
Directed Unfolding of Petri Nets

Sarah Hickmott, Sylvie Thiebaux, Blai Bonet, P@trik Haslum

NICTA/UofA/USB

UFO’07

Motivation

Reachability Analysis:
Interested only in if a particular transition tG (or
state/marking MG) is reachable.
Reachability algorithm should make use of this
information!

Unfolding:
Finds all possible runs of the net, hence all reachable
markings.
On-the-Fly Reachability Analysis: Stops as soon as tG is
added to the unfolding.

Directed Unfolding:
Guide search towards the sought transition (marking).
Using heuristic functions (extracted automatically from
the net).

Outline

I. An Introduction to Heuristic State-Space Search
II. Unfolding & Directed Unfolding.
III. Realisation & Experimental Results

Part I: Heuristic State-Space Search

A State Space
A graph S = (SS, TS), where

SS is the set of states,
TS is the transition relation.
Edges in TS labeled with
non-negative costs,
cost(s, s′).
A distinguished initial state,
sI ∈ SS.
A set of goal states, G ⊂ SS.

The Problem
Find a path in S from sI to
any s′ ∈ G, minimising the
sum of edge costs along the
path.
S is only given in some
implicit (“factored”,
“structured”) – exponentially
compact – representation.
Representation imposes
structure on S.

Examples of Representations

1-Safe Petri Nets
States: Assignments of 0/1 tokens to each place.
Transitions as defined by the net.
etc.

Network of Synchronised Automata
States: Cross-product of component automata states.
Transitions as defined by component automata and
synchronisations.
etc.

Examples of Representations

Propositional Planning (STRIPS)
States: Assignments of truth values to a set of proposition
symbols, p1, . . . , pn.
Transitions defined by actions: Each action a has a set of
preconditions (pre(a)), sets of positive (add(a)) and negative
(del(a)) effects, and a constant cost.
a is applicable in s if each p ∈ pre(a) true in s. a applied in s
leads to a state s′ where:

p is true if p ∈ add(a)
p is false if p ∈ del(a)
p keeps the truth value it had in s otherwise.

Goal states are defined by a subset of propositions required
to be true.

Blind and Directed Search

Generic Graph Search Algorithm

(1) place s I on queue;
(2) while (queue not empty)
(3) let s = first node in queue;
(4) if (termination test(s))

we’re done;
(5) if (s already reached)
(6) if (new path to s is cheaper)
(7) update graph and queue;

else
(8) insert s in graph;
(9) for each s’ such that S T(s,s’)
(10) place s’ on queue;

Blind and Directed Search

Builds an explicit representation of a reachable fraction of S.
Different algorithms characterised by queue ordering and
termination test.

g(s): Cost of the (cheapest known) path from sI to s.
h(s): Estimated cost of cheapest path from s to some s′ ∈ G
(heuristic).
f (s) = g(s) + h(s): Estimated cost of (cheapest) path from sI
to any s′ ∈ G, through s.
h∗(s): Actual cost of cheapest path from s to some s′ ∈ G.
f ∗: Cost of optimal path from sI to some s′ inG.

Blind and Directed Search

Blind (Uniform Cost) Search
Queue ordered by increasing path cost (g(s)).
Stops when first s ∈ G dequeued: path cost to s is minimal.
When all transition costs equal to 1: Breadth-First Search.

A*
Queue ordered by increasing f (s) = g(s) + h(s).
Stops when dequeued s ∈ G or f (s) = ∞.
Completeness & optimality depend on properties of h.
When h ≡ 0: blind search.

Properties of the Heuristic

h is non-negative and h(s) = 0 when s ∈ G.
h is safely pruning iff h(s) = ∞ implies h∗(s) = ∞, ∀s.
h is admissible iff h(s) 6 h∗(s), ∀s.
h is monotone iff h(s) 6 cost(s, s′) + h(s′), ∀s,∀s′ : ST (s, s′).
Monotonicity implies admissibility which implies pruning
safety.

If h is safely pruning, then A* is complete.
If h is admissible, then the path found by A* has minimal cost.
If h is monotone, then A* finds a cheapest path first to any
state (lines (6) – (7) never invoked).

Why Non-Admissible Heuristics?

h is informative if it directs the
search quickly to a goal state!
Admissible heuristic estimates
need to be conservative (may not
over-estimate) – therefore often
less discriminating.
When the goal is unreachable,
what matters is the pruning power,
i.e., the heuristics ability to detect
dead end states.
In practice, any reasonable
heuristic is safely pruning.

10 100 1,000 10,000 100,0001,000,000
0

50

100

118/82

50

0

Size of Prefix (events dequeued)

P
ro

bl
em

s
(r

ea
ch

ab
le

 −
 u

nr
ea

ch
ab

le
)

original
hmax

hsum

Part II: Petri Net Unfolding

The ERV Unfolding Algorithm (Esparza et al., 2002)
Constructs an explicit representation of all partially ordered
runs of a Petri net (known as the finite prefix).
Parameterised by an order on configurations, used to:

order the queue (i.e., determine order in which events are
inserted into the prefix), and
define cut-off events (discontinued branches).

This order is required to be adequate:
(a) < is well-founded;
(b) C ⊂ C′ implies C < C′;
(c) C < C′ and mark(C) = mark(C′) implies

C + E < C′ + E , for any finite extension E .
Normal order, C < C′ iff |C| < |C′|, equates to blind search.

Directed Unfolding

Let f (C) = g(C) + h(mark(C)), where
g(C) is the cost of C (standard: g(C) = |C|), and
h(M) is the estimated “distance” from M to the target
transition/marking.

Define C ≺f C′ iff{
f (C) < f (C′) if f (C) < ∞
g(C) < g(C′) if f (C) = f (C′) = ∞

h is a function of the marking: if mark(C) = mark(C′) then
f (C) < f (C′) iff g(C) < g(C′).
If h is monotone, then ≺f is adequate.

What’s in the Paper...

Semi-Adequate Order
Replace condition (b) by
(b’) in any sufficiently long chain C1 ⊂ C2 ⊂ . . . ⊂ Cm, there exist

1 ≤ i < j ≤ m such that Ci < Cj .
≺f is semi-adequate for any (sane) heuristic function.

Observation #1
The finiteness proof by Esparza et al. works as well with property
(b’) as with (b).

Observation #2
The completeness proof by Esparza et al. does not depend on
property (b) at all.

Completeness

Let ≺cut be any adequate order.
Search scheme: event e is terminal iff

e is the “target event”, or
e leads to the same marking as some e′ that we have
already seen, and [e′] ≺cut [e].

Theorem
This scheme is complete with any search strategy (queue order).

Proof (idea)
The prefix built in this way contains everything that the prefix built
using ≺cut as the strategy would (modulo early termination).

Unfolding with Non-Monotone Heuristics

≺f ∩{(C, C′) |mark(C) = mark(C′)} is adequate, for any
heuristic (because h is a function of mark(C) – f (C) < f (C′)
iff g(C) < g(C′)).
ERV with ≺f , using any heuristic, is complete.
If heuristic h is “wrong”, the prefix may become (much) larger.
But, in practice, it is (much) smaller, because

we stop when we reach the target transition, and
if h is safely pruning, we can stop when the f -value of the
next (cheapest) event on the queue is ∞.

The Example

Assume ≺cut is the
standard order
(cardinality).
“h (10)” is not terminal!
“g (8)” is a “junk event”
(would not have been
added to the prefix if
exploration followed
≺cut).

Part III: Implementation & Results

Implemented in MOLE (implements ERV algorithm).
Three different heuristics:

hmax – monotone.
hsum – non-admissible.
hFF – non-admissible.

All three are safely pruning.
No additional tie-breaking.

Heuristics: hmax and hsum

Heuristic value is cost (size) of solution to a relaxed problem.
Relaxation: Assume independence between places.
Conservative estimate (hmax): the cost of marking a set of
places M equals the cost of marking the most expensive
place p ∈ M.
Non-admissible estimate (hsum): the cost of marking a set of
places M equals the sum of costs of marking each place
p ∈ M.
Formulate Bellman equation for relaxed problem, solve by
dynamic programming (O(|P|2)).

Heuristics: hFF

Heuristic value is cost (size) of solution to a relaxed problem.
Relaxation: Ignore conflicts, i.e., treat two events consuming
same token or writing to same place as non-conflicting.
Two-phase solution:

Construct a “relaxed prefix” (Relaxed Planning Graph) –
polynomial size because each event fires at most once.
Extract solution from RPG, without search – time linear in
RPG size.

More informative than hmax , less over-estimating than hsum –
find shorter solutions.

Results: DARTES

100

90

80

70

60

50

40

30

20

10

0
30010050.50.10.050.030.01

%
 P

R
O

B
LE

M
S

 S
O

LV
E

D

run time (sec)

original
hmax

ff
hsum

Checked reachability of each of 253 transitions.
Shortest solution lengths reach over 90 events – breadth-first
search scales only to around 60.

Results: Random Nets (1)

100

10

1

1e-1

1e-2

1e-3
502010

15105110511051

R
U

N
 T

IM
E

 (s
ec

)

nb states per component

nb components

original
hsum 10e6

10e5

10e4

10e3

10e2

10

1
502010

15105110511051

S
IZ

E
 o

f P
R

E
FI

X
 (n

b
ev

en
ts

)

nb states per component

nb components

original
hsum

Scaling from 10 / 30 to 750 / 4000 (places / transitions); goal
marking always reachable.
Shortest solutions of several hundred events; with hFF , find
solutions within a few events of optimal (where known).

Results: Random Nets (2)

0.01 0.1 1 10 100 1000
0

50

100

118/82

50

0

Runtime (seconds)

P
ro

bl
em

s
(r

ea
ch

ab
le

 −
 u

nr
ea

ch
ab

le
)

original
hmax

hsum

10 100 1,000 10,000 100,0001,000,000
0

50

100

118/82

50

0

Size of Prefix (events dequeued)

P
ro

bl
em

s
(r

ea
ch

ab
le

 −
 u

nr
ea

ch
ab

le
)

original
hmax

hsum

Smaller problems (∼ 100 places / 200 transitions), some with
unreachable goal markings.
hmax (monotone) and hsum (non-admissible) behave the same
on unsolvable problems (same pruning power).

Conclusions

Don’t solve a harder problem than you have to:
If you only care about reachability of one marking, don’t
search for all (on-the-fly).
If you don’t necessarily want an optimal solution, don’t
constrain search to find only optimal solutions.

Unfolding is more “clever” than state-space search – but that’s
no excuse not to use a clever search strategy!
Search in large, discrete spaces is a problem in many areas
of computer science: Integrating techniques from different
fields benefits everyone.
There are many other heuristics to try out...

Addendum

Planning via unfolding:
Model differences: “read-arcs” are frequent (essential) in
most planning problems.

Factored planning:
“Factored Planning: How, When and When Not”
(Domshlak & Brafman, 2006).

	Introduction
	Heuristic State-Space Search
	Petri Net Unfolding
	Realisation & Results

