
Opportunistic Merge Element
Andrey Mokhov, Victor Khomenko, Danil Sokolov, Alex Yakovlev

{andrey.mokhov, victor.khomenko, danil.sokolov, alex.yakovlev}@ncl.ac.uk
Newcastle University, United Kingdom

Abstract—The paper introduces a new reusable asynchronous
component, called Opportunistic Merge element, that merges
two or more request-acknowledgement channels into one and
is allowed to opportunistically bundle requests from different
input channels if they arrive sufficiently close to each other. We
present a speed-independent implementation of this component
and verify some of its correctness properties. An important
characteristic of the presented implementation is that the ar-
bitration is removed from the critical path, thereby providing a
fast response to the incoming requests.

I. INTRODUCTION AND BASIC NOTIONS

Merge element [7] (also known as Mixer [23]) has two
concurrent input ports and a single output port, and for each
handshake on any of the input ports it initiates an enclosed
handshake on the output port, see Fig. 1 (signal names are
colour-coded: red for inputs and blue for outputs). We present
a new reusable asynchronous component, called Opportunistic
Merge (OM) element. It is similar to Merge, but allows for
opportunistic bundling of closely arriving input requests – a
single output handshake is executed for such a bundle.

input channel 1

input channel 2

output channel

Figure 1: Interface of Merge and OM

To clarify the intended behaviour of OM we use the
following analogy. Consider a butler whose job is to bring
visitors to the cabinet where they meet the host. Upon arrival
of a visitor, the butler goes and notifies the host. When the
host is ready to receive visitors, the butler goes back to the hall
where they have been waiting, and takes them to the host. Note
that more visitors might have arrived by this time, and they
are all taken to the host. Hence the butler opportunistically
‘bundles’ the visitors, to minimise disturbance to the host.
Note that in the situation when a new visitor arrives at the
same time the butler is about to take the visitors to the host,
the butler has to make an arbitrary decision whether to ‘bundle’
this visitor or leave him waiting in the hall.

Opportunistic bundling of requests is common in the real
world: fire-fighters responding to multiple reports about the
same incident only once (improving resource utilisation), lifts
reopening doors to allow as many people in as possible
(reducing their waiting time), strangers sharing a taxi (saving
money), etc. The intended application of OM in electronic
systems is to handle concurrent requests from several clients

to a kind of service that benefits all the clients simultaneously.
Examples include triggering an alarm by (any of) several
sensors, re-charging of a shared DRAM, and various kinds
of power management. Our research in OM was motivated
by a specific industrial application – a multiphase buck con-
troller [21], where several sensors can independently request
a recharging cycle and such requests should be bundled if
possible.

Speed-independence and Signal Transition Graphs

The OM implementation presented in Section III falls within
an important class of speed-independent (SI) asynchronous
circuits, where following the classical Muller’s approach [15]
each gate is regarded as an atomic evaluator of a Boolean
function, with a delay associated with its output. In the SI
framework this delay is unbounded, i.e. the circuit must work
correctly regardless of its gates’ delays, and the wires are
assumed to have negligible delays. Alternatively, one can
regard wire forks as isochronic and add wire delays to the
corresponding gate delays (Quasi-Delay Insensitive (QDI)
circuit class [13]).

Signal Transition Graphs (STGs) [3][20] are a formalism
for specifying such circuits. They are Petri nets [16] in which
transitions are labelled with the rising and falling edges of
circuit signals. The details of circuit synthesis from STGs can
be found in [4]. The semantics of an STG coincides with a
semantics of its state graph, so STGs can be considered as
‘syntax sugar’ for compact representation of state graphs. This
representation is particularly beneficial for highly concurrent
specifications, where state graphs suffer from state space
explosion [22].

Graphically, the places are represented as circles, transitions
as textual labels, consuming/producing arcs are shown by
arrows, read arcs (which test if a token is present without
consuming it) are shown by bidirectional arrows, and tokens
are depicted by dots. For simplicity, the places with one
incoming and one outgoing arc are often hidden, allowing
arcs (with implicit places) between pairs of transitions.

II. SPECIFICATION

In this section we consider a family of Merge-like elements,
discuss their behaviour, and point out difficulties in deriving
their synthesisable specifications. We show how to overcome
the difficulties in the OM case.

Fig. 2 shows informal conceptual state graphs of several
elements of the Merge family. We make some simplifications
for the sake of clarity: (i) 2-phase protocol is used even though



r1 r2

r1r2

r1r2

ra ra

ra

a1 a2

a1a2

(a) Merge

r1 r2

r1r2

r1r2

ra ra

ra

a1 a2

a1a2

{a1,a2}

(b) Opportunistic Merge

r1 r2

r1r2

r1r2

ra ra

ra

a1 a2

{a1,a2}

(c) Zealous OM

r1 r2

r1r2

r1r2

ra ra

ra

a1 a2

{a1,a2}

a2 a1

(d) Strict OM

r1 r2

r1r2

r1r2

ra ra

ra

a1 a2

a1a2

a1 a2

a2 a1

r1 r2
a2 a1

ra ra

s1 s2

s
s3 s4

(e) Attempt at decomposing the
bundle in OMFigure 2: Conceptual state graphs of Merge-like elements

the circuit developed in this paper will use 4-phase protocol,
(ii) events r and a of the output port are glued together into
a composite event ra, and (iii) a composite event {a1, a2} is
used for representing bundled acknowledgements.

Consider standard Merge in Fig. 2(a). The bottom state of
the graph is not output-persistent: outputs a1 and a2 disable
each other. A mutual exclusion (mutex) element [12] is often
employed to resolve this conflict. Furthermore, with additional
assumptions on the environment, an implementation based on
Schmitt triggers can be derived [7].

With a seemingly trivial modification one can obtain a state
graph for OM, see Fig. 2(b). The bottom state is augmented
with an opportunistic bundle transition {a1, a2} sending
acknowledgements to both input channels (we do not attach
any formal semantics to such a transition and use it for
illustrative purposes only). In Section II we ‘decompose’ this
bundle.

It is interesting to consider two other versions of OM shown
in Fig. 2(c,d). The first one, called zealous OM, insists on
bundling the requests in the bottom state when both requests
have been received but no acknowledgements have yet been
issued. The second one, called strict OM, makes the decision
strictly upon completion of ra: only those requests which
arrived before this moment are acknowledged.

Fig. 4 shows unrolled state graphs of the four Merge-
like elements discussed above. They illustrate the differences
between the elements, in particular, one can see how the
elements bundle input requests:

• Merge makes no bundles.
• OM is not obliged to bundle even if it can.
• Strict OM always bundles if both requests arrived before

ra, but if one of the requests is slightly late then it cannot
be bundled.

• Zealous OM leads to maximum possible bundling.
Note also that OM is the most abstract element in the OM
family: all the others refine its behaviour.

Surprisingly, both zealous and strict OMs do not disable
outputs a1 and a2, which might suggest that arbitration is not
necessary. However, recall that the bundle transition has no
formal semantics. According to our preliminary investigation
the zealous and strict versions of OM actually have more

Figure 3: STG specification for OM with mutexes

complex conflicts and lead to heavier implementations than
either Merge or ‘plain’ OM. Therefore, in the rest of the paper
we only focus on deriving the implementation for OM and
leave the alternatives for future research.

Decomposing the bundle

An attempt of decomposing the bundled transition is shown
in Fig. 2(e), where this transition is replaced in a natural
way by a subgraph that can issue a1 and a2 in any order,



r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2

r1r2

ra ra

ra

a1 a2

a1 a2

r1 r2

r1r2

r1r2

ra ra

ra

a1

a1
r1 r2

r1r2

r1r2

ra ra

ra

a1

a1

a2

a2

a2

a2

a2a2 a2a1a1 a1

(a) Merge

r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2

r1r2

ra ra

ra

a1 a2

a1 a2

r1 r2

r1r2

r1r2

ra ra

ra

a1

a1
r1 r2

r1r2

r1r2

ra ra

ra

a1

a1

a2

a2

a2

a2

a2a2 a2a1a1 a1

{a
1,
a2
}

{a
1,
a2
}

{a
1,
a2
}

(b) Opportunistic Merge

r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2

r1r2

ra ra

ra

a1 a2

r1 r2

r1r2

r1r2

ra ra

ra

a1

r1 r2

r1r2

r1r2

ra ra

ra

a1a2 a2

a2a2 a2a1a1 a1

{a
1,
a2
}

{a
1,
a2
}

{a
1,
a2
}

(c) Zealous OM

r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2ra ra

ra

r1 r2

r1r2

r1r2

ra ra

ra

r1 r2

r1r2ra ra

ra

a1 a2

r1 r2

r1r2

r1r2

ra ra

ra

a1

r1 r2

r1r2

r1r2

ra ra

ra

a1a2 a2

a2a2 a2a1a1 a1

{a
1,
a2
}

{a
1,
a2
}

{a
1,
a2
}

a1 a2

r2

a1

r2

a1

r1

a2

r1

a2

(d) Strict OM

Figure 4: State graph unfoldings of Merge-like elements

appropriately interacting with other signals. Unfortunately,
this behaviour is ill-formed: state s enables two transitions
corresponding to a1 (and symmetrically for a2), which lead
to semantically different states s2 and s3: in the former the
circuit is not allowed to produce a2 while in the latter it has
to. This behaviour is not output-determinate and so cannot be
synthesised as a circuit [11], in particular there are irreducible
CSC conflicts between s2 and s3, and between s1 and s4.

We resolve the problem by arbitrating between each request
and ra. The resulting 4-phase STG specification (the state
graph would be too large) is shown in Fig 3. Note that the
composite event ra is decomposed into signals r and a, and
the added signals (r1go, r1stop) and (r2go, r2stop) corres-
pond to the outputs of mutexes conducting the corresponding
arbitrations. These signals are inputs, as mutexes are ‘factored
out’ to the environment – this is a standard technique to avoid
the violations of output-persistency associated with mutex

outputs [5]. The OR-causal dependency of r on requests r1
and r2 (after they win their arbitrations they become r1go
and r2go) is modelled by two transitions labelled by r, each
controlled by a read arc. Note that this does not lead to non-
determinism, as in the state where they are both enabled firing
of either of these transitions leads to the same state. This
design has the following important features:

• The decision whether to bundle the requests is delayed
until the arrival of a, which makes the bundling more
likely.

• The arbitration is removed from the critical path: when
the earliest request arrives it is guaranteed to pass through
the corresponding mutex without arbitration, as the com-
peting signal a could not have arrived yet. Hence, the
mutex does not enter its metastable state and the time
between the arrival of the earliest request and issuing
signal r is bounded.



ButlerHall Cabinet

ME

ME

SR

SR

(a) Original circuit

ME

ME

Hall CabinetButler

(b) Simplified circuit

Figure 5: Speed-independent implementation of OM

The internal signals csc1 and csc2 have been automatically
inserted by MPSAT [9], [10] to resolve the encoding conflicts.
We verified that this STG is consistent, deadlock-free, output-
persistent, and has complete state coding; hence, its speed-
independent implementation can be automatically derived.

III. CIRCUIT IMPLEMENTATION

In this section we present a speed-independent implement-
ation of OM and discuss its important features. Then we
simplify the circuit under the assumption that mutexes are fair.
Finally, we extend the latter implementation to more than two
input channels.

A. Principle of operation
Fig. 5(a) shows the proposed speed-independent implement-

ation of OM that has been automatically derived from the STG
in Fig. 3 using MPSAT. It can be subdivided into three logical
parts whose functionality is explained below.

Hall: two mutexes m1 and m2 that let incoming re-
quests r1+ and r2+ through (visitors enter the hall). Note
that since initially a = 0, the earliest request is guaranteed to
propagate through the corresponding mutex without causing
metastability, hence the mutex delay is bounded. These re-
quests are latched by the corresponding set-dominant latches.

Butler: As soon as the earliest request passes through
the corresponding mutex and latch, request r is generated,
rSet+ → r+, where r is the output of a C-element that is
set and reset by gates rSet and rReset (the butler notifies the
host). In response to r+ acknowledgement a+ is produced by
the environment (the host is ready to receive the visitors). At
this point a+ can collide with a late arriving request leading
to a metastability in the corresponding mutex; note that this
happens outside the critical path:

(r1+ ∨ r2+) → (csc1+ ∨ csc2+) → rSet+ → r+

Eventually, the late request is either bundled with the earlier
request or delayed until the next cycle (butler makes an
arbitrary decision).

Cabinet: upon arrival of a+ two AND gates send acknow-
ledgements a1 and/or a2 to those requests which managed to

propagate through the mutexes (visitor(s) enter the cabinet).
Note that it is guaranteed that at least one acknowledgement
is issued, because a+ is produced by m1.g1+ and m2.g1+ in
OR-causal manner [25] (at least one visitor enters the cabinet).

In the reset phase, the acknowledged request(s) are eventu-
ally withdrawn and a propagates through both mutexes and the
corresponding latches leading to the withdrawal of request r:

(m1.g1+ ∧ m2.g2+) → (csc1- ∧ csc2-) → rReset- → r-

We formally verified that this circuit is hazard-free, as well
as some other relevant properties, see Section IV.

B. Sequential bundling and circuit simplification

The implementation in Fig. 5(a) is overly conservative,
in particular it latches the outputs of mutexes in order to
prevent some peculiar theoretical scenarios that cannot occur
in practice. The reason is that the speed-independent model
of a mutex is unfair – it allows the same request to keep
wining and the other request to wait indefinitely. However,
implementations of mutexes used in practice satisfy the so-
called fairness assumption [2]: when both requests are high,
and the winning one withdraws, the other request is guaranteed
to become the next winner. Fig. 5(b) shows a simplified OM
circuit that was derived with the assumption of fair mutexes.
Note that the outputs of mutexes are no longer latched and the
implementations of rSet and rReset are noticeably simpler.

The key feature of OM is the ability to bundle requests
arriving on different channels. However, one can also consider
another type of bundling when sequential requests arriving
on the same channel sufficiently close to each other are
bundled. For most applications this is undesirable. However,
sequential bundling can theoretically occur in the simplified
implementation if the mutexes are unfair. Indeed, consider the
following sequence of events, where internal signal transitions
are omitted for clarity:

r1+, r2+, r+, a+, a1+, a2+, r1-

Intuitively, both requests have made it through the mutexes,
got bundled, and acknowledged, and request r1 has just



(a) Unfair mutex

(b) Fair mutex

Figure 6: STG specifications of unfair and fair mutexes

been withdrawn. At this point a+ can win the arbitration on
mutex m1, however, the following sequence of internal and
external transitions can theoretically occur instead:

m1.g1-, a1-, r1+, m1.g1+

That is, r1 got set (via a chain of intermediate events) so
quickly that it won arbitration with signal a+ again, even
though the latter was pending all this time. This results in
sequential bundling of two requests on channel r1/a1. Note
that however improbable, this anomalous behaviour can con-
tinue indefinitely, hence an unbounded number of sequential
requests can theoretically be bundled.

Fig. 6 specifies behaviour of unfair and fair mutexes. An
unfair mutex has a simple specification consisting of two
request-grant handshakes that both require a token from place
choice in order to issue a grant. Note that it allows scenarios
when one of the requests is always granted, while the other
request waits indefinitely. In contrast, in the specification of
a fair mutex such scenarios are impossible: in the situation
when the granted request withdraws while the other request is
high, the token is not returned to place choice but instead is
passed to the waiting request directly.

The above trace is impossible with a fair mutex, as a+
happens before m1.g1-, i.e. m1.g1+ is disabled and m1.g2+

Figure 7: Speed-independent implementation of 3-way OM

input channel 1

input channel 2

output channel

input channel 3

input channel 4

Figure 8: Tree of Merge-like elements

fires instead. That is, fair mutexes preclude the possibility of
sequential bundling in the simplified circuit.

C. Generalisation to multiple inputs

The circuit in Fig. 5(b) is symmetric, and can be scaled to
any number of input channels. For example, Fig. 7 shows a
speed-independent implementation of a 3-way OM. One can
observe that the only gates which grow when the circuit is
scaled to N inputs are rSet and rReset. The latter is an N -
input C-element that can be decomposed into a tree of 2-input
C-elements in a speed-independent way. The former, however,
cannot be easily decomposed. For N = 2 (and perhaps N = 3)
the gate library is likely to have an appropriate gate. For
medium values of N one can break up this gate (ensuring
that the parts are laid out next to each other during place-and-
route) and rely on the timing assumption that the delays on
competing paths are larger. However, this will be dangerous
for large values of N . Fortunately, an N -way OM can be easily
decomposed into a tree of fixed-size OMs, as shown in Fig. 8.
In practice, for large values of N all these decomposition
approaches can be combined: if the OM circuit can be scaled
to k inputs with the gate library at hand (timing assumptions
can be used to increase the value of k) then one can implement
an N -way OM with a tree of k-way OMs.



Figure 9: STG modelling an environment that executes inde-
pendent handshakes on all three ports of OM.

IV. VERIFICATION

We have formally verified some aspects of the developed
circuits as explained below.

A. Output-persistency

Speed-independent circuits must be output-persistent, i.e. an
enabled output or internal signal must never be disabled. This
is necessary to prevent hazards on the corresponding wires.
The only exception is the mutex outputs, where a special
analogue filter is used to prevent internal hazards to propagate
to the mutex outputs.

We have formally verified that the OM circuits in Figs. 5
satisfy this property in the generic environment that executes
independent handshakes on all three ports of OM, see Fig. 9.
This also implies that there will be no hazards in any re-
finement of this general environment, i.e. in any reasonable
environment for OM.

The verification was conducted with the help of WORK-
CRAFT [17][24] and its back-end tools as follows. First, the
circuit was automatically converted by WORKCRAFT into an
STG modelling its behaviour using a variant of the well-known
construction [18]. The resulting STG was composed with the
environment STG in Fig. 9 with the help of PCOMP [1], and
then an unfolding-based verification method implemented in
PUNF [8] and MPSAT [9][10] tools was used to verify that
the composed STG is output-persistent. (The whole process is
automated in WORKCRAFT, so that the user does not have to
deal with the back-end tools directly.)

It should be noted that the above method ‘factors out’ mu-
texes into the environment, i.e. their outputs are converted into
inputs, so that the non-persistency present in mutexes would
not trigger a false alarm. However, besides the ‘benign’ non-
persistency due to the arbitration, by prematurely withdrawing
requests it is possible to cause ‘malignant’ non-persistency,
with which mutexes cannot cope. Hence, we also had to verify
that the grants are not withdrawn prematurely. In principle,
such checks can be handled by suitably amending the method
described above, but at the moment they are not supported
by WORKCRAFT. Hence we accomplished the verification by
hiding all signals in the composed STG except those interfa-
cing a mutex, and resynthesising the STG with PETRIFY [4].
The resulting STGs for the mutex arbitrating between r1+
and a+ for both original and simplified implementation are
shown in Fig. 10 (the STGs for the other mutex are similar,
as the circuits are symmetric w.r.t. the requests). These STGs
are quite similar to the usual arbitration protocol, and in fact
conform to it:

(a) For original implementation

(b) For simplified implementation

Figure 10: Projection of the composed STG onto the interface
of a mutex arbitrating between r1+ and a+

• The arcs between p and r1- are due to the causality
between a+ and r1-, via the following execution:

a+, [internal circuit transitions],a1+, r1-

• Transition r1- cannot disable g2+, as for r1- to be
enabled, g1+ must fire first, consuming the token from
choice. Hence, when r1- takes a token from p, g2+ is
disabled anyway. We have formally verified with the help
of WORKCRAFT that there is no reachable state where
signal a is high, choice contains a token but p does not
contain a token.

In other words, the requests are not withdrawn prematurely,
and so the mutex outputs do not exhibit ‘malignant’ non-
persistency.

It is interesting to note the main difference between the
STGs corresponding to the original and simplified implement-
ations: in the former, after g1- the environment cannot imme-
diately send request r1+ and the other request is guaranteed
to become the next winner. In contrast, the later STG is not
concerned about request r1+ winning multiple times while the
other request is waiting, and relies on the fairness of mutex
implementation to prevent this theoretical scenario.

B. Conformation

We have formally verified that the original circuit in Fig. 5
conforms [6] to the environment given by the STG in Fig. 3
with the internal signals (csc1 and csc2) contracted, i.e. the
circuit will not generate any outputs that are unexpected by
the environment.

As for the simplified circuit in Fig.5(b), it obviously does
not conform to this environment due to the theoretical pos-
sibility of sequential bundling, see Section III-B. However,



this circuit conforms to the generic handshake environment in
Fig. 9. This environment, however, is too permissive, and thus
the following additional custom properties have been verified
to ensure its correct operation:

• r+ is caused by r1+ or r2+, i.e. there is no reachable state
in which transition r+ is enabled but both signals r1 and
r2 are low.

• a1+ and a2+ are caused by a+, i.e. there is no reachable
state where transitions a1+ or a2+ are enabled and signal
a is low.

C. Deadlock-freeness

We have formally verified that the original circuit in Fig. 5
is deadlock-free in its intended environment explained above.
For the simplified circuit we again used the generic handshake
environment. However, the ‘standard’ deadlock checking is
not completely satisfactory: In the situation when a request
on only one of the input ports has arrived, OM is obliged
eventually to issue a request on the output port, even if the
request on the other input port never arrives. Hence, if some
state (except the initial one) enables only rising requests on
the passive ports (r1+ and r2+) then it should be classified
as a deadlock. Another way of putting it is that in the STG
the transitions r1+ and r2+ are not weakly fair, i.e. they
may remain enabled forever, without firing. The proposed OM
circuits are deadlock-free according to this stricter notion of
deadlock.

We have also cross-checked the presented verification res-
ults of essential correctness properties (namely, hazard and
deadlock freeness, as well as conformation to the environment
specification) with VERSIFY [19].

V. CONCLUSIONS

We proposed a new reusable asynchronous compon-
ent, called Opportunistic Merge element, that is similar to
Merge [7][23] but can bundle closely arriving requests. The
intended application of OM in electronic systems is to handle
concurrent requests from several clients to a kind of service
that benefits all the clients simultaneously; in particular, our
research in OM was motivated by a specific industrial applica-
tion – a multiphase buck controller [21], where several sensors
can independently request a recharging cycle and such requests
should be bundled if possible.

We designed a speed-independent circuit implementation
of OM and derived a scalable simplified implementation that
relies on the assumption of fair mutexes. Both implementations
have been formally verified using two independent tool chains,
WORKCRAFT and VERSIFY.

Our future work includes an industrial validation of the
developed component as well as further research to investigate
the ‘spectrum of opportunism’ offered by the conceptual state
graphs in Fig. 2. Another important direction of research
is related to the methodology of designing decision mak-
ing asynchronous circuits like OM and arbiters in general.
The STG specification shown in Fig. 3 is monolithic and
cannot be easily decomposed into simpler parts; design of

such components requires expert knowledge and extensive
experience in asynchronous circuits. This hinders fast adoption
of the methodology by industrial engineers who often have
little or no experience in asynchronous design. The authors
therefore would like to pose a challenge for the asynchronous
community: derive the specification for OM in a compositional
manner. One possible way to tackle the challenge is to use
models, which allow for describing asynchronous circuits by
composing behavioural scenarios or concepts, e.g., see [14].

ACKNOWLEDGEMENTS

The authors would like to thank David Lloyd and Dialog
Semiconductor (UK) for inspiring this work by providing an
interesting real-life case study. This research was supported
by EPSRC grants EP/L025507/1 “A4A: Asynchronous design
for Analogue electronics” and EP/K001698/1 “UNCOVER:
UNderstanding COmplex system eVolution through structurEd
behaviouRs”.

REFERENCES

[1] A. Alekseyev, V. Khomenko, A. Mokhov, D. Wist, and A. Yakovlev.
Improved parallel composition of labelled Petri nets. In Proceedings of
ACSD’11, pages 131–140. IEEE Computer Society Press, 2011.

[2] D. Black. On the existence of delay-insensitive fair arbiters: trace theory
and its limitations. Distributed Computing, 1(4):205–225, 1986.

[3] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic
specifications. PhD thesis, 1987.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. PETRIFY: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers. IEICE Transactions on
Information and Systems, E80-D(3):315–325, 1997.

[5] J. Cortadella, L. Lavagno, P. Vanbekbergen, and A. Yakovlev. Designing
asynchronous circuits from behavioural specifications with internal
conflicts. In Proceedings of the International Symposium on Advanced
Research in Asynchronous Circuits and Systems (ASYNC), pages 106–
115. IEEE, 1994.

[6] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of
Speed-independent Circuits. MIT Press, Cambridge, MA, USA, 1989.

[7] M. Greenstreet. Real-time merging. In Proceedings of International
Symposium on Advanced Research in Asynchronous Circuits and Sys-
tems (ASYNC), pages 186–198. IEEE, 1999.

[8] V. Khomenko. Model Checking Based on Prefixes of Petri Net Un-
foldings. PhD thesis, University of Newcastle upon Tyne, School of
Computing Science, 2003.

[9] V. Khomenko. Efficient automatic resolution of encoding conflicts using
STG unfoldings. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 17:855–868, 2009. Special Section on Asynchronous
Circuits and Systems.

[10] V. Khomenko. Logic decomposition of asynchronous circuits using
STG unfoldings. In Proceedings of the IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC), pages 3–12. IEEE
Computer Society Press, 2011.

[11] V. Khomenko, M. Schaefer, and W. Vogler. Output-determinacy and
asynchronous circuit synthesis. Fundamenta Informaticae, 88:541–579,
2008. Special Issue on Best Papers from ACSD’2007.

[12] D. J. Kinniment. Synchronization and Arbitration in Digital Systems.
John Wiley and Sons, 2008. ISBN: 978-0-470-51082-7.

[13] A. Martin. Compiling communicating processes into delay-insensitive
VLSI circuits. Distributed computing, 1(4):226–234, 1986.

[14] A. Mokhov and A. Yakovlev. Conditional Partial Order Graphs:
Model, Synthesis and Application. IEEE Transactions on Computers,
59(11):1480–1493, 2010.

[15] D. Muller and W. Bartky. A Theory of Asynchronous Circuits. In Proc.
Int. Symp. of the Theory of Switching, pages 204–243, 1959.

[16] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, 1989.



[17] I. Poliakov, D. Sokolov, and A. Mokhov. WORKCRAFT: a static data
flow structure editing, visualisation and analysis tool. In Petri Nets and
Other Models of Concurrency, pages 505–514. Springer, 2007.

[18] W. Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, 1985.

[19] O. Roig. Formal Verification And Testing Of Asynchronous Circuits.
PhD thesis, Polytechnic University of Catalunya, 1997.

[20] L. Rosenblum and A. Yakovlev. Signal graphs: from self-timed to timed
ones. In International Workshop on Timed Petri Nets, Torino, Italy, 1985,
1985.

[21] D. Sokolov, V. Khomenko, A. Mokhov, A. Yakovlev, and D. Lloyd.
Design and verification of speed-independent multiphase buck controller.
In Proceedings of the IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), 2015.

[22] A. Valmari. The state explosion problem. In Lectures on Petri Nets I:
Basic Models, Advances in Petri Nets, pages 429–528. Springer, 1998.

[23] T. Verhoeff, Encyclopedia of Delay-Insensitive Systems, URL: http://
edis.win.tue.nl/.

[24] WORKCRAFT homepage, URL: http://www.workcraft.org.
[25] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and

M. Pietkiewicz-Koutny. On the models for asynchronous circuit be-
haviour with OR causality. Formal Methods in System Design, pages
189–234, 1996.


