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Abstract

The behaviour of asynchronous circuits is often de-
scribed by Signal Transition Graphs (STGs), which are
Petri nets whose transitions are interpreted as rising and
falling edges of signals. One of the crucial problems in
the synthesis of such circuits is deriving equations for logic
gates implementing each output signal of the circuit. This
is usually done using reachability graphs.

In this paper, we avoid constructing the reachability
graph of an STG, which can lead to state space explosion,
and instead use only the information about causality and
structural conflicts between the events involved in a finite
and complete prefix of its unfolding. We propose an effi-
cient algorithm for logic synthesis based on the Incremen-
tal Boolean Satisfiability (SAT) approach. Experimental re-
sults show that this technique leads not only to huge memory
savings when compared with the methods based on reacha-
bility graphs, but also to significant speedups in many cases,
without affecting the quality of the solution.
Keywords: logic synthesis, asynchronous circuits, self-
timed circuits, Petri nets, signal transition graphs, STG,
SAT, net unfoldings, partial order techniques.

1. Introduction

Signal Transition Graphs (STGs) is a formalism widely
used for describing the behaviour of asynchronous control
circuits. Typically, they are used as a specification language
for the synthesis of such circuits [2,3,14]. STGs are a class
of interpreted Petri nets, in which transitions are labelled
with the names of rising and falling edges of circuit sig-
nals. Circuit synthesis based on STGs involves: (i) check-
ing the necessary and sufficient conditions for the STG’s
implementability as a logic circuit; (ii) modifying, if nec-
essary, the initial STG to make it implementable; and (iii)

finding appropriate Boolean covers for the next-state func-
tions of output and internal signals and obtaining them in
the form of Boolean equations for the logic gates of the cir-
cuit. The latter step is traditionally called logic synthesis
for complex gates. One of the commonly used STG-based
synthesis tools, PETRIFY [3], performs all of these steps au-
tomatically, after first constructing the reachability graph (in
the form of a BDD) of the initial STG specification. Since
popularity of this tool is steadily growing, it is likely that
STGs and Petri nets will increasingly be seen as an interme-
diate (back-end) notation for the design of large controllers.

While the state-based approach is relatively simple and
well-studied, the issue of computational complexity for
highly concurrent STGs is quite serious due to the state
space explosion problem. This puts practical bounds on
the size of control circuits that can be synthesized using
such techniques, which are often restrictive, especially if
the STG models are not constructed manually by a designer
but rather generated automatically from high-level hard-
ware descriptions.

In order to alleviate this problem, Petri net analysis tech-
niques based on causal partial order semantics, in the form
of Petri net unfoldings, were applied to circuit synthesis.
In [7], we proposed a solution for one of the subprob-
lems, central to the implementability analysis in step (i),
viz. checking the Complete State Coding (CSC) condition.
In essence, this problem consists in detecting the state en-
coding conflicts, which occur when semantically different
reachable states have the same binary encoding. We showed
that the notion of an encoding conflict can be characterized
in terms of satisfiability of a Boolean formula (SAT). The
algorithms achieved significant speedups compared with
methods based on reachability graphs, and provided a basis
for the framework for resolution of encoding conflicts (step
(ii) above) described in [10], which used the set of pairs of
configurations representing encoding conflicts produced by
the algorithm as an input.
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However, those techniques would have limited practical
impact if it was necessary to construct the reachability graph
in the later stages of the design cycle for asynchronous
circuits. To address this concern, we show in this paper
how Petri net unfolding techniques can be used for deriv-
ing equations for logic gates of the circuit (step (iii) above).
This essentially completes the design cycle for complex
gates synthesis that does not involve building reachability
graphs at any stage yet is a fully fledged logic synthesis.
Our experiments have shown that the proposed method has
significant advantage both in memory consumption and in
execution time compared with the existing state space based
methods, without affecting the quality of the solutions. This
paper is a short version of the technical report [8] (available
on-line).

2. Basic definitions

A net is a triple N
df
= (P,T,F) such that P and T are

disjoint sets of respectively places and transitions (collec-
tively referred to as nodes), and F ⊆ (P×T )∪ (T ×P) is
a flow relation. A marking of N is a multiset M of places,
i.e., M : P → N

df
= {0,1,2, . . .}. We adopt the standard rules

about representing nets as directed graphs, viz. places are
represented as circles, transitions as rectangles, the flow
relation by arcs, and markings are shown by placing to-
kens within circles. Also, a transition can be connected di-
rectly to another transition if the place ‘in the middle of
the arc’ has exactly one incoming and one outgoing arc
(see, e.g., Figure 1(a)). If this hidden place contained a to-
ken, it is drawn directly on the arc. For every t ∈ T , we
assume that •t 6= ∅ 6= t•, where •t

df
= {s | (s, t) ∈ F} and

t•
df
= {s | (t,s) ∈ F}.

A net system is a pair Σ df
= (N,M0) comprising a finite

net N = (P,T,F) and an (initial) marking M0. A transition
t ∈ T is enabled at a marking M, denoted M[t〉, if for every
s ∈ •t, M(s) ≥ 1. Such a transition can be fired, leading to
a marking M′ calculated as the multiset M′ df

= M − •t + t•.
We denote this by M[t〉M′ or M[〉M′ if the identity of the
transition is irrelevant. The set of reachable markings of Σ
is the smallest (w.r.t. ⊆) set [M0〉 containing M0 and such
that if M ∈ [M0〉 and M[〉M′ then M′ ∈ [M0〉. For a finite
sequence of transitions σ = t1 . . . tk, we denote M[σ〉M′ if
there are markings M0, . . . ,Mk such that M0 = M, Mk = M′

and Mi−1[ti〉Mi, for i = 1, . . . ,k.

A Signal Transition Graph (STG) is a triple Γ df
= (Σ,Z,λ)

such that Σ = (N,M0) is a net system, Z is a finite set of
signals, generating a finite alphabet Z± df

= Z × {+,−} of
signal transition labels, and λ : T → Z± is a labelling func-
tion. The signal transition labels are of the form z+ or z−,
and denote a transition of a signal z ∈ Z from 0 to 1 (ris-
ing edge), or from 1 to 0 (falling edge), respectively. Sig-
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csc− dsr− dtack+ d+
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Figure 1. An STG specifying a VME bus con-
troller (a) with inputs dsr, ldtack and outputs
dtack, lds, d, csc; and its state graph (b) il-
lustrating a CSCcsc

{dsr,ldtack} conflict between the
states M′ and M′′ (the order of signals in the
binary encodings is: dsr, ldtack, dtack, lds,
d, csc).

nal transitions are associated with the actions which change
the value of a particular signal. Γ inherits the operational
semantics of its underlying net system Σ, including the no-
tions of transition enabling and firing, reachable markings,
and firing sequences.

We associate with the initial marking of Γ a binary vector
v0 df

= (v0
1, . . . ,v

0
|Z|) ∈ {0,1}|Z|, where each v0

i corresponds to
the signal zi ∈ Z. Moreover, with any finite sequence of
transitions σ we associate an integer signal change vector
vσ df

= (vσ
1 ,vσ

2 , . . . ,vσ
|Z|)∈Z|Z|, so that each vσ

i is the difference

between the number of the occurrences of z+
i –labelled and

z−i –labelled transitions in σ.

Γ is consistent if, for every reachable marking M, all
firing sequences σ from M0 to M have the same encod-
ing vector Code(M) equal to v0 + vσ, and this vector is bi-
nary, i.e., Code(M) ∈ {0,1}|Z|. We denote by Codez(M)
the component of Code(M) corresponding to a signal z ∈ Z.
The consistency can be enforced syntactically, by adding to
the STG, for each signal z ∈ Z, a pair of complementary
places, p0

z and p1
z , tracing the value of z as follows. For
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each z+–labelled transition t, p0
z ∈ •t and p1

z ∈ t•, and for
each z−–labelled transition t ′, p1

z ∈
•t ′ and p0

z ∈ t ′•. Exactly
one of these two places is marked at the initial state, accord-
ingly to the initial value of signal z. One can show that at
any reachable state of an STG augmented with such places,
p0

z (respectively, p1
z ) is marked iff the value of z is 0 (re-

spectively, 1). Thus, if a transition labelled by z+ (respec-
tively, z−) is enabled then the value of z is 0 (respectively, 1),
which in turn guarantees the consistency of the augmented
STG. Such a transformation can be done completely auto-
matically. For a consistent STG, it does not restrict the be-
haviour and yields an STG with an isomorphic state graph
(see below); for a non-consistent STG, the transformation
restricts the behaviour and may lead to (new) deadlocks. In
what follows, we assume that the tracing places are present
in the STG, and denote P0

Z
df
= {p0

z | z∈ Z}, P1
Z

df
= {p1

z | z∈ Z},

and PZ
df
= P0

Z ∪P1
Z .

The state graph of a consistent STG Γ is a tuple SGΓ
df
=

(S,A,M0,Code) such that: S
df
= [M0〉 is the set of states,

A
df
= {M

t
→ M′ | M ∈ [M0〉∧M[t〉M′} is the set of state tran-

sitions, M0 is the initial state, and Code : S →{0,1}|Z| is the
state assignment function, as defined above for markings.

The signals in Z are partitioned into input signals, ZI ,
and output signals, ZO (the latter may also include internal
signals). Input signals are assumed to be generated by the
environment, while output signals are produced by the logic
gates of the circuit. For each signal z ∈ ZO we define

Outz(M)
df
=

{

1 if M[t〉 and λ(t) ∈ {z+,z−}
0 otherwise.

Logic synthesis derives for each output signal z ∈ ZO a
Boolean next-state function Nxtz defined for every reachable
state M of a consistent STG Γ as

Nxtz(M)
df
= Codez(M)⊕Outz(M) ,

where ⊕ is the ‘exclusive or’ operation. The value of this
function must be determined without ambiguity by the en-
coding of each reachable state, i.e., Nxtz(M)=Fz(Code(M))
for some function Fz : {0,1}Z → {0,1} (Fz will eventually
be implemented as a logic gate). To capture this, let M ′ and
M′′ be two distinct states of SGΓ, z ∈ ZO and X ⊆ Z. M′

and M′′ are in Complete State Coding conflict for z w.r.t. X
(CSCz

X conflict) if Codex(M′) = Codex(M′′) for all x ∈ X
and Nxtz(M′) 6= Nxtz(M′′). Γ satisfies the CSC property for
z (CSCz property) if no two states of SGΓ are in CSCz

Z con-
flict, and Γ satisfies the CSC property if it satisfies the CSCz

property for each z ∈ ZO. X is a support of z ∈ ZO if no two
states of Γ are in CSCz

X conflict. In such a case the value
of Nxtz at each state M of SGΓ is determined without am-
biguity by the encoding of M restricted to X . A support X
of z ∈ ZO is minimal if no set X ′ ⊂ X is a support of z. In
general, a signal can have several distinct minimal supports.

An example of a consistent STG for a data read op-
eration in a simple VME bus controller (a standard STG

Code Nxtdtack Nxtlds Nxtd Nxtcsc

001000 0 0 0 0
000000 0 0 0 0
100000 0 0 0 1
100001 0 1 0 1
011000 0 0 0 0
010000 0 0 0 0
110000 0 0 0 0
100101 0 1 0 1
011100 0 0 0 0
010100 0 0 0 0
110100 0 0 0 0
110101 0 1 1 1
011110 1 1 0 0
011111 1 1 1 0
111111 1 1 1 1
110111 1 1 1 1

Table 1. The truth table for the output signals
of the VME bus controller example (the order
of signals in the binary encodings is: dsr,
ldtack, dtack, lds, d, csc).

benchmark, see, e.g., [3]) is shown in Figure 1(a). Fig-
ure 1(b) shows its state graph, which allows one to derive
the equations implementing each output signal by apply-
ing Boolean minimization to the truth table shown in Ta-
ble 1. The first column of this table lists the encodings
of all the states of SGΓ, while the other columns give the
corresponding values of the next-state functions for all the
output signals. Note that not all possible encodings are
present in the first column, because the number of reachable
states (16) is smaller than the number of possible encod-
ings (26 = 64). This means that the missing encodings form
the ‘don’t care’ set, i.e., the values of the functions at these
encodings are not important and can be chosen arbitrarily.
(Boolean minimization procedures can exploit this to re-
duce the complexity of the resulting Boolean expression.)
The result of Boolean minimization, viz. the expressions
computed by logic gates implementing the output signals
of the circuit, are as follows: Nxtdtack = d, Nxtlds = d∨ csc,
Nxtd = csc∧ ldtack, and Nxtcsc = dsr∧ (¬ldtack∨ csc).

This essentially completes the standard complex-gate
synthesis procedure based on state graphs. However, it of-
ten leads to state space explosion, and in our approach we
follow another way of representing the behaviour of STGs,
viz. STG unfoldings [4, 5, 11].

A finite and complete prefix of an STG’s unfolding is a
finite acyclic net π which implicitly represents all the reach-
able states of Γ together with transitions enabled at those
states. The set of places of π (called conditions) is denoted
by B, and the set of transitions (called events) by E; each
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condition or event r has its label, h(r), which is a place or
transition of Γ, respectively. The partial order relation on
events induced by the (acyclic) flow relation of π is denoted
by �.

Algorithmically, π can be obtained through unfolding
Γ, by successive firings of transition, under the following
rules: (a) for each new firing a fresh event is generated; (b)
for each newly produced token a fresh condition is gener-
ated. The unfolding is infinite whenever Γ has an infinite
run; however, if Γ has finitely many reachable states then
the unfolding eventually starts to repeat itself and can be
truncated without loss of information, yielding a finite and
complete prefix π. This truncation is effected by the set of
cut-off events Ecut ⊆ E beyond which no new events are
generated. Figure 2 shows a finite and complete prefix for
the example STG depicted in Figure 1(a).

Due to its structural properties (such as acyclicity), the
reachable markings of Γ can be represented using configu-
rations of π. A configuration C is a downward-closed set
of events (being downward-closed means that if e ∈ C and
f � e, then f ∈ C) without structural conflicts (i.e., for all
distinct events e, f ∈ C, •e∩ • f = ∅). Intuitively, a config-
uration is a partial-order execution, i.e., an execution where
the order of firing of some of the events is not important.

After starting π from the implicit initial marking (where-
by one puts a single token in each condition which does
not have an incoming arc) and executing all the events
in C, one reaches the marking denoted by Cut(C). Then
Mark(C)

df
= h(Cut(C)) is the marking of Γ which corre-

sponds to the marking of π reached after firing the events
in C. It is remarkable that each reachable marking of Γ is
Mark(C) for some configuration C, and, conversely, each
configuration C generates a reachable marking Mark(C).
This property is a primary reason why various behavioural
properties of Γ can be re-stated as the corresponding proper-
ties of π, and then checked, often much more efficiently (in
particular, one can easily check the consistency of Γ [13]).

One can show that the number of events in the complete
prefix can never exceed the number of reachable states of
Σ [5]. Moreover, complete prefixes are often exponentially
smaller than the corresponding reachability graphs, espe-
cially for highly concurrent Petri nets, because they repre-
sent concurrency directly rather than by multidimensional
‘diamonds’ as it is done in reachability graphs. For ex-
ample, if the original Petri net consists of 100 transitions
which can fire once in parallel, the reachability graph will
contain 2100 nodes, whereas the complete prefix will coin-
cide with the net itself. The experimental results in Table 2
demonstrate that high levels of compression can indeed be
achieved in practice.

Below we extend the functions Code, Codez, Nxtz

and Outz to configurations of π, as follows: Code(C)
df
=

Code(Mark(C)), Codez(C)
df
= Codez(Mark(C)), Nxtz(C)

df
=

Nxtz(Mark(C)), and Outz(C)
df
= Outz(Mark(C)).

3. Boolean satisfiability

The Boolean satisfiability (SAT) problem consists in
finding a satisfying assignment, i.e., a mapping A : Var →
{0,1} defined on the set of variables Var occurring in a
given Boolean expression ϕ such that ϕ evaluates to 1. This
expression is often assumed to be given in the conjunctive
normal form (CNF)

∧n
i=1
∨

l∈Li
l, i.e., it is represented as a

conjunction of clauses, which are disjunctions of literals,
each literal l being either a variable or the negation of a
variable. It is assumed that no two literals in the same clause
correspond to the same variable.

Some of the leading SAT solvers, e.g., ZCHAFF [12], can
be used in the incremental mode, i.e., after solving a partic-
ular SAT instance the user can slightly change it (e.g., by
adding and/or removing a small number of clauses) and exe-
cute the solver again. This is often much more efficient than
solving these related instances as independent problems, be-
cause on the subsequent runs the solver can use some of the
useful information (e.g., learnt clauses, see [16]) collected
so far. In particular, such an approach can be used to com-
pute projections of assignments satisfying a given formula,
as described in sequel.

Let V ⊆ Var be a non-empty set of variables occurring
in a formula ϕ, and ProjϕV be the set of all restricted as-
signments (or projections) A|V such that A is a satisfying
assignment of ϕ. Using the incremental SAT approach it is
possible to compute ProjϕV , as follows.

Step 0: A := ∅.

Step 1: Run the SAT solver for ϕ.

Step 2: If ϕ is unsatisfiable then return A and ter-
minate.

Step 3: Add A|V to A , where A is the satisfying as-
signment found in Step 1.

Step 4: Modify ϕ by appending a new clause
∨

v∈V∧A(v)=1¬v∨
∨

v∈V∧A(v)=0 v.

Step 5: Go back to Step 1.
Suppose now that we are interested in finding only the

minimal elements of ProjϕV , assuming that A|V ≤ A′|V if
(A|V )(v) ≤ (A′|V )(v), for all v ∈ V . The above procedure
can then be modified by changing Step 4 to:

Step 4’: Modify ϕ by appending a new clause
∨

v∈V∧A(v)=1¬v.
Similarly, if we were interested in finding all the maximal
elements of ProjϕV , then one could change Step 4 to:

Step 4”: Modify ϕ by appending a new clause
∨

v∈V∧A(v)=0 v.
Moreover, in the latter two cases, before terminating any
non-minimal (or non-maximal) projections should be elim-
inated from A .

4



4. Logic synthesis based on unfolding prefixes

Although the process of logic synthesis described in Sec-
tion 2 is straightforward, it suffers from the state space ex-
plosion problem due to the necessity of constructing the
entire state graph of the STG. In this section, we describe
an approach based on unfolding prefixes rather than state
graphs. It has been noted in [7] that in practice such prefixes
are often much smaller than the corresponding state spaces.
This can be explained by the fact that practical STGs usu-
ally contain a lot of concurrency but relatively few choices,
and thus the prefixes are in many cases not much bigger
then the STGs themselves.

4.1. Outline of the proposed method

In [7], the CSC conflict detection problem was solved by
reducing it to SAT. More precisely, given a finite and com-
plete prefix of an STG’s unfolding, one can build a formula
C SC which is satisfiable iff there is a CSC conflict. In this
paper, we modify that construction in the way described be-
low. We assume a given consistent STG satisfying the CSC
property, and consider in turn each output signal z ∈ ZO.

The starting point of the proposed approach is to con-
sider the set N SUP P z of all sets of signals which are non-
supports of z. Within the Boolean formula C SC z, which we
are going to construct, non-supports are represented by vari-
ables nsupp

df
= {nsuppx | x∈ Z}, and, for a given assignment

A, the set of signals X = {x | A(nsuppx) = 1} is identified
with the projection A|nsupp (note that there are other vari-
ables besides nsupp in C SC z). The key property of C SC z is
that N SUP P z

= ProjC SC z

nsupp
, and so it is possible to use the

incremental SAT approach to compute N SUP P z. How-
ever, for our purposes it is enough to compute the maximal
non-supports N SUP P z

max
df
= max⊆ N SUP P z which can

then be used for computing the set

SUP P z
min

df
= min⊆{X⊆Z |X 6⊆X ′, for all X ′∈N SUP P z

max}

of all the minimal supports of z (another incremental SAT
run will be needed for this).

SUP P z
min captures the set of all possible supports of z,

in the sense that any support is an extension of some mini-
mal support, and vice versa, any extension of any minimal
support is a support. However, the simplest equation is usu-
ally obtained for some minimal support, and this approach
was adopted in our experiments. Yet, this is not a limi-
tation of our method as one can also explore some or all
of the non-minimal supports, which can be advantageous,
e.g., for small circuits and/or when the synthesis time is not
of paramount importance (this would sometimes allow to
find a simpler equation). And vice versa, not all minimal
supports have to be explored: if some minimal support has

many more signals compared with another one, the corre-
sponding equation will almost certainly be more compli-
cated, and so too large supports can safely be discarded.
Thus, as usual, there is a trade-off between the execution
time and the degree of design space exploration, and our
method allows one to choose an acceptable compromise.
Typically, several ‘most promising’ supports are selected,
the equations expressing Nxtz as a function of signals in
these supports are obtained (as described below), and the
simplest among them is implemented as a logic gate.

Suppose now that X is one of the chosen supports of z. In
order to derive an equation expressing Nxtz as a function of
the signals in X , we build a Boolean formula EQ N z

X which
has a variable codex for each signal x ∈ X and is satisfiable
iff these variables can be assigned values in such a way that
there is a reachable state M such that Codex(M) = codex, for
all x ∈ X . Now, using the incremental SAT approach one
can compute the projection of the set of reachable encod-
ings onto X (differentiating the stored solutions according
to the value of Nxtz(M)), and feed the result to a Boolean
minimizer.

To summarize, the proposed method is executed sepa-
rately for each signal z ∈ ZO and has three main stages: (I)
computing the set N SUP P z

max of maximal non-supports
of z; (II) computing the set SUP P z

min of minimal supports
of z; and (III) deriving an equation for a chosen support X
of z. In the sequel, we describe each of these three stages in
more detail.

It should be noted that the size of the truth table for
Boolean minimization and the number of times a SAT
solver is executed in our method can be exponential in the
number of signals in the support. Thus, it is crucial for
the performance of the proposed algorithm that the support
of each signal is relatively small. However, in practice it
is anyway difficult to implement as an atomic logic gate a
Boolean expression depending on more than, say, eight vari-
ables. (Atomic behaviour of logic gates is essential for the
speed-independence of the circuit, and a violation of this
requirement can lead to hazards [2, 3].) This means that if
an output signal has only ‘large’ supports then the specifica-
tion must be changed (e.g., by adding new internal signals)
to introduce ‘smaller’ supports. Such transformations are
related to the technology mapping step in the design cycle
for asynchronous circuits (see, e.g., [3]); we do not consider
them in this paper.

4.2. Computing maximal non-supports

Suppose that we want to compute the set of all maximal
non-supports of a signal z ∈ ZO. At the level of a branching
process, a CSCz

X conflict can be represented as an unordered
conflict pair of configurations 〈C′,C′′〉 whose final states are
in CSCz

X conflict, as shown in Figure 2.
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e1

dsr+

e2

csc+

e3

lds+

e4

ldtack+

e5

d+

e6

dtack+

e7

dsr−

e8

csc−

e9

d−

e10

dtack−

e11

lds−

e12

dsr+

e13

ldtack−

e14

csc+

cut-off

C′ C′′

conf ′ = 1111000000000 conf ′′ = 1111111111110
en′ = 00001000000000 nsupp = 110000 en′′ = 00000000000010
code′ = 110101 code′′ = 110000

Figure 2. An unfolding prefix of the STG shown in Figure 1(a) illustrating a CSCcsc
{dsr,ldtack} conflict

between configurations C′ and C′′. Note that e14 is not enabled by C′′ (since e13 6∈ C′′), and thus
Nxtcsc(C′) = 1 6= Nxtcsc(C′′) = 0. The order of signals in the binary encodings is: dsr, ldtack, dtack, lds,
d, csc.

We adopt the following naming conventions. The vari-
able names are in the lower case and names of formulae are
in the upper case. Names with a single prime (e.g., conf ′e
and C ON F ′) are related to C′, and ones with a double
prime (e.g., conf ′′e ) are related to C′′. If there is no prime
then the name is related to both C′ and C′′. If a formula
name has a single prime then the formula does not con-
tain occurrences of variables with double primes, and the
counterpart double prime formula can be obtained from it
by adding another prime to every variable with a single
prime. The subscript of a variable points to which element
of the STG or the prefix the variable is related, e.g., conf ′e
and conf ′′e are both related to the event e of the prefix. By
a variable without a subscript we denote the list of all vari-
ables for all possible values of the subscript, e.g., conf ′ will
denote the list of variables conf ′e, where e runs over the
set E \Ecut.

The following Boolean variables will be used in the pro-
posed translation:

• For each event e ∈ E \ Ecut, we create two Boolean
variables, conf ′e and conf ′′e , tracing whether e ∈ C′

and e ∈C′′, respectively.

• For each signal x∈ Z, we create two Boolean variables,
code′x and code′′x , tracing the values of Codex(C′) and
Codex(C′′) respectively, and a variable nsuppx indicat-
ing whether x belongs to a non-support.

• For each condition b ∈ B\E•
cut such that h(b) ∈ P1

Z , we
create two Boolean variables, cut′b and cut′′b , tracing

whether b ∈ Cut(C′) and b ∈ Cut(C′′) respectively.

• For each event e ∈ E labelled by z, we create two
Boolean variables, en′e and en′′e , tracing whether e is
‘enabled’ by C′ and C′′ respectively. Note that unlike
conf ′ and conf ′′, such variables are also created for the
cut-off events.

As already mentioned, our aim is to build a Boolean for-
mula C SC z such that ProjC SC z

nsupp
= N SUP P z, i.e., after as-

signing arbitrary values to the variables nsupp, the result-
ing formula is satisfiable iff there is a CSCz

X conflict, where

X
df
= {x | nsuppx = 1}. Figure 2 shows the satisfying assign-

ment (except the variables cut′ and cut′′) corresponding to
the CSCcsc

{dsr,ldtack} conflict depicted there. The target for-
mula C SC z will be the conjunction of constraints described
below.

Configuration constraints

The role of first two constraints, C ON F ′ and C ON F ′′, is
to ensure that C′ and C′′ are both legal configurations of the
prefix (not just arbitrary sets of events). C ON F ′ is defined
as the conjunction of the formulae

∧

e∈E\Ecut

∧

f∈•(•e)

(conf ′e ⇒ conf ′f )

and
∧

e∈E\Ecut

∧

f∈Ee

¬(conf ′e ∧ conf ′f ) ,

6



where Ee
df
= ((•e)• \ {e}) \ Ecut. The former formula en-

sures that C′ is downward closed w.r.t. �. The latter one
ensures that C′ contains no structural conflicts. (One should
be careful to avoid duplication of clauses when generating
this formula.)

C ON F ′ and C ON F ′′ can be transformed into the CNF
by applying the rules x⇒ y≡¬x∨y and ¬(x∧y)≡¬x∨¬y.

Encoding constraint

The role of this constraint is to ensure that Codex(C′) =
Codex(C′′) whenever nsuppx = 1. To build a formula estab-
lishing the value code′x of each signal x ∈ Z at the final state
of C′, we observe that code′x = 1 iff p1

x ∈ Mark(C′), i.e., iff
b ∈ Cut(C′) for some p1

x–labelled condition b (note that the
places in PZ cannot contain more than one token). The latter
can be captured by the constraint:

∧

x∈Z

(code′x ⇐⇒
∨

b∈Bx

cut′b) ,

where Bx
df
= {B\E•

cut | h(b) = p1
x}. We then define C ODE ′

as the conjunction of the last formula and
∧

x∈Z

∧

b∈Bx

(cut′b ⇐⇒
∧

e∈•b

conf ′e ∧
∧

e∈b•\Ecut

¬conf ′e) ,

which ensures that b ∈ Cut(C′) iff the event ‘producing’ b
has fired, but no event ‘consuming’ b has fired. (Note that
since |•b| ≤ 1,

∧

e∈•b conf ′e in this formula is either the con-
stant 1 or a single variable.) One can see that if C′ is a con-
figuration and C ODE ′ is satisfied then the value of signal x
at the final state of C′ is given by code′x. It is straightforward
to build the CNF of C ODE ′:

∧

x∈Z

(

(¬code′x∨
∨

b∈Bx

cut′b)∧
∧

b∈Bx

(code′x∨¬cut′b) ∧

∧

b∈Bx

(

∧

e∈•b

(¬cut′b ∨ conf ′e)∧
∧

e∈b•\Ecut

(¬cut′b ∨¬conf ′e)∧

(cut′b ∨
∨

e∈•b

¬conf ′e ∨
∨

e∈b•\Ecut

conf ′e)

)

)

.

Moreover, C ODE ′′ and its CNF are built similarly.
Now we need a ensure that code′x = code′′x whenever

nsuppx = 1. This can be expressed by the constraint SUP P
defined as

∧

x∈Z

(

nsuppx ⇒ (code′x ⇐⇒ code′′x )

)

,

with the CNF

∧

x∈Z

(

(¬code′x ∨ code′′x ∨¬nsuppx)∧

(code′x ∨¬code′′x ∨¬nsuppx)

)

.

Now the encoding constraint can be expressed as C ODE ′∧
C ODE ′′∧SUP P .

Next-state constraint

The role of this constraint is to ensure that Nxtz(C′) 6=
Nxtz(C′′). Since all the other constraints are symmetric
w.r.t. C′ and C′′, one can rewrite it as Nxtz(C′) = 0 ∧
Nxtz(C′′) = 1. Moreover, it follows from the definition of
Nxtz that Nxtz(C) ≡ ¬Codez(C) ⇐⇒ Outz(C), and so the
next-state constraint can be rewritten as the conjunction of
Codez(C′) ⇐⇒ Outz(C′) and ¬Codez(C′′) ⇐⇒ Outz(C′′).

We observe that z ∈ ZO is enabled by Mark(C′) iff
there is a z+- or z−–labelled event e /∈ C′ ‘enabled’ by C′,
i.e., such that C′ ∪ {e} is a configuration (note that e
can be a cut-off event). We then define the formula
N EX T ZER O ′, ensuring that Nxtz(C′) = 0, as the con-
junction of

code′z ⇐⇒
∨

e∈Ez

en′e

and
∧

e∈Ez

(en′e ⇐⇒
∧

f∈•(•e)

conf ′f ∧
∧

f∈(•e)•\Ecut

¬conf ′f ) ,

where Ez
df
= {e ∈ E | λ(h(e)) ∈ {z+,z−}}. Intuitively, the

former conjunct conveys that Codez(C′) ⇐⇒ Outz(C) (it
takes into account that z is enabled by the final state of C′ iff
at least one its instance is enabled by C′) and the latter one
states for each instance e of z that e is enabled by C′ iff all
the events ‘producing’ tokens in •e are in C′ but no events
‘consuming’ tokens from •e (including e itself) are in C′.

The formula N EX T ON E ′′, ensuring that Nxtz(C′′) =
1, is defined as the conjunction of

¬code′′z ⇐⇒
∨

e∈Ez

en′′e

and a constraint ‘computing’ en′′e , which is similar to that
for N EX T ZER O ′. Now the next-state constraint can be
expressed as N EX T ZER O ′

∧N EX T ON E ′′.
The CNF of N EX T ZER O ′ is

(¬code′z ∨
∨

e∈Ez

en′e)∧
∧

e∈Ez

(code′z ∨¬en′e) ∧

∧

e∈Ez

(

∧

f∈•(•e)

(¬en′e∨conf ′f )∧
∧

f∈(•e)•\Ecut

(¬en′e∨¬conf ′f )∧

(en′e ∨
∨

f∈•(•e)

¬conf ′f ∨
∨

f∈(•e)•\Ecut

conf ′f )

)

,

and the CNF of N EX T ON E ′′ can be built similarly.
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Translation to SAT

The problem of computing the set N SUP P z
max of maximal

non-supports of z can now be formulated as a problem of
finding the maximal elements of the projection ProjC SC z

nsupp
for

the Boolean formula

C SC z df
= C ON F ′

∧C ON F ′′
∧C ODE ′∧C ODE ′′∧

SUP P ∧N EX T ZER O ′
∧N EX T ON E ′′

.

It can be solved using the incremental SAT approach, as
described in Section 3. Note that the size of this formula is
polynomial in the size of the prefix (though new clauses are
added during the incremental SAT run).

4.3. Computing minimal supports

Let N SUP P z
max be the set of maximal non-supports

computed in the first stage of the method. Now we need
to compute the set SUP P z

min of the minimal supports of z.
This can be achieved by computing the set of minimal as-
signments for the Boolean formula

∧

nsupp∗∈N SUP P z
max

(

∨

x∈Z:nsupp∗x=0

suppx

)

,

which is satisfied by an assignment A iff for all non-supports
nsupp∗ ∈ N SUP P z

max, A 
 nsupp∗. This again can be
done using the incremental SAT approach, as described in
Section 3. Note that this Boolean formula is much smaller
than that for the first stage of the method (it contains at most
|Z| variables), and thus the corresponding incremental SAT
problem is much simpler.

4.4. Derivation of an equation

Suppose that X is a (not necessarily minimal) support
of z. We need to express Nxtz as a Boolean function of sig-
nals in X . This can be done by generating a truth table for z,
similar to that shown in Figure 1(c) but with the first co-
lumn restricted to signals in X , and then applying Boolean
minimization.

The set of encodings appearing in the first column of the
truth table coincides with the projections of the formula

EQ N z
X

df
= C ON F ′

∧C ODE ′
X

onto the set of variables {codex | x ∈ X}, where C ODE ′
X is

C ODE ′ restricted to the set of signals X (i.e., all the con-
junctions of the form

∧

x∈Z . . . are replaced by
∧

x∈X . . .). It
also can be computed using the incremental SAT approach,
as described in Section 3. Note that at each step of this
computation, the SAT solver returns information not only
about the next element of the projection, but also the values

of all the other variables in the formula. That is, along with
the restriction of some reachable encoding onto the set X
we have an information about a configuration C via which
it can be reached. Thus, the value of Nxtz on this element
of the projection can be computed simply as Nxtz(C). This
essentially completes the description of our method.

4.5. Optimizations

In the full version [8] of this paper, we describe optimiza-
tions which can significantly reduce the computation effort
required by our method. First, we suggest a heuristic help-
ing to compute a part of a signal’s support without running
the SAT solver, based on the fact that any support for an
output z must include all the triggers of z, i.e., those signals
whose firing can enable z. (The information about triggers
can be derived from the finite and complete prefix.) Then
we show how to speed up the computation in the case of pre-
fixes without structural conflicts. (The latter optimization is
a straightforward generalization of that described in [7].)

5. Experimental results and conclusions

We implemented our method using the ZCHAFF SAT
solver [12], and the benchmarks from [7] with modifica-
tions ensuring the CSC property and semi-modularity were
attempted. All the experiments were conducted on a PC
with a PentiumT M IV/2.8GHz processor and 512M RAM.

The first group of examples comes from real design prac-
tice. They are as follows:

• LAZYRINGCSC and RINGCSC — Asynchronous To-
ken Ring Adapters described in [1, 9]. These two
benchmarks were obtained from the LAZYRING and
RING examples used in [7] by resolving CSC conflicts.

• DUP4PHCSC, DUP4PHMTRCSC and DUPMTRMOD-
CSC — control circuits for the Power-Efficient Duplex
Communication System described in [6]. These are the
benchmarks from the corresponding series used in [7]
which have CSC.

• CFSYMCSCA, CFSYMCSCB, CFSYMCSCC, CF-
SYMCSCD, CFASYMCSCA and CFASYMCSCB —
control circuits for the Counterflow Pipeline Proces-
sor described in [15]. These are the same benchmarks
as in [7].

Some of these STGs, although built by hand, are quite large
in size.

Two other groups, PPWKCSC(m,n) and PPARB-
CSC(m,n), contain scalable examples of STGs modelling m
pipelines weakly synchronized without arbitration (in PP-
WKCSC(m,n)) and with arbitration (in PPARBCSC(m,n)).
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Problem Net Prefix Eqns Time, [s]
|S| |T | |ZI |/|ZO| |[M0〉| |B| |E| |Ecut | (SAT) PFY SAT

Real-Life STGs
LAZYRING 42 37 5/7 187 88 71 5 14 1 <1
RING 185 172 11/18 16320 650 484 55 63 850 3
DUP4PHCSC 135 123 12/15 171 146 123 11 48 20 <1
DUP4PHMTRCSC 114 105 10/16 149 122 105 8 46 13 <1
DUPMTRMODCSC 152 115 10/17 321 228 149 13 165 125 1
CFSYMCSCA 85 60 8/14 6672 1341 720 56 60 163 16
CFSYMCSCB 55 32 8/8 690 160 71 6 34 10 <1
CFSYMCSCC 59 36 8/10 2416 286 137 10 18 13 <1
CFSYMCSCD 45 28 4/10 414 120 54 6 16 3 <1
CFASYMCSCA 128 112 8/26 147684 1808 1234 62 450 1448 48
CFASYMCSCB 128 112 8/24 147684 1816 1238 62 93 2323 17

Marked Graphs
PPWKCSC(2,3) 24 14 0/7 27 = 128 38 20 1 7 <1 <1
PPWKCSC(2,6) 48 26 0/13 213 = 8192 110 56 1 13 4 <1
PPWKCSC(2,9) 72 38 0/19 219 > 5 ·105 218 110 1 19 44 <1
PPWKCSC(2,12) 96 50 0/25 225 > 3 ·107 362 182 1 25 2082 <1
PPWKCSC(3,3) 36 20 0/10 210 = 1024 57 29 1 10 1 <1
PPWKCSC(3,6) 72 38 0/19 219 > 5 ·105 165 83 1 19 43 <1
PPWKCSC(3,9) 108 56 0/28 228 > 2 ·108 327 164 1 28 7380 <1
PPWKCSC(3,12) 144 74 0/37 237 > 1011 543 272 1 37 time 1

STGs with Arbitration
PPARBCSC(2,3) 48 32 2/13 207 ·24 = 3312 110 66 2 18 4 <1
PPARBCSC(2,6) 72 44 2/19 207 ·210 > 2 ·105 218 120 2 24 42 <1
PPARBCSC(2,9) 96 56 2/25 207 ·216 > 107 362 192 2 30 315 <1
PPARBCSC(2,12) 120 68 2/31 207 ·222 > 8 ·108 542 282 2 36 3840 1
PPARBCSC(3,3) 71 48 3/19 297 ·28 = 76032 118 114 3 29 45 <1
PPARBCSC(3,6) 107 66 3/28 297 ·217 > 3 ·107 368 204 3 38 1001 <1
PPARBCSC(3,9) 143 84 3/37 297 ·226 > 1010 602 321 3 47 24941 1
PPARBCSC(3,12) 179 102 3/46 297 ·235 > 1013 890 465 3 56 mem 2

Table 2. Experimental results.

They are the benchmarks from the corresponding series
used in [7] which satisfy the CSC property, with the latter
series modified by ‘factoring out’ the arbiter into the en-
vironment to ensure semi-modularity. Note that in these
two series of benchmarks all the signals except the arbiter’s
grants in PPARBCSC(m,n) are considered outputs, i.e., the
control logic is designed as a closed circuit. The inputs are
inserted after the synthesis is completed, by breaking up
some outputs and inserting the environment into the breaks,
thus forming a handshake (sometimes with an inverter at-
tached to the output if the environment acts as an active
port).

The experimental results are summarized in Table 2,
where the meaning of the columns is as follows (from left to
right): the name of the problem; the number of places, tran-

sitions, and input and output signals in the STG; the num-
ber of reachable states; the number of conditions, events
and cut-off events in the complete prefix; the total number
of equations obtained by our method (this is equal to the
total number of minimal supports for all the output signals
and gives a rough idea of the explored design space); the
time spent by the PETRIFY tool; and the time spent by the
method proposed in this paper. We use ‘mem’ if there was a
memory overflow and ‘time’ to indicate that the test had not
stopped after 15 hours. We have not included in the table
the time needed to build complete prefixes, since it did not
exceed 0.1sec for each of the attempted STGs.

Note that in all cases the size of the complete prefix was
relatively small. This can be explained by the fact that
STGs usually contain a lot of concurrency but relatively
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few choices, and thus the prefixes are in many cases not
much bigger then the STGs themselves. For the scalable
benchmarks, one can observe that the complete prefixes ex-
hibited polynomial growth, whereas the number of reach-
able states grew exponentially. As a result, the unfolding-
based method has a clear advantage over that based on state
graphs.

Although the performed testing was limited in scope,
we can draw some conclusions about the performance of
the proposed algorithm. In all cases the proposed method
solved the problem relatively easily, even when it was in-
tractable for PETRIFY. In some cases, it was faster by sev-
eral orders of magnitude. The time spent on all these bench-
marks was quite satisfactory — it took less than 50 seconds
to solve the hardest one.

It is important to note that these improvements in mem-
ory and running time come without any reduction in quality
of the solutions. In fact, our method is complete, i.e., it can
produce all the valid complex-gate implementations of each
signal. However, in our implementation we restricted the
algorithm to only minimal supports. Nevertheless, the ex-
plored design space was quite satisfactory: as the ‘Eqns’
column in Table 2 shows, in many cases our method pro-
posed quite a few alternative implementations for a signal.
In fact, among the list of solutions produced by our tool
there was always a solution produced by PETRIFY (with,
perhaps, only minor differences due to the non-uniqueness
of the result of Boolean minimization). Overall, the pro-
posed approach turned out to be clearly superior, especially
for hard problem instances.

To conclude, according to the experimental results, the
new method can solve quite large problem instances in rel-
atively short time. It should also be emphasized that the
unfolding approach is particularly well-suited for analyzing
STGs, because STG unfolding prefixes are much smaller
than state graphs for practical STGs. Therefore, in contrast
to state-space based approaches, the proposed method is not
memory demanding.

We view these results as encouraging. Together with
those of [7, 10, 13] they form a complete design flow for
complex-gate synthesis of asynchronous circuits based on
STG unfolding prefixes rather than state graphs. In future
work we intend to include also the technology mapping step
into this framework.
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