On the Well-Foundedness of Adequate Orders

Thomas Chatain

Aalborg University
Joint work with Victor Khomenko
To appear in Information Processing Letters
Many thanks to Walter Vogler and Javier Esparza for fruitful discussions

Adequate Orders

Aim: finite complete prefixes of unfoldings
Definition
A strict partial order \triangleleft on the finite configurations of the unfolding of a Petri net is called adequate if:

- it refines (strict) set inclusion \subset,

$$
C \subset C^{\prime} \Longrightarrow C \triangleleft C^{\prime}
$$

- it is preserved by finite extensions,

$$
\left\{\begin{aligned}
C & \triangleleft C^{\prime} \\
\operatorname{Mark}(C) & \left.=\operatorname{Mark}\left(C^{\prime}\right)\right\} \Rightarrow C \oplus E \triangleleft C^{\prime} \oplus E^{\prime} ; ~ \\
E & \sim E^{\prime}
\end{aligned}\right\} \Longrightarrow C \text {. }
$$

Adequate Orders

Aim: finite complete prefixes of unfoldings
Definition
A strict partial order \triangleleft on the finite configurations of the unfolding of a Petri net is called adequate if:

- it refines (strict) set inclusion \subset,

$$
C \subset C^{\prime} \Longrightarrow C \triangleleft C^{\prime}
$$

- it is preserved by finite extensions,

$$
\left\{\begin{aligned}
C & \triangleleft C^{\prime} \\
\operatorname{Mark}(C) & =\operatorname{Mark}\left(C^{\prime}\right) \\
E & \sim E^{\prime}
\end{aligned}\right\} \Longrightarrow C \oplus E \triangleleft C^{\prime} \oplus E^{\prime} ;
$$

- it is well founded.

The Case of Safe Petri Nets

Theorem
Well-foundedness of \triangleleft is a consequence of the other requirements.

A Corollary of Preservation by Finite Extensions

Definition
For a linearisation u of a configuration C, denote $\sigma(u) \in(\mathcal{R} \mathcal{M} \times T)^{*}$ the word:
((current marking, next transition), ..., (current marking, next transition))
Definition
$C \leftharpoonup C^{\prime}$ if there are linearisations u and u^{\prime} such that $\sigma(u)$ is a strict subword of $\sigma\left(u^{\prime}\right)$.
(subword: erase letters, like $\overline{B R E A D}$)

Theorem
In safe Petri nets, $C \leftharpoonup C^{\prime} \Longrightarrow C \triangleleft C^{\prime}$

A Corollary of Preservation by Finite Extensions

 Proof$u=e_{1} \ldots e_{|u|}$
$u^{\prime}=e_{1}^{\prime} \ldots e_{\left|u^{\prime}\right|}^{\prime}$
There exist $1 \leq i_{1}<\cdots<i_{|u|+1}=\left|u^{\prime}\right|+1$ s.t. $\sigma(u)_{n}=\sigma\left(u^{\prime}\right)_{i_{n}}$
Denote $C_{n} \stackrel{\text { def }}{=}\left\{e_{1}, \ldots, e_{n}\right\}$

$$
C_{n}^{\prime} \stackrel{\text { def }}{=}\left\{e_{1}^{\prime}, \ldots, e_{i_{n+1}-1}^{\prime}\right\}
$$

Let j be the smallest index such that $i_{j} \neq j$.

- $C_{j-1} \subset C_{j-1}^{\prime}$, then $C_{j-1} \triangleleft C_{j-1}^{\prime}$
- $\left\{e_{j}\right\} \sim\left\{e_{i j}^{\prime}\right\}$ and $\operatorname{Mark}\left(C_{j-1}\right)=\operatorname{Mark}\left(C_{j-1}^{\prime}\right)$, then

$$
C_{j-1} \oplus\left\{e_{j}\right\} \triangleleft C_{j-1}^{\prime} \oplus\left\{e_{i j}^{\prime}\right\}
$$

- $\left\{\begin{array}{l}C_{j-1} \oplus\left\{e_{j}\right\}=C_{j} \\ C_{j-1}^{\prime} \oplus\left\{e_{i j}^{\prime}\right\} \subseteq C_{j}^{\prime}\end{array}\right\}$, then $C_{j} \triangleleft C_{j}^{\prime}$
- $C_{n} \triangleleft C_{n}^{\prime}$, ie. $C \triangleleft C^{\prime}$

The Case of Safe Petri Nets

Proof

1. Assume $C_{1} \triangleright C_{2} \triangleright \ldots$
2. There exist $i<j$ such that $C_{i} \leftharpoonup C_{j}$
3. $C_{i} \triangleleft C_{j}$: contradiction

Detail of point 2

- Assume $\left|C_{1}\right|<\left|C_{2}\right|<\ldots$
- For each n, let u_{n} be a linearisation of the events of C_{n}.
- By Higman's lemma, there exist i, j such that $\sigma\left(u_{i}\right)$ is a subword of $\sigma\left(u_{j}\right)$.

Higman's lemma
In any infinite set of finite words over a finite alphabet, there exist two words u and v such that u is a subword of v.

The Case of Unsafe Petri Nets

Weak vs. strong preservation by finite extensions
Strong preservation:

$$
\begin{aligned}
& \forall C \triangleleft C^{\prime} \text { such that } \operatorname{Mark}(C)=\operatorname{Mark}\left(C^{\prime}\right) \\
& \forall E^{\prime} \quad \forall E \sim E^{\prime} \quad C \oplus E \triangleleft C^{\prime} \oplus E^{\prime}
\end{aligned}
$$

Weak preservation:

$$
\begin{aligned}
& \forall C \triangleleft C^{\prime} \text { such that } \operatorname{Mark}(C)=\operatorname{Mark}\left(C^{\prime}\right) \\
& \forall E^{\prime} \quad \exists E \sim E^{\prime} \quad C \oplus E \triangleleft C^{\prime} \oplus E^{\prime}
\end{aligned}
$$

Weak preservation ensures completeness

Counter-example with Weak Preservation

Summary of the results

	weak preservation	strong. preservation
safe	\checkmark	
unsafe	\times	$?$

Counter-example with strong preservation (unbounded net)

Summary of the results

	weak preservation	strong preservation
safe	\checkmark	
bounded	\times	$?$
unbounded	\times	

The Case of Bounded Petri Nets with Strong Preservation

Theorem
Well-foundedness of \triangleleft is a consequence of the other requirements.

Summary of the results

	weak preservation	strong preservation
safe	\checkmark	
bounded	\times	\checkmark
unbounded	\times	

Even Stronger Preservation

Definition

Extendible order:
$\left\{\begin{array}{l}C \triangleleft C^{\prime} \\ E \sim E^{\prime}\end{array}\right\} \Longrightarrow C \oplus E \triangleleft C^{\prime} \oplus E^{\prime}$
(even if $\operatorname{Mark}(C) \neq \operatorname{Mark}\left(C^{\prime}\right)$)
Theorem
Well-foundedness of \triangleleft is a consequence of the other requirements.

Summary of the results

	weak preservation	strong preservation	extendible order
safe	\checkmark		
bounded	\times		\checkmark
unbounded	\times		\checkmark

Variants

Preservation by single-event extensions
Other isomorphisms: pomset, Parikh

- Sufficient for completeness
- The results are not affected

Conclusion

- Interest: no need to prove well-foundedness
- Works in the most common cases

Remarks

- Single-event extensions are sufficient for completeness.
- Variants of isomorphisms do not affect the results.
- Simpler proofs with pre-order \unlhd instead of strict order \triangleleft.

