imple-
mentation (as it is the case in circuit design), but the specifi-
cation can be non-deterministic. The projection of a trace w



of N onto the signals of C, obtained by deleting all signal
edges where the signal belongs to InN \ InC , is denoted by
w C .
Definition 3.1 A deterministic STG C is a correct imple-
mentation of an STG N if InC ⊆ InN , OutC = OutN ,
and for all w and M with MN [w〉〉M the following hold:
(C1) w C is a trace of C, i.e., MC [w C〉〉M ′ for some

marking M ′ of C (note that M ′ is unique as C is de-
terministic);

(C2) If a ∈ InN and M [a±〉〉 then either M ′[a±〉〉 or a /∈
InC ;

(C3) If x ∈ OutN , then M [x±〉〉 iff M ′[x±〉〉. 3

This definition is a formalisation of the considerations
above: the implementation must be able to perform all
traces of the specification, maybe dropping some irrelevant
input signals (C1); all the inputs allowed by the specifi-
cation must be allowed (or ignored) by the implementa-
tion (C2); and the implementation must produce exactly
the specified outputs (C3). In particular, every deterministic
STG N is a correct implementation of itself.

3.2. The notion of output-determinacy

A non-deterministic specification can perform the same
trace in two different ways, reaching different states M1 and
M2. In the speed-independent context the only information
available to the circuit is the execution history, i.e., the trace
performed,and so an implementation cannot know if its cur-
rent state corresponds to M1 or M2. Hence, a deterministic
implementation must behave consistently with the specifi-
cation no matter in which of these markings it is. In such
a situation, determinacy [16] implies that both states enable
the same traces, i.e., they are indistinguishable at the level
of language.

Our definition of correctness (cf. Definition 3.1) requires
that the implementation must provide exactly the outputs
enabled by M1 and exactly the outputs enabled by M2. This
is only possible if M1 and M2 enable the same outputs. In
contrast, the implementation must allow at least the inputs
enabled under M1 and the inputs enabled under M2; this is
very well possible even if these sets of inputs differ – i.e.,
the implementation may allow the union of these sets or any
of its supersets. This observation leads to our central notion
of output-determinacy.
Definition 3.2 An STG N is called output-determinate2 if
MN [w〉〉M1 and MN [w〉〉M2 implies for every x ∈ OutN
that M1[x±〉〉 iff M2[x±〉〉. 3

For example, the STG in Figure 1 is output-determinate
after hiding a and b. Clearly, a deterministic STG is also

2This notion is not to be confused with the notions of determinacy and
output determinism in [12,18]; the latter two notions are related to (output)
persistency (also called (semi-)modularity), while our notion describes a
specific kind of non-determinism in the sense of automata theory.
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Figure 3. A semi-modular but not output-determinate
STG (a) and the non-semi-modular STG (due to the choice
between the outputs x+ and y+) obtained by determinisa-
tion (b).
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Figure 4. A non-output-determinate STG (a). After de-
terminisation (b) it is implementable, but not correct w.r.t.
the original specification, since it can cause a failure in the
environment by producing x+ when it is not expected.

output-determinate; note also that – in contrast to a deter-
ministic STG – an output-determinate STG may contain λ-
transitions.
Theorem 3.3 For safe or bounded STGs, checking out-
put-determinacy is PSPACE-complete; the complexity is the
same if the STG is known to be consistent.

A practical test for safe or bounded divergence-free
STGs can be found in [15].

3.3. Semantics of non-deterministic specifi-
cations

Now we demonstrate that the notion of output-deter-
minacy is useful for defining a semantics of non-determinis-
tic specifications (in particular, allowing λ-transitions), and
we also justify this semantics.

First of all, the naı̈ve approach consisting in determini-
sation of a non-deterministic specification using the usual
procedure for finite automata and then proceeding with the
synthesis is not always correct. In the context of STGs and
circuit synthesis, the result of determinisation can manifest
some problems, e.g., non-semi-modularity [9], as illustrated
in Figure 3; Figure 4 illustrates a much more dangerous
scenario, where the determinised STG contains no appar-
ent problems but the resulting circuit is incorrect according
to Definition 3.1. In both cases, it is wiser to inform the
designer of an error than to determinise and synthesise such
a specification. Below we show that determinisation can be
safe only for output-determinate specifications.

Semantic Rule 1. A non-output-determinate specifi-
cation of a speed-independent system cannot be im-
plemented deterministically and thus is ill-formed.
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Figure 5. An output-determinate STG with a deadlock
(left) and the deadlock-free STG obtained by determinisa-
tion (right). The execution of x− is still correct: it only
occurs when the environment signals with a− that it is in
the ‘right’ branch of N . The circuit [x] = a implements
both STGs.

This rule can be justified by the following result.
Proposition 3.4 Let C be a correct implementation of N .
Then N is output-determinate.

Observe that a non-output-determinate STG always has
CSC conflicts: according to Definition 3.2, any violation
of output-determinacy implies the presence of two states
which can be reached by the same trace (and thus have the
same encoding) and enable different sets of outputs. It can
be shown that such a CSC conflict is irreducible, i.e., it can-
not be resolved by the insertion of internal signals into the
STG (as performed e.g., by PETRIFY or MPSAT [6]) in such
a way that its ‘external’ behaviour does not change. The
STG resulting from such an insertion will always have a
violation of output-determinacy (and thus CSC conflicts)
again. Further explanations and a proof can be found
in [15].

On the other hand, output-determinate specifications can
safely be determinised, and so there is no reason to distin-
guish between the specification itself and its determinised
form:

Semantic Rule 2. The semantics of an output-
determinate specification of a speed-independent sys-
tem is its (prefix-closed) language.

This rule can be justified by the following result.
Proposition 3.5 Let N be output-determinate and C be
the deterministic automaton DA(N) obtained by determin-
isation of the reachability graph of N . Then C is a correct
implementation of N .

The proposed semantics has interesting consequences,
e.g., a deadlock-free specification can be equivalent to one
with deadlocks, as illustrated in Figure 5. Hence, arbitrary
language-preserving transformations of output-determinate
specifications are allowed, as long as the resulting STG is
still output-determinate. We discuss valid transformations
in Section 3.4.

In view of Semantic Rule 2, one would expect that the
notion of correct implementation given in Definition 3.1 can
be re-formulated purely in terms of the language if the spec-
ification and the implementation are output-determinate. In

fact, we generalise the definition to allow a non-determinis-
tic implementation, as long as it is output-determinate.
Definition 3.6 An output-determinate STG C is a trace-
correct implementation of an output-determinate STG N if
InC ⊆ InN , OutC = OutN , and for every trace w of N
the following hold:

(TC1) w C is a trace of C;

(TC2) If w Cx± is a trace of C for some x ∈ OutC , then
wx± is a trace of N . 3

This definition can be viewed as a kind of denotational
notion of correctness, as opposed to the operational one
given in Definition 3.1. However, it should be empha-
sised that this notion explicitly requires the specification to
be output-determinate (i.e., this purely trace-based view is
unable to distinguish between output-determinate and non-
output-determinate specifications). The result below shows
that this notion is equivalent to Definition 3.1 if the imple-
mentation is deterministic and the specification is output-
determinate.
Proposition 3.7 Let N be an output-determinate STG and
C be a deterministic STG such that InC ⊆ InN and
OutC = OutN . Then C is a correct implementation of
N iff it is a trace-correct implementation of N .

3.4. Valid STG transformations

Due to Semantic Rule 2, any language-preserving trans-
formation of an output-determinate STG is valid, as long
as the resulting STG is output-determinate. However, it
is desirable for a transformation to preserve non-output-
determinacy as well, so that an ill-formed STG does not
become well-formed after its application; that is, a transfor-
mation should propagate errors rather than eliminate them,
so that they can eventually be detected. This motivates the
following notion.
Definition 3.8 Two STGs N and N ′ are LOD-equiva-
lent3 if either N and N ′ are both non-output-determinate,
or N and N ′ are language-equivalent and both output-deter-
minate. An STG transformation is an LOD-transformation
if the original and the new STG are LOD-equivalent. 3

One can observe that any transformation yielding a
bisimilar STG is an LOD-transformation, but there are
LOD-transformations which yield a non-bisimilar STG. Be-
low we list some LOD-transformations which will be useful
for our decomposition algorithm.

For one of the transformations and for further use, we
first introduce some notions.
Definition 3.9 For transitions t, t′, t is a (syntactic) trigger
of t′ or triggers t′ if t• ∩ •t′ 6= ∅. A λ-transition t is a weak
trigger of t′, if it triggers t′ or another weak trigger of t′.

3LOD stands for Language and Output Determinacy.



A transition t with l(t) 6= λ is a signal trigger of t′, if it
triggers t′ or a weak trigger of t′.

A transition t is in a weak syntactic conflict with t′, if it
is in syntactic conflict with t′ or with a weak trigger of t′.3

List of LOD-transformations
RedPD Deletion of a redundant place
RedTD Deletion of a redundant transition
SecTC1 Type-1 contraction of a λ-transition
LOD-SecTC2 Type-2 contraction of a λ-transition re-
stricted to output-determinate STGs
SecTC2’ Type-2 contraction of a λ-transition which is
not in a weak syntactic conflict with an output transition

Finally, we note that also the determinisation of an out-
put-determinate STG N can be seen as an LOD-transforma-
tion. If N is output-determinate, then constructing DA(N)
gives a language equivalent STG, which is not only out-
put-determinate, but even deterministic. The same is true
if one additionally minimises the deterministic automaton.
In general, any transformation preserving the language and
output-determinacy can be made into an LOD-transforma-
tion if its domain is restricted to output-determinate sys-
tems.

4. Decomposition into output-determinate
components

Here, we apply the theory of output-determinacy to de-
rive an algorithm for decomposition of STGs into smaller
components. First, we consider distributed implementa-
tions, i.e., implementations which can be represented as a
parallel composition of STGs, and derive a correctness con-
dition for them, which is consistent with the ones developed
in the previous section. Then we describe our decomposi-
tion algorithm and state its correctness.

4.1. Correct decompositions

In this section, implementations consisting of a family
of components (Ci)i∈I are considered. For each of the Ci,
synthesis is performed separately, and the resulting circuits
are simply connected with wires for their common signals.
Clearly, an output must be produced by only one compo-
nent. On the other hand, several components can listen to
the same signal, produced by the environment or another
component. On the level of STGs, this is captured by the
parallel composition of the (Ci)i∈I . We first specialise Def-
inition 3.1 to families of components, additionally taking
care of computation interference as explained below.

Definition 4.1 Let N be an STG and C
df= ‖i∈ICi be

a parallel composition of deterministic components. Then
(Ci)i∈I is a correct distributed implementation of N , if C
is a correct implementation of N (cf. Definition 3.1) and
the following holds:

(C4) If w is a trace of N , MC [w C〉〉(Mi)i∈I for some
marking (Mi)i∈I of C, and Mj [x±〉〉 for some j ∈ I
and x ∈ Outj , then (Mi)i∈I [x±〉〉 (no computation
interference).

Here, and whenever we have a collection (Ci)i∈I in the fol-
lowing, Outi stands for OutCi etc. 3

If some component produces an output which is not ex-
pected by the other components, in reality this output is pro-
duced anyway – leading to a malfunction of the system. But
on the level of STGs, in the parallel composition of the com-
ponents, this output will be disabled instead; hence, (C4)
forbids such unexpected outputs.

Since computation interference is a semantical notion,
we have not considered it in the definition of parallel com-
position, where we only required the syntactic condition
that the output sets are disjoint. More precisely, compu-
tation interference is only forbidden in states that can really
occur in appropriate environments, i.e., when performing a
trace of N (modulo the irrelevant inputs) according to (C1).
And in fact, our decomposition algorithm frequently pro-
duces components which show computation interference in
other (unreachable) states. This is another reason, why we
ignored computation interference in the definition of par-
allel composition. In short, (C4) is violated if and only if
malfunction on the physical level can occur while the com-
ponents work in an appropriate environment.

Observe that Definition 4.1 is a generalisation of Defini-
tion 3.1: if (Ci)i∈I consists of only one component C1 then
C = C1, no computation interference can occur, and (C4)
can be dropped. Furthermore, in [19,20], a correctness def-
inition in a bisimulation style was presented for determin-
istic N and applied in the context of decomposition; this
definition is easily seen to be equivalent to Definition 4.1
for general N .

Analogously to the notion of correct implementation,
the notion of correct distributed implementation can be re-
formulated purely in terms of the language, if the speci-
fication and the implementation are known to be output-
determinate.
Definition 4.2 Let N and C

df= ‖i∈ICi be output-deter-
minate STGs. Then (Ci)i∈I is a trace-correct distributed
implementation of N , if C is a trace-correct implementation
of N and for every trace w of N the following holds:
(TC3) If w Cj

x± is a trace of Cj for some x ∈ Outj , then
w Cx± is a trace of C (no computational interfer-
ence). 3

The result below shows that this notion is equivalent to
Definition 4.1, if the implementation is deterministic and
the specification is output-determinate. Proposition 3.7 is
obtained as a special case of this theorem by considering
I = {1} and C = C1.
Theorem 4.3 Let N be an output-determinate STG and
C

df= ‖i∈ICi be a parallel composition of deterministic



STGs such that InC ⊆ InN and OutC = OutN . Then
(Ci)i∈I is a correct distributed implementation of N iff it is
a trace-correct distributed implementation of N .

4.2. The decomposition algorithm

Given a specification STG N , the algorithm works as
follows:
• Choose a feasible partition (Ini, Outi)i∈I for some set

I with Outi ⊆ OutN and Ini ⊆ InN ∪ OutN for each
i ∈ I (as explained in greater detail below). For each i ∈ I ,
a component Ci will be constructed, which produces the
signals in Outi by taking into account only the signals in
Ini ∪Outi.
• Construct an initial decomposition (Ci)i∈I as follows.

For each i ∈ I , the initial component Ci = (P, T,W,
li,MN , Ini, Outi) is a copy of N except for the labelling
and the signal classification. If l(t) ∈ (InN ∪ OutN ) \
(Ini ∪ Outi), then the label is changed to li(t) = λ; such
t and its original signal are hidden. In contrast, transitions
which already have label λ in N are called specification
dummies.

Then perform the following steps to one of the Ci after
the other:
• Repeatedly apply LOD-transformations or backtrack-

ing, i.e., for some hidden signal s 6∈ Ini ∪ Outi, add s to
Ini and replace Ci by the respective new initial component.
• Eventually, check Ci for output-determinacy. If the

check fails, perform backtracking for some hidden signal
or, if no hidden signal is left, report that N is not output-
determinate. Otherwise, component Ci is constructed.

We now give some more detailed explanations for the
steps of our algorithm. A feasible partition is a fam-
ily (Ini, Outi)i∈I for some set I such that the sets Outi,
i ∈ I , are a partition of OutN and for each i ∈ I we have
Ini ⊆ InN ∪OutN \Outi, and furthermore:
(F1) If a signal s and an output signal x of N are in struc-
tural conflict, then x ∈ Outi implies s ∈ Ini (provided that
s ∈ In) or s ∈ Outi (provided that s ∈ OutN ), for each
i ∈ I .

The rationale for this is: clearly, a component responsi-
ble for an output signal x must at least ‘see’ any signal that
could be in dynamic conflict with x in N ; if such a signal
is an output as well, the component should also produce it,
because two conflicting outputs cannot be produced by two
different components in a speed-independent way.
(F2) If there are t, t′ ∈ T such that l(t′) ∈ Outi and t is a
signal trigger of t′, then the signal of t is in Ini ∪Outi.

The latter signal might be in Ini even if it belongs to
OutN ; in this case, it will be produced by some other com-
ponent, and the ith component just listens to it.

The main idea of the algorithm is to remove the λ-tran-
sitions using appropriate transition contractions and other

LOD-transformations. This way, we hopefully make the
component STGs small enough that the check for output-
determinacy and further synthesis can be performed fast. In
an optimistic strategy, one performs LOD-transformations
as long as possible – with our list of LOD-transformations,
this will terminate eventually, see below, – and backtracks
only if forced to in the last step.

Observe that backtracking modifies the feasible partition
in such a way that the resulting partition is feasible again;
in particular, Ci already has all signals that are in structural
conflict with some output signal of Ci.

The algorithm of this paper is a generalisation of the de-
composition algorithm in [19]; the latter only dealt with
deterministic specifications and for these, it considered the
same partitions, transformations, and backtracking. Since
the concept of output-determinacy was not available, it was
required to remove all λ-transitions; thus, backtracking had
also to be performed for a hidden signal if a respective tran-
sition could not be contracted, e.g., because it was on a loop
or had an arc with weight greater than one. Since back-
tracking applies to all transitions of a signal, one had to
un-hide a number of transitions just for technical reasons,
although they had already been removed successfully. This
can make the reachability graph much larger, while from the
perspective of circuit design the additional signal might not
be needed. We can avoid this in the present paper, which is
an important contribution.

If a transition contraction generates a new dynamic auto-
conflict, this is an indication that the original signal of the
contracted transition might be important for producing the
proper outputs, cf. [19, 20]; here we can add that the lat-
ter corresponds to a violation of output-determinacy. Thus,
to be sure to get a correct result, it was recommended to
backtrack in case of a new dynamic auto-conflict; to make
this strategy efficient, one has to avoid the generation of the
reachability graph, hence it was recommended to backtrack
in case of a new structural auto-conflict. With this strategy,
the algorithm of [19] is guaranteed to find a correct decom-
position without any final check.

In another version discussed in [19], the algorithm does
not backtrack in case of a new structural auto-conflict. The
hope is that the conflict might not indicate a dynamic auto-
conflict, and that avoiding backtracking gives a smaller
component. The price to pay is a final sanity check as in
our present algorithm: in the end, components had to be
checked for determinism, which is more restrictive than our
check. The experience reported in [17] is that the hope is
most often in vain.

Consequently, we recommend a conservative strategy:
if the contraction of a hidden transition creates a new struc-
tural auto-conflict, one should backtrack on the respective
signal – unless the conflicting transitions are duplicates and
one of them can thus be deleted; such a conflict clearly does



not indicate a violation of output-determinacy. There is no
obvious recommendation if a new structural auto-conflict is
created by the contraction of a specification-dummy.

If all components are constructed successfully, circuits
are synthesised from them using e.g., PETRIFY or MPSAT.
Such tools build the reduced state-vector tables for Boolean
minimisation for each Ci, which can be viewed as derived
from the respective deterministic finite automaton DA(Ci).
Hence, the equations derived from the state graphs are a
correct implementation of the specification as we state now.
Theorem 4.4 Consider the application of the decomposi-
tion algorithm to an STG N .

i) If all components are constructed successfully, then N
is output-determinate, (Ci)i∈I is a trace-correct dis-
tributed implementation of N and (DA(Ci))i∈I is a
correct distributed implementation of N .

ii) If the algorithm reports that N is non-output-deter-
minate, then this is the case.

iii) If only the LOD-transformations from Section 3.4 are
applied, the algorithm terminates.

Compared to the approach of [19], the proof of the above
theorem is considerably simpler and deals with more gen-
eral specifications. The price we pay is the check for output-
determinacy, which can be avoided in the approach of [19].
Additionally, the proof in [19] takes care to show that, for
deterministic specifications, type-2 contractions can be ap-
plied without restriction. Since we use the same operations
as in [19], we can read off from the correctness proof there
that the same result applies here if in the specification N
there are no weak triggers of or λ-transitions in structural
conflict with output transitions; this observation means that
we do not have to check for weak syntactic conflicts and
this can save a little time.

5. Results
As described in the previous sections, it is now possi-

ble to leave λ-transitions in the final components as long
as these are output-determinate. This is in particular useful
for speeding up the successful decomposition strategy tree
decomposition [17]. This strategy generates all components
together; for efficiency, only some signals are contracted
at each stage of the algorithm, resulting in re-usable inter-
mediate STGs. If not all transitions of some signal can be
contracted, one backtracks and the contraction of this signal
and all of its transitions is postponed.

In practice, most of the postponed signals can actually
be contracted at later stages of the algorithm. The new ap-
proach makes it possible to avoid postponing of signals,
leaving the non-contractible transitions as dummies in the
intermediate STGs. This gives better intermediate STGs
and performance, since in most cases the dummies will be
contracted later; otherwise they will remain in the result.

We applied this approach with the conservative strategy
to a number of benchmark examples constructed from two
basic BALSA handshake components [10]: the 2-way se-
quencer and the 2-way paralleliser; either can be described
by a simple STG. The benchmark examples SEQPARTREE-
N correspond to complete binary trees with alternating lev-
els of sequencers and parallelisers (N is the number of
levels); they are generated by the parallel composition of
the elementary STGs corresponding to the individual se-
quencers and parallelisers. We also worked with other
benchmarks made of handshake components (e.g., trees of
parallelisers only), but the results did not differ much.

We applied four variants of tree decomposition to these
benchmarks, as well as stand-alone PETRIFY and MPSAT.
(The tool for CSC conflict resolution and decomposition de-
scribed in [4,5] was not available from the authors.) The ex-
periments were conducted on a PC with Pentium-IV 3GHz
processor and 2GB RAM. The synthesis with stand-alone
PETRIFY or MPSAT did not terminate within 12 hours, even
for SEQPARTREE-05.

We performed two variants of tree-decomposition: with
postponing signals as in [17], and with leaving the non-
contractible transitions as dummies in the intermediate
STGs as described above. Additionally, we performed some
experiments using only safeness-preserving contractions,
i.e., contractions which preserve the safeness of the STG.
(This kind of contraction is needed to combine decomposi-
tion with unfolding techniques for STG synthesis, see [14].)
Essentially, the preservation of safeness is another condi-
tion which can prevent some contractions and thus increase
the runtime. This resulted in four series of experiments,
see Table 1 for the results. In the end, the final compo-
nents were synthesised with PETRIFY (including resolution
of CSC conflicts), which was possible for every component.
As explained in Section 3, this means that they are output-
determinate, i.e., all decompositions are provably correct.

Safe Non-Safe
N |P | – |T | |In| – |Out| New Old New Old
05 382 – 252 33 – 93 6 6 6 7
06 798 – 508 65 – 189 20 20 19 21
07 1566 – 1020 129 – 381 30 31 30 31
08 3230 – 2044 257 – 765 1:19 1:34 1:21 1:23
09 6302 – 4092 513 – 1533 2:48 2:57 2:54 2:59
10 12958 – 8188 1025 – 3069 10:35 47:09 11:21 11:36

Table 1. Results for SEQPARTREE-N — Columns 2 and
3 show the size and the number of signals, Columns 4 –
7 give the decomposition time plus the PETRIFY synthesis
time for the components. Times are given in seconds or as
min : sec. Safe means safeness-preserving contractions; the
old method does not leave λ-transitions in the intermediate
STGs, the new one does.

We consider the short runtimes for the examples as



a notable achievement of the proposed approach — e.g.,
SEQPARTREE-10 with more than 4000 signals was syn-
thesised in about 10–11 minutes. One can see that leav-
ing non-contractible transitions as dummies in the interme-
diate STGs is useful, especially for the case of safeness-
preserving contractions. The reason for the latter effect is
that in our benchmarks most λ-transitions are contractible
but many cannot be contracted while preserving safeness.

6. Conclusion
In this paper we proposed the concept of output-deter-

minacy, which is a generalisation of determinism. It al-
lowed us to define in a natural way a semantics of non-
deterministic STGs, in particular STGs with dummies. We
showed that non-output-determinate specifications are ill-
formed, whereas the semantics of an output-determinate
STG is its language. Moreover, for the class of output-
determinate STGs we gave a denotational (language-based)
notion of a correct implementation, and showed that it is
consistent with the corresponding operational notion. The
computational complexity of checking output-determinacy
has been investigated for several important net classes, and
a practical test for the cases of safe or bounded divergence-
free STGs has been developed.

One of the main applications of the theory developed
in this paper is the new algorithm for decomposition of
STGs. This algorithm is much more flexible than the one
in [19, 20]: it can be applied to non-deterministic specifica-
tions, it no longer requires that all the λ-transitions must be
contracted in the final components, and it can use more net
reductions; moreover, the list of such reductions can easily
be extended by adding new LOD-transformations. The ex-
perimental results show that our decomposition algorithm
can handle very large STGs efficiently. Combined with
tools for logic synthesis [14], it can be used in the context
of control re-synthesis, as explained in the introduction.
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