Directed Unfolding of Petri Nets

Sarah Hickmott, Sylvie Thiebaux, Blai Bonet, P@trik Haslum

NICTA/UofA/USB

UFO'07

Australian Government

Department of Communications, Information Technology and the Arts

Australian Research Council

Motivation

- Reachability Analysis:
 - Interested only in if a particular transition t_G (or state/marking M_G) is reachable.
 - Reachability algorithm should make use of this information!
- Unfolding:
 - Finds all possible runs of the net, hence all reachable markings.
 - On-the-Fly Reachability Analysis: Stops as soon as *t_G* is added to the unfolding.

Directed Unfolding:

- Guide search towards the sought transition (marking).
- Using heuristic functions (extracted automatically from the net).

- I. An Introduction to Heuristic State-Space Search
- II. Unfolding & Directed Unfolding.
- III. Realisation & Experimental Results

Part I: Heuristic State-Space Search

A State Space

A graph $S = (S_S, T_S)$, where

- S_S is the set of states,
- T_S is the transition relation.
- Edges in T_S labeled with non-negative costs, cost(s, s').
- A distinguished initial state, $s_l \in S_S$.

• A set of goal states, $G \subset S_S$.

The Problem

- Find a path in S from s₁ to any s' ∈ G, minimising the sum of edge costs along the path.
- S is only given in some implicit ("factored", "structured") – exponentially compact – representation.
- Representation imposes structure on *S*.

Examples of Representations

1-Safe Petri Nets

- States: Assignments of 0/1 tokens to each place.
- Transitions as defined by the net.
- etc.

Network of Synchronised Automata

- States: Cross-product of component automata states.
- Transitions as defined by component automata and synchronisations.
- etc.

Examples of Representations

Propositional Planning (STRIPS)

- States: Assignments of truth values to a set of proposition symbols, *p*₁,...,*p*_n.
- Transitions defined by actions: Each action a has a set of preconditions (pre(a)), sets of positive (add(a)) and negative (del(a)) effects, and a constant cost.
- a is applicable in s if each p ∈ pre(a) true in s. a applied in s leads to a state s' where:
 - p is true if $p \in add(a)$
 - p is false if $p \in del(a)$
 - p keeps the truth value it had in s otherwise.
- Goal states are defined by a subset of propositions required to be true.

Blind and Directed Search

Generic Graph Search Algorithm

(1)	place s_I on queue;
(2)	while (queue not empty)
(3)	let s = first node in queue;
(4)	if (termination test(s))
	we're done;
(5)	if (s already reached)
(6)	if (new path to s is cheaper)
(7)	update graph and queue;
	else
(8)	insert s in graph;
(9)	for each s' such that $S_T(s,s')$
(10)	place s' on queue;

Blind and Directed Search

- Builds an explicit representation of a reachable fraction of S.
- Different algorithms characterised by queue ordering and termination test.
- g(s): Cost of the (cheapest known) path from s_l to s.
- *h*(*s*): Estimated cost of cheapest path from *s* to some *s*' ∈ *G* (heuristic).
- f(s) = g(s) + h(s): Estimated cost of (cheapest) path from s₁ to any s' ∈ G, through s.
- $h^*(s)$: Actual cost of cheapest path from s to some $s' \in G$.
- *f*^{*}: Cost of optimal path from *s*_l to some *s'* in*G*.

Blind and Directed Search

Blind (Uniform Cost) Search

- Queue ordered by increasing path cost (g(s)).
- Stops when first $s \in G$ dequeued: path cost to s is minimal.
- When all transition costs equal to 1: Breadth-First Search.

A*

- Queue ordered by increasing f(s) = g(s) + h(s).
- Stops when dequeued $s \in G$ or $f(s) = \infty$.
- Completeness & optimality depend on properties of h.
- When $h \equiv 0$: blind search.

Properties of the Heuristic

- *h* is non-negative and h(s) = 0 when $s \in G$.
- *h* is safely pruning iff $h(s) = \infty$ implies $h^*(s) = \infty, \forall s$.
- *h* is admissible iff $h(s) \leq h^*(s), \forall s$.
- *h* is monotone iff $h(s) \leq cost(s, s') + h(s'), \forall s, \forall s' : S_T(s, s')$.

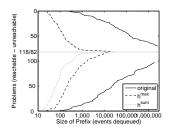
Monotonicity implies admissibility which implies pruning safety.

- If *h* is safely pruning, then A* is complete.
- If *h* is admissible, then the path found by A* has minimal cost.
- If *h* is monotone, then A* finds a cheapest path first to any state (lines (6) (7) never invoked).

The imagination driving Australia's ICT future.

Why Non-Admissible Heuristics?

- *h* is informative if it directs the search quickly to a goal state!
- Admissible heuristic estimates need to be conservative (may not over-estimate) – therefore often less discriminating.
- When the goal is unreachable, what matters is the pruning power, *i.e.*, the heuristics ability to detect dead end states.
- In practice, any reasonable heuristic is safely pruning.



Part II: Petri Net Unfolding

The ERV Unfolding Algorithm (Esparza *et al.*, 2002)

- Constructs an explicit representation of all partially ordered runs of a Petri net (known as the finite prefix).
- Parameterised by an order on configurations, used to:
 - order the queue (*i.e.*, determine order in which events are inserted into the prefix), and
 - define cut-off events (discontinued branches).
- This order is required to be adequate:
 - (a) < is well-founded;
 - (b) $C \subset C'$ implies C < C';
 - (c) C < C' and mark(C) = mark(C') implies

C + E < C' + E, for any finite extension E.

• Normal order, C < C' iff |C| < |C'|, equates to blind search.

Directed Unfolding

Let f(C) = g(C) + h(mark(C)), where

- g(C) is the cost of C (standard: g(C) = |C|), and
- *h*(*M*) is the estimated "distance" from *M* to the target transition/marking.

Define $C \prec_f C'$ iff

$$\left\{ \begin{array}{ll} f(\mathcal{C}) < f(\mathcal{C}') & \text{if } f(\mathcal{C}) < \infty \\ g(\mathcal{C}) < g(\mathcal{C}') & \text{if } f(\mathcal{C}) = f(\mathcal{C}') = \infty \end{array} \right.$$

- *h* is a function of the marking: if mark(C) = mark(C') then f(C) < f(C') iff g(C) < g(C').
- If *h* is monotone, then \prec_f is adequate.

What's in the Paper...

Semi-Adequate Order

Replace condition (b) by

- (b') in any sufficiently long chain $C_1 \subset C_2 \subset \ldots \subset C_m$, there exist $1 \le i < j \le m$ such that $C_i < C_j$.
 - \prec_f is semi-adequate for any (sane) heuristic function.

Observation #1

The finiteness proof by Esparza *et al.* works as well with property (b') as with (b).

Observation #2

The completeness proof by Esparza *et al.* does not depend on property (b) at all.

Completeness

- Let \prec_{cut} be any adequate order.
- Search scheme: event e is terminal iff
 - e is the "target event", or
 - e leads to the same marking as some e' that we have already seen, and [e'] ≺_{cut} [e].

Theorem

This scheme is complete with any search strategy (queue order).

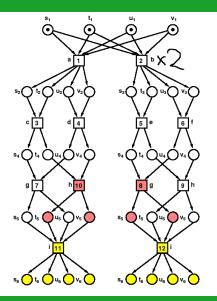
Proof (idea)

The prefix built in this way contains everything that the prefix built using \prec_{cut} as the strategy would (modulo early termination).

Unfolding with Non-Monotone Heuristics

- ≺_f ∩{(C, C') | mark(C) = mark(C')} is adequate, for any heuristic (because h is a function of mark(C) f(C) < f(C') iff g(C) < g(C')).
- ERV with \prec_f , using any heuristic, is complete.
- If heuristic *h* is "wrong", the prefix may become (much) larger.
- But, in practice, it is (much) smaller, because
 - we stop when we reach the target transition, and
 - if *h* is safely pruning, we can stop when the *f*-value of the next (cheapest) event on the queue is ∞.

The Example



- Assume ≺_{cut} is the standard order (cardinality).
- "h (10)" is not terminal!
- "g (8)" is a "junk event" (would not have been added to the prefix if exploration followed ≺cut).

Part III: Implementation & Results

- Implemented in MOLE (implements ERV algorithm).
- Three different heuristics:
 - *h^{max}* monotone.
 - *h^{sum}* non-admissible.
 - *h^{FF}* non-admissible.

All three are safely pruning.

• No additional tie-breaking.

Heuristics: *h^{max}* and *h^{sum}*

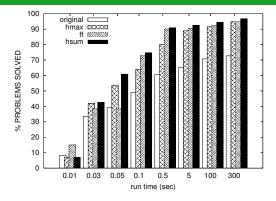
- Heuristic value is cost (size) of solution to a relaxed problem.
- Relaxation: Assume independence between places.
- Conservative estimate (h^{max}): the cost of marking a set of places M equals the cost of marking the most expensive place p ∈ M.
- Non-admissible estimate (*h^{sum}*): the cost of marking a set of places *M* equals the sum of costs of marking each place *p* ∈ *M*.
- Formulate Bellman equation for relaxed problem, solve by dynamic programming $(O(|P|^2))$.

Heuristics: h^{FF}

• Heuristic value is cost (size) of solution to a relaxed problem.

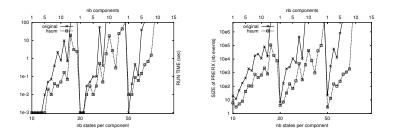
- Relaxation: Ignore conflicts, *i.e.*, treat two events consuming same token or writing to same place as non-conflicting.
- Two-phase solution:
 - Construct a "relaxed prefix" (Relaxed Planning Graph) polynomial size because each event fires at most once.
 - Extract solution from RPG, without search time linear in RPG size.
- More informative than *h^{max}*, less over-estimating than *h^{sum}* find shorter solutions.

Results: DARTES



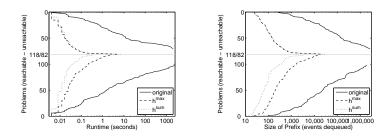
- Checked reachability of each of 253 transitions.
- Shortest solution lengths reach over 90 events breadth-first search scales only to around 60.

Results: Random Nets (1)



- Scaling from 10 / 30 to 750 / 4000 (places / transitions); goal marking always reachable.
- Shortest solutions of several hundred events; with h^{FF}, find solutions within a few events of optimal (where known).

Results: Random Nets (2)



- Smaller problems (~ 100 places / 200 transitions), some with unreachable goal markings.
- *h^{max}* (monotone) and *h^{sum}* (non-admissible) behave the same on unsolvable problems (same pruning power).

Conclusions

- Don't solve a harder problem than you have to:
 - If you only care about reachability of one marking, don't search for all (on-the-fly).
 - If you don't necessarily want an optimal solution, don't constrain search to find only optimal solutions.
- Unfolding is more "clever" than state-space search but that's no excuse not to use a clever search strategy!
- Search in large, discrete spaces is a problem in many areas of computer science: Integrating techniques from different fields benefits everyone.
- There are many other heuristics to try out...

- Planning via unfolding:
 - Model differences: "read-arcs" are frequent (essential) in most planning problems.
- Factored planning:
 - "Factored Planning: How, When and When Not" (Domshlak & Brafman, 2006).