
Handshake Verification in WORKCRAFT

Victor Khomenko†, Danil Sokolov†, Alex Yakovlev†, David Lloyd‡

{victor.khomenko, danil.sokolov, alex.yakovlev}@ncl.ac.uk; david.lloyd@diasemi.com
†Newcastle University, UK; ‡Dialog Semiconductor, UK

I. WHY HANDSHAKE VERIFICATION?

Many AMS applications, such as PMIC, require low-

latency "little digital" controllers [1]. In order to meet the

latency requirements in a traditional synchronous controller,

semiconductor industry has to push high-frequency clocking

to the limits, which is too expensive. An alternative is to

use asynchronous design that is supported by WORKCRAFT

software (https://workcraft.org/). Predictability of the design

flow and provable correctness of the obtained circuits make

WORKCRAFT particularly attractive for industry [1], [2].

Handshakes (h/s) are a common replacement for the global

clock and thus are fundamental in asynchronous design. Even

though the h/s protocol seems trivial on the surface, it does

have a number of pitfalls and so must be formally verified:

In our experience, students and engineers do occasionally get

it wrong. This paper demonstrates how h/s verification of

STGs [4], [3] has been implemented in WORKCRAFT. We

focus on control h/s (and so set aside the issues of data

validity) as STGs are control-oriented.

For example, consider a DECOUPLER: It communicates with

two modules, LEFT and RIGHT, by the h/s rl / al and rr / ar,

respectively. The idea is that LEFT can quickly complete

its h/s with DECOUPLER and continue its execution, while

DECOUPLER takes care of completing the h/s with RIGHT.

 

LEFT DECOUPLER RIGHT

buggy
DECOUPLER

h
/s

 w
it
h

 L
E

F
T

h
/s

 w
it
h

 R
IG

H
T

fixed

DECOUPLER

h
/s

 w
it
h

 L
E

F
T

h
/s

 w
it
h

 R
IG

H
T

Figure 1. DECOUPLER module.

Consider the (buggy) STG specification of DECOUPLER on

the left. Setting aside the issues of data validity and efficiency

(one can remove the negative signal edges from the critical

path) there is a serious problem in this specification: LEFT can

attempt to send another request before DECOUPLER completes

its h/s with RIGHT – indeed, LEFT has no way of knowing

whether that h/s is completed. However, the specification does

not capture this possibility, and assumes that LEFT will wait

for the h/s between Decoupler and Right to complete. In other

words, the assumptions about the environment’s behaviour are

incorrect: To fix this, one must enable rl+ immediately after

al-, see the STG on the right.

The above bug can be caught if one verifies the N-way

conformation property of the overall system: indeed, LEFT

can send an unexpected input to DECOUPLER, so the N-way

conformation is violated. However, it would be much better to

catch such bugs at the level of a module, making the verifica-

tion much more efficient, and also helping with debugging – a

violation trace for the N-way conformation will likely include

some activity in other modules, which is largely irrelevant but

can make the trace very long.

II. HANDSHAKE ASPECTS

This section gives a brief overview of various h/s aspects,

which make their verification non-trivial.

Multi-signal requests and acknowledgements: It is possible

(in fact, common) that more than two signals participate in a

h/s. For example, there can be a dual-rail (or, in general, multi-

rail 1-hot) request (e.g. to specify the mode of operation) with

a single-rail acknowledgement. Similarly, the acknowledge-

ment can be dual-rail (or, in general, multi-rail 1-hot) to return

some information to the caller. Hence, we assume that requests

and acknowledgements are two non-empty sets of signals of

the same type (either input or output), and the type of requests

is opposite to the type of acknowledgements. The h/s is called

active if the requests are outputs (i.e. the module initiates the

h/s) and passive if the requests are inputs (i.e. the environment

initiates the h/s). Moreover, at most one request is allowed to

be asserted at any time, and similarly for acknowledgements

(this is a part of verification).

Signal order: For a h/s r / a, suppose the initial values of r

and a are 0. The h/s protocol requires that these signals follow

the order r+ a+ r- a-. . . That is, there are four different states

in a h/s, uniquely determined by the values of signals r and

a, with the following requirements:

r=0 & a=0: r-, a+, a- must be disabled;

r=1 & a=0: r+, r-, a- must be disabled;

r=1 & a=1: r+, a+, a- must be disabled;

r=0 & a=1: r+, r-, a+ must be disabled.

These conditions can be generalised to h/s comprising multiple

requests and/or acknowledgements in a natural way, as at

most one request and at most one acknowledgement can be

asserted at any time. Note that these properties only require

certain signal edges to be disabled. The receptiveness property

discussed below imposes some enabledness requirements.



Receptiveness: The pitfall in the DECOUPLER example

illustrates an important receptiveness property that should

normally hold for h/s (there are some exceptions due to

dependencies between different h/s, such as a choice or

sequencing). Suppose there is a single request r and a single

acknowledgement a, and their initial values are 0. Then for a

passive h/s:

r=0 & a=0: r+ must be enabled;

r=1 & a=1: r- must be enabled;

and for an active h/s:

r=1 & a=0: a+ must be enabled;

r=0 & a=1: a- must be enabled.

These conditions can be generalised to h/s comprising multiple

requests and/or acknowledgements, as at most one request and

at most one acknowledgement can be asserted at any time.

Initial state of handshake: In some situations it may be

convenient to initialise the circuit in a state that is different

from the conventional initial state with both request and

acknowledgement withdrawn, e.g. to remove the initialisation

logic from a critical path. However, one has to be very careful

when doing so, as the h/s may progress further than intended

during the initialisation.

Signal inversions: One can often optimise the circuit imple-

mentation by changing the polarity of some signals – this may

allow one to remove some inverters and/or replace positive

logic gates by negative ones.

III. WORKCRAFT HANDSHAKE WIZARD

WORKCRAFT h/s wizard is shown in Fig. 2 (the dialog

appearance depends on whether the h/s is passive or active).

It allows the user to select the signals and aspects of the h/s and

then automatically formulates the necessary h/s properties to

be formally verified. If the h/s protocol is violated, a violation

trace is reported and can be simulated in WORKCRAFT. For

example, for the buggy DECOUPLER the trace rl+ al+ rl- al-

is reported: After this trace the receptiveness is violated as rl+

is expected to be enabled, but it is not.

Figure 2. Handshake wizard.

Consider the STG in Fig. 3. The passive h/s r1 / a1 and r2 /

a2 are mutually exclusive, as r1+ and r2+ disable each other.

Hence, e.g., in a state with r1=0 & a1=0, edge r1+ is not

necessarily enabled as r2+ can fire and disable r1+. In such

a situation it would be reasonable to skip the receptiveness

checks for r1+ and r2+ (while still keeping them for r1- and

r2-), which can be done by unchecking the corresponding

checkbox in the “Receptiveness check” group. This, however,

is not perfect, as certain receptiveness is still required: In

this case it would be reasonable to check that r1+ is enabled

whenever r1=0 & a1=0 & r2=0 & a2=0. However, it would be

infeasible to support all the imaginable dependencies between

h/s. Alternatively, since the h/s are mutually exclusive, one

can treat them as a single h/s {r1, r2} / {a1, a2}, which would

satisfy the receptiveness property. However, this is not perfect

either, as one may want to ensure that r1 is acknowledged

specifically by a1 rather than {a1, a2}. Hence, one can

combine all these checks, i.e. verify h/s r1 / a1 and r2 / a2

with relaxed receptiveness, as well as {r1, r2} / {a1, a2}.

Figure 3. An STG with mutually exclusive h/s and the synthesised circuit.

Note that if both r1 / a1 and r2 / a2 h/s are with the

same module, the system could be re-designed by sharing the

acknowledgement signal (by collapsing a1 and a2 into one

signal a12), resulting in a h/s {r1, r2} / a12 with a dual-rail

request and a single-rail acknowledgement. The modified STG

passes the receptiveness checks and results in a simpler circuit.

By changing the polarity of a, one can get rid of the

two “bubbles” at the inputs of the C-elements in the circuit.

Furthermore, by changing the polarity of r one can turn the

OR-gate into a NOR-gate. (Of course, these transformations

should be reflected in the design of the environment.) To verify

h/s a / r in the resulting STG the user must tick the “Allow

arbitrary inversions of signals” checkbox. (The polarities can

be deduced automatically, from the initial state of the h/s and

the initial values of the signals participating in the h/s, so this

checkbox is just a safety feature to inform the tool that the

polarity changes are intentional rather than accidental.)

Acknowledgements: This research was partially supported

by Dialog Semiconductor grant Asynchronous-Analogue Elec-

tronics Co-design (A×A).

REFERENCES

[1] D. Sokolov et al: “Automating the Design of Asynchronous Logic Control

for AMS Electronics”, IEEE TCAD, 2019.
[2] D. Sokolov, V. Khomenko, and A. Mokhov, “Workcraft: Ten years later,”

in This Asynchronous World, 2016, pp. 269–293.
[3] L. Rosenblum and A. Yakovlev, “Signal graphs: from self-timed to timed

ones,” in Proc. Int. Workshop on Timed Petri Nets, 1985, pp. 199–206.
[4] T.-A. Chu: “Synthesis of self-timed VLSI circuits from graph-theoretic

specifications”, PhD thesis, MIT, 1987.


