
Detecting State Coding Conflicts in STGs
Using Integer Programming

Victor Khomenko, Maciej Koutny, and Alex Yakovlev
Department of Computing Science, University of Newcastle

Newcastle upon Tyne NE1 7RU, U.K.
{Victor.Khomenko, Maciej.Koutny, Alex.Yakovlev}@ncl.ac.uk

Abstract

The paper presents a new method for checking Unique
and Complete State Coding, the crucial conditions in the
synthesis of asynchronous control circuits from Signal Tran-
sition Graphs (STGs). The method detects state coding con-
flicts in an STG using its partial order semantics (unfolding
prefix) and an integer programming technique. This leads to
huge memory savings compared to methods based on reach-
ability graphs, and also to significant speedups in many
cases. In addition, the method produces execution paths
leading to an encoding conflict. Finally, the approach is ex-
tended to checking the normalcy property of STGs, which is
a necessary condition for their implementability using gates
whose characteristic functions are monotonic.

1. Introduction

Signal Transition Graphs (STGs) are widely used for
synthesis of asynchronous control circuits. STGs are in-
terpreted Petri nets in which transitions are labelled with
the rising and falling edges of circuit signals ([2]). Syn-
thesis based on STGs involves: (a) checking the necessary
and sufficient conditions for STG’s implementability as a
logic circuit; (b) modifying, if necessary, the initial STG to
make it implementable; and (c) finding appropriate boolean
covers for the next-state functions of output and internal sig-
nals. One of the commonly used tools, Petrify ([3]), per-
forms all of these steps automatically, after first construct-
ing the reachability graph of the initial STG specification.

To gain efficiency, Petrify uses symbolic (BDD-
based) techniques to represent the STG reachable state
space. While the state-based approach is convenient for
finding good synthesis solutions, the combinatorial explo-
sion of the state space is a serious issue for highly con-
current STGs (e.g. generated from high-level hardware de-
scriptions). This paper investigates a way to alleviate state

space explosion by using causal partial order semantics of
STGs, in the form of a Petri net unfolding prefix ([15]).

We apply unfoldings to the implementability analysis in
step (a), viz. checking the Complete State Coding (CSC)
and the Unique State Coding (USC) conditions ([2]), which
requires detecting coding conflicts between markings. A
number of methods for detecting and resolving such con-
flicts exist to date (see, e.g., [4] for a brief review). Most of
them work in the state graph framework and are applicable
to the widest possible class of STGs (with bounded under-
lying Petri Nets). Some, such as [17], operate directly on
the STG level but are restricted to, e.g., marked graphs.

STG unfoldings were first applied to the detection of
state conflicts in [10], where the ideas of slices and cover ap-
proximations of [15] led to theory and algorithms for ‘fast’
and ‘refined’ detection of coding conflicts. However, those
algorithms have not been implemented and proved efficient
in experiments, and in their ‘refinement’ part they still re-
quire the construction of the (partial) state space

In this paper, another kind of unfolding-based approach
is developed, in which we characterise state coding conflict
in terms of a system of integer constraints. Moreover, the
causality and conflicts between events involved in an un-
folding impose certain relationship between the correspond-
ing variables in the system of constraints, which can be used
to speed up the algorithm. Our new approach to state cod-
ing conflict detection is in some sense opposite to that of the
state graph based one, and exploits only the characteristics
of the unfolding structure itself. Unlike [10], our method is
not concerned with boolean covers for parts of the unfold-
ing. The initial motivation for applying this technique to
the problem of CSC (and USC) comes from its remarkable
success in speeding up deadlock detection ([8]) and solv-
ing some other model-checking problems. Our experiments
demonstrate that, in addition to huge memory savings, the
proposed algorithm can often achieve significant speedups.
It is also worth pointing out that the method allows one
not only to find conflicting reachable states, but also exe-
cution paths leading to them without performing a reacha-

bility analysis. We also apply this technique to checking the
normalcy property of STGs, which is a necessary condition
for their implementability using gates described by mono-
tonic functions (e.g. standard NOT, NAND, NOR, AOI,
OAI gates). Details of theory, including proofs, underlying
our method can be found in the full version [9].

2. Basic definitions

In this section, we first present basic definitions concern-
ing Petri nets and STGs, and then recall (see also [6]) no-
tions related to net unfoldings.

2.1. Petri nets and STGs

A net is a triple N
df
= (S, T, F) such that S and T are

disjoint sets of respectively places (circles) and transitions
(boxes), collectively known as nodes, and F ⊆ (S × T) ∪

(T ×S) is a flow relation. We denote •z
df
= {y | (y, z) ∈ F}

and z•
df
= {y | (z, y) ∈ F}, for all z ∈ S ∪ T , and assume

that •t 6= ∅ 6= t•, for every t ∈ T . A marking of N is a
multiset M of places, i.e., M : S → N = {0, 1, 2, . . .}.

A net system is a pair Σ
df
= (N,M0) comprising a finite

net N = (S, T, F) and an (initial) marking M0. A transi-
tion t ∈ T is enabled at a marking M , denoted M [t〉, if for
every s ∈ •t, M(s) ≥ 1. Such a transition can be executed,
leading to a marking M ′ defined by M ′ df

= M − •t + t•,
where ‘−’ and ‘+’ stand for the multiset difference and
sum respectively. We denote this by M [t〉M ′ or M [〉M ′,
if the identity of the transition is irrelevant. The set of
reachable markings of Σ is the smallest (w.r.t. set inclu-
sion) set [M0〉 containing M0 and such that if M ∈ [M0〉
and M [〉M ′ then M ′ ∈ [M0〉. For a finite sequence of
transitions, σ = t1 . . . tk, we denote M [σ〉M ′ if there are
markings M0, . . . ,Mk such that M0 = M , Mk = M ′ and
Mi−1[ti〉Mi, for i = 1, . . . , k.

A net system Σ is bounded if there is k ∈ N such that,
for every reachable marking M , M(S) ⊆ {0, . . . , k}; in
particular, it is safe when k = 1.

A Signal Transition Graph (STG) is a triple Γ
df
=

(Σ, Z, λ) such that Σ = (N,M0) is a net system, Z

is a finite set of signals, which generate a finite alpha-
bet Z± df

= Z × {+,−} of signal transition labels, and
λ : T → Z± ∪ {τ} is a labelling function, where τ is a
label indicating an silent (dummy) transition. The signal
transition labels are of the form z+ or z−, and denote the
transitions of signals z ∈ Z from 0 to 1 (rising edge), or
from 1 to 0 (falling edge), respectively. We will also use the
notation z± to denote a transition of signal z if we are not
interested in its direction.

We associate with the initial marking of Γ a binary vec-
tor v0 df

= (v0
1 , . . . , v0

|Z|) ∈ {0, 1}|Z|, where v0
i corresponds

to the signal zi ∈ Z. Moreover, with a sequence of
transitions σ we associate an integer signal change vector
vσ df

= (vσ
1 , vσ

2 , . . . , vσ
|Z|) ∈ N|Z|, so that each vσ

i is the dif-
ference between the number of the occurrences of (zi+)–
labelled and (zi−)-labelled transitions in σ.

Γ is consistent1 if, for every reachable marking M , all
firing sequences σ from M0 to M have the same encoding
vector Code(M)

df
= v0 + vσ, and this vector is binary, i.e.,

Code(M) ∈ {0, 1}|Z|. Such a property guarantees that, for
every signal z ∈ Z, the STG satisfies the following two
properties: (i) the first occurrence of z in the labelling of
any firing sequence of Γ starting from M0 has the same sign
(either rising of falling); and (ii) the rising and falling labels
z alternate in any firing sequence of Γ. All STGs considered
in the sequel are assumed to be consistent.

The state graph of Γ is a tuple SGΓ
df
= (S,A, s0,Code)

such that: S
df
= [M0〉 is the set of states; A

df
= {M

t
→ M ′ |

M ∈ [M0〉 ∧ M [t〉M ′} is the set of transitions; s0
df
= M0

is the initial state; and Code : S → {0, 1}|Z| is the state
assignment function, as defined above for markings.

Two distinct states of SGΓ are in USC conflict if they are
assigned the same code. Γ satisfies the Unique State Coding
(USC) property if no two states of SGΓ are in USC conflict.

Signals in Z are often partitioned into input signals, ZI ,
and output signals, ZO (the latter may also include inter-
nal signals). Input signals are assumed to be generated by
the environment, while output signals are produced by the
logical gates in the circuit. Logic synthesis derives boolean
equations for the output signals, which requires the condi-
tions for enabling output signal transitions in the state graph
of the STG to be defined without ambiguity. To capture this,
let Out(M)

df
= {z ∈ ZO | ∃t ∈ T : M [t〉 ∧ λ(t) = z±} be

the set of enabled output signals, for every reachable state
M . Two distinct states of SGΓ are in CSC conflict if they
have the same code but the sets of enabled output signals
are different. Γ satisfies the Complete State Coding (CSC)
property if no two states of SGΓ are in CSC conflict.

In this paper, we will assume that the considered STGs
contain no τ -labelled transitions. The case of an STG with
dummy transitions is elaborated in the full version [9].

An example of an STG for a data read operation in a
simple VME bus controller (a standard STG benchmark) is
shown in Fig. 1(a). Part (b) of this figure illustrates CSC
conflict between two different markings, M ′ and M ′′, that
have the same code, 10110, but Out(M ′) = {lds} 6=
Out(M ′′) = {d}.

1This is a somewhat simplified notion of consistency; see [15] for a
more elaborated one.

ldtack−lds−

lds+

d+

d− ldtack+

dtack− dsr+

(b)(a)

dsr+

lds+

dtack+dsr−d−

ldtack+

d+

dsr+

ldtack−

dtack−

lds−

ldtack− ldtack−

lds−lds−

00000

1111101111

10100

10000

10111

0011001110

01010

01000

00010 10010

10110 10110

dtack−

dtack− dsr+

M’ M’’

dsr− dtack+

Figure 1. STG model of a simplified VME
bus controller (a) and its state graph with a
CSC conflict between two states (b). The
order of signals in the binary codes is:
dsr, dtack, lds, ldtack, d. Places with one in-
coming and one outgoing arc are not shown.

2.2. Marking equation

Let Σ = (N,M0) be a net system, and S =
{s1, . . . , sm} and T = {t1, . . . , tn} be sets of its places and
transitions, respectively. We will often identify a marking
M of Σ with a vector (µ1, . . . , µm) such that M(si) = µi,
for all i ≤ m. The incidence matrix of Σ is an m×n matrix
I = (Iij) such that, for all i ≤ m and j ≤ n,

Iij
df
=







1 if si ∈ t•j \
•tj

−1 if si ∈
•tj \ t•j

0 otherwise .

The Parikh vector of a finite sequence of transitions σ is
a vector xσ = (x1, . . . , xn) such that xi is the number of
the occurrences of ti within σ, for every i ≤ n. One can
show that if σ is an execution sequence such that M0[σ〉M
then M = M0 + I · xσ . This provides a motivation for
investigating the feasibility (or solvability) of the following
system of equations:

{

M = M0 + I · x
M ∈ Nm and x ∈ Nn .

(1)

If we fix the marking M , then the feasibility of the above
system is a necessary (but, in general, not sufficient) condi-
tion for M to be reachable from M0.

A vector x ∈ Nn is Σ-compatible if it is the Parikh vector
of some execution sequence of Σ. Each compatible vector
is a solution of the marking equation for some reachable
marking M , but, in general, (1) can have solutions which do
not correspond to any execution sequence of Σ. However,
for the class of acyclic nets (in particular, net unfoldings),
this equation provides an exact characterisation of the set of
reachable markings ([14]) — the fact which is crucial for
the approach proposed in this paper.

2.3. Branching processes and configurations

Two nodes of a net N = (S, T, F), y and y′, are in
conflict, denoted by y#y′, if there are distinct transitions
t, t′ ∈ T such that •t ∩ •t′ 6= ∅ and (t, y) and (t′, y′) are
in the reflexive transitive closure of the flow relation F , de-
noted by ¹. A node y is in self-conflict if y#y.

An occurrence net is a net ON
df
= (B,E,G) where B

is the set of conditions (places) and E is the set of events
(transitions). It is assumed that: ON is acyclic (i.e., ¹ is
a partial order); for every b ∈ B, |•b| ≤ 1; for every y ∈
B ∪ E, ¬(y#y) and there are finitely many y′ such that
y′ ≺ y, where ≺ denotes the irreflexive transitive closure
of G. Min(ON) will denote the minimal elements of B∪E

with respect to ¹. The relation ≺ is the causality relation.
Two nodes are concurrent, denoted y co y′, if neither y#y′

nor y ¹ y′ nor y′ ¹ y.
A homomorphism from an occurrence net ON to a net

system Σ is a mapping h : B ∪ E → S ∪ T such that:
h(B) ⊆ S and h(E) ⊆ T ; for all e ∈ E, the restriction of h

to •e is a bijection between •e and •h(e); the restriction of
h to e• is a bijection between e• and h(e)•; the restriction of
h to Min(ON) is a bijection between Min(ON) and M0;
and for all e, f ∈ E, if •e = •f and h(e) = h(f) then
e = f .

A branching process of Σ ([5]) is a quadruple π
df
=

(B,E,G, h) such that (B,E,G) is an occurrence net and
h is a homomorphism from ON to Σ. A branching process
π′ = (B′, E′, G′, h′) of Σ is a prefix of a branching pro-
cess π = (B,E,G, h), denoted π′ v π, if (B′, E′, G′) is
a subnet of (B,E,G) such that: if e ∈ E′ and (b, e) ∈ G

or (e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G then
e ∈ E′; and h′ is the restriction of h to B′ ∪ E′. For each
Σ there exists a unique (up to isomorphism) maximal (w.r.t.
v) branching process, called the unfolding of Σ.

A configuration of an occurrence net ON is a set of
events C such that for all e, f ∈ C, ¬(e#f) and, for ev-
ery e ∈ C, f ≺ e implies f ∈ C. The configuration
[e]

df
= {f | f ¹ e} is called the local configuration of

e ∈ E. A cut is a maximal (w.r.t. set inclusion) set of con-
ditions B′ such that b co b′, for all distinct b, b′ ∈ B′. Every
marking reachable from Min(ON) is a cut.

Let C be a finite configuration of a branching process π.
Then Cut(C)

df
= (Min(ON) ∪ C•) \ •C is a cut; moreover,

the multiset of places h(Cut(C)) is a reachable marking of
Σ, denoted Mark(C). A marking M of Σ is represented
in π if the latter contains a finite configuration C such that
M = Mark(C). Every marking represented in π is reach-
able, and every reachable marking is represented in the un-
folding of Σ.

A branching process π = (B,E,G, h) of Σ is complete
if there is a set Ecut ⊆ E of cut-off events such that for
every reachable marking M of Σ there exist a finite config-

uration C of π such that C ∩ Ecut = ∅ and M = Mark(C),
and for each such C and every transition t enabled by M ,
there is an event e 6∈ C in π such that h(e) = t and C ∪ {e}
is a configuration (e may be in Ecut).2

Although, in general, an unfolding is infinite, for every
bounded net system Σ one can construct a finite complete
prefix PrefΣ of the unfolding of Σ, by choosing an appro-
priate set Ecut of cut-off events, beyond which the unfold-
ing is not generated.

A branching process of an STG Γ = (Σ, Z, λ) is a
branching process of Σ augmented with an additional la-
belling of its events, λ◦h : E → Z±∪{τ}. One can easily
check the consistency of Γ, once its finite and complete pre-
fix has been built ([15]).

3. State coding conflict detection using integer
programming

Let Γ = (Σ, Z, λ) be an STG, and UnfΓ
df
=

(B,E,G,Min) be the safe net system built from a finite
and complete prefix PrefΓ = (B,E,G, h) of the unfold-
ing of Γ, fixed for the rest of this paper, where Min is
the canonical initial marking of UnfΓ which places a sin-
gle token in each of the minimal conditions and no token
elsewhere.3 Furthermore, we will assume that b1, b2, . . . , bp

and e1, e2, . . . , eq are respectively the conditions and events
of PrefΓ, and that I is the p × q incidence matrix of UnfΓ.
The set of cut-off events of PrefΓ will be denoted by Ecut .

Suppose that two distinct reachable markings M ′ and
M ′′ of Γ are in CSC (or USC) conflict. Then these mark-
ings are represented in PrefΓ as some configurations C′ and
C′′ without cut-off events such that M ′ = Mark(C′) and
M ′′ = Mark(C′′). Let x′ and x′′ be respectively the Parikh
vectors of C′ and C′′. We will now transform the problem
of checking for the presence of CSC (or USC) conflict into
an integer programming problem expressed in terms of x′

and x′′. Note that since these variables denote Parikh vec-
tors of configurations, and no transition in UnfΓ can be fired
more than once, they are from the domain {0, 1}q . The con-
straints constituting the system to be solved are described
below.

Conflict constraints For a configuration C, its signal en-
coding vector Code(C) can be expressed as

Code(C) = v0 + vC ,

2This notion of completeness differs from the one given in [6], which
does not mention cut-off events, and hence is not appropriate for algo-
rithms making use of them. One can show that the unfolding algorithm
proposed in [6] builds prefixes which are complete not only in the sense of
the definition given [6], but also in the stronger sense assumed here.

3We will often identify UnfΓ and PrefΓ, provided that this does not
create an ambiguity.

dsr+ lds+ d+ dtack+ dsr− d−

dtack−

lds−

dsr+

ldtack−

ldtack+ lds+
61 2 3 4 5 7

8

9

10

11

C’ Code(C’)=10110

C’’
Code(C’’)=10110

e e e e e e e

e e

e e

e12

x’=111000000000
x’’=111111110100

cutoff

Figure 2. Unfolding prefix for the VME bus
example and CSC conflict between configu-
rations C′ and C′′ corresponding to markings
M ′ and M ′′ in Fig. 1(b). The corresponding
Parikh vectors are x′ and x′′.

where v0 is the vector of the initial values of the signals and
vC is the signal change vector a configuration (defined sim-
ilarly to vσ, which was defined above for sequences). The
above expression is a linear function of the Parikh vector xC

of C; we will denote it by Code(xC). With this notation, the
condition that M ′ and M ′′ have the same signal encoding
can be expressed as the linear constraint

Code(x′) = Code(x′′) . (2)

Note that the value of v0 is not needed to build it.
Fig. 2 illustrates CSC conflict in the unfolding prefix of

the STG shown in Fig. 1. Constraint (2) has the form:























x′
1 − x′

6 + x′
10 = x′′

1 − x′′
6 + x′′

10 (dsr)
x′

5 − x′
8 = x′′

5 − x′′
8 (dtack)

x′
2 − x′

9 + x′
12 = x′′

2 − x′′
9 + x′′

12 (lds)
x′

3 − x′
11 = x′′

3 − x′′
11 (ldtack)

x′
4 − x′

7 = x′′
4 − x′′

7 (d)

Compatibility constraints When solving the conflict
constraint Code(x′) = Code(x′′), we must ensure that the
vectors x′ and x′′ are indeed Parikh vectors of some con-
figurations. This may be done in the following way. Since
UnfΓ is an acyclic net, the feasibility of the marking equa-
tion M = Min + I · x is a necessary and sufficient con-
dition for a marking M to be reachable. Therefore, if the
system of inequalities Min + I · x ≥ 0 has a non-negative
integer solution then x is a valid Parikh vector, and the
Parikh vector of any configuration is a solution of this sys-
tem (see [8, 14]). As we will see later in this paper, there
is even better way to ensure that solutions are valid Parikh
vectors, avoiding generation of these constraints.

Cut-off constraints In order to ensure that the configura-
tions C′ and C′′ contain no cut-off events, we add the fol-
lowing constraints:

x′(e) = 0 and x′′(e) = 0, for each e ∈ Ecut . (3)

The intuition is to prohibit the cut-off events from occurring
by forcing the correspondent components of the Parikh vec-
tors to be 0. This technique was used in [8, 14] in the context
of checking reachability properties of Petri nets. Note that
adding constraints of this type in fact reduces the system of
constraints, effectively removing some of the variables. For
the example of Fig. 2, such a constraint is x′

12 = x′′
12 = 0,

which simplifies the equation for lds.

USC separating constraint We are not interested in so-
lutions with M ′ = M ′′, and so the constraint M ′ 6= M ′′

should be added. Together with (2) and (3), it provides a
full formulation of the USC conflict detection problem us-
ing the integer programming framework (one should still
ensure that compatibility constraints hold).

It is advantageous to make all the constraints in a sys-
tem linear, since more good heuristics can be applied for
solving it. The constraint M ′ 6= M ′′ does not fit this re-
quirement, but we can replace it by M ′ <lex M ′′, where
<lex is the lexicographical order on markings of Γ. When
Γ is a bounded STG, this constraint is linear in the vectors
M ′ = (µ′

1, . . . , µ
′
n) and M ′′ = (µ′′

1 , . . . , µ′′
n). Indeed, if

every place of the STG can hold at most k tokens then this
constraint is equivalent to

µ′
1k

0+µ′
2k

1+· · ·+µ′
nkn−1 < µ′′

1k0+µ′′
2k1+· · ·+µ′′

nkn−1,

and is very similar to the comparison of two k-ary numbers;
in particular, when Γ is safe, M ′ and M ′′ can be seen as two
binary numbers. Section 5 provides a way of rendering this
constraint as a linear constraint specified for x′ and x′′.

CSC separating constraint The separating constraint is
more complex when we are interested in checking for the
absence of CSC rather than USC conflicts. In general, it is
hard to encode the constraint Out(M ′) 6= Out(M ′′) as a
linear constraint, therefore we would suggest to check for
the presence of USC conflicts first. If there are none then
CSC conflicts are also absent. If there is a USC conflict
then in most cases it is also a CSC conflict. If there are USC
conflicts which are not CSC conflicts, then a non-linear inte-
ger programming problem can be attempted. Though fewer
heuristics work for non-linear systems, often a solution can
be obtained in reasonable time.

To check if Out(M ′) 6= Out(M ′′) holds for particular
Parikh vectors x′ and x′′ of configurations C′ and C′′ one
can compute M ′ = Mark(C′) and M ′′ = Mark(C′′) and
find Out(M ′) and Out(M ′′) directly from the STG.

4. Integer programming verification algorithm

We have shown that CSC and USC conflict detection can
be reduced to (possibly, non-linear) integer programming

problems. In principle, at this point the standard solvers can
be used to search for a solution. However, since they need
too much time even for STGs of moderate size, a further
refinement is needed.

In this section, we describe how solving the obtained sys-
tem of constraints can be improved by taking into account
partial-order dependencies between the variables, derived
from the unfolding. For example, if we set x(e) = 1 then
each x(f) such that f is a predecessor (in the causal order)
of e must be equal to 1, and each x(g) such that g is in con-
flict with e, must be equal to 0. Similarly, if we set x(e) = 0
then no event f for which e is a cause can be executed in
the same run, and so x(f) must be equal to 0. These obser-
vations can be formalised by considering UnfΓ-compatible
vectors (see section 2 for the definition), and the following
result provides a basis for such an approach.

Theorem 1 A vector x ∈ {0, 1}q is UnfΓ-compatible iff for
all distinct events e, f ∈ E such that x(e) = 1, we have:

f ≺ e ⇒ x(f) = 1 and f#e ⇒ x(f) = 0 . (4)

Corollary 1 For each reachable marking M of Σ, there ex-
ists an execution sequence of UnfΓ leading to a marking
representing M , whose Parikh vector x satisfies (4), and
for every e ∈ Ecut , x(e) = 0.

There exists a one-to-one correspondence between
UnfΓ-compatible vectors and configurations of the finite
and complete prefix which was taken as the basis of UnfΓ.
In view of the last result, it is sufficient for our algorithm
to check only UnfΓ-compatible vectors whose components
corresponding to cut-off events are equal to zero. This can
be done by setting x′(e) = x′′(e) = 0 for all e ∈ Ecut at
the beginning of the algorithm and constructing the minimal
UnfΓ-compatible closure (see below) of the current vector
in each step of the algorithm.

Definition 1 A UnfΓ-compatible vector y ∈ {0, 1}q is a
UnfΓ-compatible closure of a vector x ∈ {0, 1}q if x ≤
y. Moreover, y is the minimal UnfΓ-compatible closure of
x, denoted by MCC (x), if it is minimal with respect to ≤
among all possible UnfΓ-compatible closures of x.

Note that MCC (x) is undefined for some x’s, but whenever
defined it is unambiguous due to Theorem 2 below.

Theorem 2 A vector x ∈ {0, 1}q has a UnfΓ-compatible
closure iff for all e, f ∈ E, x(e) = x(f) = 1 implies
¬(e#f). If x has a UnfΓ-compatible closure then its min-
imal UnfΓ-compatible closure exists and is unique. More-
over, in such a case if x has zero components for all cut-off
events, then the same is true for MCC (x).

From the implementation point of view, it may happen
that a vector x has an UnfΓ-compatible closure according
to Theorem 2, but it cannot be computed because some of
the zero components of x to be set to 1 have been fixed to
0 during the search process. In such a case, the algorithm
should behave as if such a closure cannot be built.

One can see that the compatibility constraints are not
essential for an algorithm checking only UnfΓ-compatible
vectors. Indeed, they are just the result of the substitution
of M = Min + I · x into the constraints M ≥ 0 and
hold for any UnfΓ-compatible vector x ([8]). Consequently,
these inequalities may be left out without adding any UnfΓ-
compatible solution.

Various heuristics used by general purpose solvers can
be implemented to reduce the search effort, especially when
we terminate the search after finding one solution. The full
version in [9] provides a background for this, as well as the
implementation details of our algorithm.

5. Extended reachability analysis

In this section we show how an integer programming
problem stated in terms of reachable markings of a Petri
net can be expressed using UnfΓ-compatible vectors.

Let us consider a property P (M (1), . . . ,M (k)) specified
for the markings of the original net system Σ. We can trans-
form it into a corresponding property P(x(1), . . . , x(k))
specified for UnfΓ-compatible vectors x(1), . . . , x(k) in
such a way that if there exist reachable markings
M̂ (1), . . . , M̂ (k) of Σ for which P holds then P holds
for some UnfΓ-compatible vectors x̂(1), . . . , x̂(k), and vice
versa. Indeed, let M (i) be a reachable marking of Σ, and
M(i) be a corresponding marking in UnfΓ. Then M (i)(s)
can be expressed as

M (i)(s) =
∑

b∈h−1(s)

M(i)(b) ,

where the marking M(i)(b) of a place b in UnfΓ can be
found from the marking equation

M(i)(b) = Min(b) +
∑

f∈•b

x(i)(f) −
∑

f∈b•

x(i)(f) .

Therefore,

M (i)(s) =
∑

b∈h−1(s)



Min(b) +
∑

f∈•b

x(i)(f) −
∑

f∈b•

x(i)(f)



 ,

and P (M (1), . . . ,M (k)) can be rendered as a predicate
P(x(1), . . . , x(k)) specified for UnfΓ-compatible vectors.
And, moreover, if P is initially expressed as a system of
linear constraints then P will possess this property as well.

6. Verifying the normalcy property

The property of normalcy is a necessary condition for an
STG to be implementable as a logic circuit built of gates
whose characteristic functions are monotonic. The latter in
turn guarantees that the circuit is speed-independent with-
out the necessity to neglect (quite unrealistically) the delays
in gates’ input inverters (see [16]).

Let Γ = (Σ, Z, λ) be an STG. Normalcy is specified
with respect to an output signal z ∈ ZO, and can be given
in terms of the boolean next-state function Nxtz defined for
the reachable markings. If M is a reachable marking of Γ

and u = Code(M), then: Nxtz(M)
df
= 0 if uz = 0 and no

(z+)–labelled transition is enabled in M , or uz = 1 and a
(z−)–labelled transition is enabled in M ; and Nxtz(M)

df
=

1 if uz = 1 and no (z−)–labelled transition is enabled in
M , or uz = 0 a (z+)–labelled transition is enabled in M .

Γ satisfies the positive normalcy (or p-normalcy) con-
dition w.r.t. an output signal z if for every pair of reach-
able markings M ′ and M ′′, Code(M ′) ≥ Code(M ′′) im-
plies Nxtz(M

′) ≥ Nxtz(M
′′). Similarly, Γ satisfies the

negative normalcy (or n-normalcy) condition w.r.t. an out-
put signal z if for every pair of reachable markings M ′

and M ′′, Code(M ′) ≥ Code(M ′′) implies Nxtz(M
′) ≤

Nxtz(M
′′). Finally, Γ is normal if each output signal is

either p-normal or n-normal. It turns out that normalcy im-
plies CSC ([16]).

An example of normalcy violation is illustrated in Fig. 3.
This is a state graph obtained after CSC conflict has been
resolved in the STG of Fig. 1 by means of a new state
signal, csc. The resulting model, free from CSC con-
flicts, is implementable — the next-state functions for all
output signals are as follows: lds = d + csc, dtack =
d, d = ldtack · csc and csc = dsr · (csc + ldtack).
Nonetheless, normalcy is violated for signal csc. Indeed,
Code(M) > Code(M ′),Nxtcsc(M) > Nxtcsc(M

′) but
Code(M) < Code(M ′′),Nxtcsc(M) > Nxtcsc(M

′′), so
csc is neither n-normal nor p-normal. This is reflected in the
implementation function for csc, which is non-monotonic:
it is positive w.r.t. dsr and negative w.r.t. ldtack (note that
the corresponding gate has an input inverter).

The verification method described earlier in this paper
can be adopted to check the normalcy of STGs. Indeed, it
is enough to solve in UnfΓ-compatible vectors x′, x′′ the
following (non-linear) system of constraints:















Code(x′) ≥ Code(x′′)

x′(e) = 0 and x′′(e) = 0 for each e ∈ Ecut

Nxtz(x
′) Rz Nxtz(x

′′) for each z ∈ ZO ,

(5)

where Rz ∈ {<,>} depending on the type of normalcy of
the signal z. If it is not known in advance, the algorithm
can leave Rz undefined until the moment when the first two

dtack− dsr+

dsr+

dtack+dsr−

ldtack+

d+

dsr+

ldtack−

dtack−

lds−

ldtack−

lds−lds−

lds+

csc+

d−

dtack−

csc−

101001

100001

101101

101111111111011111011110

010100

011100

000100

101100001100

000000

ldtack−

100000

100100

010000

MM’

M’’

Figure 3. State graph which is free from CSC
conflicts but shows normalcy violations (for
signal csc) between markings M,M ′ and M ′′.
The order of signals in the binary codes is:
dsr, dtack, lds, ldtack, d, csc.

constraints are satisfied and Nxtz(x
′) 6= Nxtz(x

′′). Then it
fixes Rz so that the constraint does not hold and continues
the search.

7. Dynamically conflict-free nets

In many cases the performance of our algorithm can be
improved by exploiting specific properties of the Petri net
underlying an STG Γ. For instance, if Γ is free from dy-
namic conflicts (in particular, this is the case for marked
graphs) then the union of any two configurations of UnfΓ is
also a configuration. This observation can be used to reduce
the search space. Indeed, according to proposition 1 below,
it is enough to check only pairs of configurations C′ and C′′

which are ordered in the set-theoretical sense.

Proposition 1 Let Γ be free from dynamic conflicts, and let
C′ and C′′ be two finite configurations of UnfΓ such that
C′ * C′′ and C′′ * C′. If Mark(C′) and Mark(C′′) are
in USC / CSC / p-normalcy / n-normalcy conflict, then the
configuration C

df
= C′ ∩ C′′ is such that Mark(C) is in re-

spectively USC / CSC / p-normalcy / n-normalcy conflict
with either Mark(C′) or Mark(C′′).

The conflict-freeness can be easily detected in UnfΓ and
the above improvement can be incorporated into the algo-
rithm ([9]).

8. Experimental results

The results of our experiments are summarised in Ta-
ble 1. They were measured on a PC with PentiumTM

Problem Net Unfolding Time, [s]
|S| |T | |Z| |B| |E| |Ec| Pfy CLP

LAZYRING 35 32 11 87 66 5 2 <0.01
RING 147 127 28 763 498 59 1498 0.01
DUP-4PH-A 133 123 26 144 123 11 36 <0.01
DUP-4PH-B 135 123 26 146 123 11 35 <0.01
DUP-4PH-MTR-A 109 96 22 117 96 8 25 <0.01
DUP-4PH-MTR-B 114 105 26 122 105 8 25 0.02
DUP-MOD-A 129 100 21 199 132 10 222 <0.01
DUP-MOD-B 116 165 21 344 218 65 623 <0.01
DUP-MOD-C 152 115 27 228 149 13 286 <0.01
CF-SYM-A-CSC 85 60 22 1341 720 56 357 107
CF-SYM-B-CSC 55 32 16 160 71 6 15 0.06
CF-SYM-C-CSC 59 36 18 286 137 10 33 2.30
CF-SYM-D-CSC 45 28 14 120 54 6 8.6 0.01
CF-ASYM-A-CSC 128 112 34 1808 1234 62 3988 2807
CF-ASYM-B-CSC 128 112 32 1816 1238 62 6144 3280

Table 1. Experimental results: real-life STGs.

III/500MHz processor and 128M RAM. The meaning of
the columns is as follows (from left to right): the name of
the problem; the number of places, transitions and signals
in the original STG; the number of conditions, events and
cut-off events in the complete prefix; the time spent by a
special version of the Petrify tool, which did not attempt
to resolve the coding conflicts it had identified; and the time
spent by our algorithm.

The examples came from the real design practice and
involve models of: ring protocol adapters ([1, 12]), duplex
channel controller ([7]), and counterflow pipeline controller
([18]). Some STGs, although built by hand, were quite large
in size. Other examples, including scalable ones, can be
found in [9].

Note that in all cases the size of the complete prefix was
relatively small. This may be explained by the fact that
STGs usually contain a lot of concurrency but rather few
conflicts, and thus the prefixes are not much bigger then the
STGs themselves. As a result, the memory requirements of
our algorithm are very moderate: it uses only O(|E|) mem-
ory besides that needed to store the prefix, which for all the
examples shown in the table means not more than just few
kilobytes (in contrast, Petrify was repeatedly swapping
pages to the disk for some of the examples due to the need
to build the whole state spaces of the STGs).

Although our testing was limited in scope, we can draw
some conclusions about the performance of the proposed
algorithm. There is an important distinction between the
ways how Petrify and CLP solve the problem of CSC
checking: Petrify calculates the characteristic function
of all CSC conflicts, whereas CLP can be stopped after the
first CSC conflict has been detected. If a specification con-

tains a coding conflict, our algorithm in most cases finds
it very quickly. On the other hand, conflict-free specifica-
tions (bottom half of the table) are much harder to deal with.
This may be explained by the fact that in such a case the al-
gorithm has to explore the full search space. In the worst
case, this may result in exploring all pairs of configurations.
However, the heuristics we described allow the algorithm to
considerably reduce the search space and produce the result
in acceptable time.

9. Conclusions

Experimental results indicate that the algorithm pro-
posed in this paper is not memory-demanding and in most
cases time-efficient, though on some examples its perfor-
mance was not entirely satisfactory. It is worth emphasising
that the proposed approach overcomes the memory limita-
tions of existing state-based methods, while still offering
quite good performance.

Acknowledgements

We would like to thank Jordi Cortadella for compiling
a special version of the Petrify tool used in our exper-
iments, and Alexander Letichevsky and Sergei Krivoi for
drawing our attention to integer programming. Many thanks
to the anonymous reviewers for their comments.

The first author was supported by an ORS Awards
Scheme grant ORS/C20/4 and by an EPSRC grant
GR/M99293. The other two authors were supported by an
EPSRC grant GR/M94366.

References

[1] C. Carrion and A. Yakovlev: Design and Evaluation of two
Asynchronous Token Ring Adapters. Technical Report CS-
TR-562, Dept. of Comp. Sci., Univ. of Newcastle (1996).

[2] T. -A. Chu: Synthesis of Self-Timed VLSI Circuits from
Graph-Theoretic Specifications. PhD Thesis, MIT Labora-
tory for Computer Science, MIT/LCS/TR-393 (1987).

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno
and A. Yakovlev: Petrify: a tool for manipulating concur-
rent specifications and synthesis of asynchronous controllers.
IEICE Trans. on Inf. and Syst. E80-D(3) (1997) 315–325.

[4] J. Cortadella, A. Kondratyev, M. Kishinevsky, L. Lavagno
and A. Yakovlev: Complete state encoding based on the-
ory of regions. Proc. of ASYNC’96, IEEE Comp. Soc. Press
(1996) 36–47.

[5] J. Engelfriet: Branching processes of Petri Nets. Acta Infor-
matica 28 (1991) 575–591.

[6] J. Esparza, S. Römer and W. Vogler: An Improvement of
McMillan’s Unfolding Algorithm. Proc. of TACAS’96, Mar-
garia T., Steffen B. (Eds.). Springer-Verlag, Lecture Notes in
Computer Science 1055 (1996) 87–106.

[7] S. B. Furber, A. Efthymiou, and Montek Singh: A power-
efficient duplex communication system. Proc. of Int. Work-
shop on Asynchronous Interfaces: Tools, Techniques and Im-
plementations, Yakovlev A., Nouta R. (Eds.). TU Delft, The
Netherlands (2000).

[8] V. Khomenko and M. Koutny: LP Deadlock Checking Us-
ing Partial Order Dependencies. Proc. of CONCUR’2000,
Palamidessi C. (Ed.). Springer-Verlag, Lecture Notes in
Computer Science 1877 (2000) 410–425.

[9] V. Khomenko, M. Koutny and A. Yakovlev: Detecting State
Coding Conflicts in STGs Using Integer Programming.
Technical Report. Technical Report CS-TR-736, Department
of Computing Science, University of Newcastle (2000). see:
www.cs.ncl.ac.uk/research/trs/lists/2001.html

[10] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno,
A. Taubin and A. Yakovlev: Identifying State Coding Con-
flicts in Asynchronous System Specifications Using Petri Net
Unfoldings. Proc. of Int. Conf. Appl. of Conc. to Syst. Des.
(CSD’98), IEEE Comp. Soc. Press (1998) 152–163.

[11] A. Kondratyev, J. Cortadella, M. Kishinevsky, E. Pastor,
O. Roig and A. Yakovlev: Checking Signal Transition Graph
Implementability by symbolic BDD traversal. Proc. of
EDTC’95, IEEE Comp. Soc. Press (1995) 325–332.

[12] K. S. Low and A. Yakovlev: Token Ring Arbiters: an exer-
cise in asynchronous logic design with Petri nets. Technical
Report CS-TR-537, Dept. of Comp. Sci., Univ. of Newcastle
(1995).

[13] K. L. McMillan: Using Unfoldings to Avoid State Explosion
Problem in the Verification of Asynchronous Circuits. Proc.
of CAV’92, Springer-Verlag, Lecture Notes in Computer Sci-
ence 663 (1992) 164–174.

[14] S. Melzer and S. Römer: Deadlock Checking Using Net Un-
foldings. Proc. of Computer Aided Verification (CAV’97),
O. Grumberg (Ed.). Springer-Verlag, Lecture Notes in Com-
puter Science 1254 (1997) 352–363.

[15] A. Semenov: Verification and Synthesis of Asynchronous
Control Circuits Using Petri Net Unfolding. PhD Thesis,
University of Newcastle upon Tyne (1997).

[16] N. Starodoubtsev, S. Bystrov, M. Goncharov, I. Klotchkov
and A. Smirnov: Towards Synthesis of Monotonic Asyn-
chronous Circuits from Signal Transition Graphs. Proc. of
ICACSD’01, IEEE Comp. Soc. Press (2001) 179–188.

[17] P. Vanbekbergen, F. Catthoor, G. Goossens and H. De Man:
Optimized Synthesis of Asynchronous Control Circuits form
Graph-Theoretic Specifications. Proc. of ICCAD’90, IEEE
CS Press (1990) 184–187.

[18] A. Yakovlev: Designing Control Logic for Counterflow
Pipeline Processor Using Petri nets. Formal Methods in Sys-
tems Design 12(1) (1998) 39–71.

