A Framework for Interpreted Graph Models

Ivan Poliakov, Victor Khomenko, Alex Yakovlev
Interpreted Graph Models

• Static graph structure
 – Nodes
 – Arcs

• Additional entities
 – Tokens
 – Node states
 – Arc states
 – Etc

• Examples:
 – Petri Nets
 – Static Data Flow Structures
 – Gate-level circuits
Workcraft — objectives

• For researchers
 – define new Interpreted Graph Models
 (such as extended Petri Nets with inhibitor arcs, timing etc.)
 – inherit visual editing and simulation features from the framework

• For system designers
 – a consistent multi-formalism framework
 – convenient analysis and verification features
Petri Nets as low-level 'language'

- It is often not reasonable to develop special theory for higher-level models
- Petri Nets have richly developed theory and efficient tools
 - Petri Net Mapping approach: express high-level models in terms of PNs for analysis/verification
Technical details

- Framework is written in Java
 - Works cross-platform
- Plug-in based architecture
 - Plug-ins are Java Classes
 - Model types, node types, tools, import/export functions are plug-ins
- For computationally intensive functions (e.g. verification) Java tools are just an interface to external command-line tools
 - Highly efficient but still very flexible cross-platform operation
(live demo)
Use case — Static Data Flow Verification

Original state

29 steps

Deadlock state
Use case — Asynchronous circuit verification

Hazard caused by wire delay

wire delay

wire delay
Model interoperability/co-verification

Signal Transition Graph
(Environment specification)

Gate-level circuit

Composition

Petri Net

Formal verification
(PETRIFY, PUNF, MPSAT)
More complex interoperability
Conclusions

• Workcraft is a framework for Interpreted Graph Models
 – Provides visual editing and simulation features
 – Provides automated verification features

• Workcraft has been used for several practical applications
 – SDFS verification
 – Circuit verification (e.g. the design of a multiresource arbiter by Golubcovs et al.)
 – CPOG-based synthesis

Available free of charge for academic use at workcraft.org
End

Thank you!

Questions?