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I. INTRODUCTION

The traditional design methods for speed-independent (SI)

circuits [1] require their behaviour to be output-persistent.

A common source of non-persistence is arbitration [2] that

leads to a choice between output signals. It is the designer’s

responsibility to remove such non-persistent behaviour before

proceeding to synthesis, usually by manually factoring the

arbitration out into the environment, where the choice is

implemented using a mutex element [3]. There are several

problems with this approach:

• Significant manual effort factoring out the mutex and

inserting it after synthesis.

• There is no guarantee that the signals the designer thinks

can be implemented by a mutex actually follow the

arbitration protocol.

• Factoring out converts mutex grants into inputs, so veri-

fication of output-persistence would miss a situation when

a mutex grant is disabled due to premature withdrawal of

corresponding request (this applies to verification of both,

the original specification and the circuit implementation).

In this paper we demonstrate how these problems were solved

by integrating automatic mutex insertion into the SI synthesis

flow implemented in WORKCRAFT (https://workcraft.org/).

II. DESIGN FLOW

WORKCRAFT takes a circuit specification in form of a

Signal Transition Graph (STG) [4]. Choices involving outputs

are considered violations of output-persistence by default, so

the user must tag choice places meant to be implemented by

mutexes. For example, place me in Fig. 1a is tagged as a

mutex place (visualised by an outline circle). Otherwise the

user designs the STG in a natural way, with mutex grants being

output or internal signals (as opposed to them being inputs as

prescribed by the traditional factoring-out technique).

By looking at the vicinity of a mutex place the tool

can automatically determine the request/grant pairs of the

corresponding mutex (let us denote them as r1/g1 and r2/g2).

During the output-persistence check, the choice between g1

and g2 (as in Fig. 1a) is not considered to be a violation.

However, disabling of a grant by premature withdrawal of the

corresponding request (as in Fig. 1b) will still be caught.

The tool then needs to verify that these signals follow

the arbitration protocol and the grants g1, g2 can indeed be

implemented by a mutex with requests r1, r2. Both, “late

(a) Persistence of g1 and g2 is
guaranteed by mutex.

(b) Non-persistent g1 because of un-
stable r1.

Figure 1: STGs with mutex places.

release” (grants are mutually exclusive) and “early release”

(a grant can be issued before the other grant is reset, as

long as its request is withdrawn) versions of the arbitration

protocol are allowed. (Naturally, the mutex implements the

“late release” protocol as its grants are mutually exclusive;

the “early release” protocol can be obtained by buffering

the mutex outputs.) WORKCRAFT verifies this property by

checking that the following constraints are satisfied in every

reachable state (the next-state value of a signal is denoted by

a dash):

r1 · g2 =⇒ g1′ r2 · g1 =⇒ g2′

r1 =⇒ g1′ r2 =⇒ g2′

r2 · g2 =⇒ g1′ r1 · g1 =⇒ g2′

Note that value of g1’ is implied by these constraints unless

r1 · r2 · g2 – the condition reflecting the flexibility of choosing

between the “early release” and “late release” protocols (and

symmetrically for g2’).

Interestingly, these constraints do not imply that the critical

sections are mutually exclusive. That is, adding r1 · g1 · r2 · g2

to the above constraints will not lead to a contradiction,

and will simply imply g1′ · g2′ and maintain the invariant

(r1 · g1) · (r2 · g2) (mutual exclusion of critical sections) once

it is satisfied. However, WORKCRAFT still adds an extra

constraint (r1 · g1) · (r2 · g2) to check the mutual exclusion

at the initial state – the rationale is that the mutex cannot be

initialised in a state with both grants high, and the violation

of this constraint in the initial state is very suspicious in any

case.

After the STG specification has been verified, the circuit

is derived by automatically factoring out arbitration into the

environment, synthesising the remaining part of the controller

using PETRIFY [5] or MPSAT [6] backends, and automatically

adding mutexes to the result.



Figure 2: Top-level schematic for of extended delay controller.

To verify the resulting circuit with mutexes one has to be

careful when composing it with the environment: It is possible

to introduce false deadlocks due to inconsistent selection of

branches associated with the choice modelled by a mutex

place. Hence, mutex grants have to be exposed as outputs

before the composition – this is done automatically behind

the scenes.

III. CASE STUDY

As a case study consider a two-mode delay element whose

top-level schematic is shown in Fig. 2. It delays the req/ack

handshake and operates in either normal or extended mode. In

the normal mode ack is delayed by DELAY, and in the exten-

ded mode, which is activated once a rising transition of ext

input is detected, this delay is extended by EXTRA_DELAY.

This circuit is used in the asynchronous multiphase buck con-

verter [8] where the ext input is non-persistent and therefore

its rising edge is detected using a WAIT01 element from the

family of asynchronous arbitration primitives [7].

The central part of this delay element is its extended delay

control (EDC) – its design using WORKCRAFT is illustrated

by the screenshot in Fig. 3. The STG specification of the

EDC is shown at the top of the screenshot. In the initial

state it arbitrates between ri+ and ext+. If ri+ wins then

the asymmetric delay element on the rd/ad handshake is

exercised. If ext+ wins then the controller continues to wait

for ri+, but exercises a delay element on re/ae interface first.

Note that we rely on the mutex fairness (choice between

rd+ and int+): after int- the transition rd+ is enabled and is

guaranteed to fire, and the timer on the rd/ad interface will

be exercised. Hence, the delay is DELAY (if ri+ wins) or

DELAY+EXTRA_DELAY (if ext+ wins).

In a conventional SI synthesis flow the designer would

need to manually factor out the mutex into the environment,

explicitly inserting mutex requests as output signals and mutex

grants as input signals, which is an error-prone process. In the

proposed design flow, however, it is sufficient to tag the choice

place me as a mutex place. The tool would then automatically

identify the mutex requests (ri and ext) and grants (rd and

int), and formally verify that these signals follow the mutex

protocol.

Moreover, an SI circuit with a mutex that implements this

STG specification is automatically derived by factoring out the

mutex into the environment, synthesising the remaining part

of the specification using the standard SI backends (PETRIFY

or MPSAT), and adding a mutex to the result. The circuit is

then formally verified to be deadlock-free, conformant to the

environment, and output-persistent (mutex grants are treated

Figure 3: Design of extended delay control in WORKCRAFT.

specially – they are allowed to disable each other, but there

must be no hazards due to premature withdrawal of a request).

IV. CONCLUSIONS

In this paper we presented an automated flow for the design

and verification of SI circuits with arbitration, where a mutex

interface can be identified for a pair of non-persistent signals.

Implementability of this pair of signals by a mutex is then

formally verified. Verification of the resultant circuit is also

automated and takes into account the non-persistent nature

of mutex grants. The proposed flow is illustrated using an

interesting example of a two-modes delay element.
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