On the Well-Foundedness of Adequate Orders

> Thomas Chatain Aalborg University

Joint work with Victor Khomenko To appear in Information Processing Letters

Many thanks to Walter Vogler and Javier Esparza for fruitful discussions

Adequate Orders

Aim: finite complete prefixes of unfoldings

Definition

A strict partial order \lhd on the finite configurations of the unfolding of a Petri net is called adequate if:

▶ it refines (strict) set inclusion
$$\subset$$
,
 $C \subset C' \implies C \lhd C';$

▶ it is preserved by finite extensions,

$$\begin{cases} C \lhd C' \\ Mark(C) = Mark(C') \\ E \sim E' \end{cases} \implies C \oplus E \lhd C' \oplus E';$$

Adequate Orders

Aim: finite complete prefixes of unfoldings

Definition

A strict partial order \lhd on the finite configurations of the unfolding of a Petri net is called adequate if:

▶ it refines (strict) set inclusion
$$\subset$$
,
 $C \subset C' \implies C \lhd C';$

it is preserved by finite extensions,

$$\left\{\begin{array}{c} C \lhd C' \\ Mark(C) = Mark(C') \\ E \sim E' \end{array}\right\} \implies C \oplus E \lhd C' \oplus E';$$

it is well founded.

The Case of Safe Petri Nets

Theorem Well-foundedness of ⊲ is a consequence of the other requirements.

A Corollary of Preservation by Finite Extensions

Definition

For a linearisation u of a configuration C, denote $\sigma(u) \in (\mathcal{RM} \times T)^*$ the word: ((current marking, next transition), ..., (current marking, next transition))

Definition

 $C \leftarrow C'$ if there are linearisations u and u' such that $\sigma(u)$ is a strict subword of $\sigma(u')$.

(subword: erase letters, like BREAD)

Theorem In safe Petri nets, $C \leftarrow C' \implies C \lhd C'$

A Corollary of Preservation by Finite Extensions Proof

- $u = e_1 \dots e_{|u|}$ $u' = e'_1 \dots e'_{|u'|}$ There exist $1 \le i_1 < \dots < i_{|u|+1} = |u'| + 1$ s.t. $\sigma(u)_n = \sigma(u')_{i_n}$
- Denote $C_n \stackrel{\text{def}}{=} \{e_1, \dots, e_n\}$ $C'_n \stackrel{\text{def}}{=} \{e'_1, \dots, e'_{i_{n+1}-1}\}$

Let *j* be the smallest index such that $i_j \neq j$.

•
$$C_{j-1} \subset C'_{j-1}$$
, then $C_{j-1} \triangleleft C'_{j-1}$
• $\{e_j\} \sim \{e'_{i_j}\}$ and $Mark(C_{j-1}) = Mark(C'_{j-1})$, then
 $C_{j-1} \oplus \{e_j\} \triangleleft C'_{j-1} \oplus \{e'_{i_j}\}$
• $\begin{cases} C_{j-1} \oplus \{e_j\} = C_j \\ C'_{j-1} \oplus \{e'_{i_j}\} \subseteq C'_j \end{cases}$, then $C_j \triangleleft C'_j$
• ...
• $C_p \triangleleft C'_p$, i.e. $C \triangleleft C'$

The Case of Safe Petri Nets Proof

- 1. Assume $C_1 \triangleright C_2 \triangleright \ldots$
- 2. There exist i < j such that $C_i \leftarrow C_j$
- 3. $C_i \triangleleft C_j$: contradiction

Detail of point 2

- Assume $|C_1| < |C_2| < \dots$
- ▶ For each *n*, let u_n be a linearisation of the events of C_n .
- By Higman's lemma, there exist *i*, *j* such that σ(u_i) is a subword of σ(u_j).

Higman's lemma

In any infinite set of finite words over a finite alphabet, there exist two words u and v such that u is a subword of v.

The Case of Unsafe Petri Nets

Weak vs. strong preservation by finite extensions Strong preservation:

 $\forall C \lhd C' \text{ such that } Mark(C) = Mark(C')$ $\forall E' \quad \forall E \sim E' \quad C \oplus E \lhd C' \oplus E'$

Weak preservation:

$$\forall C \lhd C' \text{ such that } Mark(C) = Mark(C')$$

$$\forall E' \quad \exists E \sim E' \quad C \oplus E \lhd C' \oplus E'$$

Weak preservation ensures completeness

Counter-example with Weak Preservation

	weak preservation	strong preservation	
safe	\checkmark		
unsafe	×	?	

Counter-example with strong preservation (unbounded net)

	weak preservation	strong preservation	
safe	\checkmark		
bounded	×	?	
unbounded	×		

The Case of Bounded Petri Nets with Strong Preservation

Theorem Well-foundedness of \lhd is a consequence of the other requirements.

	weak preservation	strong preservation	
safe	\checkmark		
bounded	×	\checkmark	
unbounded	×		

Even Stronger Preservation

Definition Extendible order: $\begin{cases} C \lhd C' \\ E \sim E' \end{cases} \implies C \oplus E \lhd C' \oplus E' \\ (even if Mark(C) \neq Mark(C')) \end{cases}$

Theorem

Well-foundedness of \lhd is a consequence of the other requirements.

	weak preservation	stron <u>g</u> preservation	extendible order
safe	\checkmark		
bounded	×	\checkmark	
unbounded	×		\checkmark

Variants

Preservation by single-event extensions Other isomorphisms: pomset, Parikh

- Sufficient for completeness
- The results are not affected

Conclusion

- Interest: no need to prove well-foundedness
- Works in the most common cases

Remarks

- ► Single-event extensions are sufficient for completeness.
- Variants of isomorphisms do not affect the results.
- ▶ Simpler proofs with pre-order \trianglelefteq instead of strict order \lhd .