
Preface

The idea of the UFO workshop emerged from the following observation: Since
the proposal of the complete unfolding prefix concept by McMillan, a number
of research teams have extended and applied this appealing idea in different
directions. But there have been few opportunities to make a synthetic point
on the flourishing results obtained so far, although some of their protagonists
certainly met at conferences like ATPN, ACSD, CAV, CONCUR, FOSSACS,
TACAS, etc. The maturity of the topic and the surprising variety of current
research trends suggested that today might be the right time to attempt such
an event.

The objective of the UFO workshop is twofold: First, we wanted to bring
together researchers working on different aspects of the unfolding theory, and
second, we tried to popularise unfoldings in the research and industry com-
munities. To achieve these objectives, a large part of this workshop is devoted
to a tutorial and invited talks. The remaining time slots are reserved to original
contributions on the subject, focusing on research aspects, applications or tool
developments.

Of course, it would not be possible to cover all current research directions
related to unfoldings at a single workshop. Nevertheless, the large number of
invited talks gave space to many of them, while the call for papers brought some
good surprises!

Browsing the programme reveals several “main” research axes. One is defin-
itely related to unfolding new classes of models, like high-level nets (Koutny),
timed nets (Jard), or nets with read arcs (Baldan et al.), also called contextual
nets. A second trend consists in defining different types of unfoldings, taking
the form of symbolic unfoldings (Jard), merged processes (Khomenko), or trellis
processes (Fabre). And, of course, an unavoidable concern remains the construc-
tion of finite and complete prefixes in all these cases (Baldan et al., Madalinski,
Vogler).

A sign of good health of the research related to unfoldings is that it also ranges
from fundamental aspects (Vogler, Winskel) to various practical applications
such as model checking (Esparza, Khomenko, Koutny) and synthesis of asyn-
chronous circuits (Yakovlev), which are in fact the historical targets pondered
already by McMillan. But new and unexpected applications are also appearing,
such as distributed diagnosis (Fabre), or the use of unfoldings to solve planning
problems (Bonet et al.), which is one of the nice surprises of this workshop.

Unfortunately, some active topics are not represented. Among these great
absentees, let us mention for example the relations between unfoldings and event
structures, where many interesting models have been proposed. The unfolding
of more exotic models of concurrent systems like graph grammars have not been
covered either. And we also regret the absence of papers about the randomisation
of event structures and unfoldings, which is a very exciting and promising topic.
Nevertheless, we do hope that the variety of the menu will satisfy your appetite
and will stimulate your imagination.



II

We cannot close this introduction without warmly thanking the research
leaders in this field, who kindly accepted the invitation to participate in this
workshop and prepared invited presentations. The Program Committee has also
appreciated the quality of some submissions. Unfortunately, space limitations
imposed a selection, and we encourage the authors of rejected papers to pursue
their works and bring them to maturity.

Finally, this event wouldn’t have been possible without the support of the
Royal Academy of Engineering (UK) and of INRIA Rennes (France), to whom
we are very grateful.

Eric Fabre and Victor Khomenko, June 2007
The UFO’07 organisers.
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1 Introduction

The unfolding Unf of a Petri net N gives a partial-order based representation
of all behaviours and reachable markings of the net. In his seminal paper [8],
McMillan presented his method to compute a complete prefix of this unfold-
ing as a way to alleviate the problem of state space explosion. This method
was improved in [2]; the ERV-algorithm introduced there generalises the one of
McMillan since it is parametric in a so-called adequate order, denoted ¢. These
notes sketch the results and further improvements for this approach from [6],
obtained by Victor Khomenko, Maciej Koutny and the present author.

In general, the ERV-algorithm is non-deterministic: at each step, among the
possible extensions, some ¢-minimal event e is chosen and added to the branch-
ing process π constructed so far; then, the event is marked as a cut-off, if there is
an event e′ in π such that [e′] and [e] reach the same marking and [e′]¢ [e]. Now
it could be that such an e′ exists in Unf , but has not been added to π, and thus
e is not recognized as a cut-off in this run of the algorithm; so it seems that the
notion of a “cut-off event” depends on the choices which of the possible exten-
sions to add, i.e. it is a dynamic notion. It also seems that the ERV-algorithm
could lead to different results.

In these notes, it is shown that this is in fact not the case: we define a
static, i.e. algorithm-independent notion of a cut-off event (but depending on
the adequate order); this leads to a unique canonical prefix, and we proof that
this prefix is complete. We further show that the ERV-algorithm computes this
prefix in each of its runs, i.e. the algorithm is non-deterministic but determinate
– and this result holds more generally also for a parallel unfolding algorithm
proposed in [4], called slicing algorithm. This gives an alternative correctness
proof for both algorithms; for the slicing algorithm, this new proof is much
simpler than the original one, which compared the runs of this algorithm with
those of the ERV-algorithm.

The new results are obtained for a slightly stronger version of completeness
than usual and also in a more general, parametric setting of cutting contexts.
In the standard setting, one is essentially interested in the marking of a con-
figuration; but when modelling circuits, one might be interested in additional
information [9], namely the so-called state vector, and thus fewer configurations
carry the same information; or one might only be interested in markings up to
some symmetries in order to reduce the size of the prefix (see e.g. [1]), and thus
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more configurations carry the same information. In the standard setting, the
notion “cut-off event” only depends on local configurations; again to reduce the
size of the prefix, one might also consider all configurations [3]. Cutting contexts
allow to treat all such variations in one setting.

It is assumed that the reader has some knowledge of [8, 2] and the ERV-
algorithm, and in particular knows the following notions: (Petri) net; branching
process and its prefixes and (finite) configurations; marking of (i.e. reached by)
a configuration; (finite) suffix E′ of a configuration C, where this is indicated by
the notation C ⊕E′ for their union; local configuration [e], with 〈e〉 as notation
for [e] \ {e}.

For these notes, we fix a finite net N = (S, T,W,M0) and its unfolding
Unf = (B,E, G, h) (which is the greatest branching process). C denotes the
(finite) configurations of Unf , Cloc its local configurations, and < the causality
relation on E. For a branching process π, Cπ denotes the configurations of π.

2 Cutting contexts and canonical prefixes

As explained in the introduction, a cutting context captures various possibilities
for the relevant information and for the configurations used to define cut-off
events. Formally, it is a tuple of three parameters.

The first parameter will determine the information we intend to preserve
in a complete prefix. To capture the abstract idea of information carried by
a configuration, we let the first parameter be an equivalence relation ≈ on C:
equivalent configurations are considered as having the same information. In the
standard case, this information is the marking reached by the configuration.
Thus, in the standard case, configurations with the same marking are equivalent
(≈mar ). In the other two applications mentioned above, equivalent configurations
must additionally give rise to the same state vector, must only have symmetric
markings resp.

The idea behind ≈ implies that we have to speak of equivalent configurations
where one speaks of markings in the standard setting. For a complete prefix, it
is sufficient to have one configuration from each equivalence class; thus, in the
standard setting, every reachable marking is represented.

The third parameter specifies, separately for each event e ∈ E, which con-
figurations can make e a cut-off; in the standard case, we have Ce = Cloc for all
e ∈ E. The second parameter is an adequate order and discussed below.

Definition 1. A cutting context is a triple Θ
df=

(
≈ , ¢ ,

{Ce

}
e∈E

)
, where:

1. ≈ is an equivalence relation on C.
2. ¢, called an adequate order, is a well-founded strict partial order on C,

refining ⊂, i.e. C ′ ⊂ C ′′ implies C ′ ¢ C ′′.
3. ≈ and ¢ are preserved by finite extensions, i.e. for every pair of configurations

(C ′, C ′′) ∈≈, and for every suffix E′ of C ′, there exists a finite suffix E′′ of
C ′′ such that
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(a) C ′′ ⊕ E′′ ≈ C ′ ⊕ E′, and
(b) if C ′′ ¢ C ′ then C ′′ ⊕ E′′ ¢ C ′ ⊕ E′.

4. {Ce}e∈E is a family of subsets of C. 3

Preservation of finite extensions is a case where the original definition [2,
Definition 4.5] of adequate orders considers two configurations with the same
marking, whereas we consider equivalent configurations. In [2, Definition 4.5],
it is specified for 3(b) that E′′ = I2

1 (E′), where I2
1 is the ‘natural’ isomorphism

between the finite extensions of C ′ and C ′′. That isomorphism is defined only
if Mark(C ′) = Mark(C ′′), and thus cannot be used in our generalised settings.
Here, we additionally have to require 3(a), which is automatically true for ≈mar

in the standard setting. Note that all adequate orders in the standard setting
are also adequate in ours with ≈mar and Cloc as first and third parameter; since
we allow any E′′ with the same change on the marking as E′, our definition is
more general.

We will say that a cutting context Θ is dense) if Ce ⊇ Cloc for all e ∈ E, and
this usually is the case in practice. In the rest of these notes, we assume that a
cutting context Θ is fixed.

We will write e ¢ f whenever [e] ¢ [f ]. Clearly, ¢ is a well-founded partial
order on the set of events. Hence, we can use Noetherian induction for definitions
and proofs, i.e. it suffices to define or prove something for an event under the
assumption that it has already been defined or proven for all its predecessors.

A simple idea is to define an algorithm-independent (or static) notion of a cut-
off event as an event e for which there is a (so-called corresponding) configuration
C ∈ Ce such that C ≈ [e] and C ¢ [e]. But this notion is useless in practice, since
it does not go together with the idea of constructing a complete prefix: in the
standard setting, it may indeed happen that a corresponding local configuration
C of a cut-off event e defined in this way contains a cut-off event itself; since
construction of the prefix stops at cut-offs, C cannot be in the prefix. Though in
this case Unf contains another corresponding configuration C ′¢ C with no cut-
off events and the same final marking, it might be that such a configuration is
never local. Thus, the ERV-algorithm will certainly not recognise e as a cut-off,
and it seems that no efficient algorithm for constructing a complete prefix will.

Hence, our definition is slightly more complicated. It also defines feasible
events, which are precisely those events without cut-offs in their local configu-
rations, and as such must be included in the prefix determined by the cut-off
events.

Definition 2. The set of feasible events, denoted by fsbleΘ, and the set of static
cut-off events, denoted by cutΘ, are two sets of events of Unf defined inductively,
in the following way:

1. An event e is a feasible event if 〈e〉 ∩ cutΘ = ∅.
2. An event e is a static cut-off event if it is feasible, and there is a configuration

C ∈ Ce such that C ⊆ fsbleΘ \cutΘ, C ≈ [e] and C ¢ [e]. In what follows, any
C satisfying these conditions will be called a corresponding configuration of
e.
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The branching process Unf Θ induced by the events from fsbleΘ is called the
canonical prefix of Unf . 3

It is not difficult to see that for any f ∈ 〈e〉 or f ∈ C ¢ [e], we have f ¢ e.
Thus, we can assume that for the events in 〈e〉, it has already been decided
whether they are in fsbleΘ or in cutΘ, and the same holds for the events in any
configuration C satisfying C ¢ [e]. Therefore, fsbleΘ and cutΘ are well-defined
sets by Noetherian induction.

The definition of Unf Θ is based on the fact that fsbleΘ is downward closed
w.r.t. <; this fact is not difficult to prove.

3 Completeness, finiteness, and algorithmics

To make canonical prefixes useful, we have to show that they are complete and,
under reasonable conditions, finite. Furthermore, there must be a reasonable
algorithm to compute them; in fact, we show that the ERV- and the slicing-
algorithm compute exactly the canonical prefix in each run. As already remarked,
this gives us alternative correctness proofs for the standard setting, but it also
proves correctness for the much more general cutting contexts.

We now introduce a slightly stronger notion of completeness for branching
processes than usual.

Definition 3. A branching process π is complete w.r.t. a set Ecut of events of
Unf if the following hold:

1. If C ∈ C, then there is C ′ ∈ Cπ such that C ′ ∩ Ecut = ∅ and C ≈ C ′.
2. If C ∈ Cπ is such that C ∩Ecut = ∅, and e is an event such that C⊕{e} ∈ C,

then C ⊕ {e} ∈ Cπ.

A branching process π is complete if it is complete w.r.t. some set Ecut . 3

Note that, in general, π remains complete after removing all events e for
which 〈e〉 ∩ Ecut 6= ∅; i.e. without affecting the completeness, one can truncate
a complete prefix so that the events from Ecut will be either maximal events of
the prefix or not in the prefix at all. Note also that this definition depends only
on the equivalence ≈, and not on the other components of the cutting context.

The first condition requires that each equivalence class of ≈ is represented
by a configuration without cut-offs; in the standard setting, this exactly means
that each reachable marking is represented. The second condition requires that
for each configuration without cut-offs also all possible firings are represented;
this is a bit stronger than the usual requirement that each reachable marking,
(i.e. each equivalence class), is represented by some configuration without cut-
offs and with all possible firings. This weaker notion is not enough to ensure
correctness of the deadlock detection algorithm presented in [8]. However, the
proof of completeness in [2] is actually very close to the proof of the following
theorem, although our result is algorithm-independent.
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Theorem 4 (completeness). Unf Θ is complete w.r.t. Ecut = cutΘ.

The next crucial issue is finiteness. As a proof tool, we developed a version of
König’s Lemma (see [7]), which states that a finitely branching, rooted, directed
acyclic graph with infinitely many nodes reachable from the root has an infinite
path. This lemma cannot be applied to a branching process directly, since its
conditions can have infinitely many outgoing arcs.

Proposition 5. A branching process π is infinite iff it contains an infinite <-
chain of events.

This result implies immediately that Unf Θ is finite iff there is no infinite
<-chain of feasible events. This in turn is useful for proving the following result,
which provides quite a tight and practical indication for deciding whether Unf Θ

is finite or not.

Theorem 6 (finiteness II).

1. If ≈ has finitely many equivalence classes and Θ is dense, then Unf Θ is
finite.

2. If ≈ has infinitely many equivalence classes, then Unf Θ is infinite.

In particular, for the standard setting this means that Unf Θ is finite iff N
is bounded (guaranteeing finitely many reachable markings and, thus, finitely
many equivalence classes).

Finally, a rather technical proof shows that the unfolding algorithm presented
in [2] and the parallel slicing algorithm proposed in [4] generate the canonical
prefix defined above; they are therefore correct. An essential lemma states that,
before the algorithms add an event e to the prefix constructed so far, each feasible
f ¢ e is already in this prefix.

We come to a close with a pointer to a recent application of cutting contexts.
In the context of circuit design with Petri nets, V. Khomenko studies net trans-
formations like splitting a transition into a sequence of two transitions [5]. From
the definition of usual adequate orders, it follows that such a transformation
gives a very different looking complete prefix. But switching the cutting context
allows to apply the same transformation to the complete prefix of the original
net to obtain the complete prefix of the transformed net.
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Extended abstract

Unfoldings, like other structures encoding the runs of concurrent systems, enjoy
a nice factorization property. When a (labeled) Petri net can be expressed as a
product of smaller components, like N = N1× . . .×Nn, its unfolding U(N ) also
factorizes in a similar manner :

U(N ) = U(N1) ×
O

. . . ×
O
U(Nn) (1)

where the superscript in ×O denotes a product specific to occurrence nets. This
result has been mentioned only in few publications [2,5], and remained unused
for a long time. The objective of this presentation is to show how one can take
advantage of it to perform modular computations on compound systems.

The first thing to notice is that factorized forms, like the right hand side
in (1), are generally more compact than their extended form, i.e. the left hand
side. The reason is that the product of labeled nets takes the disjoint union of
places, but combines transitions that have common labels : a transition t1 of N1

carrying the same label as t2 in N2 will produce a synchronous change (t1, t2) in
N1 ×N2. Since several transitions of a net can have the same label, the product
thus multiplies transitions, as its name indicates. This holds also for the product
of occurrence nets in (1). Therefore it may be more efficient to work directly on
a factorized form, for applications like model-checking, reachability analysis and
others.

In this talk, we propose a methodology to do so. The approach relies on an
analogy between distributed systems, i.e. systems that can be expressed as the
combination of components, and Bayesian networks, also called Markov fields
or graphical models. The latter are well known statistical models that describe
the interactions of large sets of random variables. Their interest is to represent
graphically the structure of variable interactions, from which statistical inference
algorithms can be designed. In distributed systems, interactions are governed by
shared labels between components Ni, in Bayesian networks, they are governed
by local statistical coupling. Without developing this analogy, the idea is that
one can find a counterpart to the notion of statistical independence in the field
of distributed systems. This is sufficient to import modular inference algorithms,
that perform computations at the scale of components and operate by message
passing between neighboring components.
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Formally, the approach relies on three ingredients. The first one is a com-
position operator on the objects of interest, unfoldings in our case. The product
mentioned above is a natural candidate (although it’s more convenient to restate
it as a pullback). The second ingredient is a projection operator with respect to
a (set of) component(s). For example the projection of the unfolding U(N ) on
its component N1. Again, the natural candidate is the projection that automat-
ically comes with a product, and it works in simple cases, but a stronger notion
is necessary in general. The last ingredient is a small set of axioms, that com-
position and projection have to satisfy. As soon as these conditions are satisfied,
one can derive message passing algorithms that operate on the factorized form.

The first typical application of this setting is to compute the projections on
some components Ni of the global unfolding U(N ), starting from the unfoldings
U(N1), . . . ,U(Nn), but without computing U(N ) itself, which can be huge. This
yields a generally strict prefixes of the local unfolding U(Ni), that describes
the remaining behaviors of component Ni once it is inserted in the global net.
Another straightforward application is related to distributed diagnosis : given
observations collected on different components of N , find the behaviors of N that
could be valid explanations to these distributed observations. Beyond its interest
to reduce the complexity of computations, a very nice feature of this approach is
that it generalizes to different formalisms. For example one can replace unfoldings
with trellis processes [7], a close cousin of the merged processes [1] proposed by
Khomenko et al. (also presented in this workshop).

We conclude this presentation with a related topic : the computation of finite
and complete prefixes in factorized form, which corresponds to the postdoc re-
search topic of Agnes Madalinski (see the paper “Modular construction of finite
and complete prefixes” in these proceedings).
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The main drawback of model checking is that it suffers from the state space
explosion problem [8]. That is, even a relatively small system specification can
(and often does) yield a very large state space. There are several common sources
of state space explosion. One of them is concurrency, and the unfolding tech-
niques (see, e.g., [1, 2, 5]) were primarily designed for efficient verification of
highly concurrent systems. Indeed, complete unfolding prefixes are often ex-
ponentially smaller than the corresponding reachability graphs, because they
represent concurrency directly rather than by multidimensional ‘diamonds’ as it
is done in reachability graphs. For example, if the original Petri net consists of
100 transitions which can fire once in parallel, the reachability graph will be a
100-dimensional hypercube with 2100 vertices, whereas the complete prefix will
be isomorphic to the net itself. However, unfoldings do not cope well with some
other important sources of state space explosion, in particular with sequences of
choices and non-safeness. The examples below illustrate this problem.

First, consider Figure 1(a). The smallest complete prefix is exponential in
the size of the Petri net (note that no event can be declared cut-off — intuit-
ively, each reachable marking of the Petri net ‘remembers’ its past). Thus Petri
nets performing a sequence of choices leading to different markings may yield
exponential prefixes.

Another problem arises when one tries to unfold non-safe Petri nets. Consider
the Petri net in Figure 1(b). Its smallest complete unfolding prefix contains m

n

instances of t, since the unfolding distinguishes between different tokens on the
same place. One way to cope with non-safe nets is to convert them into safe
ones and unfold the latter, as was proposed in [1]. However, such an approach
destroys the concurrency and can lead to very large prefixes; e.g., this approach
applied to the Petri net in Figure 1(c) would yield a prefix exponential in the
size of the original Petri net, while the traditional unfolding technique would
yield a prefix which is linear in its size [1].

The described problems with Petri net unfoldings should be viewed in the
light of the fact that all the above examples have a very simple structure —
viz. they are all acyclic, and thus many model checking techniques, in particular
those based on the marking equation [2, 6, 7], could be applied directly to the
original Petri nets. And so it may happen that a prefix exponential in the size
of the Petri net is built for a relatively simple problem!

⋆

Victor Khomenko is a Royal Academy of Engineering/Epsrc Post-Doctoral Research

Fellow. His research is supported by Royal Academy of Engineering/Epsrc grant

EP/C53400X/1 (Davac).
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Fig. 1. Examples of Petri nets.

This talk is devoted to a different condensed representation of Petri nets’ be-
haviour, called merged processes, which remedies the problems described above.
It copes well not only with concurrency, but also with the other mentioned
sources of state space explosion, viz. sequence of choices and non-safeness. A
merged process can be obtained from a branching process by the following pro-
cedure.

1. Fuse equally labelled condition with the same occurrence-depth, defined for
each p-labelled condition c as the maximum number of instances of p on a
causal chain leading from the (virtual) initial event to c. The initial marking
of the resulting mp-condition is set to the number of initial conditions fused
onto it.

2. Delete, one-by-one, the duplicate events, i.e., ones whose label, preset and
postset are equal to those of some other event (the remaining events are
called mp-events).

For example, the unfoldings of the Petri nets shown in Figure 1(a) are collapsed
back to the original nets by this procedure.

It turns out that merged processes are sufficiently similar to the traditional
unfoldings, and so a large body of results developed for unfoldings can be re-
used. In particular, one can lift the results related to canonicity, finiteness and
marking-completeness (see [2, 4]), as well as the upper bounds on the size (see [1,
2, 4]) to merged processes. Moreover, one can prove some new upper bounds on
the size which hold for merged processes but not for unfolding prefixes. The
conducted experiments showed that merged processes are often by orders of
magnitude more compact than the corresponding unfolding prefixes, and are in
most cases not much bigger than the original Petri nets.

Unfortunately, the unfolding-based model checking techniques are not dir-
ectly applicable to merged processes. The main problem is that the latter can
contain cycles, and the marking equation alone is no longer sufficient for char-
acterising the reachable markings of a merged process. However, one can fix this
problem for merged processes of safe Petri nets by using additional constraints
besides the marked equation. This yields a general model checking approach for
checking reachability-like properties. It turns out that checking most such prop-
erties is NP-complete in the size of the merged process, i.e., no worse than for
unfolding prefixes. Moreover, the experimental results showed that in many cases
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unfolding-based and merged processes-based model checking times are compar-
able.

To summarise, the proposed representation of Petri nets’ behaviour alleviates
the state space explosion problem to a significant degree and is suitable for model
checking. This talk is based on the joint work with Alex Kondratyev, Maciej
Koutny and Walter Vogler [3].
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Introduction 

 
As semiconductor technology faces problems with designing complex ICs in the 

nanometre scale (65nm and beyond) asynchronous circuits are becoming increasingly 
incorporated in future systems on chip. Asynchronous circuits enable variability 
aware design and optimization of power-performance tradeoff for the high end CMOS 
processes. They are now actively explored in many R&D areas, such as 
communication and synchronization schemes in networks-on-chip (NoCs), interfaces 
in globally asynchronous locally synchronous (GALS), low power  processors to 
name but a few. 

One of the difficult aspects of designing and testing systems with asynchronous 
components is the complexity of their dynamic behaviour, particularly due to 
concurrency that is inherent in such systems. High degree of concurrency leads to 
state space explosion, the effect which hinders (a) analysis and verification of the 
circuits’ dynamic behaviour where the properties of interest require explicit state 
enumeration, and (b) synthesis of the logic implementation of the circuits from their 
behavioural specifications, where logic functions are derived from the explicit state 
space covers. State-based techniques are certainly algorithmically easier to construct 
and implement, and as result they often lead quicker to working software tools. For 
example, in the analysis and verification domain, people often reduce the model-
checking problem to using one of the existing state space analysers, cf. [1, 2]. In the 
synthesis domain, the state-based methods can easily construct next state functions 
and derive Boolean equations for the gates, cf. [3]. However these methods and tools 
cannot cope with large systems, for example one of the popular synthesis tools Petrify 
is limited by 30-40 binary signals, which makes such tools applicable to designing 
only small controllers, such for example as pipeline stage controllers. Another 
difficult aspect of the state-based approach is that it does not lead to easy visualization 
of the system’s behaviour. The designer in practice is not interested in seeing the 
global state of the system yet being limited only by a small window in time. Instead 
the designer would prefer to see partial, or local, views of the system (individual 
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threads) but see them in their entirety. This is what happens, for instance, when 
resolving the complete state coding (CSC) problem. In state-based visualisation, it is 
not realistic to deal with systems with more than few hundred states, or about 10 
signals.  

 
This presentation will focus on the methods of analysis and synthesis of 

asynchronous circuits avoiding explicit state space exploration. 

Partial order approach and role of Petri net unfoldings 

 
Explicit state based models, such as state graphs or labelled transition systems, 

offer simpler and easier route to automated analysis and synthesis of asynchronous 
circuits.   

In spite of this, from the early days of asynchronous circuit theory by Muller and 
Bartky [4] (which gives rise to the main behavioural correctness criteria for the 
analysis and synthesis methods, i.e. speed-independence and semi-modularity) people 
have been interested in exploring an alternative, or at least complementary, route 
which goes through event-based representations. In theory of concurrency such 
techniques fall into the category of partial order or true concurrency semantics.  In 
particular, in the Petri net framework, these methods are often associated with the 
construction and use of a Petri net unfolding and its finite prefix. In the context of 
analysis of circuit specifications and logic synthesis they have been applied to Signal 
Transition Graphs or STGs (which are signal-event interpretation of Petri nets [5,6]). 

 
Here is a brief (and by no means complete!) list of important developments in the 

application of event-based models to analysis and synthesis of asynchronous circuits: 
 
60s:  

• Flow chart and change chart methods by Gillies [7], Swartwout [8] and 
Shelly [9]. 

70s:  
• Modelling of control structures using signal graphs (based on marked 

graphs) and their direct analysis by Jump and Thiagarajan [10]. 
80s: 

• Circuit synthesis based on cyclo- and  taxograms by Starodoubtsev [11]. 
• Theory, methods and tools (eg. Tranal, Traspec) for analysis and 

synthesis based on Change Diagrams and their unfoldings by 
Kishinevsky, Kondratyev, Taubin and Varshavsky [12]. 

• Relation-based approach to analysis of STG models of circuits by 
Rosenblum and Yakovlev [13]. 

90s: 
 

• Petri net unfolding prefix by McMillan [14] and its application to 
asynchronous circuit verification. 
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• Analysis of STGs and circuits by Kondratyev et al [15] and Semenov 
[16] using unfoldings, including new ideas about cutoffs in the STG 
context, notion of signal deadlocks etc. 

• Unfolding-based analysis of timed circuits by Semenov and Yakovlev 
[17] 

• Synthesis from STG unfoldings by Semenov et al. [18] using unfolding 
cut, slice and cover approximation. 

• Circuit analysis based on unfoldings for PNs with read arcs by Vogler et 
al. [19]. 

2000s: 
• Analysis of STG unfoldings using LP and SAT by Khomenko et al. 

[20]. 
• Synthesis from STGs based on unfoldings and SAT solvers by 

Khomenko et al. [21]. 
• Visualization of STG-based synthesis using unfoldings by Madalinski et 

al. [22]. 
• Combining decomposition and unfolding of STGs for synthesis by 

Khomenko and Shaefer [23]. 
 

Following these developments with further research, there is a real chance of 
creating powerful tools for verification and synthesis of large scale asynchronous 
circuits (with 100s and 1000s of signals) and integration of these tools with the 
industrial strength design environments, such as Haste and Balsa.  

 
This presentation will highlight the following main aspects of the use of Petri net 

unfoldings in the context of analysis and synthesis of asynchronous circuits: 
• Petri net models of asynchronous circuits using level-based and event-

based approaches. 
• Properties requiring verification based on the reduction of hazard 

properties to dynamic conflicts or non-safeness. 
• Problems with unfolding circuit models using Petri nets with read-arcs 

and k-safe nets. 
• Complete State Coding analysis and visualization using unfoldings. 
• Deriving logic from unfoldings. 
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Abstract. This talk consists of two parts, respectively based on the

papers, [4] and [5]. We first discuss branching processes and unfoldings

of high-level Petri nets and outline an algorithm which builds finite and

complete prefixes of such unfoldings. Its advantage is that it avoids a

potentially expensive translation of a high-level Petri net into a low-level

one. In the second part we present an application of such an approach

to the verification of mobile systems.

Keywords: verification, model checking, high-level Petri nets, unfold-
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1 Summary

Model checking suffers from the state space explosion problem, as a relatively
small system specification can yield a very large state space. To cope with this,
a number of techniques have been proposed, which can roughly be classified as
aiming at a compact representation of the full state space of a reactive system, or
at an explicit generation of its reduced (though sufficient for a given verification
task) representation. Our approach is based on partial order semantics of con-
currency and the corresponding Petri net unfoldings [3, 7]. A finite and complete
unfolding prefix of a Petri net is a finite acyclic net which implicitly represents
all the reachable states of the original net together with transitions enabled at
those states. Complete prefixes are often exponentially smaller than the cor-
responding state graphs, especially for highly concurrent systems, because they
represent concurrency directly rather than by multidimensional “diamonds” as
it is done in state graphs.

In this talk, we first describe an approach introduced in [4] which allows one
to build the prefix directly from a high-level Petri net [1, 6] — a compact repres-
entation of a concurrent or distributed system. Such a method is often superior
to one involving the explicit construction of an intermediate low-level net as it
is often the case that the intermediate low-level net is much larger than the
resulting prefix. We describe branching processes and unfoldings of high-level
Petri nets and an algorithm which builds finite and complete prefixes. An im-
portant relation between the branching processes of a high-level net and those
of its low-level expansion is that the sets of their branching processes are the
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same, allowing one to import results proven for low-level nets. The approach is
conservative in the sense that all the verification tools employing the traditional
unfoldings can be reused with such prefixes. Experimental results indicate that
it is, on one hand, better than the traditional approach on data-intensive applic-
ation, and, on the other hand, has comparable performance on control-intensive
ones.

In the second part, we turn our attention to mobility which has now be-
come a central feature of many real life concurrent and distributed computing
systems. To model it and reason about its properties, process algebras such as
π-calculus [8] have been introduced and studied. We describe how the model-
checking technique based on Petri net unfoldings could be used in the verification
of π-calculus terms. Our starting point is a compositional translation from a fi-
nite fragment of the π-calculus into a class of high-level Petri nets proposed in [2].
We developed prototype tool based on this ‘theoretical’ translation. It should be
stressed that developing the prototype was not a straightforward task. In partic-
ular, places used for managing coloured tokens representing π-calculus channels
have infinite markings and so are not directly implementable. Another prob-
lem concerned an efficient implementation of read arcs used by the theoretical
translation. Experimental results suggest that model-checking based on Petri
net unfoldings can be a successful technique to verify distributed systems with
mobility.
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Abstract The paper addresses the problem of the definition and con-

struction of finite prefixes of unfoldings of Safe Time Petri Nets. This

required to consider symbolic unfoldings consisting of a graphical part

(coding causal and concurrent relations) and a set of time constraints

(coding the set of possible dates of firing of the transitions). The difficult

problems come from nets with urgency and confusion, which reveals a

certain contradiction between the global semantics of time and the idea

of having a partial order semantics to avoid the usual state explosion in

case of large concurrency. The paper assembles the definitions and new

results we have obtained on the subject.

1 Introduction and Related Work

Time Petri Nets are one of the most popular timed extensions of Petri nets.
They were first introduced in 1976 by Merlin and Farber in [9], and have proved
their interest in modeling real-time concurrent systems. In Time Petri Nets, a
time interval is assigned to each transition in order to restrict the possible delays
between the date of its enabling and the date of its firing. Time Petri Nets can be
unbounded (in the number of tokens), but boundedness is undecidable. To stay
in the decidable world, and to find finite representations of the set of possible
behaviours, we decide to restrict the exposition to bounded nets, and even to
simplify, to safe (i.e. 1-bounded) nets. We also require that bounds on the delays
are nonnegative rational numbers (denoted Q).

Very little work has been done about unfoldings of timed true concurrency
models. The reason that makes it difficult is that time yields a kind a synchron-
ization even between parts of the net that are not connected. This clashes with
a partial order semantics based on the fully asynchronous nature of the model.

The first approach in the literature was to propose a transformation from
Time Petri Net to low-level ordinary Petri nets ([2] and [8]). Restricted to discrete
time, the progress of time is modeled by firing special transitions called ticks.

⋆

Most of the material presented here has been developed in the PhD document of

Thomas Chatain [3] under my supervision. This work is being continuing with the

help of the ANR national research program DOTS under the reference ANR-06-

SETI-003
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The major drawback is that all the components of the net participate in the
ticks. Most of the concurrency is lost and we are faced to the classical state
explosion problem. In [7], the approach has been extended to high-level nets but
time progresses similarly. In [11], the notion of timed process was introduced,
but only for Timed Petri Nets, which are not able to represent urgency. Time
unfoldings were introduced in [10] in a particular subcase of time independent
choice nets, in which urgency and confusion never appear together. We propose
a solution for the general problem (nevertheless limited to safe nets).

The main originality of our approach is in defining a concurrent operational
semantics for Safe Time Petri Nets, where it will be possible to fire a trans-
ition without looking at the global state of the net. Only a few tokens will give
enough information to be sure that the transition can fire. Using our concurrent
semantics, we can define a symbolic unfolding and a finite representation of it
by a symbolic prefix. This work was partly published in [4] and [5].

This paper assembles all the definitions and results we have obtained on the
subject.

2 Time Petri Nets Sequential Semantics

2.1 Time Petri Nets: Syntax

Definition 1. (graph of a simple net) A (marked and safe) Petri net is a 5-
tuple 〈P, T, pre, post ,M0〉 where P and T are finite sets of places and transitions
respectively, pre and post map each transition t ∈ T to its preset often denoted
•
t

def

= pre(t) ⊆ P , (•t 6= ∅) and its postset often denoted t

• def

= post(t) ⊆ P ;
M0 ⊆ P is the initial marking, that is the set of places hosting one token at
the initial step. To simplify, we assume that the preset of each transition is not
empty.

Definition 2. (graph of a time net) A (marked and safe) Time Petri Net is
a 7-tuple 〈P, T, pre, post , efd , lfd ,M0〉 where 〈P, T, pre, post ,M0〉 is a safe Petri
net, and efd : T −→ Q and lfd : T −→ Q ∪ {∞} associate the earliest firing
delay efd(t) and latest firing delay lfd(t) with each transition t.

A Time Petri Net is represented as a graph with two types of nodes: places
(circles) and transitions (boxes). The closed interval [efd(t), lfd(t)] (or the half-
open interval [efd(t),∞[ when lfd(t) = ∞) is written near each transition (see
Figure 1).

2.2 Time Petri Nets: Sequential Semantics

Definition 3. (global state) A (global) state of a Time Petri Net is given by
a triple (M, dob, θ), where M ⊆ P is a marking, and dob : M −→ Q associates
a date with each marked place. This date is the latest date of birth of a token in
the place. θ is the current date of the state. The net starts in its initial marking

(M0, dob0, 0) where dob0(p)
def

= 0 for all p ∈M0.
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[1,2]

[0,0]

[0,∞[ [2,2]p1

p2

p3

p4

p5

t4

[0,∞[

p6

Figure 1. A Time Petri Net. A possible firing sequence is t2.t1.t0.t1.t2.t3, where possible
dates of firing are 1.3, 3, 3, 3, 5, 5 respectively. The associated symbolic constraints are
[1 ≤ θ1] ∧ [2 ≥ θ1]), [0 ≤ θ2]), [θ3 ≥ max (θ2, θ1)] ∧ [θ3 ≤ max(θ2, θ1)] ∧ [θ3 ≤ θ2 + 2])),
[θ3 ≤ θ4]∧ [θ4 ≥ θ3+2]), [θ5 ≥ θ3+1]∧ [θ5 ≤ θ3+2]∧ [θ5 ≤ θ4+2])), [θ6 ≥ θ4+2]∧ [θ6 ≤
θ4 + 2]∧ [θ6 ≤ max (θ4, θ5)]. We can see that θ6 depends on θ4 (local condition), but also
on θ5, variable associated to a transition not connected to t3, revealing the non-local aspect
of time.

The date of enabling doe(t) of a transition t is the date of birth of the youngest

token in its input places (i.e. the last expected token): doe(t)
def

= maxp∈•tdob(p).

Definition 4. (firing rule) A transition t ∈ T is enabled in the state
(M, dob, θ) and can fire at a date denoted θ′ ≥ θ if:

– all of its input places are marked: •
t ⊆M ,

– the minimum delay is reached: [θ′ ≥ doe(t) + efd(t)],
– all the inputs places remain marked until θ′, that is the maximum delays of

all enabled transitions are not overtaken:
∀t′ ∈ T ,

•
t

′ ⊆M ⇒ [θ′ ≤ doe(t′) + lfd(t′)].

The firing of t leads to the state (M ′
, dob

′
, θ

′), where M ′ = (M \ •
t)∪ t• and

dob′(p)
def

= dob(p) if p ∈M \ •
t and dob′(p)

def

= θ if p ∈ •
t.

The enabling condition is denoted

Enabled(M,dob, t, θ) =

{

•
t ⊆M ∧ [θ ≥ maxp∈•tdob(p) + efd(t)]∧

∧

t′∈T ,•t′⊆M
[θ ≤ maxp∈•t′dob(p) + lfd(t′)]

The fact that a transition t has been fired is denoted (M, dob, θ)
t

−→

(M ′
, dob′, θ′).
From the initial state, we can consider a firing sequence σ ∈ T

∗ of length
n. For 1 ≤ i ≤ n, σ(i) denotes the i-th transition of the sequence. A se-
quence σ is a timed sequential execution if there exist a set of states and

dates {Mi, dobi, θi}1≤i≤n such that for all 1 ≤ i ≤ n, (Mi−1, dobi−1, θi−1)
σ(i)

−→

(Mi, dobi, θi).
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One can see on Figure 1 an example of such firing sequence.
For a given sequence of transitions σ, it is possible te represent symbolically

the set of all possible firing dates of the transitions. For each occurrence of
transition σ(i), θi is interpreted as a variable taking its values in Q and denoting
the possible firing dates. The enabling condition is a linear max-plus expression
given by Enabled(Mi, dobi, σ(i), θi) (see the example of Figure 1).

3 Concurrent Semantics

3.1 Standard Processes

The first idea is to consider the processes of the underlying untimed net and to
select only those that are consistently dated [1].

We use the representation of Engelfriet [6]. Each process is a set E of events.

We denote E⊥
def

= E∪{⊥} the set E augmented with a special event initial event,
denoted ⊥, which is considered as the origin of the processes. Each event e ∈ E is
a triple (B, t, θ) that represents an occurrence of the transition t (denoted τ(e))

in the process. B is a set of pairs b
def

= (f, p) ∈ E⊥ × P . Such a pair is called a
condition and refers to the token that has been created by the event f (denoted
•
b) in the place p (denoted place(b)). We denote Place(B)

def

= {place(b) | b ∈ B}.
When the restriction of place to B is injective, we denote place−1

|B its inverse,

and for all P ⊆ Place(B),Place−1

|B (P )
def

= {place−1

|B (p) | p ∈ P}. We denote
•
e

def

= Place−1

|B (•t) the conditions of B that are consumed and e

def

= B \ •
e the

conditions that are only read by the event e (represented by read arcs in the
process). The set {(e, p) | p ∈ τ(e)

•
} of conditions that are created by e is

denoted by e•. θ is the date of occurrence of the event (denoted θ(e)). For the

initial event ⊥, we set τ(⊥)
def

= −, •⊥
def

= ∅ and ⊥• def

= {(⊥, p) | p ∈M0}.

The set of final conditions of a process E is ↑ E
def

=
⋃

e∈E⊥
e

• \
⋃

e∈E

•
e.

Given a safe Time Petri Net, we can easily define a mapping Π from its firing
sequences to their partial order representation as processes (the set E).

Definition 5. (time process) Let us consider a firing sequence σ =

{(Mi−1, dobi−1, θi−1)
σ(i)

−→ (Mi, dobi, θi)}1≤i≤n+1, Π is defined inductively as fol-
lows:

– Π(∅)
def

= ∅,

– Π({(Mi−1, θi−1, lrd i−1)
σ(i)

−→ (Mi, dobi, θi)}1≤i≤n+1)
def

=

Π({(Mi−1, dobi−1, θi−1)
σ(i)

−→ (Mi, dobi, θi)}1≤i≤n) ∪

{(Place−1

|↑E
(•σ(n+ 1)), σ(n+ 1), θn+1)}.

Figure 2 shows an example of a process of the Time Petri Net of Figure 1.
As it is done in the context of untimed Petri net, we can define the unfolding

of a Time Petri Net as the union of all the processes. We denote this (infinite)
set U .
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p1

p2

t1

t0

t2

p3

p4

e2 (3)

p1

p2

e1 (1.3)

e3 (3)
t1 p3

e4 (3)

t2 p4

t3 p5

e5 (3)

e6 (5)

Figure 2. Considering the firing sequence t2.t1.t0.t1.t2.t3, the corresponding process
is {e1, e2, e3, e4, e5, e6}, where e1 = ({(⊥, p2)}, t2, 1.3), e2 = ({(⊥, p1)}, t1, 3), e3 =

({(e1, p3), (e2, p4)}, t0, 3), e4 = ({(e3, p1)}, t1, 3), e5 = ({(e3, p2)}, t2, 3), e6 =

({(e4, p3)}, t3, 5).

3.2 Problem with the Superimposition of Processes

Let us consider for example the firing sequences t1.t3 and t1.t2.t3. For 1 ≤ i ≤ 3,
denote θi the variable containing the possible firing dates of ti. We obtain thus
two different constraints for firing t3: [θ1 ≤ 2] ∧ [θ1 + 2 ≤ θ3 ≤ θ1 + 2] and
[θ1 ≤ 2]∧ [1 ≤ θ2 ≤ 2]∧ [θ2 ≤ θ1 +2]∧ [θ1 +2 ≤ θ3 ≤ θ1 +2]∧ [θ3 ≤ max (θ1, θ2)].
The superimposition will define a disjunction of these constraints. This leads to
difficult questions when we want to extract the processes from the unfolding.

The main problem with unfoldings of Time Petri Net is to take urgency
into account. Urgency can prevent the system from staying a given state. It
is due to the maximum delays on the transitions. Unfortunately, checking that
the maximum delays are not overtaken is not a local computation and requires
to check other transitions, possibly in the entire net. We can circumvent the
problem by dealing with a simple subclass of Time Petri Net, that we called
Time Extended Free Choice.

A Time Petri Net is time extended free choice if:

∀t, t
′
∈ T

{

lfd(t) <∞
•
t ∩ •

t

′ 6= ∅

}

⇒
•
t ⊆

•
t

′

In the same spirit, in [10], Semenov and Yakovlev defined a class of time
independent choice nets that takes into account not only structural, but also
semantical aspects.

To deal with the general case, our approach is to duplicate events with dif-
ferent constraints and to code in the graphical structure the set of events that
are the structural and temporal causes. This will permit, as in untimed cased,
the extraction of processes in exploring only the predecessors of an event, and
thus benefiting of the local aspects of concurrency. We will also show that the
unfolding, defined as the union of the time processes, can be finitely represented
by a prefix, using a symbolic notion of cutoff event. Figure 3 shows the prefix of
our example of Figure 1.
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p1

p2

t1

t0

t2

p3

p4

e1 

p1

p2

e2 
(1≤θ2≤2)

e3
 (θ3=max(θ1,θ2))

t4 p6

t3 p5

e5 
((θ2≤θ6)

e4 
(θ4=θ1+2)∧
(θ4≤2)

t3 p5

e5 
(θ5=θ1+2)∧
(θ2≤θ5)∧(θ5≤max(θ1,θ2))

Figure 3. The complete finite prefix of the unfolding of the example of Figure 1. Read arc
are depicted using dash lines.

4 Local Firing

At first glance, Time Petri Nets seem intrinsically sequential since the semantics
requires to check time conditions for all the enabled transitions in the net. At
least, it seems required to know the global states of the net.

In fact, there are cases in which the decision to fire a transition can be taken
locally (considering the input places of the transition and its time interval) as
in simple Petri nets. The question is to know whether a transition can fire at
a given date θ, even if other transitions will fire before θ in other parts of the
net. For example, consider the net of Figure 1, starting at time 0 in the marking
{p1, p2}. The usual sequential semantics forbids to fire t1 at time 10 from the
initial state because t2 is enabled and must fire before time 2. However we are
allowed to run the net until time 10 without firing t1 (because its lfd is infinite).
Whatever has occurred until time 10, nothing can prevent t1 from firing at date
10, t1 being the only transition that can remove the token in place p1.

In contrast, the firing of transition t3 highly depends on the firing date of
transition t2 (because t0 fires immediately after its enabling and disables t3). So,
in order to fire t3, we have to check whether p2 or p4 is marked.

This remark leads us to define a concurrent operational semantics in which it
is possible to fire a transition without knowing the whole marking of the net, but
only a partial marking made of the consumed tokens plus possibly some tokens
that are only read (not consumed) in order to get enough information.
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4.1 Local states

For the sake of simplicity, from now on, we assume that we know a partition {Pi}

of the set P of places of the net such that places are exclusive: for all reachable

marking M , Pi ∩M is a singleton. For a place p ∈ Pi, we denote p
def

= Pi \ {p}. It
is well-known that any net can be partitioned in such a way, with the help of the
addition of complementary places. In the example of Figure 1, we can consider
the partition {{p1, p3, p5}, {p2, p4, p6}}. This partition will be used to test the
absence of tokens. In our example, if we want to fire t3, we have to check that
t0 will not fire before t3, removing then the token in place p3. If we know that
p2 is marked, we can deduce that p4 is not, and thus that t0 is disabled.

Definition 6. (partial marking) A set of places L ⊆ P is complete if it
contains one place per set of mutually exclusive places (the considered partition).
In the general case, we will say that it is a partial marking.

Definition 7. (local state) A local state of a Time Petri Net is a triple
(L, dob, lrd) where L ⊆ P is a partial marking, and dob, lrd :−→ Q associates a
date of birth dob(p) and a latest reading date lrd(p) with each place p ∈ L.

Notice that the notion of date of a global state has been replaced by a function
acting on places. Local states with complete markings (called maximal states in
the sequel) will play the role of global states in the standard semantics. It will
be said consistent if the minimum ages of tokens in the state is less than the
latest firing date of the enabled transitions.

Definition 8. (consistent state) A maximal state (M, dob, lrd) is consistent
if ∀t ∈ T,

•
t ⊆M ⇒ minp∈•t(maxp′∈M lrd(p′) − dob(p)) ≤ lfd(t).

4.2 Local enabling

We propose to relax the enabling condition by considering this one:

Local enabled(L, dob, t, θ) =







•
t ⊆ L ∧ [θ ≥ maxp∈•tdob(p) + efd(t)]∧

∧

t′∈T ,•t′∩L6=∅

{∨

p∈•t′
(p ∩ L 6= ∅)∨

θ ≤ maxp∈•t′dob(p) + lfd(t′)

which is clearly weaker.
It is also clear that we augment the flexibility in taking L as smaller as

possible. This is why we consider the minimum enabling condition.

Definition 9. (minimum local enabling)

Min local enabled(L, dob, t, θ) iff

{

Local enabled(L, dob, t, θ)∧
6 ∃L′ ⊂ L Local enabled(L′

, dob|L′ , t, θ)

where dob|L′ denotes the function dob restricted to the definition domain L′.
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4.3 Local semantics

Definition 10. (local firing rule) The net starts in the initial maximal

state (M0, dob0, lrd0) where lrd0

def

= dob0. A transition t can fire at date
θ using the partial marking L ⊆ M from a maximal state (M, dob, lrd) if
Min local enabled(L, dob, t, θ) and for all p ∈ L, θ ≥ lrd(p). This action leads
to the maximal state ((M \ •

t) ∪ t•, dob′, lrd ′) with

dob′(p)
def

=

{

dob(p) if p ∈M \ •
t

θ if p ∈ •
t

and

lrd ′(p)
def

=

{

lrd(p) if p ∈M \ L

θ if p ∈ (L \ •
t) ∪ t•

The fact that a transition t has been fired using this local rule is denoted

(M, dob, lrd)
t,θ,L
−→ (M ′

, dob′, lrd ′).
From the initial state, we can consider a firing sequence σ ∈ T

∗ of length n. A
sequence σ is a local timed sequential execution if there exist a set of states, dates
and partial markings {Mi, dobi, lrd i, θi, Li}1≤i≤n such that for all 1 ≤ i ≤ n,

(Mi−1, dobi−1, lrd i−1)
σ(i),θi,Li

−→ (Mi, dobi, lrd i).

5 Time Processes

Given a safe Time Petri Net, we can easily define a mapping Π from its firing
sequences to their partial order representation as processes (the set E).

Definition 11. (time process) Let us consider a local firing sequence σ =

{(Mi−1, dobi−1, lrd i−1)
σ(i),θi,Li

−→ (Mi, dobi, lrd i)}1≤i≤n+1, Π is defined induct-
ively as follows:

– Π(∅)
def

= ∅,

– Π({(Mi−1, dobi−1, lrd i−1)
σ(i),θi,Li

−→ (Mi, dobi, lrd i)}1≤i≤n+1)
def

=

Π({(Mi−1, dobi−1, lrd i−1)
σ(i),θi,Li

−→ (Mi, dobi, lrd i)}1≤i≤n) ∪

{Place−1

|↑E
(Ln+1), σ(n+ 1), θn+1}.

Figure 4 shows an example of a process of the Time Petri Net of Figure 1.
What is called the time unfolding is just the union of all the processes and

is denoted UT

A process defines strong and weak causalities between its events.

Definition 12. (causality) Given two events e and f of a process E,

– e strongly causally precedes f (written e→ f) iff e

• ∩ (•f ∪ f) 6= ∅

– e weakly causally precedes f (written e f) iff (e→ f) ∨ (e ∩ •
f 6= ∅)

The strong causal past of an event is denoted by ⌈e⌉
def

= {f ∈ E | f →∗
e}.
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Figure 4. The corresponding time process for the firing sequence t2.t1.t0.t1.t2.t3. Notice
the read arc introduced by the local semantics.

Now, we prove that processes built with the Min local enabled condition
are correct and complete. Correction means that a time process can always be
extended to obtain a standard process of the net (without read arcs).

Each event e of a time process can be mapped to the corresponding event of
a standard process defined as:

h(e)
def

= ({(h(f), p) | (f, p) ∈ •
e}, τ(e))

This definition is also valid for the initial event h(⊥) = ⊥. We denote h(E)
def

=
{(h(e), θ) | (e, θ) ∈ E}

Let us consider a time process E. Let us denote dobE(p)
def

= θ(•place|↑E
−1(p))

the date of birth of the token which stands in place p after the execution of the
process E. Additionally we define the latest date when the token which stands

in place p was read as: lrdE(p)
def

= max (dobe(p),max e∈E,b∈eθ(e)) (remark that
lrdE(p) = dobE(p) when no event reads the token). The maximal state reached

after the execution of the process E is EndE

def

= (Place(↑ E), dobE , lrdE).

Definition 13. (temporally complete time process) We will say that a
time process E is temporally complete if the maximal state reached after the
execution of the process is temporally consistent, i.e.:

∀t ∈ T,

•
t ⊆ Place(↑ E) ⇒ minp∈•t(maxp′∈Place(↑E)lrdE(p′)−dobE(p)) ≤ lfd(t)

.

Lemma 1. (the temporally complete processes are the standard pro-
cesses) ∀E ∈ UT , h(E) ∈ U iff E is temporally complete.

Theorem 1. (correctness) Our construction of time processes using the
Min local enabled firing condition is correct, which means that for all time pro-
cesses there exists a standard process E′ such that h(E) ⊆ E

′
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Theorem 2. (completeness) Our construction of time processes using the
Min local enabled firing condition is complete, which means that for all stand-
ard processes E of the net, there exists a time process E′ such that h(E′) = E.

We can remark that the unfolding of time extended free choice Petri nets does
not contain any read arc. The unfolding is just the union of standard processes.

As a consequence we can prove that a time net with all its time intervals set to
[0,∞[ has an unfolding, which is equal to the classical unfolding of the underlying
untimed net. Another interesting fact is that considering the unfolding of a Time
Petri Net formed with several disconnected paths will never try to connect these
parts. As a consequence, the unfolding of the whole net will be exactely the set
union of the disconnected parts.

6 Symbolic Unfolding and Complete Finite Prefix

6.1 Process extraction

Despite the superimposition of the time processes, and thus the mixing of all
the events belonging to different processes, it is possible to recover the processes.
More precisely, given a set of events, we can check whether they form a process
or not.

Theorem 3. (process extraction) Let E a finite set of dated events. E is a
time process iff:

⌈E⌉ = E ∧ (E is causally closed)
6 ∃e, e′ ∈ E e 6= e

′ ∧ •
e ∩ •

e

′ 6= ∅ ∧ (E is conflict free)
6 ∃e0, e1, ..., en ∈ E e0  e1  ... en  e0 ∧ ( is acyclic)
∀e, e′ ∈ E e e

′ ⇒ θ(e) ≤ θ(e′) ∧ (θ is compatible with  )

∀e = (B, t) ∈ E Min local enabled(Place(B), dobE|⌈B⌉, t, θ(e))

6.2 Complete Finite Prefixes

It has already been shown in [8] that the age of tokens can be reduced to bounded
values without losing information about the possible actions in the future.

Definition 14. (reduced age of tokens) The reduced age of a token in a

place p ∈M in the maximal state S
def

= (M, dob, lrd) is

AS(p)
def

= min(maxp′∈M lrd(p′) − dob(p),max (b(t) | t ∈ T ∧ p ∈
•
t))

where b(t)
def

= efd(t) if lfd(t) = ∞, lfd(t)otherwise.

Two maximal states S1 = (M1, dob1, lrd1) and S2 = (M2, dob2, lrd2) will be
considered as equivalent (written S1 ≡ S2) if they have the same marking and
same reduced age (AS1

= AS2
).

The reduced ages of maximal states can be represented by a symbolic ex-
pression.
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Theorem 4. (finite number of reduced ages) The set of expressions AEndE

for all the time processes E is finite.

Theorem 5. (firing a transition from two equivalent consistent states)
Let S1 and S2 two equivalent consistent states. Let M their common marking.
A transition t can fire from S1 at date θ1 ≥ maxp∈M lrd1(p) using the partial

marking L ⊆ M iff it can fire from S2 at date θ2

def

= θ1 − maxp∈M lrd1(p) +
maxp∈M lrd2(p) using the same partial marking L.

Definition 15. finite processes and complete finite prefix We define the
set of finite time processes FTP from local firing sequences σ as:

E ∈ FTP iff (Π(σ) = E) ∧ (6 ∃σ′
| σ

′
|<| σ | ∧EndΠ(σ′) ≡ EndΠ(σ)).

The finite complete prefix is the union of all the events that appear in the finite
complete time processes.

Remark: this definition could be improved considering the implication of expres-
sions instead of equivalence. It seems also that the generic notion of adequate
order is usable in our framework.

6.3 Substitution

To prove the completeness of our notion of prefix, we show that every complete
time process can be obtained by substitution of prefixes in processes belonging
to the prefix. Knowing that the same actions are possible from equivalent con-
sistent states, reached by two different complete processes, we can translate any
continuation of one process to the other providing we also translate the firing
dates of the events.

We will say that a complete time process E can be continued to E′ (written
E ⊑ E

′) if there exist sequences of local firings σ and σ

′ such that Π(σ) = E

and Π(σ′) = E

′ and σ is a prefix of σ′.

Definition 16. (substitution of prefixes) Let E1 and E2 two complete pro-
cesses, and E

′
2
⊑ E2 such that EndE′

2
≡ EndE1

. The substitution operation
replaces E′

2
by E1 in E2 as:

subst(E1, E
′
2
, E2)

def

= E1 ∪ {φ(e) | e ∈ E2 \ E
′
2
}

where

∀e
def

= (B, t, ξ) ∈ E2 \ E
′
2

φ(e)
def

= (ψ(B), t, ξ − max f∈E′

2
θ(f) + max f∈E1

θ(f))

∀b
def

= (e, p) ∈
⋃

f∈E2\E′

2

•
f ∪ f ψ(b)

def

=

{

(φ(e), p) if e 6∈ E

′
2

place−1

↑E1
(p) if e ∈ E

′
2

The operation can be generalized as follows:

subst(E0, E
′
1
, E1, ..., E

′
n, En)

def

= subst(subst(E0, E
′
1
, E1, ..., E

′
n−1

, En−1), E
′
n, En)
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We can show that complete processes are closed under substitution of prefixes
and the following theorem proves the completeness of the prefix construction.

Theorem 6. (extraction of the complete processes from the fi-
nite prefix) For every complete process E, there exist complete finite pro-
cesses E0, ..., En in FTP and E

′
1

⊑ E1, ..., E
′
m ⊑ Em such that E =

subst(E0, E
′
1
, E1, ..., E

′
m, Em).

7 Conclusion

We have proposed a definition for the notion of unfolding of Safe Time Petri
Nets and its finite representation. The definition is constructive and has been
implemented in a prototype. Our prefix construction permits to easily extract
time processes and seems to capture graphically a maximum of concurrency. We
do not claim that it is the only way to do and we had long discussions with our
colleagues about what kind of information must be coded in the graph structure
rather than coded in the symbolic constraints. This rises the problem of the
evaluation of algorithmic complexities. This is a difficult question that remains
to be studied in detail.

Several perspectives are open. From a semantical point of view, this study
was faced to the contradiction of having a global time model equiped with a
partial order semantics. There is probably some space to imagine models with
a more local semantics of time, while keeping good capabilities to specify timed
behaviours. On the technical side, the notion of equivalent maximal states can
be certainly refined to provide shorter prefixes. One can also think about to deal
with with larger class of Petri nets.

References

1. T. Aura and J. Lilius. Time processes for time Petri nets. In ICATPN, volume

1248, pages 136–155, 1997.

2. B. Bieber and H. Fleischhack. Model checking of time Petri nets based on partial

order semantics. In CONCUR, volume 1664 of LNCS, pages 210–225, 1999.

3. T. Chatain. Symbolic unfoldings of high-level petri nets and application to su-

pervision of distributed systems. Technical Report 3455, Rennes 1 Univ., dec.

2006.

4. T. Chatain and C. Jard. Time supervision of concurrent systems using symbolic

unfoldings of time petri nets. In FORMATS, volume 3829 of LNCS, pages 193–207,

2005.

5. T. Chatain and C. Jard. Complete finite prefixes of symbolic unfoldings of safe

time petri nets. In ICATPN, volume 4024 of LNCS, pages 125–145, 2006.

6. J. Engelfriet. Branching processes of Petri nets. Acta Inf., 28(6):575–591, 1991.

7. H. Fleischhack and E. Pelz. Hierarchical timed high-level nets and their branching

processes. In ICATPN, volume 2679 of LNCS, pages 397–416, 2003.

8. Hans Fleischhack and Christian Stehno. Computing a finite prefix of a time Petri

net. In ICATPN, pages 163–181, 2002.



Concurrent Operational Semantics of Safe Time Petri Nets 31

9. P.M. Merlin and D.J. Farber. Recoverability of communication protocols – implic-

ations of a theorical study. IEEE Transactions on Communications, 24, 1976.

10. A. L. Semenov and A. Yakovlev. Verification of asynchronous circuits using time

petri net unfolding. In DAC, ACM Press, pages 59–62, 1999.

11. J. Winkowski. Processes of timed Petri nets. Theoretical Computer Science, 243(1-

2):1–34, 2000.



McMillan’s Complete Prefix

for Contextual Nets⋆

Paolo Baldan1, Andrea Corradini2, Barbara König3, and Stefan Schwoon4

1
Dipartimento di Matematica Pura e Applicata, Università di Padova, Italy

2
Dipartimento di Informatica, Università di Pisa, Italy
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Abstract. In a seminal paper, McMillan proposed a technique for con-

structing a finite complete prefix of the unfolding of bounded (i.e., finite-

state) Petri nets, which can be used for verification purposes. Contextual

nets are a generalisation of Petri nets suited to model systems with read-

only access to resources. When working with contextual nets, a finite

complete prefix can be obtained by applying McMillan’s construction

to a suitable encoding of the contextual net into an ordinary net. How-

ever, it has been observed that if the unfolding is itself a contextual

net, then the complete prefix can be significantly smaller than the one

obtained with the above technique. A construction for generating such

a contextual complete prefix has been proposed for a special class of

nets, called read-persistent. In this paper we propose a new algorithm

that works for arbitrary semi-weighted, bounded contextual nets. The

construction explicitly takes into account the fact that, unlike ordinary

or read-persistent nets, an event can have several different histories in

contextual net computations.

1 Introduction

In recent years there has been a growing interest in the use of partial-order
semantics to deal with the state-explosion problem when model checking con-
current systems. In particular, a thread of research that started with the seminal
work by McMillan [10, 11] proposes the use of the unfolding semantics as a basis
for the verification of finite-state systems, modelled as Petri nets.

The unfolding of a Petri net, originally introduced in [14], is a safe, acyclic
occurrence net that completely expresses its behaviour. For non-trivial nets the
unfolding can be infinite even if the original net is bounded, i.e., it has a finite
number of reachable states. McMillan’s algorithm constructs a finite complete
prefix, i.e., a subnet of the unfolding such that each marking reachable in the
original net corresponds to some concurrent set of places in such a prefix.
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Fig. 1. (a) A safe contextual net; (b) its encoding by replacing read arcs with con-

sume/produce loops; (c) its concurrency-preserving PR-encoding.

Contextual nets [13], also called nets with test arcs [5], activator arcs [8] or
read arcs [17], extend ordinary nets with the possibility of checking for the pres-
ence of tokens without consuming them. The possibility of faithfully representing
concurrent read accesses to resources allows to model in a natural way phenom-
ena like concurrent access to shared data (e.g., reading in a database) [16], to
provide concurrent semantics to concurrent constraint programs [12], to model
priorities [7] or to conveniently analyse asynchronous circuits [18].

When working with contextual nets, if one is interested only in reachable
markings, it is well-known that read arcs can be replaced by consume/produce
loops (see Fig. 1(a) and (b)), obtaining an ordinary net with the same reachab-
ility graph. However, when one unfolds the net obtained by this transformation,
the number of transitions and places might explode due to the sequentialization
imposed on readers. A cleverer encoding, proposed in [18] and hereafter referred
to as the place replication encoding (PR-encoding), consists of creating “private”
copies of the read places for each reader (see Fig. 1(c)). In this way, for safe nets
the encoding does not lead to a loss of concurrency, and thus the explosion of
the number of events and places in the unfolding can be mitigated.

A construction that applies to contextual nets and produces an unfolding
that is itself a contextual (occurrence) net has been proposed independently
by Vogler, Semenov and Yakovlev in [18] and by the first two authors with
Montanari in [3]. In particular, the (prefixes of the) unfolding obtained with this
construction can be much smaller than in both encodings considered above.

Unfortunately, as discussed in [18], McMillan’s construction of the finite com-
plete prefix does not extend straightforwardly to the whole class of contextual
nets. The authors of [18] propose a natural generalization of McMillan’s al-
gorithm by taking into account some specific features of contextual nets (for
example, in the definition of co-sets), but they show that their approach only
works for contextual nets that are read-persistent, i.e., where there is no interfer-
ence between preconditions and context conditions: any two transitions t1 and t2

such that t1 consumes a token that is read by t2 cannot be enabled at the same
time. Similarly, the algorithm proposed in [2], where McMillan’s approach was
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generalised to graph grammars, is designed for a restricted class of grammars,
which are the graph-grammar-theoretical counterpart of read-persistent nets.

The algorithms of [18] and [2] fail on non-read-persistent systems because,
in general, a transition of a contextual occurrence net can have more than one
possible causal history (or local configuration, according to [18]): this happens,
for example, when a transition consumes a token which could be read by another
transition. In this situation, McMillan’s original cut-off condition (used by the
algorithms in [18] and [2]) is not adequate anymore, because it considers a single
causal history for each event (see also the example discussed in Section 3).

In this paper we present a generalization of McMillan’s construction that ap-
plies to arbitrary bounded semi-weighted contextual nets, i.e., Place/Transition
contextual nets where the initial marking and the post-set of each transition are
sets rather than proper multisets: this class of nets strictly includes safe con-
textual nets. The proposed algorithm explicitly takes into account the possible
histories of events, and generates from a finite bounded semi-weighted contex-
tual net a finite complete prefix of its unfolding. The same constructions and
results could have been developed for general weighted contextual nets, at the
price of some technical (not conceptual) complications.

As in McMillan’s original work, the key concept here is that of a cut-off
event, which is, roughly, an event in the unfolding that, together with its causal
history, does not contribute to generating new markings. We show that the
natural generalisation of cut-off that takes into account all the possible histories
of each event is theoretically fine, in the sense that the maximal cut-off free prefix
of the unfolding is complete. However, this characterisation is not constructive in
general, since an event can have infinitely many histories. We then show how this
problem can be solved by restricting the attention to a finite subset of “useful”
histories for each event, which really contribute to generating new states.

The contribution of this approach is twofold. From a theoretical point of view,
the algorithm extends [18] since it applies uniformly to the full class of contextual
nets (and, for read-persistent nets, it specialises to [18]). From a practical point
of view, with respect to the approach based on the construction of the complete
finite prefix of the PR-encoding, we foresee several improvements. For safe nets
the proposed technique produces a smaller unfolding prefix (once the histories
recorded for generating the prefix are disregarded) and it has a comparable
efficiency (we conjecture that the histories considered when unfolding a safe
contextual net exactly correspond to the events obtained by unfolding its PR-
encoding). Additionally, our technique appears to be more efficient for non-safe
nets (see Appendix A) and it looks sufficiently general to be extended to other
formalisms able to model concurrent read accesses to part of the state, like graph
transformation systems, for which the encoding approach does not seem viable.

The paper is structured as follows. In Section 2 we introduce contextual nets
and their unfolding semantics. In Section 3 we characterise a finite complete
prefix of the unfolding for finite-state contextual nets, relying on a generalised
notion of cut-off and in Section 4 we describe an algorithm for constructing a
complete finite prefix. Finally, in Section 5 we draw some conclusions.
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2 Contextual nets and their unfolding

In this section we introduce the basics of marked contextual P/T nets [16, 13]
and we review their unfolding semantics as defined in [18, 3].

2.1 Contextual nets

We first recall some notation for multisets. Let A be a set; a multiset of A is
a function M : A → N. It is called finite if {a ∈ A : M(a) > 0} is finite.
The set of finite multisets of A is denoted by µ∗A. The usual operations on
multisets, like multiset union ⊕ or multiset difference ⊖, are used. We write
M ≤ M

′ if M(a) ≤ M

′(a) for all a ∈ A. If M ∈ µ∗A, we denote by [[M ]] the
multiset defined, for all a ∈ A, as [[M ]](a) = 1 if M(a) > 0, and [[M ]](a) = 0
otherwise. A multirelation f : A ↔ B is a multiset of A×B. It is called finitary
if {b ∈ B : f(a, b) > 0} is a finite set for all a ∈ A. A finitary multirelation f

induces in an obvious way a function µf : µ∗A → µ∗B, defined as µf(M)(b) =
∑

a∈A
M(a) · f(a, b) for M ∈ µ∗A and b ∈ B. In the sequel we will implicitly

assume that all multirelations are finitary. A relation r : A ↔ B is a multirelation
r where multiplicities are bounded by one, namely r(a, b) ≤ 1 for all a ∈ A and
b ∈ B. Sometimes we shall write simply r(a, b) instead of r(a, b) = 1.

Definition 1 ((marked) contextual net). A (marked) contextual Petri net
(c-net) is a tuple N = 〈S, T, F,C,m〉, where

– S is a set of places and T is a set of transitions;
– F = 〈Fpre, Fpost〉 is a pair of finitary multirelations Fpre, Fpost : T ↔ S;
– C : T ↔ S is a finitary relation, called the context relation;
– m ∈ µ∗S is a finite multiset, called the initial marking.

The c-net is called finite if T and S are finite sets. Without loss of generality,
we assume S ∩ T = ∅. Moreover, we require that for each transition t ∈ T , there
exists a place s ∈ S such that Fpre(t, s) > 0.

In the following when considering a c-net N , we will implicitly assume N =
〈S, T, F,C,m〉.

Given a finite multiset of transitions A ∈ µ∗T we write •
A for its pre-set

µFpre(A) and A

• for its post-set µFpost(A). Moreover, A denotes the context of A,
defined as A = [[µC(A)]]. The same notation is used to denote the functions from
S to the powerset P(T ), e.g., for s ∈ S we define •

s = {t ∈ T : Fpost(t, s) > 0}.
An example of a contextual net, inspired by [18], is depicted in Fig. 2(a).

Note that read arcs are drawn as undirected lines. For instance, referring to
transition t1 we have •

t1 = s1, t1
• = s3 and t1 = s2.

For a finite multiset of transitions A to be enabled at a marking M , it is
sufficient that M contains the pre-set of A and one additional token in each place
of the context of A. This corresponds to the intuition that a token in a place
(like s in Fig. 1(a)) can be used as context concurrently by many transitions;
instead, if read arcs are replaced by consume/produce loops (as in Fig. 1(b)) the
transitions needing a token in place s can fire only one at a time.
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Fig. 2. (a) A contextual net N0 and (b) its unfolding Ua(N0).

Definition 2 (enabling, step). Let N be a c-net. A finite multiset of trans-
itions A ∈ µ∗T is enabled at a marking M ∈ µ∗S if •

A ⊕ A ≤ M . In this case,
the execution of A in M , called a step (or a firing when it involves just one
transition), produces the new marking M

′ = M ⊖ •
A⊕A

•, written as M [A〉M

′.

A marking M of a c-net N is called reachable if there is a finite sequence of
steps leading to M from the initial marking, i.e., m [A0〉M1 [A1〉M2 . . . [An〉M .

Definition 3 (bounded, safe and semi-weighted nets). A c-net N is called
n-bounded if for any reachable marking M each place contains at most n tokens,
namely M(s) ≤ n for all s ∈ S. It is called safe if it is 1-bounded and Fpre,
Fpost are relations (rather than general multirelations). A c-net N is called semi-
weighted if the initial marking m is a set and Fpost is a relation.

Observe that requiring Fpre (resp. Fpost) to be relations amounts to asking
that for any transition t ∈ T , the pre-set (resp. post-set) of t is a set, rather than
a general multiset.

We recall that considering semi-weighted nets is essential to characterise the
unfolding construction, in categorical terms, as a coreflection [4]. However, in this
paper, the choice of taking semi-weighted nets rather than general weighted nets
is only motivated by the need of simplifying the presentation: the generalisation
would require only some technical complications in the definition of the unfolding
(Definition 10), related to the fact that an occurrence of a place would not be
completely identified by its causal history.
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2.2 Occurrence c-nets

Occurrence c-nets are safe c-nets such that the dependency relations among
transitions that we will introduce, causality and asymmetric conflict, satisfy
suitable acyclicity and well-foundedness requirements.

Causality is defined as for ordinary nets, with an additional clause stating
that transition t causes t

′ if it generates a token in a context place of t

′.

Definition 4 (causality). Let N be a safe c-net. The causality relation <N is
the least transitive relation on S ∪ T such that

1. if s ∈ •
t then s <N t;

2. if s ∈ t

• then t <N s;
3. if t

• ∩ t

′ 6= ∅ then t <N t

′.

Given x ∈ S ∪ T , we write ⌊x⌋ for the set of causes of x in T , defined as
⌊x⌋ = {t ∈ T : t ≤N x} ⊆ T , where ≤N is the reflexive closure of <N .

We say that a transition t is in asymmetric conflict with t

′, denoted t րN t

′,
if whenever both t and t

′ fire in a computation, t fires before t

′. The paradigmatic
case is when transition t

′ consumes a token in the context of t, i.e., when t∩•
t

′ 6=
∅, as for transitions t

′
1

and t

′
2

in Fig. 2(b) (see [4, 15, 9, 18]).
Note that the fact that whenever both t and t

′ fire, t fires before t

′ trivially
holds when t <N t

′, because t cannot follow t

′ in a computation, and (with t

and t

′ in interchangeable roles) also when t and t

′ have a common precondition,
since they will never fire in the same computation. For technical convenience the
definition of րN takes these two situations into account as well.

Definition 5 (asymmetric conflict). Let N be a safe c-net. The asymmetric
conflict relation րN (also denoted ր if N is clear from the context) is the binary
relation on T defined as

t րN t

′ iff t ∩ •
t

′ 6= ∅ or (t 6= t

′ ∧ •
t ∩ •

t

′ 6= ∅) or t <N t

′.

For X ⊆ T , րX denotes the restriction of րN to X, i.e., րX=րN ∩ (X ×X).

An occurrence c-net is a safe c-net that exhibits an acyclic behaviour, satis-
fying suitable conflict freeness requirements.

Definition 6 (occurrence c-nets). An occurrence c-net is a safe c-net N

such that

– each place s ∈ S is in the post-set of at most one transition, i.e. |•s| ≤ 1;
– the causal relation <N is irreflexive and its reflexive closure ≤N is a partial

order, such that ⌊t⌋ is finite for any t ∈ T ;
– the initial marking is the set of minimal places w.r.t. ≤N , i.e., m = {s ∈ S :

•
s = ∅};

– ր⌊t⌋ is acyclic for all t ∈ T .
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The last condition corresponds to the requirement of irreflexivity for the
conflict relation in ordinary occurrence nets. In fact, if a transition t has a րN

cycle in its causes then it can never fire, since in an occurrence c-net N , the
order in which transitions appear in a firing sequence must be compatible with
the asymmetric conflict relation. An example of an occurrence c-net can be found
in Fig. 2(b).

The notion of concurrency is the natural generalisation of the one for ordinary
nets. Note that, because of the presence of contexts, some places that a transition
needs in order to fire (the contexts) can be concurrent with the places it produces.

Definition 7 (concurrency relation). Let N be an occurrence c-net. A finite
set of places M ⊆ S is called concurrent, written conc(M), if

1. ∀s, s

′ ∈ M. ¬(s < s

′);
2. ⌊M⌋ is conflict-free, i.e., ր⌊M⌋ is acyclic.

It can be shown that, as for ordinary occurrence nets, a set of places M is
concurrent if and only if there is some reachable marking in which all the places
of M contain one token.

From now on, consistently with the literature, we shall often call the trans-
itions of an occurrence c-net events.

Definition 8 (configuration). Let N be an occurrence c-net. A set of events
C ⊆ T is called a configuration if

1. րC is well-founded;
2. {t′ ∈ C : t

′ ր t} is finite for all t ∈ C;
3. C is left-closed w.r.t. ≤, i.e. for all t ∈ C, t

′ ∈ T , t

′ ≤ t implies t

′ ∈ C.

We denote by Conf (N) the set of all configurations of N , equipped with the
ordering defined as C ⊑ C

′, if C ⊆ C

′ and ¬(t′ ր t) for all t ∈ C, t

′ ∈ C

′ \ C.
Furthermore two configurations C1, C2 are said to be in conflict (C1#C2)

when there is no C ∈ Conf (N) such that C1 ⊑ C and C2 ⊑ C.

The notion of configuration characterises the possible (concurrent) computations
of an occurrence c-net. It can be proved that a subset of events C is a config-
uration iff the events in C can all be fired, starting from the initial marking,
in any order compatible with ր. The relation ⊑ is a computational order of
configurations: C ⊑ C

′ if C can evolve and become C

′. Remarkably, this order
is not simply subset inclusion since a configuration C cannot be extended with
an event t

′ if t

′ ր t for some t ∈ C, since t

′ cannot fire after t in a computation.
Two configurations are in (symmetric) conflict if they do not have a common
extension. More concretely C1#C2 when there exists t1 ∈ C1 and t2 ∈ C2 \ C1

such that t2 ր t1 or the symmetric condition holds.
Given a configuration C and an event t ∈ C, the history of t in C is the set

of events that must precede t in the (concurrent) computation represented by
C. For ordinary nets the history of an event t coincides with the set of causes
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⌊t⌋, independently of the configuration where t occurs. Instead, for c-nets, due
to the presence of asymmetric conflicts between events, an event t which occurs
in more than one configuration may have different histories. The next definition
formalises this fact.

Definition 9 (history). Let N be an occurrence net. Given a configuration C

and an event t ∈ C, the history of t in C, denoted by C[[t]], is defined as

C[[t]] = {t′ ∈ C : t

′(րC)∗t}.

The set of all possible histories of an event t, namely {C[[t]] : C ∈ Conf (N) ∧ t ∈

C} is denoted by Hist(t).

2.3 Unfolding

Given a semi-weighted c-net N , an unfolding construction allows us to obtain an
occurrence c-net Ua(N) that describes the behaviour of N [3, 18]. As for ordinary
nets, each event in Ua(N) represents a particular firing of a transition in N , and
places in Ua(N) represent occurrences of tokens in the places of N . The unfolding
is equipped with a mapping to the original net N , sending each place (event) of
the unfolding to the corresponding place (transition) in N .

The unfolding can be constructed inductively by starting from the initial
marking of N and then by adding, at each step, an occurrence of each transition
of N which is enabled by (the image of) a concurrent subset of the places already
generated. We present an equivalent axiomatic definition, in the style of the one
proposed by Winskel in [20].

Definition 10 (unfolding). Let N = 〈S, T, F,C,m〉 be a semi-weighted c-net.
The unfolding Ua(N) = 〈S′

, T

′
, F

′
, C

′
,m

′〉 of the net N is the unique occurrence
c-net satisfying the following (recursive) equations

m

′ = {〈∅, s〉 : s ∈ m}

S

′ = {m′} ∪ {〈t′, s〉 : t

′ = 〈Mp,Mc, t〉 ∈ T

′ ∧ s ∈ t

•}

T

′ = {〈Mp,Mc, t〉 : Mp,Mc ⊆ S

′ ∧ Mp ∩ Mc = ∅ ∧ conc(Mp ∪ Mc) ∧

t ∈ T ∧ µfS(Mp) = •
t ∧ µfS(Mc) = t}

F

′
pre(t

′
, s

′) iff t

′ = 〈Mp,Mc, t〉 ∧ s

′ ∈ Mp (t ∈ T )
C

′(t′, s′) iff t

′ = 〈Mp,Mc, t〉 ∧ s

′ ∈ Mc (t ∈ T )
F

′
post(t

′
, s

′) iff s

′ = 〈t′, s〉 (s ∈ S)

where fN = 〈fT , fS〉 : Ua(N) → N is the folding morphism, consisting of a
pair of mappings fT : T

′ → T and fS : S

′ → S defined by fT (t′) = t for
t

′ = 〈Mp,Mc, t〉 and fS(s′) = s for s

′ = 〈x, s〉.

As said before, places and events in the unfolding of a c-net represent respectively
tokens and firing of transitions in the original net. Each place in the unfolding
is a pair recording the “history” of the token and the corresponding place in the



40 Paolo Baldan, Andrea Corradini, Barbara König, and Stefan Schwoon

original net. Each event is a triple recording the precondition and context used
in the firing, and the corresponding transition in the original net. A new place
with empty history 〈∅, s〉 is generated for each place s in the initial marking.
Moreover, a new event t

′ = 〈Mp,Mc, t〉 is inserted in the unfolding whenever
we can find a concurrent set of places (precondition Mp and context Mc) that
corresponds, in the original net, to a marking that enables t. For each place s in
the post-set of such t, a new place 〈t′, s〉 is generated, belonging to the post-set
of t

′. The folding morphism f maps each place (event) of the unfolding to the
corresponding place (transition) in the original net.

An initial part of the unfolding of the net N0 in Fig. 2(a) is represented in
Fig. 2(b). The folding morphism from Ua(N0) to N0 is implicitly represented by
the name of the items in the unfolding.

The unfolding is complete with respect to the behaviour of the original net
in the following sense.

Proposition 1 (completeness of the unfolding). Let N be a c-net and let
Ua(N) = 〈S′

, T

′
, F

′
, C

′
,m

′〉 be its unfolding. A marking M ∈ µ∗S is coverable
in N iff there exists a concurrent subset X ⊆ S

′ such that M = µfS(X).

This is the notion of completeness that we will use in the rest of the paper:
it is slightly weaker than that of [10, 18], for example, as it is concerned with
markings only, and not with transitions.

3 Defining a Complete Finite Prefix

To obtain a finite prefix of the unfolding that is still complete in the sense of
Proposition 1, the idea is to avoid to include useless events in the unfolding,
where “useless” means events which do not contribute to generating new mark-
ings. To this aim McMillan introduced the notion of “cut-off” for ordinary nets,
which is roughly an event whose history does not generate a new marking. Then
the complete finite prefix is the greatest prefix without cut-offs. This definition
of cut-off event has to be adapted to the present framework, since for contex-
tual nets an event may have different histories, or, using McMillan terminology,
different local configurations.

Considering only the minimal history of an event, i.e., its set of causes, in
the definition of cut-off leads to a finite but not necessarily complete prefix,
as observed in [18]. For instance, consider net N0 in Fig. 2(a). According to
the ordinary definition of cut-off, in its unfolding Ua(N0) shown in Fig. 2(b)
the event t

′
2

would be a cut-off since its minimal history {t′
0
, t

′
2
} generates a

marking corresponding to the initial marking. Thus the largest prefix without
cut-offs would be the net O0 in Fig. 3(a), which is not complete since it does not
“represent” the marking s0 ⊕ s3, reachable in N0.

Considering instead all the possible histories of an event leads to a charac-
terisation of a prefix which is finite and complete, even if this characterisation is
not constructive since there can be infinitely many possible histories for a single
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Fig. 3. (a) An incomplete and (b) a complete enriched prefix for the net in Fig. 2.

event (see [2]). In the present paper we suggest to record for each event only a
subset of histories which are considered “useful to produce new markings”.

To formalise this fact we introduce a notion of occurrence net decorated with
possible histories for the involved events.

Definition 11 (enriched occurrence net). An enriched occurrence net is a
pair E = 〈N,χ〉, where N is an occurrence net and χ : T → P(P(T )) is a
function such that for any t ∈ T , ∅ 6= χ(t) ⊆ Hist(t).

The enriched occurrence net E is called closed if for all t, t

′ ∈ T , for any
C ∈ χ(t) if t

′ ∈ C then C[[t′]] ∈ χ(t′).
A configuration of E is a configuration C ∈ Conf (N) such that C[[t]] ∈ χ(t)

for all t ∈ C. The set of configurations of E is denoted by Conf (E).

Often, given an enriched occurrence net E we will denote its components by
NE and χE . If the enriched net is Ei, we will call its components Ni and χi.

A generalisation of the natural prefix ordering over occurrence nets can be
defined on enriched occurrence nets.

Definition 12 (prefix ordering). Given two enriched occurrence nets E1 and
E2, we say that E1 is a prefix of E2, written E1 � E2, if N1 is a prefix of N2,
and for any t ∈ T1, χ1(t) ⊆ χ2(t).

From now on, N = 〈S, T, F,C,m〉 is a fixed semi-weighted c-net, Ua(N) =
〈S′

, T

′
, F

′
, C

′
,m

′〉 is its unfolding, and fN : Ua(N) → N is the folding morphism.

Definition 13 (enriched event, enriched prefix). An enriched event of the
unfolding is a pair 〈t,Ht〉, where t ∈ T

′ is an event of the unfolding, and Ht ∈

Hist(t) is one of its histories. An enriched prefix of the unfolding Ua(N) is any
closed enriched occurrence net E such that NE is a prefix of Ua(N). We will say
that the enriched prefix E contains 〈t,Ht〉 and write 〈t,Ht〉 ∈ E if t ∈ TE and
Ht ∈ χE(t).
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An example of enriched prefix of Ua(N0) in Fig. 2(b) is given in Fig. 3(b).
For any event t the set of histories χE(t) is written near to the event itself.

It can be shown that the set of enriched prefixes of Ua(N) endowed with the
prefix ordering � forms a lattice. Given two enriched prefixes E1 and E2, their
least upper bound is E1⊔E2 = 〈NE , χE〉, where NE is the componentwise union
of N1 and N2, and, for any event t in N , χE(t) =

⋃

{i:t∈Ni}
χi(t). Moreover, it

is not difficult to prove that given two enriched prefixes E1 and E2

E1 � E2 iff Conf (E1) ⊆ Conf (E2).

A configuration of Ua(N) represents a computation in the unfolding itself,
which in turn maps, via the folding morphism, to a computation of N . Hence
we can define the marking of N after a finite configuration of the unfolding.

Definition 14 (marking after a configuration). Let C ∈ Conf (Ua(N)) be a
finite configuration. We denote by mark(C) the marking of N after C, defined as
µfS(m′ ⊕

⊕

t∈C
t

• ⊖
⊕

t∈C

•
t).

The notion of cut-off is now defined for enriched events, thus taking histories
explicitly into account.

Definition 15 (cut-off). An enriched event 〈t,Ht〉 of the unfolding Ua(N) is
called a cut-off if either mark(Ht) = m, the initial marking of N , or there is
another enriched event 〈t′,Ht′〉 of Ua(N) satisfying

(1) mark(Ht) = mark(Ht′) and
(2) |Ht′ | < |Ht|.

Let E be an enriched prefix of the unfolding. We say that E contains a cut-off
if some enriched event 〈t,Ht〉 ∈ E is a cut-off in the full unfolding Ua(N). The
enriched event 〈t,Ht〉 ∈ E is called a local cut-off in E if either mark(Ht) = m

or there is an enriched event 〈t′,Ht′〉 ∈ E satisfying (1) and (2) above.

A different notion of cut-off which refines the one originally proposed by Mc-
Millan by using adequate orders over configurations has been introduced in [6].
We are confident that this improvement can be integrated seamlessly into our
framework, as mentioned in the conclusions.

Note that the notion of cut-off is based on a quantification over all the en-
riched events of the full unfolding and as such it is not effective. For an enriched
event, being a cut-off is a global property, independent of the specific prefix of
the unfolding we are considering. Clearly, every local cut-off in an enriched pre-
fix E is also a cut-off. This simple observation will be used several times in the
sequel.

Definition 16 (truncation). The truncation Ta(N) of the unfolding is an en-
riched occurrence net defined as the greatest enriched prefix (w.r.t. prefix ordering
�) of the unfolding which does not contain cut-offs.
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The above definition is well-given thanks to the lattice structure of the set of
enriched prefixes ordered by �. However, it is not yet constructive. In Section 4
we will present an algorithm for computing a complete finite prefix, possibly
larger than the truncation, using the notion of local cut-off.

We say that a configuration C of the unfolding includes a cut-off if for some
t ∈ C, the enriched event 〈t, C[[t]]〉 is a cut-off. The next fundamental lemma
shows that configurations of the unfolding containing cut-offs can be disregarded
without losing information about the reachable markings.

Lemma 1 (cut-off elimination). Let C ∈ Conf (Ua(N)) be a finite configura-
tion. There exists a finite configuration C

′ without cut-offs such that mark(C) =
mark(C ′).

Using the lemma above we can show that the truncation is a complete prefix
of the unfolding.

Theorem 1 (completeness). The truncation Ta(N) is a complete prefix of the
unfolding, i.e., for any reachable marking M of N there is a finite configuration
C of Ta(N) such that mark(C) = M .

For finite n-bounded nets the number of reachable states of the net is finite
and thus one can prove that the truncation of its unfolding is finite. We get
this as a corollary of a more general result which will be useful in proving the
termination of the algorithm for the complete prefix.

Theorem 2 (finiteness). Let N be a finite n-bounded c-net and let E be an
enriched prefix of the unfolding free of local cut-offs. Then E is finite.

Recalling that any local cut-off is a cut-off and thus that Ta(N) is free from
local cut-offs we have the following.

Corollary 1. Let N be a finite n-bounded net. The truncation Ta(N) is finite.

For instance, consider the net N0 and its unfolding Ua(N0) in Fig. 2. The
truncation Ta(N0) is the enriched prefix depicted in Fig. 3(b). Note that it in-
cludes the event t

′
2
. In fact t

′
2

has two possible histories: the minimal history
H2 = ⌊t′

2
⌋ = {t′

0
, t

′
2
} and H

′
2

= {t′
0
, t

′
1
, t

′
2
}. While 〈t′

2
,H2〉 is a cut-off, the pair

〈t′
2
,H

′
2
〉 is not, and thus it is included in the truncation.

4 Computing the prefix

The construction builds incrementally a finite prefix of the full unfolding of a
semi-weighted c-net N by starting from the initial marking and by iteratively
adding new events representing occurrences of transitions of N . For each event t

in Fin, the currently built part of the prefix, we also record a current set of his-
tories χFin(t), thus making the prefix under construction an enriched occurrence
net. During the construction we record in a set pe the enriched events which are
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Fig. 4. Predecessors w.r.t. asymmetric conflict of an event t.

candidates for being included in Fin, i.e., the pairs 〈t,H〉 where t is an event
enabled in Fin and H is one of its current possible histories.

Let us first illustrate how the histories of an event t in a given enriched prefix
E can be obtained from the histories of the events that are in direct asymmetric
conflict with t. Consider a situation like in Fig. 4, which illustrates a part of the
prefix E. A direct predecessor of t w.r.t. asymmetric conflict is either a cause
(like t1, which produces a token that is read, or t2, which produces a token that
is consumed by t) or an event as t3 that reads a token consumed by t.

A new history for t can be constructed as follows: for every direct cause ti

of t choose any history Hi of ti, while for every transition tj that is in direct
asymmetric conflict with t (but not a cause) optionally take any history Hj .
Whenever such histories are pairwise not in conflict (see Definition 8) then the
set H = {t} ∪

⋃

i
Hi, the union of all such histories (and t), is called a history

for t consistent with E.

Note that H ∈ Hist(t) and furthermore adding H to E keeps the prefix
closed, since for every transition t

′ ∈ H the history H[[t′]] is already contained
in E. This is a consequence of the fact that for any ti we have H[[ti]] = Hi since
no two histories in the union are in conflict.

The algorithm proceeds as follows. Again we use the notation of Definition 10.

Initialization: Start with Fin := m

′ and let χFin be the empty function. An
event t = 〈Mp,Mc, t̂〉 is enabled in Fin whenever conc(Mp ∪ Mc). Now let
pe be the set of all pairs of the form 〈t,Ht〉, where t is an event enabled in
Fin and Ht is a history of t consistent with Fin. Initially the only history of
t is {t}.

Loop: While pe 6= ∅ do: Choose a pair 〈t,Ht〉 ∈ pe such that |Ht| is minimal.
Remove this pair from pe.

– If 〈t,Ht〉 would be a local cut-off in Fin, do nothing.

– If 〈t,Ht〉 is not a local cut-off, then insert it into Fin. This means

• if t is already present in Fin then add the history Ht to χFin(t);
• otherwise add t to Fin and set χFin(t) := {Ht}.

Consider all events t

′ contained either in Fin or in pe: Whenever t

′ has
a new history Ht′ consistent with the updated prefix Fin, arising from
the insertion of Ht, then add 〈t′,Ht′〉 to pe. (Note that a propagation
phase is necessary to obtain all new histories.)
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If a new transition has been added to Fin, update pe by adding all events
t which have become enabled in Fin in the last step together with all their
histories consistent with Fin. Then perform the next step of the loop.

Note that whenever a new pair 〈t′,Ht′〉 is added to pe, then the size of Ht′

is larger than the size of the history Ht under consideration. This is due to the
fact that these newly generated histories must include Ht. Observe also that all
pairs 〈t,H〉 with H ∈ Hist(t) are considered at some point, unless there exists a
local cut-off 〈t′,H ′〉 such that t

′ ∈ H and H

′ = H[[t′]].
An efficient computation of the prefix should be based on suitable data struc-

tures. As observed above, a set of direct predecessors is needed for each event
in order to update its histories. Furthermore histories should not be stored ex-
plicitly, but via pointer structures containing references back to the histories
they originated from. In addition, causality and conflict of histories should be
computed incrementally. To this aim it would be helpful to keep trace of all
the ր-sequences t1 ր . . . ր tn in order to support an easy identification of
ր-cycles.

It can be shown that at every iteration of the algorithm the prefix Fin does
not contain local cut-offs. This can be used to prove the correctness and termin-
ation of the algorithm.

Theorem 3. If the net N is finite and n-bounded the algorithm terminates and
Fin is complete.

The complete prefix of a c-net can be much smaller than the complete prefix
(constructed using McMillan’s algorithm) for the net where read arcs are re-
placed by consume/produce loops. In fact, consider a net N

n
1

analogous to the
net in Fig. 1(a) but with n readers t1, . . . , tn. Let N

n
2

be obtained encoding N

n
1

as an ordinary net by simply replacing read arcs with a consume/produce loops,
as in Fig. 1(b). The unfolding of net N

n
2

includes kn = n + n(n − 1) + . . . + n!
events corresponding to the readers, since each event does not only record the
occurrence of a transition, but also its entire history, i.e., the sequence of all
events occurring before. Similarly, there are kn + 1 copies of event t

′
0
. Note that

none of these events is a cut-off (according to McMillan’s definition), since any
two events generating the same marking have histories of equal size. Therefore
the complete prefix computed for N

n
2

is the unfolding itself. Instead, the com-
plete enriched prefix obtained from N

n
1

is the net N

n
1

itself, thus it has n + 2
transitions only; among them, t0, t1, . . . , tn have one history each, while t

′
0

has
2n histories. Even if still of exponential size, this prefix is much smaller than the
complete prefix of N

n
2
, essentially because the order in which the events occurred

does not need to be recorded. Moreover, the underlying net obtained by disreg-
arding the histories, which are only auxiliary information needed to construct
the prefix, is dramatically smaller in this case.

Now let N

n
3

be the PR-encoding of N

n
1
, as shown in Fig. 1(c). The unfolding of

N

n
3

has one occurrence for each of the transitions t0, t1, . . . , tn and 2n occurrences
of t

′
0
, none of which is a cut-off (hence, also in this case, the complete prefix
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is the full unfolding). Thus there is a one-to-one correspondence between the
histories in the enriched prefix of N

n
1

and the events of the unfolding of N

n
3
. We

conjecture that this is a general fact, i.e., the histories of the complete enriched
prefix of a safe c-net N are in one-to-one correspondence with the events of the
complete finite prefix of the PR-encoding of N . Still, the size of the prefix of
N

n
3

is exponential in n while the size of the prefix of N

n
1
, once the histories are

disregarded, is linear.
It is worth stressing that the size of the complete prefixes can be further

reduced using adequate orders [6], as remarked also in the conclusion. This would
lead to a smaller prefix, for example, for N

n
2
.

5 Conclusions

We have presented an approach for computing finite complete prefixes of gen-
eral contextual nets, which extends the approach proposed for the class of read-
persistent nets in [18] and provides an alternative to the technique based on
the PR-encoding of contextual nets as ordinary nets. Our work relies on the
idea of dealing explicitly with the multiple histories that events can have in con-
textual net computations, due to the presence of asymmetric conflicts. Subsets
of “useful” histories for events are recorded in the prefix during the construc-
tion and, correspondingly, a new notion of cut-off is considered. In the case of
read-persistent nets every transition has a single history and hence our approach
coincides with the one introduced in [18].

Our work shares some basic ideas with [19], where however the definition of
cut-off is non-constructive, since it depends on all the possible histories that an
event may have. In order to avoid this problem we introduced the (constructive)
notion of local cut-off. Apart from that the notion of cut-off in [19] is stronger
than ours, which might lead to larger prefixes.

As witnessed by some examples in the paper, the complete prefix of a con-
textual net can be significantly smaller than that of an equivalent net where
read arcs are replaced by consume/produce loops, and it will never be larger.
The ability to generate smaller unfoldings comes with a price, i.e., during the
construction of the prefix we have to record and evaluate additional information
such as histories and asymmetric conflict. Still, we conjecture that the algorithm
will never require more space or time than the ordinary algorithm applied to the
PR-encoding of the net. More precisely, for safe nets, as discussed in Section 3
the histories in the prefix should correspond exactly to the events in the unfold-
ing of the PR-encoding, and causality and conflict on histories should be the
exact match to causality and conflict for transitions. Furthermore we expect our
technique to be strictly more efficient for non-safe nets (see Appendix A), since,
in this case, the PR-encoding can lead to concurrent occurrences of the same
reader where the occurrences share places in consume/produce loops, leading to
a blowup in the size of the unfolding.

From a more methodological perspective, let us stress that our approach can
build a complete finite prefix for a large class of c-nets directly, without the
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need of resorting to an encoding. We think that this feature makes our approach
more suitable than others to be extended to other classes of systems exhibiting
concurrent read-only accesses, for which an encoding could either not be feasible
or could cause a significant loss of concurrency.

In particular, we are interested in graph transformation systems (GTSs),
a quite expressive formalism where reading and preserving part of the system
state, in this case a graph, is an integral part of the model. We believe that
our direct approach will be useful to generalise McMillan’s approach to the full
class of GTSs, while currently only its read-persistent subclass is dealt with [2].
We are also interested in nets with inhibitor arcs. In this case, an encoding as
c-nets would be feasible but it would cause (at least in the non-safe case) a loss
of concurrency, and thus a direct approach could be preferable.

We plan to implement and test the algorithm for contextual nets in the
framework of the Mole unfolder [1] that currently deals with ordinary nets. At
present, with the limited goal of analyzing the size of the produced prefix, we
implemented a prototype which given a safe c-net, converts the read arcs into
consume/produce loops, builds its finite prefix, and then merges the occurrences
of the same context places. A complete implementation of our algorithm is cur-
rently in progress. We expect that in order to obtain satisfactory experimental
results about the complexity (in time and in space) of our algorithm, in compar-
ison with others, firstly we will need to be able to deal with more refined notions
of cut-offs based on adequate orders [6], and secondly we will have to design and
implement efficient data structures for recording the sets of histories of an event
during the construction of the prefix.
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A Unfolding of Non-Safe Nets

Unfolding of a non-safe contextual net N with the algorithm proposed in this
paper might lead to an occurrence net smaller than the unfolding of the ordinary
net obtained as the PR-encoding of N (see Fig. 1(c)). As an example consider
the following net:

76540123•

��

76540123•

��
76540123•

��

t1

##H
HH

HH
t2

{{vvv
vv

76540123•

��
r1

76540123
s

��

r2

t0

The truncation of this net has two occurrences of transition t0 (either t0 is
caused by t1 or by t2), each with four histories (which specify whether r1 or r2,
or both, or none has been fired before). So in total we have eight histories.

Now consider the corresponding PR-encoding:
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��

t1

�� ))SSSSSSSSSS t2

��uukkkkkkkkkk
76540123•

��
r1
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s2zzuuu
uu

��
r2``

t0

Unfolding this net we obtain four occurrences of place s1 (after firing t1 or
t1; r1 or t2 or t2; r1) and analogously four occurrences of place s2. All pairs of
such places (one representing s1 and the other s2) are concurrent. Hence we
obtain 4 · 4 = 16 occurrences of transition t0.

Intuitively this can be interpreted as follows: the token in s is split into two
half-tokens in s1 and s2. Then some of the transitions in the unfolding of the
encoded net consume “half a token” produced by t1 and “half a token” produced
by t2.

More generally, consider a net like the one above, but with h writers t1, . . . ,
th and k readers r1, . . . , rk. Then the truncation of the contextual net has h

occurrences of t0 with a total number of histories h · 2k, since t0 can consume
the token produced by any of the h writers, after it has been read by any subset
of the k readers. Instead, the unfolding of the PR-encoding of the net includes
(h · 2)k occurrences of t0, since each occurrence of t0 consumes k tokens, and
each of these tokens can be produced by any of the h readers and it could have
possibly been produced/consumed by the corresponding reader.
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Abstract. The key to efficient on-the-fly reachability analysis based on

unfolding is to focus the expansion of the finite prefix towards the de-

sired marking. However, current unfolding strategies typically equate to

blind (breadth-first) search. They do not exploit the knowledge of the

marking that is sought, merely entertaining the hope that the road to it

will be short. This paper investigates directed unfolding, which exploits

problem-specific information in the form of a heuristic function to guide

decisions to the desired marking. In the unfolding context, heuristic val-

ues are estimates of the distance between configurations. We show that

suitable heuristics can be automatically extracted from the original net.

We prove that unfolding can rely on heuristic search strategies while pre-

serving the finiteness and completeness of the generated prefix, and in

some cases, the optimality of the firing sequence produced. Experimental

results demonstrate that directed unfolding scales up to problems that

were previously out of reach of the unfolding technique.

1 Introduction

The Petri net unfolding process, originally introduced by McMillan [1], has
gained the interest of researchers in verification (see e.g. [2]), diagnosis [3] and,
more recently, planning [4]. All have reason to analyse reachability in distrib-
uted transition systems, looking to unfolding for some relief of the state explosion
problem. Unfolding a Petri net reveals all possible partially ordered runs of the
net, without the combinatorial interleaving of independent events. Whilst the
unfolding can be infinite, McMillan identified the possibility of a finite prefix
with all reachable states. Esparza, Römer and Vogler generalised his approach,
to produce the now commonly used ERV unfolding algorithm [5]. This algorithm
involves a search, but does not mandate any particular search strategy. Typic-
ally, it has been implemented as a breadth-first search, using the length of paths
as the primary means to select the next node to add and to determine cut-off
events. The Mole unfolding tool1 follows this strategy.

Of the various unfolding-based reachability techniques, experimental results
indicate on-the-fly analysis to be most efficient for identifying a single, reachable
marking [6]. Nevertheless, generating the complete prefix up to a particular state
via breadth-first search quickly becomes impractical when the unfolding is wide
or the shortest path to the state is deep. It has not been obvious what other

1
http://www.fmi.uni-stuttgart.de/szs/tools/mole/
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strategies could be used in the ERV algorithm; recent results have shown depth-
first search is incorrect [7]. In this paper, we investigate directed unfolding, an
approach that takes advantage of information about the sought marking to guide
the search. The reason why such an informed strategy has not been considered
before may be that unfolding is typically used to prove the absence of deadlocks:
this has set the focus on making the entire prefix smaller rather than on reducing
the part of the search space explored to reach a particular marking. However,
information about the goal marking can be put to good use also in the case when
this marking is not reachable.

Inspired by heuristic search in artificial intelligence, particularly in the area
of automated planning, directed unfolding exploits problem-specific information
in the form of a heuristic function to guide search towards the desired marking.
Specifically, heuristics are estimates of the shortest distance from one state to
another. Directed unfolding implements a search strategy which explores choices
in increasing order of estimated distance to the target marking, as given by the
heuristic. If the heuristic is sufficiently informative, this order provides effective
guidance towards the marking sought. Whilst the order is not always adequate,
in the sense defined in [5], it still guarantees finiteness and completeness of the
generated prefix. Interestingly, our proof relies on the observation that adequate
orders are stronger than necessary for these purposes, and introduces a weaker
notion of semi-adequate ordering.

Techniques for automatically extracting suitable heuristics from the repres-
entation of a transition system and using them to guide search, have signi-
ficantly improved the scalability of automated planning [8–10]. We show that
heuristic values can be similarly calculated from a Petri net. If the chosen heur-
istic is admissible (meaning it never overestimates the actual shortest distances)
then directed unfolding finds the shortest path to the target marking, just like
breadth-first search. Using inadmissible heuristics, completeness and correctness
are preserved, and performance is often dramatically improved at the expense of
optimality. Altogether, directed unfolding can solve much larger problems than
the original breadth-first ERV algorithm. Moreover, its implementation requires
only minor additions to the latter.

The paper is organised as follows. Section 2 provides an overview of place-
transition nets, unfolding, and on-the-fly reachability analysis. Section 3 de-
scribes the ideas behind directed unfolding and establishes its theoretical prop-
erties. In Section 4, we show how to automatically extract a range of heuristics
from the Petri net description. In Section 5 we present experimental results cov-
ering Petri net benchmarks and Petri net formalisations of automated planning
benchmarks. These show that directed unfolding can provide a significant speed
up over breadth-first ERV. Section 6 concludes with remarks about related and
future work.

2 Petri Nets, Unfolding and Reachability Analysis

2.1 Place Transition Petri Nets

Petri nets provide a factored representation of discrete-event systems. States are
not enumerated and flattened into single nodes, but rather captured by explicit
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variable-event relationships. We consider so-called called place-transition (PT)
nets, and describe them here only briefly; a detailed expose can be found in [11].

A PT-net consists of a net N and its initial marking M0. The net is a directed
bipartite graph where the nodes are places P and transitions T . Typically, places
represent the state variables and transitions the events of the underlying discrete-
event system. The dynamic behaviour is captured by the flow relation F between
places and transitions and vice versa. The marking M of a PT-net represents
the state of the system. It assigns to each place zero or more tokens.

Definition 1. A PT-net is a 4-tuple (P, T, F, M0) where P and T are disjoint
finite sets of places and transitions, respectively, F : (P × T )∪ (T ×P ) → {0, 1}
is a flow relation indicating the presence (1) or absence (0) of arcs, and M0 :
P → N is the initial marking.

The preset •
x of node x is the set {y ∈ P ∪ T : F (y, x) = 1}, and its postset

x

• is the set {y ∈ P ∪ T : F (x, y) = 1}. The marking M enables a transition t

if M(p) > 0 for all p ∈ •
t. The occurrence, or firing, of an enabled transition t

absorbs a token from each of its preset places and puts one token in each postset
place. This corresponds to a state transition in the modeled system, moving the
net from M to the new marking M

′ given by M

′(p) = M(p) − F (p, t) + F (t, p)

for each p; this is denoted as M

t
→ M

′. In this paper we only consider safe (or
1-safe) nets, meaning it is never possible for more than one token to exist in a
place. A firing sequence σ = t1, . . . tn is a legal sequence of transition firings, i.e.

there exists markings M1, . . . , Mn such that M0

t1
→ M1

t2
→ . . . Mn−1

tn

→ Mn. This

is noted M0

σ
→ Mn. A marking M is reachable if there exists a firing sequence σ

such that M0

σ
→ M .

2.2 Unfolding

Unfolding is a method for reachability analysis which exploits and preserves
concurrency information in the Petri net. It generates all possible firing sequences
of the net, from the initial marking, whilst maintaining a partial order of events
based on the causal relation induced by the net.

Unfolding a PT-net produces a pair β = (ON,ϕ) where ON = (B,E, F

′)
is an occurrence net, which is a PT-net without cycles, self conflicts nor back-
ward conflicts, and ϕ is a homomorphism from ON to N that associates the
places/transitions of ON with the places/transitions of the PT-net. A node x is
in self conflict if there exists two paths to x which start at the same place and
immediately diverge. Backward conflict happens when two transitions output to
the same place. Such cases are undesirable since in order to decide whether a
token can reach a place in backward conflict, it would be necessary to reason with
disjunctions such as from which transition the token came from. Therefore, the
process of unfolding involves breaking all reachable places in backward conflict
by making independent copies of such places, and thus the ON net may con-
tain multiples copies of the places and transitions of the original net which are
identified with the homomorphism. In the occurrence net ON , places and trans-
itions are called conditions B and events E respectively. The initial marking M0

defines a set of initial conditions B0 in ON such that the places initially marked
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are in 1-1 correspondence with the conditions in B0. The set B0 constitutes the
“seed” of the unfolding.

2.3 Configurations

To understand how an unfolding is built, the most important notions are that
of a configuration and local configuration. A configuration represents a possible
partial run of the net. It is any set of events C such that:

1. C is causally closed: e ∈ C ⇒ e

′ ∈ C for all e

′ ≤ e,
2. C contains no forward conflict: •

e1 ∩
•
e2 = ∅ for all e1 6= e2 in C;

where e

′ ≤ e means there is a path from e

′ to e in ON . Clearly, a configuration
C is a fragment of ON such that all events in C can be ordered into a firing
sequence with respect to B0.

A configuration C can be associated with a marking Mark(C) of the original
PT-net by identifying which conditions will contain a token after the events in
C are fired from the initial marking; i.e. Mark(C) = ϕ((B0 ∪ C

•) \ •
C) where

C

• (resp. •
C) is the union of postsets (resp. presets) of all events in C. In other

words, the marking of C identifies the resultant marking of the original PT-net
when (only) the events in C occur. The local configuration of an event e, denoted
[e] is the minimal configuration containing event e. A set of conditions can be
simultaneously marked if the union of the local configurations of their presets
forms a configuration.

2.4 Finite Complete Prefix

The unfolding process involves identifying which transitions are enabled by those
conditions, currently in the occurrence net, that can be simultaneously marked.
These are referred to as the possible next events. A new instance of each is added
to the occurrence net, as are instances of the places in their postsets.

The unfolding process starts from the seed B0 and extends it iteratively. In
most cases, the unfolding β is infinite and thus cannot be built. However, it is not
necessary to build the complete unfolding β, but only a complete finite prefix β

′

of β that contains all the information in β. Formally, a prefix β

′ of β is complete
if for every reachable marking M , there exists a configuration C ∈ β

′ such that
Mark(C) = M , and for every transition t enabled by M , there is a configuration
C ∪ {e} such that e /∈ C and ϕ(e) = t.

The key to obtaining a complete finite prefix is to identify those events at
which we can cease unfolding without loss of information. Such events are re-
ferred to as cut-off events and can be defined in terms of an adequate order on
configurations [1, 5]. In the following, C⊕E denotes a configuration that extends
C with the finite set of events E disjoint from C.

Definition 2. A partial order ≺ on finite configurations is adequate if

(a) ≺ is well founded, i.e. it has no infinite descending chains,
(b) C1 ⊂ C2 ⇒ C1 ≺ C2, and
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Algorithm 1 The ERV Unfolding Algorithm

Add the conditions in B0 to the prefix β

Initialise the priority queue with the events possible in B0

Note: the queue is sorted in increasing order wrt ≺
while the queue is not empty:

Remove the first event e in the queue (minimal with respect to ≺)

if e is not identified as a cut-off, i.e. if 6 ∃e
′ ∈ β s.t. [e

′
] ≺ [e] and Mark(e) = Mark(e

′
)

Add the event and its postset to β

Identify the possible next events and insert them in the queue

endif
endwhile
Add all cut-off events and their postsets to β

(c) ≺ is preserved by finite extensions: if C1 ≺ C2 and Mark(C1) = Mark(C2),
then for all finite extensions C1 ⊕ E1 and C2 ⊕ E2 such that E1 and E2 are
isomorphic 2, we have C1 ⊕ E1 ≺ C2 ⊕ E2.

Without threat to completeness, we can cease unfolding from an event e, if e

takes the net to a marking which can be caused by some other event e

′ such that
[e′] ≺ [e]. This is because the events (and thus marking) which proceed from e

will also proceed from e

′. Relevant proofs can be found in [5]:

Definition 3. Let ≺ be an adequate partial order. An event e is a cut-off event
with respect to ≺ if the prefix contains some event e

′ such that Mark([e]) =
Mark([e′]) and [e′] ≺ [e].

2.5 ERV Algorithm

Mole is a freeware program which unfolds 1-safe PT-nets. It builds the com-
plete finite prefix following the ERV algorithm depicted in Algorithm 1. Mole
uses an adequate order ≺ on configurations defined by C ≺ C

′ iff |C| < |C ′|,
further refined into a total order which results in minimal complete prefixes be-
ing produced [5]. Note that using this order equates to a breadth-first search
strategy.

2.6 On-The-Fly Reachability Analysis

We define the reachability problem (also often called coverability problem) for
1-safe PT-nets as follows:

Reachability: Given a PT-net (P, T, F,M0) and a subset P

′ ⊆ P ,

determine whether there is a firing sequence σ such that M0

σ
→ M where

M(p) = 1 for all p ∈ P

′.

This problem is PSPACE-complete [13]. There are various unfolding-based al-
gorithms that decide reachability. Some build the complete finite prefix once and

2
We say E1 and E2 are isomorphic if they are structurally isomorphic [12].
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use it to answer multiple reachability questions with e.g. SAT or linear program-
ming [6]. Note that deciding reachability is still NP-complete in the size of the
complete finite prefix [6].

In contrast, we are interested in the on-the-fly approach, which experimental
results have shown to be most efficient when considering just a single marking [6].
This method was first suggested by McMillan [1]. It involves introducing a new
transition tR to the original net, such that •

tR = P

′. The net is then unfolded,
as described previously, but stops when an event eR, such that ϕ(eR) = tR,
is retrieved from the queue.3 At this point we can conclude the set of places
P

′ is reachable. If no such event is identified, the complete finite prefix will be
generated, indicating that P

′ is not reachable.

3 Directing the Unfolding

3.1 Intuitive Idea

In the context of the Reachability problem, we are only interested in checking
whether the transition tR is reachable. An unfolding algorithm that doesn’t use
this information is probably not the best approach. In this section, we aim at a
principled method of using this information for building the finite prefix in order
to turn unfolding into an informed algorithm oriented at solving the reachability
task. The resulting approach is called “directed unfolding” as opposed to the
standard “blind unfolding”4.

The basic idea is that for solving Reachability, the unfolding process can
be understood as a search process on the quest for tR. Thus, when selecting
events from the queue, we should favor those events “closer” to tR as their
systematic exploration results in a more efficient search strategy. This approach
is only possible if the finite prefix being built is guaranteed to be complete.
Otherwise, the algorithm might erroneously conclude that tR is not reachable.
Not every strategy of pulling events out of the queue is sound. Even a simple
depth-first unfolding strategy was recently shown to be incorrect in general [7].

We show that the ERV algorithm can be used with the same definition of cut-
off events when the notion of adequate orderings is replaced by a weaker notion
that we call semi-adequate orderings. This is prompted by the observation that
Definition 2 is a sufficient but not a necessary condition for a sound definition
of cut-off events. Indeed, just replacing condition (b) in Definition 2 by a weaker
condition opens the door for a family of semi-adequate orderings that allow us
to direct the unfolding process.

3.2 Principles
As is standard in state-based search, our orderings are based upon the values of
a function f that maps configurations into non-negative numbers. Such function

3
If [eR] is not required to be the shortest possible firing sequence, it is sufficient to

stop as soon as eR is generated as one of the possible next events. To guarantee

optimality however, even with breadth-first unfolding, it is imperative to wait until

the event is pulled out of the queue.
4

The term “directed” has been used elsewhere to emphasize the informed nature of

other model-checking algorithms [14].
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f defines the ordering ≺f as

C ≺f C

′ iff

{

f(C) < f(C ′) if f(C) < ∞

|C| < |C ′| if f(C) = f(C ′) = ∞.

Furthermore, the function f is composed of two parts: f(C) = g(C)+h(C) where
g(C) = |C| is the number of events in C, and h(C) is any non-negative function
such that h(C) = 0 if tR ∈ C and such that for all pairs of configurations C1 and
C2 Mark(C1) = Mark(C2) ⇒ h(C1) = h(C2). Notice that taking h ≡ 0 makes
≺f into the adequate ordering used by McMillan [1], and that furthermore, by
breaking ties appropriately, ≺f becomes the strict adequate ordering defined in
[5] and used in the Mole implementation of the ERV algorithm.

Following the terminology in heuristic search, the g component is referred to
as the cost associated to configuration C while h is referred to as the “heuristic”,
estimated cost, or distance to reach transition tR from Mark(C).

Let us define h

∗(C) = |C ′| − |C| where C

′ ⊇ C is the configuration of
minimum cardinality that contains tR if one exists, and ∞ otherwise. We then
say that h is an admissible heuristic if h(C) ≤ h

∗(C) for all finite configurations
C. Likewise, let us say that a finite configuration C

∗ is optimal if tR ∈ C

∗ and
C

∗ is of minimum cardinality among such configurations. We then have,

Theorem 1 (Main). Let f(C) = g(C)+h(C) and consider the ordering ≺f as
defined above. Then, (i) the ERV algorithm equipped with ≺f solves Reachab-
ility, and (ii) it finds an optimal configuration if one exists and h is admissible.

Optimal configurations are important in the context of diagnosis since they
provide shortest firing sequences to reach a given marking, e.g. a faulty state in
the system. A consequence of the theorem is that the original ERV algorithm,
which equates to taking h ≡ 0, finds shortest firing sequences. In the next two sec-
tions, we will give examples of heuristic functions, admissible and non-admissible,
and experimental results on benchmark problems. In the rest of this section, we
provide the technical characterization of semi-adequate orderings and their re-
lation to adequate ones, as well as the proofs required for the main theorem.

3.3 Technical Details

Upon revising the role of adequate orders when building the complete finite
prefix, we found that condition (b), i.e. C ⊂ C

′ ⇒ C ≺ C

′, in Definition 2 is
only needed to guarantee the finiteness of the generated prefix. Indeed, let n be
the number of reachable markings of the net and consider an infinite sequence
of events e1 < e2 < e3 < · · · in the unfolding. Then, there are i < j ≤ n + 1
such that Mark([ei]) = Mark([ej ]), and since [ei] ⊂ [ej ], condition (b) implies
[ei] ≺ [ej ] making [ej ] into a cut-off event, and thus the prefix is finite [5]. A
similar result can be achieved if condition (b) is replaced by the weaker condition
that in every infinite chain e1 < e2 < e3 < · · · of events there are i < j such
that [ei] ≺ [ej ]. We thus define

Definition 4. A partial order ≺ on finite configurations is semi-adequate if
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(a) ≺ is well founded, i.e. it has no infinite descending chains,
(b) in every infinite chain C1 ⊂ C2 ⊂ C3 ⊂ · · · , there are i < j such that

Ci ≺ Cj, and
(c) ≺ is preserved by finite extensions: if C1 ≺ C2 and Mark(C1) = Mark(C2),

then for all finite extensions C1 ⊕ E1 and C2 ⊕ E2 such that E1 and E2 are
isomorphic, we have C1 ⊕ E1 ≺ C2 ⊕ E2.

Theorem 2 (Finiteness and Completeness). If ≺ is semi-adequate, the pre-
fix produced by the ERV algorithm (Algorithm 1) is finite and complete.

Proof. The completeness proof is identical to the proof of Proposition 4.9 in [5,
p. 14] which states the completeness of the prefix computed by ERV for adequate
orderings: this proof does not rely on condition (b) at all5. The finiteness proof is
similar to the proof of Proposition 4.8 in [5, p. 13] which states the finitness of the
prefix computed by ERV for adequate orderings. That proof has three items: (1)
shows that each chain of events in the prefix is finite, (2) shows that for each event
in the prefix, its pre- and postset are finite, and (3) shows that there are only
finitely many reachable events at each depth of the prefix. The proofs of items (2)
and (3) do not rely on condition (b) and can be reused verbatim. The proof of (1)
can be replaced by a proof by contradiction as follows. Suppose that an infinite
chain e1 < e2 < e3 < · · · of events exists in the prefix. Each event ei defines a
configuration [ei] with marking Mark([ei]), and since the number of markings is
finite, there is at least one marking that appears infinitely often in the chain. Let
e

′
1

< e

′
2

< e

′
3

< · · · be an infinite subchain such that Mark([e1]) = Mark([ej ])
for all j > 0. By condition (b) of semi-adequate orderings, there are i < j such
that [ei] ≺ [ej ] that together with Mark([ei]) = Mark([ej ]) implies that ej is a
cut-off event and thus the chain cannot be infinite. ⊓⊔

Clearly, if ≺ is an adequate order, then it is a semi-adequate order. The con-
verse is not necessarily true. The fact that ≺f is semi-adequate follows directly
from the observation that g(C) = |C| is a strictly monotone function with re-
spect to set inclusion, i.e. C ⊂ C

′ ⇒ g(C) < g(C ′). Additionally, the property
that configurations with identical markings have identical h-values is required
for condition (c).

Theorem 3 (Semi-Adequacy of ≺f). For any g and h satisfying the assump-
tions, ≺f is a semi-adequate order.

Proof. The fact that ≺f is transitive follows directly from its definition. For
well-foundedness, let C1 ≻f C2 ≻f · · · be an infinite descending chain of finite
configurations with markings M1,M2, . . . respectively. Clearly, not all Ci can be
such that f(Ci) = ∞ since, in virtue of the definition of ≺f , this would imply
∞ > |C1| > |C2| > · · · ≥ 0 which is impossible. By a similar argument, only
finitely many Cis have infinite f-value. Let C

′
1
≻f C

′
2
≻f · · · be the subchain

where f(C ′
i
) < ∞ for all i > 0, and M

′
1
,M

′
2
, . . . be the corresponding markings.

Since the number of markings is finite, we can extract a further subsubchain
C

′′
1

≻f C

′′
2

≻f · · · such that Mark(C ′′
1
) = Mark(C ′′

j
) for all j > 0, and thus

5
Please see note at the end of the paper.
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h(C ′′
1
) = h(C ′′

j
) for all j > 0. Therefore, g(C ′′

1
) > g(C ′′

2
) > · · · ≥ 0 which is

impossible since g(C) = |C| and all C

′′
i
’s are finite.

For condition (b), let C1 ⊂ C2 ⊂ · · · be an inifinite chain of finite config-
urations with markings M1,M2, . . . respectively. As before, since the number of
marking is finite, there is a subchain C

′
1
⊂ C

′
2
⊂ · · · whose markings are all equal,

and thus h(C ′
1
) = h(C ′

j
) for all j > 0. On the other hand, since all configurations

are finite and g is strictly monotone, 0 ≤ g(C ′
1
) < g(C ′

2
) < ∞. If h(C ′

1
) = ∞,

then C

′
1
≺f C

′
2
, otherwise f(C ′

1
) = g(C ′

1
)+h(C ′

1
) < g(C ′

2
)+h(C ′

2
) = f(C ′

2
) < ∞

and C

′
1
≺f C

′
2
.

Finally, if C1 ≺f C2 have same markings and the extensions E1 and E2 are
isomorphic, the extensions C

′
1

= C1 ⊕ E1 and C

′
2

= C2 ⊕ E2 also have the same
markings, and is straightforward to show that C

′
1
≺f C

′
2
. ⊓⊔

We are now in a position to prove the main theorem. The fact that ERV
equipped with ≺f solves Reachability follows directly from Theorems 2 and 3.
It remains to show that if h is admissible and tR is reachable, then ERV finds
an optimal configuration.

Proof (of Theorem 1 (ii)). For a proof by contradiction, assume that the con-
figuration [eR] for the first event eR found by ERV is not optimal. Observe that
the queue always contains an event e such that [e] is a prefix of an optimal con-
figuration C

∗ (by induction since it holds at the beginning and remains so after
each iteration of ERV). Let e be such an event in the queue when ERV pulls eR

out of the queue. We have that

f([e]) = g([e]) + h([e]) ≤ |[e]| + h

∗([e]) = |[e]| + |C
∗
| − |[e]| = |C

∗
|

since C

∗ ⊇ [e] is the smallest configuration containing tR. On the other hand,
[eR] being non-optimal, f([eR]) = |[eR]| > |C∗|. Thus, f([eR]) > f([e]) and so
eR could not have been pulled out of the queue. ⊓⊔

A final remark will help complete the picture of the relationship between
adequate orderings, semi-adequate ones, and properties of heuristic functions.
Hickmott et. al [4] consider a stronger property of heuristics called monotonicity.
h is monotone iff it satisfies the triangle inequality h(C) ≤ |C ′| − |C|+h(C ′) for
all finite C

′ ⊇ C. Monotonicity implies admissibility. The converse is not true,
but in practice, it is difficult to automatically extract good admissible heuristics
which are not monotone. In fact, all admissible heuristics used in automated
planning are monotone. Hickmott et. al [4] show that if h is monotone, then
≺f becomes adequate (i.e, condition (b) in Definition 2 holds). Monotonicity
guarantees that the final prefix generated by ERV will never contain a cut-off
event that ERV failed to identify as such.

3.4 Size of the Finite Prefix

Up to now, we have been mainly concerned with the case when tR is reachable.
Next, we discuss some results related to the size of the prefix generated in case
it is not. For this, we need an additional property of the heuristic function h: we
say that h is safely pruning iff h(C) = ∞ implies that there is no configuration
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Fig. 1. Example net with an unreachable goal transition (R).

C

′ ⊇ C with tR ∈ C

′, i.e. h

∗(C) = ∞. Pruning safety is a weaker property than
(general) admissibility, as it pertains only to a subset of configurations (the dead-
end configurations from which the goal is unreachable). Most heuristic functions
safisfy it; in particular so do all the specific heuristics we consider in this paper.

If h has this property, then the unfolding can be stopped as soon as the
f -value of the best event retrieved from the queue is ∞, since this implies that
tR is unreachable. Note, however, that the prefix generated at this point is not
necessarily complete: it may lack some markings that are reachable but irrelevant
for the purpose of reaching tR.

Let us illustrate the behavior of a safely pruning heuristic on the small ex-
ample in Figure 1. Suppose initially only place a is marked: at this point, a
heuristic such as h

max (see next section) estimates that the goal marking {d, e}

is reachable in 2 steps (the max length of the two paths). However, as soon as
either transition 1 or 2 is taken, leading to a configuration in which either place
b or c is marked, the h

max estimate becomes ∞, since there is then no way to
reach one of the two goal places.

In general, the size of the prefix generated by directed unfolding is related to
the informedness of the guiding heuristic. The following theorem, stated without
proof due to lack of space, makes these relationships more precise. For a heuristic
function h, let ERV(h) be the ERV algorithm directed with h, and let β(h) be
the prefix built by ERV(h) at termination.

Theorem 4. Let f

∗ = |C∗| be the cost of an optimal configuration C

∗, and ∞

if no solution exists: (i) if h is admissible, then all events e ∈ β(h) have f-value
≤ f

∗. (ii) If h1 and h2 are two monotone heuristics such that h1 ≤ h2, and ties
are broken systematically in the same fashion by ERV(h1) and ERV(h2), then
β(h2) ⊆ β(h1).

Corollary 1. If tR is not reachable, the prefix β(h) for any monotone heuristic
h is no greater than that generated by the ERV algorithm with a breadth-first
strategy.

Proof. Follows from the theorem and the fact that ERV is equivalent to directed
unfolding with h ≡ 0, which is monotone. ⊓⊔

While the result guarantees only that directed unfolding with a monotone
heuristic can not do worse than the breadth-first strategy in the unreachable
case, in the following we demonstrate experimentally that in practice it often
does significantly better, generating much smaller prefixes than blind ERV. What
determines the size of the generated prefix is mainly the pruning power of the
heuristic, i.e., its ability to assign an infinite cost estimate to configurations from
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which the goal marking is unreachable. The heuristics we consider in this paper
are all equivalent in this respect, but others, such as e.g. pattern database (PDB)
heuristics [15], have much greater pruning power.

4 Heuristics

A common approach to constructing heuristic functions, both admissible and
inadmissible, is to define a relaxation of the search problem, such that the relaxed
search problem can be solved, or at least approximated, efficiently, and use the
cost of the relaxed solution as an estimate of the cost of the solution to the real
problem, i.e. as the heuristic value [16]. The problem of extending a configuration
C of the unfolding into one that includes the target transition tR is equivalent
to the problem of reaching tR starting from Mark(C): this is the problem that
we relax to obtain an estimate of the distance to reach tR from C.

The heuristics we have experimented with are derived from two different
relaxations, both developed in the area of AI planning. The first relaxation
is to consider each place in the preset of a transition independently of the
others. For a transition t to fire, each place in •

t must be marked: thus, the
estimated distance from a given marking M to a marking where t can fire
is d(M,

•
t) = maxp∈•t d(M, {p}), where d(M, {p}) denotes the estimated dis-

tance from M to any marking that includes {p}. For a place p to be marked
– if it isn’t marked already – at least one transition in •

p must fire: thus,
d(M, {p}) = 1 + mint∈•p d(M,

•
t). Combining the two facts we obtain

d(M,M

′) =







0 if M

′ ⊆ M

1 + mint∈•p d(M,

•
t) if M

′ = {p}

maxp∈M ′ d(M, {p}) otherwise
(1)

for the estimated distance from a marking M to M

′. The solution to equation (1)
can be computed in polynomial time using dynamic programming. We obtain a
heuristic function, called h

max, by h

max(C) = d(Mark(C), •tR). This estimate is
never greater than the actual distance, so the h

max heuristic is admissible.
In many cases, however, it is too weak to effectively guide the unfolding. Ad-

missible heuristics in general tend to be conservative (since they need to ensure
that the distance to the goal is not overestimated) and therefore less discrimin-
ating between different states. Inadmissible heuristics, on the other hand, have
a greater freedom in assigning values and are therefore often more informative,
in the sense that the relative values of different states is a stronger indicator
of how “promising” the states are. An inadmissible, but often more informat-
ive, version of the h

max heuristic, called h

sum, can be obtained by substituting
∑

p∈M ′ d(M, {p}) for the last clause of equation (1).
The second relaxation is known as the delete relaxation. In Petri net terms,

the simplifying assumption made in this relaxation is a transition only requires
the presence of a token in each place in its preset, but does not consume those
tokens when fired (put another way, all arcs leading into a transition are assumed
to be read-arcs). This implies that a place once marked will never be unmarked,
and therefore that any reachable marking is reachable by a “short” transition
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Fig. 2. (a) Example PT-net with marking and (b) corresponding relaxed plan graph.

sequence. Every marking that is reachable in the original net is a subset of a
marking that is reachable in the relaxed problem. The delete-relaxed problem
has the property that a solution – if one exists – can be found in polynomial
time. The procedure for doing this constructs a so called “relaxed plan graph”,
which is essentially a complete prefix of the unfolding of the relaxed problem.
Because of the delete relaxation, the construction of the relaxed plan graph
is much simpler than the unfolding of a Petri net, and the resulting graph is
conflict-free6 and of bounded size (each transition appears at most once in it).
Once the graph has been constructed, a solution (configuration leading to tR) is
extracted; in case there are multiple transitions marking a place, one is chosen
arbitrarily. The size of the solution to the relaxed problem gives a heuristic
function, called h

FF (after the planning system FF [9] which was the first to use
it). Figure 2 shows an example of a marked net and the corresponding relaxed
plan graph: a minimal solution is the sequence 3, 5, R; other solutions include,
e.g., 1, 3, 4, R and 1, 2, 0, 3, R. The FF heuristic satisfies the conditions required
to preserve the completeness of the unfolding (in Theorem 1), but, because an
arbitrary solution is extracted from the relaxed plan graph, it is not admissible.
The heuristic defined by the size of the minimal solution to the delete-relaxed
problem, known as h

+, is admissible, but solving the relaxed problem optimally
is NP-hard [17].

5 Experimental Results

We extended Mole to use the ≺f ordering with the h

max, h

sum, and h

FF heur-
istics. In our experiments below we compare the resulting directed versions of
Mole with the original (breadth-first) version, and demonstrate that the former
can solve much larger instances than were previously within the reach of the un-
folding technique. We found that the additional tie-breaking comparisons used
by Mole to make the order strict were slowing down all versions (including
the original): though they do – sometimes – reduce the size of the prefix, the
computational overhead quickly consumes any advantage. (As an example, on
the unsolvable random problems considered below, the total reduction in size
amounted to less than 1%, while the increase in runtime was around 20%.) We

6
Technically, delete relaxation can destroy the 1-safeness of the net. However, the

exact number of tokens in a place does not matter, but only whether the place is

marked or not, so in the construction of the relaxed plan graph, two transitions

marking the same place are not considered a conflict.
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Fig. 3. Results for Dartes Instances

therefore disabled them in all experiments7. Experiments were conducted on a
Pentium M 1.7GHz with a 2Gb memory limit. The nets used in the experiments
can be found at http://rsise.anu.edu.au/~thiebaux/benchmarks/petri.

5.1 Petri Net Benchmarks

From the developers of Mole we obtained a set of standard Petri net bench-
marks representative of Corbett’s examples [18]. Only one of them, Dartes,
which models the communication skeleton of an Ada program, turned out to be
a challenge for Mole; for other benchmarks in the set, it generates even the
complete finite prefix in a matter of seconds.

Figure 3 compares the performance of the original version of Mole to the
versions directed by each of the heuristics. For each of the 253 Dartes trans-
itions, we recorded the time taken by each version to decide this transition’s
reachability. The graph shows the percentage of problems solved within increas-
ing time limits, ranging from 0.01 to 300 sec. The original breadth-first version
of Mole is systematically outperformed by all of the directed versions. Overall,
the original version is able to decide 185 of the 253 problem instances (73%),
whereas the version directed by h

sum solves 245 of them (97%). The instances
solved by each of the directed versions is a strict superset of those solved by
the original. Unsurprisingly, all the solved problems were positive decisions (the
transitions were reachable). Lengths of shortest solutions to DARTES instances
reach up to over 90, and breadth-first could not solve any of the instances that
had a shortest solution of length above 60.

5.2 Random Problems

To further investigate the scalability of directed unfolding, we implemented our
own generator of random Petri nets. Conceptually, the generator creates a set of
component automata, and connects them in an acyclic dependency network. The

7
This means the original version of Mole in our experiments implements McMillan’s

ordering [1].
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Fig. 4. Results for Random PT-nets

transition graph of each component automaton is a sparse, but strongly connec-
ted, random digraph. Synchronisations between pairs of component automata
are such that only one (the dependent) automaton changes state, but can only
do so when the other component automaton is in a particular state. Synchronisa-
tions are chosen randomly, constrained by the acyclic dependency graph. Target
states for the various automata are chosen independently at random. The con-
struction ensures that every choice of target states is reachable. We generated
random problems featuring 1 . . . 15 component automata of 10, 20, and 50 states
each. The resulting Petri nets range from 10 places and 30 transitions to 750
places and over 4000 transitions.

Results are shown in the top row of Figure 4. The left-hand graph shows
the number of events pulled out of the queue. The right-hand graph shows the
run-time. To avoid cluttering the graphs, we show only the performance of the
worst and best strategy, namely the original one, and h

sum. Evidently, directed
unfolding can solve much larger problems than blind unfolding. For the largest
instances we considered, the gap reached over 2 orders of magnitude in speed and
3 in size. The original version could merely solve the easier half of the problems,
while directed unfolding only failed on 6 of the largest instances (with 50 states
per component).

In these problems, optimal firing sequences reach lengths of several hundreds
events. On instances which we were able to solve optimally using h

max, h

FF

produced solutions within a couple transitions of the optimal. Over all problems,
solutions obtained with h

sum were a bit longer than those obtained with h

FF.
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With only a small modification, viz. changing the transition graph of each
component automaton into a (directed) tree-like structure instead of a strongly
connected graph, the random generator can also produce problems in which the
goal marking has a fair chance of being unreachable. To explore the effect of
directing on the unfolding in this case, we generated 200 such instances (each
with 10 components of 10 states per component), of which 118 turned out to be
reachable and 82 unreachable, respectively. The bottom row of Figure 4 shows
the results, in the form of distribution curves (prefix size on the left and run-time
on the right; note that scales are logarithmic). The lower curve is for solvable
problems, while the upper, “inverse” curve, is for problems where the goal mark-
ing is not reachable. Thus, the point on the horizontal axis where the two curves
meet on the vertical is where, for the hardest problem instance, the reachability
question has been answered.

As expected, h

sum solves instances where the goal marking is reachable faster
than h

max, which is in turn much faster than blind unfolding. However, also in
those instances where the goal marking is not reachable, the prefix generated
by directed unfolding is significantly smaller than that generated by the original
algorithm. In this case, results of using the two heuristics are nearly indistin-
guishable. This is due to the fact that, as mentioned earlier, their pruning power
(ability to detect dead end configurations) is the same.

5.3 Planning Benchmarks

To assess the performance of directed unfolding on a wider range of problems
with realistic structure, we also considered benchmarks from the two last editions
of the International Planning Competition (IPC-4 and IPC-5). These bench-
marks are described in PDDL (the Planning Domain Definition Language),
which we translate into 1-safe PT-nets as explained in [4].

In the top of Figure 5, we present results for the first 26 IPC-4 instances
of Airport, a ground air-traffic control problem. Both the optimal and non-
optimal Airport planning problem are known to be PSPACE-complete [19].
The corresponding Petri nets range from 78 places and 18 transitions (instance
1) to 4611 places and 1711 transitions (instance 26). Optimal solution lengths
range from 8 to over 200. As before, the left-hand graph shows the number of
events pulled out of the queue, and the right-hand graph shows the run-time.
To avoid cluttering the graphs, we do not show the performance of h

sum. Its
curves are comprised between those for h

FF and h

max. For small instances, the
relatively small gain (1 order of magnitude fewer nodes) in unfolding size does
not compensate for the overhead incurred in computing the heuristic function.
However, for larger instances, directed unfolding reduces both size and run time
by over 2 orders of magnitude. The original version of Mole is unable to solve 6
of the instances within a 600 second time limit. These instances describe ground
traffic control problems over the topology of half of Munich airport. h

max fails to
solve the two larger instances, but h

FF solves them easily.
In the bottom of Figure 5 we present results for OpenStacks, a production

scheduling problem. Optimal OpenStacks is NP-complete [20], while the prob-
lem becomes polynomial if optimality is not required. We consider instances
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Fig. 5. Results for Planning Problems Airport (top) and Openstacks (bottom)

Warwick 91-120 which feature 10 products, 10 orders and an increasing ratio
of 3 to 5 of products per order. The IPC-5 “propositional” version of Open-
Stacks disables concurrency. In contrast, while still retaining the IPC-5 op-
timality criterion, we use the natural encoding of OpenStacks which allows
several products to be produced in parallel. The corresponding Petri nets all
have 65 places and 222 transitions, but differ in their initial markings. The op-
timal solution length varies between 35 and 40 operations. In OpenStacks, the
gap between directed and breadth-first unfolding is spectacular. The h

sum heur-
istic consistently spend around 0.1 sec solving the problem, that is over 3 orders
of magnitude less than the breadth-first version. h

FF’s run time ranges from 0.3
sec (instance 91) to 2.8 sec (instance 120). This shows that directed unfolding,
which unlike breadth-first search is not confined to optimal solutions, is able to
exploit the fact that non-optimal OpenStacks is an easy problem.

6 Conclusion, Related and Future Work

We have described directed unfolding, which incorporates heuristic search straight
into an on-the-fly reachability analysis technique specific to Petri nets. We proved
that the ERV unfolding algorithm can benefit from using heuristic search strategies,
whilst preserving finiteness and completeness of the generated prefix. Such strategies
are effective for on-the-fly reachability analysis, as they significantly reduce the
prefix explored to find a desired marking or to prove that none exists. We demon-
strated that suitable heuristic functions, which estimate the distance between
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configurations, can be automatically extracted from the original net. Both ad-
missible and non-admissible heuristics can be used, with the former offering
optimality guarantees. Experimental results illustrate that directed unfolding
provides a significant performance improvement over the original breadth-first
implementation of ERV featured in Mole.

Edelkamp and Jabbar [21] recently introduced a method for directed model-
checking Petri nets. It operates by translating the deadlock detection problem
into a metric planning problem, solved using off-the-shelf heuristic search plan-
ning methods. These methods, however, do not exploit concurrency in the power-
ful way that unfolding does. In contrast, our approach combines the best of
heuristic search and Petri net reachability analysis. The runtimes we obtain in
our experiments with planning benchmarks are often competitive with those of
the best performing planners. Importantly, this is achieved with an unfolding al-
gorithm which does not handle read-arcs. The treatment of read arcs is essential
to improve the performance of directed unfolding applied to planning, and is a
high priority item on our future work agenda.

In this paper we have measured the cost of a configuration C by its car-
dinality, i.e. g(C) = |C|. Or similarly, g(C) =

∑

e∈C
c(e) with c(e) = 1 ∀e ∈ E.

These results extend to transitions having arbitrary non-negative cost values, i.e.
c : E → R. Consequently, using any admissible heuristic strategy, we can find
the minimum cost firing sequence leading to tR. As in the cardinality case, the
algorithm is still correct using non-admissible heuristics, but does not guaran-
tee optimality. The use of unfolding for solving optimisation problems involving
cost, probability and time, is a focus of our current research.

We also plan to use heuristic strategies to guide the unfolding of higher level
Petri nets, such as coloured nets [22]. Our motivation, again arising from our
work in the area of planning, is that our translation from PDDL to PT-nets
is sometimes the bottleneck of our planning via unfolding approach [4]. Well
developed tools such as punf8 could be adapted for experiments in this area.

Note to the reader At the time of submission of our camera-ready copy, it has
been pointed out to us that the completeness proof in [5] on which ours relies may
lack significant detail which may or may not compromise its use for our purpose.
We therefore invite the community to re-examine whether semi-adequacy confers
completeness. Even if it does not, we note that completeness is guaranteed with
monotone heuristics, as those can be recast as adequate orderings for which
ERV is known to be complete [23]. Moreover, even if semi-adequacy does not
guarantee completeness, this does not necessarily imply that using inadmissible
heuristics compromises completeness. Finally, even if completeness turned out
to be lost in the inadmissible case, our experimental results show that such
incomplete methods might in many cases be more useful than complete ones.
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Modular construction of finite and complete

prefixes

A. Madalinski and E. Fabre
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35042 Rennes cedex, France

Abstract. This paper presents the modular construction of finite and

complete prefixes applied to distributed systems, which are modelled by

Petri nets in form of synchronous products of automata. A distributed

system is described as a collection of components interacting through

interfaces. They exhibit factorisation properties, viz. the unfolding of a

distributed system factorises as the product of unfoldings of its com-

ponents. This gives a compact representation and makes it possible to

analyse the system by parts.

The construction of modular prefixes is based on deriving ’summaries’

of components w.r.t. their interfaces whilst passing them on the interac-

tion structure of system via interfaces. Prefixes of components are then

derived locally by taking into account the summaries received on their

interfaces.

1 Introduction

Petri nets (PNs) are a widely used model for analysing concurrent and distrib-
uted systems. Their unfoldings [3, 16] are convenient to represent concurrency
due to their partial order semantics, where executions are considered as partially
ordered sets of events rather than sequences. The finite and complete prefix [5,
12, 15] of a PN unfolding is a compact representation containing all information
about the original system, and therefore, it is applied to model checking [11, 14].

The representation of a system can be further ’compressed’ by an unfold-
ing factorisation [1, 6, 7] when applied to distributed systems. In a distributed
system two neighbouring components interact through an interface, a shared
sub-system. The unfolding of a distributed system decomposes as the product of
its components, and the collection of the local unfoldings may be more compact
than the unfolding of the global system. This is illustrated in Figure 1. The sys-
tem in Figure 1(a) consists of two components, NA and NB, interacting through
an interface. There exist m = 2 possibilities to produce t4 in UnfNA (Figure 1(b))
and n = 3 possibilities to produce t4 in UnfNB (Figure 1(c)), hence m · n = 6
different combinations in the unfolding of the entire system.

Local unfoldings restricted by the behaviour of the global system can be
derived in a modular manner by exchanging information between interacting
components; no global information is needed. The factorised representation is
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Fig. 1. Distributed system and the unfoldings of its components

the basis of modular or distributed processing. This framework has been applied
to modular failure diagnosis [9] with application to telecommunication networks.
In order to be a practical tool for modular model checking finite and complete
prefixes of local unfoldings have to be derived. Precisely this is the objective of
this paper.

A technique to construct a complete prefix of a synchronous product of
labeled transition systems is presented in [4]. This technique uses the product
structure of the model to simplify the construction, however, the construction is
not modular. A modular construction of complete prefixes adapted to systems
composed of Petri nets has been presented in [2]. However, the system used is
restricted to non-reentrance synchronisations, i.e. one transition of a component
can synchronise only with one transition in another component. In addition, the
derivation of local prefixes uses global informations. In this paper only local in-
formation are used, which are passed in form of a summary net via interfaces
between interacting components. A summary net describes an interface restric-
ted by its component, and at the same time it carries minimal information about
its component.

The paper is organised as follows. Section 2 and 3 gives the basic theoretical
background concerning PNs and their unfoldings, and distributed systems and
their factorisation properties. In Section 4 the concept of the modular derivation
of finite a complete prefix of factorised unfoldings is presented. The conclusion
and future work are discussed in Section 5.

2 Nets and unfoldings

In this section basic definitions concerning Petri nets and net unfoldings are
presented. These are mainly adapted from [5, 12].
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2.1 Petri Nets

A net is a quadruple N = (P, T,→,M

0) such that P and T are disjoint sets of
places and transitions, respectively, →⊆ (P × T )∪(T × P ) is a flow relation, and
P

0 : P → N = {0, 1, 2, ...} is a multiset on P representing the initial marking of
the net. For a node x ∈ P ∪ T , its pre-set •x is defined by •x = {y | (y, x) ∈→}

and its post-set x• is defined by x• = {y | (x, y) ∈→}.
A netN is called k-bounded if, for every reachable markingM and every place

p ∈ P , M (p) ≤ k. In this paper only safe nets are considered, i.e. 1-bounded
nets.

2.2 Branching processes

Two nodes of a net N, y and y

′, are in structural conflict, denoted by y#y′, if
there exist distinct transitions t, t′ ∈ T such that •t ∩ •t′ 6= ∅, and (t, y) and
(t′, y′) are in the reflexive transitive closure of the flow relation →, denoted by
�.

An occurrence net is a net ON = (C,E,→, C

0), where C is a set of conditions
(places), E is the set of events (transitions) and C

0 = c ∈ C : •c = ∅ is
the set of initial conditions satisfying the following: for every c ∈ C,| •c |≤ 1;
for every y ∈ C ∪ E, (y#y) and there are finitely many y

′ such that y′ ≺ y,
where ≺ denotes the causal relation, the transitive closure of →. Two nodes are
concurrent, denoted y ‖ y′, if neither y#y′ nor y � y

′ nor y′ � y.
A homomorphism from ON to N1, also called a folding, is a mapping h : C ∪

E → P ∪T such that h(C) ⊆ P and h(E) ⊆ T (conditions are mapped to places
and events to transitions); for all e ∈ E, the restriction of h to •e is a bijection
between •e and •h (e) and similarly for e• and h (e)

•
(transitions environments

are preserved); the restriction of h to C

0 is a bijection between C

0 and P

0

(minimal conditions correspond to the initial marking); and for all e1, e2 ∈ E, if
•
e1 = •e2 and h(e1) = h(e2) then e1 = e2 (BP does not duplicate the transitions

in N). A branching process of a net system N is a pair BP = (ON , h) such that
ON is an occurrence net and h is a homomorphism from ON to N. The (virtual)
initial event is denoted by ⊥, which has empty preset, the post-set C0 and no
label; it is assumed to exist without drawing it in figures.

A branching process BP ′ of N is a prefix of a branching process BP , denoted
by BP ′ ⊑ BP , if ON ′ is a causally closed sub-net of ON containing all initial
conditions and such that: ∀e ∈ E, e ∈ ON ′ implies e• ⊆ ON ′ and h

′ is the
restriction of h to C ′ ∪ E′. For each net system N there exists a unique (up to
isomorphism) maximal (w.r.t ⊑) branching process UnfN (or short Unf), called
the unfolding of N.

Configurations and cuts A configuration of a branching process BP is a
finite set of events κ ⊆ E such that for all e, f ∈ κ, (e#f) and, for every e ∈ κ,
f ≺ e implies f ∈ κ; in addition it is required that ⊥∈ κ. For every event

1
Note that a general definition of net morphism is presented in Section 3.2.
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e ∈ E, the configuration [e]
df

= {f |f � e} is called the basic configuration2 of e

, and 〈e〉
df

= [e] \ {e} denotes the set of causal predecessors. The set of all finite
(basic) configurations of a branching process BP is denoted by κ

BP

fin
(κBP

bas
), and

the superscription BP is dropped in the case BP = UnfN.
A co-set is a set of condition C

′ such that for all distinct c, c′ ∈ C

′,c ‖ c′,
and a cut is a maximal co-set for the set inclusion. Let κ be a configuration then

Cut(κ)
df

=
(

C

0 ∪ κ•
)

\ •κ is a cut; furthermore, the multiset of places h (Cut(κ))
is a reachable marking of N, which is denoted by Mark(κ). A marking M of N is
represented in BP if there is a configuration κ of BP such that M = Mark(κ).
Every marking represented in BP is reached in N, and every reachable marking
of N is represented in UnfN.

There exist different methods of truncating PN unfoldings. The differences
are related to the kind of information about the unfolding which are to be
preserved in the prefix, as well as to the choice between using either only basic
or all finite configurations. The former can improve the running time of an
algorithm, and the latter can result in a smaller prefix.

Cutting context An abstract parametric model has been introduced in [11, 12]
to cope with different variants of the technique for truncating unfoldings. It uses
parameters which determine the information intended to be preserved in the
complete prefix (in the standard case, this is the set of reachable markings) and
specify the circumstances under which an event can be designated as a cut-off
event.

Definition 1. A cutting context is a triple Θ =
(

≈,⊳, {κe}e∈E

)

, where:

1. ≈ is an equivalence relation on κ
fin

.
2. ⊳, called an adequate order, is a strict well-founded partial order on κ

fin

refining ⊂, i.e. κ′ ⊂ κ

′′ implies κ′ ⊳ κ

′′.
3. ≈ and ⊳ are preserved by finite extensions, i.e. for every pair of configura-

tions κ′ ≈ κ

′′, and for every suffix E′ of κ′, there exists a finite suffix E′′ of
κ

′′ such that

(a) κ

′′ ⊕ E

′′ ≈ κ

′ ⊕ E

′, and
(b) if κ′′ ⊳ κ

′ then κ

′′ ⊕ E

′′
⊳ κ

′ ⊕ E

′.

4. {κe}e∈E is a family of subsets of κ
fin

.

The adequate order specifies which configurations are preserved in the complete
prefix; all ⊳-minimal configurations in each equivalent class of ≈ are preserved.
The last parameter is needed to specify the set of configurations used later
to decide whether an event can be designed as a cut-off event. The cutting
context ΘERV =

{

≈mar ,⊳tot , {κe = κ
bas

}
e∈E

}

corresponds to the framework
in [5], where ≈mar is the equivalence relation on reachable marking of N, i.e.
κ

′ ≈mar κ
′′ iff Mark(κ′) = Mark(κ′′), and ⊳tot is a total adequate order.

2
The term local configuration is used by several authors, however, here the term

’local’ is ambiguous.
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Canonical prefixes The static cut-off events are defined independent of an
unfolding algorithm, where feasible events are events whose causal predecessors
are not static cut-off events and thus are included in the prefix determined by
those cut-off events.

Definition 2. The set of feasible events, denoted by fsbleΘ , and the set of static
cut-off events, denoted by cutΘ , are two sets of events of Unf defined inductively,
in the following way:

1. An event e is a feasible event if 〈e〉 ∩ cutΘ = ∅.
2. An event e is a static cut-off event if it is feasible, and there is a configuration

κ ∈ κe such that κ ⊆ fsbleΘ \ cutΘ , κ ≈ [e], and κ⊳ [e]. In the sequel, every
κ satisfying these conditions will be called a corresponding configuration of
e.

The notion of canonical prefix arises quite naturally, after observing that fsbleΘ
N

is a downward-closed set of events.

Definition 3. The branching process PrefΘ
N

induced by the set of events fsbleΘ
N

is called the canonical prefix of Unf.

Note that PrefΘ
N

is uniquely determined by the cutting context Θ. Several fun-

damental properties of PrefΘ
N

have been proven in [12]. In particular, PrefΘ
N

is

always complete w.r.t. cutΘ
N

, and it is finite if ≈ has finitely many equivalence
classes and κe ⊇ κ

bas
.

3 Distributed systems

Distributed systems are modeled by Petri nets in form of Multi-clock nets. They
are described as a collection of components interacting via interfaces. Their fac-
torisation property makes it possible to process them in a modular manner. This
section is based on works in [6, 7, 10].

3.1 Multi-clock nets

Multi-clock net (MCN) is a tuple N =
(

P, T,→, P

0
, ν

)

, where
(

P, T,→, P

0
)

is
an ordinary safe Petri net, ν : P → P

0 is a partition on places, and ∀t ∈ T, ν is
injective on •t and on t•, and ν (•t) = ν (t•). In an MCN, the number of tokens
remains constant, and in any reachable marking P ′ ⊆ P one has ν : P ′ → P

0 is
bijective. In other words, ∀p ∈ P , the restrictionN|p ofN to places p = ν

−1 (ν (p))
is a sequential machine, i.e. an ordinary automaton. Therefore, an MCN can be
regarded as synchronous product of automata. An MCN with three classes is
depicted in Figure 2.

A multi-clocked labeled net N =
(

P, T,→, P

0
, ν, λ, Λ

)

is an MCN extended
with a labelling function λ : T → Λ on transitions and a label set Λ.

Given a safe Petri net it is always possible to obtain an MCN with essentially
the same behaviour by, for example, introducing complementary places. Thus,
the limitation of MCNs is not a strong assumption. MCNs are convenient to
represent components and used for projections on components.
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Fig. 2. Decomposition of a multi-clock net

3.2 Compound systems

The synchronous product of labeled nets can be applied to combined nets to a
larger system. Given two nets NA and NC the synchronous product, denoted by
NA ×

N
NC , synchronises (glues) transitions with identical label, preserves trans-

itions with private labels and forms a disjoint union of places. This is illustrated
in Figure 2 where NA and NC synchronise on transitions labeled t2 and NB and
NC synchronise on transitions labeled t3. Note that transitions names are used
as labels sets.

In this paper distributed systems are modeled by a set of interconnected
components interacting through interfaces. Formally, such a composition is ex-
pressed as a special case of a pullback [8]. A pullback generalises the product
to the case of components sharing some places and transitions. Let first recall
the notion of morphism between nets [17]. A morphism φ : NA → NB between
Nx =

(

Px, Tx,→x, P
0

x , νx

)

, where x ∈ {A,B}, is a pair
(

φ

P
, φ

T
)

with φP a rela-
tion on places and φT a relation on transitions3. The initial marking is preserved
by φ as follows: P 0

B
= φ

(

P

0

A

)

and ∀pB ∈ P

0

B
,∃!pA ∈ P

0

A
: pAφpB . If φ is defined

on pA ∈ PA, then it is also defined on both •pA and p

•
A
; φ preserves the envir-

onment of each transition: tB = φ (tA) implies that restrictions φ : •tA → •
tB

and φ : t•
A
→ t

•
B

are both bijective. In the case of an MCN it is required that φ
preserves partitions of places: ∀ (pA, pB) ∈ PA×PB , pAφpB ⇒ νA (pA)φνB (pB).

Definition 4. Let NA, NB and NC be labeled nets, and φx : Nx → NC , x ∈

{A,B}, be two net morphisms such that φx are partial functions on places (no
place duplications). The pullback of this triple, denoted by N = NA ×

NC

N
NB, is

defined on places by

P = {(pA, ⋆) : pA ∈ PA, pA /∈ Dom (φA)}
∪ {(⋆, pB) : pB ∈ PB, pB /∈ Dom (φB)}
∪ {(pA, pB) ∈ PA × PB : φA (pA) = φB (pB)}

(1)

and on transitions by

3
For simplicity, φ is written instead of φ

P

or φ
T

.
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Fig. 3. The pullback N = NA ×NC

N
NB

T = {(tA, ⋆) : tA ∈ TA, tA /∈ Dom (φA) , λA (tA) ∈ ΛA \ ΛB}

∪ {(⋆, tB) : tB ∈ TB, tB /∈ Dom (φB) , λB (tB) ∈ ΛB \ ΛA}

∪ {(tA, tB) ∈ TA × TB : tx /∈ Dom (φx) , λA (tA) = λB (tB)}
∪ {(tA, tB) ∈ TA × TB : φA (tA) = φB (tB)}

(2)

The flow relation follows accordingly as well as the definition of initial places.

Moreover, ψx : N→ Nx denotes the canonical morphism that maps elements of
N to the corresponding elements in Nx.

A special case of a pullback is applied where NC is an interface between NA
and NB iff transitions of Nx with the same label (ΛA∩ΛB) are all in the definition
domain of φx. Thus, there is no interaction between NA and NB ’outside’ the
domains of φx, which is characterised by the disappearance of the third line in
(2). Therefore, the two components interact only through a shared sub-system,
the interface.

A labeled multi-clock net N is said to be a distributed system if it can be
expressed as a pullback of several components where the intermediary nets are
interfaces. The global interaction structure of a distributed system can be rep-
resented as a graph, where an edge is drawn between two components if they
have a common interface.

For simplicity in this paper the case with two components interacting via an
interface is used. Furthermore, it is assumed that the interface is an automaton,
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hC
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Fig. 4. Commutative diagram of the pullback

not a general MCN. This assumption avoids dealing with some technical aspects
of projections of unfoldings. Figure 3 depicts the distributed system N= NA×

NC

N

NB with associated morphisms φx : Nx → NC , where NA = NA ×
N
NC and

NB = NB ×
N
NC .

3.3 Factorisation of unfoldings

It was shown in [6] that the factorised form of a net system yields a factorised
form of the unfolding of such a system. Given N= NA ×

NC

N
NB one obtains

UnfN = UnfA ×
UnfC

O
UnfB, (3)

where UnfN, UnfA and UnfB are the unfoldings of N, NA and NB, and ×
UnfC

O

denotes the pullback on branching processes. Thus, the unfolding of a global
system can be expressed as a pullback of unfoldings of components (as illustrated
in Figure 4).

Let BPNx
=

(

Cx, Ex,→x, C
0

x, hx

)

be branching processes of Nx, where x =
{A,B}. The pullback

BPNA ×
UnfC

O
BPNB = Unf

BPNA
×

UnfC

N
BPNB

, (4)

which is yields a branching process of NA ×
NC

N
NB. There exist a recursive

procedure to compute the pullback of BPNx
, where a pullback is performed

under the constraint that the resulting net remains a branching process.
Given Unf = UnfA ×

UnfC

O
UnfB. The restriction of Unf to nodes labelled by

elements of NC is denoted by Unf|NC
. The projection of Unf on behaviours of NC

is defined as

ΠC (Unf) = φA ◦ ψA (Unf) = φB ◦ ψB (Unf) . (5)

It is obtained by performing Unf|NC
and by trimming isomorphic configura-

tions. The latter is necessary since the restriction may produce several isomorphic
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copies of configurations. The trimming consists of eliminating the redundant cop-
ies in order to get a branching process. It is obtained by a recursive procedure
starting at minimal conditions and ’merging’ events which have the same pre-set
and the same label; when merging events also their post-sets are merged.

The restriction of Unf to a subset of nodes may erase causality or conflict
relations between these nodes, which could appear as unduly concurrent in the
restriction. A projection ΠC (Unf) is said to be non misleading if every config-
uration κ′ in ΠC (Unf) is the image of a configuration of κ in Unf, and causality
relations on events on κ

′ are not lost. It was shown in [6] that the projections
on automata are always non misleading.

The main result in [6] is that minimal factors of Unf can be obtained in a
modular manner without computing Unf itself:

ΠA (Unf) = UnfA ×
UnfC

O
ΠC (UnfB) (6)

(and the symmetrically for ΠB (Unf)). Minimal factors of more complex distrib-
uted system living on a tree can be obtained by a messaging passing algorithm,
which runs on the interaction structure and progressively updates information
on interfaces. The modular computation of minimal factors holds on branching
processes provided projections are non misleading.4 In this paper the deriva-
tion of minimal factors of finite and complete prefixes is undertaken. This is
not a trivial task, and therefore the distributed system is limited to the case of
two components, which interact only through a common interface. However, the
presented approach can be generalised to more complex tree-shaped systems.

4 Modular complete prefixes

The construction of modular complete prefixes of NA and NB requires the ex-
change of some behaviours from one component to the other one and vice versa.
These behaviours include the interface restricted to a component and the local
marking reached by a component on its interface. However, it is not known how
much information the other component needs; this means in terms of prefixes
how far should a component be unfolded in order to offer the other component
with the necessary informations.

For example, Figure 5 depicts Pref
NA

and Pref
NB

, two locally complete pre-
fixes of components with a simple interface only consisting of the transition t1

and the place c0. Pref
NA

need one occurrence of the interface transition t1. In
contrast, Pref

NB
needs two occurrence of t1 to be complete. Thus, Pref

NA
has to

be extended by one occurrence of t1; this new behaviour on the interface has to
be propagated to Pref

NB
. In addition, one still needs to find the cut-off points

by considering global markings, and this might require the extension of the pre-
fixes of these components until global truncation points are reached. This might

4
This limitation was overcome in [7] by introducing augmented branching processes to

capture extra causality and conflict relations. In [6, 7] approximate minimal factors

are obtained for systems not living on a tree
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Fig. 5. Illustrating required interaction via the interface between components

result in many exchanges. To avoid this situation the behaviour of a component
on its interface is captured in form of a summary net, which is obtained from an
extended canonical prefix by ’folding’ the part corresponding to that interface.

4.1 Extended canonical prefixes

The extended canonical prefix of a component NA or NB is built with regard to
its interface. Such a prefix captures the behaviour of that interface in relation
to its component. It is obtained by restricting the cutting context, in particular
the set of configurations which are used for the cut-off criterion.

Definition 5. Let NA be a component and NC an interface of NA. Let κ
NC

bas
be

the set of all basic configurations of the unfolding of NA restricted to events
corresponding to NC . Then, w.r.t. the interface NC , the cutting context ΘNC

=
(

≈mar ,⊳tot , {κe}e∈E

)

is defined with ∀e ∈ EA,

κe =

{

{κp ∈ κ
bas

| ΠC ([e] △ κp) = ∅} if ΠC (e) = ∅,

κ
NC

bas
otherwise

,

where △ is the symmetric set difference.

The restriction of the cutting context ΘNC
in NA means that an interface event

(an event corresponding to the interface NC) can be designated as a cut-off event
if its corresponding event is also an interface event. Whereas, the corresponding
event e′ of a private cut-off event e (i.e. an event which do not correspond to
the interface NC) has to be chosen such that there are no interface events in
[e] △ [e′].
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Definition 6. The branching process Pref
ΘNC

NA
induced by the set of events fsble

ΘNC

NA

is called the extended canonical prefix of NA w.r.t. its interface NC .

To distinguish static cut-off events between canonical prefixes and extended ones
the cut-offs of the former are drawn as double boxes and for the latter the
outer box will be drawn as dashed line. Figure 6(a) and (c) shows the extended

canonical prefixes of the components NA and NB, in Figure 3. Pref
ΘNC

NA
coincides

with the canonical prefix since the only cut-off event and its corresponding event
are interface events.

However, this is not the case for Pref
ΘNC

NB
in Figure 6(c). The extended prefix

is larger than the standard prefix, which would be obtained by setting e4 as
a cut-off event since [⊥] ≈mar [e4], [⊥] ⊳tot [e4] and [e4] ∈ κ

bas
. However, e4

does not corresponds to an extended cut-off event since it is a private event and
ΠC ([e4] △ [⊥]) = {t2, t3}. This applies also to the event e5. The event e6 is an
extended cut-off since it and its corresponding event e2 are interface events.

An extended canonical prefix is complete since it is a canonical prefix (see
Proposition 2.9 in [11]). It has to be shown that it is finite.

Proposition 1. Pref
ΘNC

NA
is finite.

Proof. By Proposition 2.10 in [11] it is enough to show that each infinite ≺-
chain in UnfNA can be cut. Two cases are considered. If there are infinitely
many interface events, i.e. events which correspond to NC , in the chain then the
chain can be cut since the number of markings is finite and thus some marking
is a final marking of several interface events.
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Otherwise, there is only a finite number of interface events in the chain. Since
the chain is infinite it contains an infinite tail of only private (non-interface)
events. Since the number of markings is finite some marking is a final marking
of several private events in the tail and thus the chain can be cut.

4.2 Summary nets

The summary net of a component captures the behaviour of a component w.r.t.
its interface, and it is derived from its extended canonical prefix.

Definition 7. Let Pref
ΘNC

NA
be the extended canonical prefix of NA w.r.t. its in-

terface NC with the set of static cut-off events cut
ΘNC

NA
. Let L = (S, Y, s0,→)

denote the automaton loop((Pref
ΘNC

NA
)|NC

) with loop defined as

∀e ∈ cut
ΘNC

NA
: ΠC (e) 6= ∅ merge ΠC (e•) and ΠC (e′•) ,

where e′ is the corresponding event of e (i.e. e′ ⊳ e and e′ ≈mar e). The initial

state s0 corresponds to the minimal conditions of ΠC

(

Pref
ΘNC

NA

)

. In the sequel,

loop((Pref
ΘNC

NA
)|NC

) is called the summary net of NA w.r.t. its interface NC and

is denoted by ̂

ΠC (NA).

The loop function merges interface conditions corresponding to the direct suc-
cessors of interface cut-off events and their corresponding events. The cutting
context ΘNC

is designed in such a way that interface cut-off events have a cor-
responding interface event, and thus are in the restriction of the interface. Note
that due to the restriction of interfaces to automata the summary nets are also
automata.

The transitions of a summary net are associated with interface events of
the corresponding extended prefix and the states are associated with markings
reached by those interface transitions in that component. Figure 6 depicts the
summary nets of the components in Figure 3 together with their corresponding
extended prefixes. The net ̂

ΠC (NA) in Figure 6(b) coincides with the interface

NC . This is not the case with ̂

ΠC (NB) in Figure 6(d). There are two states
labeled by either c0 or c1, however, they are associated with different marking in
the component which are given in brackets next to the states. It can be seen that
summary nets carry minimal information about components since their states
are linked with the markings reached by interface transitions.

Observe that the summary net is obtained by looping the restriction instead
of the projection of the extended prefix to the behaviours of the interface NC

(no trimming is applied). The trimming would merge states in the summary net,
which correspond to conditions in the resulting projection. However, these states
might be associated with different markings of a component, and thus cannot me
merged. One could apply a trimming at the level of summary nets to isomorphic
configurations having equivalent merged markings.
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The states of the summary net are associated with unique markings since the
extended prefix, from which the summary net is derived, uses the total adequate
order. This means in terms of interface events that having two interface events
with equal final marking implies that one is associated with a cut-off event, and
thus they are merge by the looping.

Let fB be a mapping from ̂

ΠC (NB) to NC with fB = φB ◦ hB, where φB :

NB → NC and hB : ON B → NB. Then, the pullback NA ×
NC

N
̂

ΠC (NB) is defined

with φA : NA → NC and fB : ̂

ΠC (NB) → NC .
Due to the nature of the summary net the following relation holds.

Proposition 2. ΠC (UnfA) = Unf
̂ΠC (NA)

.

Proof. From the Definition 7 it follows that Unf
̂ΠC (NA)

×
UnfC

O
UnfA = UnfA, which

in turn is equal to Unf
̂ΠC (NA)

×
O

UnfA. Furthermore,ΠC

(

Unf
̂ΠC (NA)

×
O

UnfA

)

=

Unf
̂ΠC (NA)

since ̂

ΠC (NA) is constructed from the extended complete prefix of

NA it contains all the behaviour induced by NA on NC , and hence, no beha-
viour is lost or added by UnfA to Unf

̂ΠC (NA)
. Thus, it can be concluded that

ΠC (UnfA) = Unf
̂ΠC (NA)

.

4.3 Modular canonical prefix

Given a distributed system N = NA ×
NC

N
NB the modular complete prefix of a

component NA is obtained by

NA←C = NA ×
NC

N
̂

ΠC (NB) , (7)

Pref
Θ∗

NA
= PrefΘ∗

NA←C
, (8)

where Θ∗ =
{

≈mar ,⊂, {κe = κ
bas

}
e∈E

}

. The symmetric relation holds for

Pref
Θ∗

NB
. In this set-up the basic adequate order allows the comparison of basic

configurations locally and globally in an analogous manner. This is possible due
to the information provided on interfaces by the summary nets. Note that there

exist a mapping hA = ψA ◦ hA from Pref
Θ∗

NA
to NA, where ψA : NA←C → NA

and hA : ONA → NA←C .
Conservative cut-off criteria are the consequence of building such modular

complete prefixes. These are caused by restricted possibilities to obtain cut-off
events and by independent cut-off events in components.

Due to the nature of the contraction some possible cut-off candidates are not
visible locally. A component NA receives information from NB on its interface
events. This allows a more restrictive set of markings than in the entire system,
e.g. a marking reached locally in Pref

NB
is not visible in Pref

NA
, only markings

reached by interface transitions are seen by Pref
NA

. The restriction is not too
strong since only basic configurations are considered, and thus, this restriction
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only applies to interface events. In addition, non-visible markings in one compon-
ent can be visible in others; only the combination of a visible and a not-visible
marking in a component is not observed.

Independent truncation of unfoldings of components can result in multiple
cut-off events in the entire system. Consequently, events in a prefix of a com-
ponent might not be reachable globally due to an occurrence of a cut-off event
in another prefix of a component. This situation is illustrated in Figure 7(c).
There are two successive cut-off events e5 and e9, which correspond to cut-off

events of Pref
Θ∗

NB
and Pref

Θ∗

NA
, respectively. However, the events e7 and e9 are

not reachable in the entire system since e5 is a cut-off event.

Proposition 3. ΠA

(

PrefΘ∗
NA×

NC

N
NB

)

⊑ Pref
Θ∗

NA
.

Proof. Observe that ΠA

(

Unf
NA×

NC

N
NB

)

= Unf
NA×

NC

N
̂ΠC (NB)

by Proposition 2

since ̂

ΠC (NB) contains the behaviour of the interface NC restricted by NB. The
resulting complete prefixes with the given cutting context Θ∗ employ the same
restriction on the interfaceNC due toNB. The only difference is due to the conser-

vative cut-off criteria, thus Pref
Θ∗

NA
is, in general, larger than ΠA

(

PrefΘ∗
NA×

NC

N
NB

)

since some global markings are invisible during the construction of Pref
Θ∗

NA
and
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there may occur cut-off events in the other component which would restrict the

construction of Pref
Θ∗

NA
.

Accordingly, PrefΘ∗
NA×

NC

N
NB

⊑ Pref
Θ∗

NA
×

UnfC

O
Pref

Θ∗

NB
since in a global prefix cut-off

events might be detected faster as in components due to invisibility of markings
in components. In particular, an event e can be designated as a cut-off in the
entire system with its corresponding event e′, however, the corresponding con-
figurations might not be seen at the level of the components. For example, e and
e

′ correspond to local events of different components, which interact through an
interface; in each component only one configuration corresponding to e and e

′,
respectively, is visible, and thus, such a cut-off is not detected.

Proposition 4. Pref
Θ∗

NA
is finite.

The proof is similar to the one in Proposition 1.
It is shown in [13] that the above approach generalises to more complex tree-

shaped systems having many components. In that case the modular construction
procedure involves the generation of summary nets of components at the root and
the leafs on the interaction structure. These nets are then propagated via their
interfaces to the neighbour components and updated to the new interfaces of that
component. The modular prefixes are generated when obtaining all summary
nets on their interfaces.

Approximate modular complete prefixes can be obtained for distributed sys-
tems with general structures. These have interesting properties; if some given
behaviour is forbidden by these approximate factors it is certainly forbidden in
the true system, while the converse does not hold.

5 Conclusions

A modular construction of finite and complete prefixes of distributed systems is
presented. This approach is based on exchanging summary nets of components
through the interaction structure via interfaces. A summary net of a component
is a compact representation of the behaviour of that component w.r.t one of its
interfaces. Modular complete prefixes of components are built by considering the
summary nets received on their interfaces. This is done purely locally without
the use of global information.

The presented approach is applied to simple interfaces (i.e. automata). It is
planned to extend this work to overcome this limitation. Furthermore, a proto-
type tool has been developed.
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5. Javier Esparza, Stefan Römer, and Walter Vogler. An Improvement of McMillan’s

Unfolding Algorithm. In Formal methods in systems design, pages 285–310, 2002.

6. E. Fabre. Factorization of Unfoldings for Distributed Tile Systems, Part 1 : Re-

duced Interaction Case. Technical Report 1529, IRISA, April 2003.

7. E. Fabre. Factorization of Unfoldings for Distributed Tile Systems, Part 2 : General

Case. Technical Report 1606, IRISA, May 2004.

8. E. Fabre. On the Construction of Pullbacks for Safe Petri Nets. In ”Applications

and Theory of Petri Nets and other Models of Concurrency, ATPN’06, Turku,

Finland”, June 2006.

9. E. Fabre, A. Benveniste, S. Haar, and C. Jard. Distributed Monitoring of Concur-

rent and Asynchronous Systems. Journal of Discrete Event Systems, special issue,

pages 33–84, May 2005.

10. Eric Fabre. Distributed Diagnosis based on Trellis Processes. In 44th Conf. on

Decision and Control (CDC), Seville, Spain, December 2005.

11. V Khomenko. Model Checking Based on Petri Net Unfolding Prefixes. PhD thesis,

University of Newcastle upon Tyne, 2002.

12. Victor Khomenko, Maciej Koutny, and Walter Vogler. Canonical Prefixes of Petri

Net Unfoldings. Acta Informatica, Volume 40, Number 2, pages 95–118, October

2003.

13. A. Madalinski and E. Fabre. Modular construction of finite and complete prefixes.

Technical report, IRISA, 2007. to appear.

14. K. L. McMillan. Symbolic Model Checking: an approach to the state explosion

problem. PhD thesis, 1992.

15. K. L. McMillan. Using unfoldings to avoid the state explosion problem in the veri-

fication of asynchronous circuits. In Proc. International Workshop on Computer

Aided Verification, pages 164–177, July 1992.

16. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part I. Theor. Computer Science, 13(1):85–108, January 1980.

17. Glynn Winskel. A New Definition of Morphism on Petri Nets. In STACS ’84:

Proceedings of the Symposium of Theoretical Aspects of Computer Science, pages

140–150, London, UK, 1984. Springer-Verlag.


