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Adequate Orders

Aim: finite complete prefixes of unfoldings

Definition
A strict partial order <1 on the finite configurations of the
unfolding of a Petri net is called adequate if:

> it refines (strict) set inclusion C,
CclC = Ca(
» it is preserved by finite extensions,
Cadl
Mark(C) = Mark(C') 3 = C®E<C' & E;
E~FE
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The Case of Safe Petri Nets

Theorem
Well-foundedness of <1 is a consequence of the other
requirements.
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A Corollary of Preservation by Finite Extensions

Definition

For a linearisation u of a configuration C, denote

o(u) € (RM x T)* the word:

((current marking, next transition), ..., (current marking,
next transition))

Definition
C «— (' if there are linearisations u and v’ such that o(u) is a
strict subword of o ().

(subword: erase letters, like BREAD)

Theorem
In safe Petri nets, C — ' —= C<« ('
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A Corollary of Preservation by Finite Extensions

Proof

Uu==€...€¢y

u'=e...€,

There exist 1 < iy < -+ <41 = |U'| + 1 st o(u), = o(v);,

Denote C, < {e, ..., e,}

def
C/ {17"'>/,,+1 1}
Let j be the smallest index such that i; # ;.

G- C Cj’_l, then G;_1 < Cj’_l
{ej} ~ {e}} and Mark(Cj_1) = Mark(Cj_,), then
G1®{eg} 9, ©{e}

Gae{gt=G ,
{Cj_l@{e}j} cc , then G; < (]

A2 4

v

C,<(Cie Ca(

v
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The Case of Safe Petri Nets

Proof
1. Assume GG > G > ...
2. There exist i < j such that C; — C;
3. G < G contradiction

Detail of point 2

» Assume |G| < |G| < ...
» For each n, let u, be a linearisation of the events of C,.

» By Higman's lemma, there exist 7, j such that o(y;) is a
subword of o (u;).

Higman's lemma
In any infinite set of finite words over a finite alphabet, there
exist two words v and v such that v is a subword of v.

17



The Case of Unsafe Petri Nets

Weak vs. strong preservation by finite extensions

Strong preservation:
VC <1 C’ such that Mark(C) = Mark(C’)
VE' VE~E CoE<(CaoF
Weak preservation:
VC < C' such that Mark(C) = Mark(C")
VE' JE~E CoE<(C@FE

Weak preservation ensures completeness



Counter-example with Weak Preservation
P (?«@
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Summary of the results

weak
preservation

strong
preservation

safe

v

unsafe

|

17



Counter-example with strong preservation
(unbounded net)

p1
b
3 A =
2 1 ~
P1 a P1 a p1 1 .l
b 1% b P2 O »y
D D na" a"p
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Summary of the results

weak strong
preservation | preservation
safe v
bounded X \ ?
unbounded X
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The Case of Bounded Petri Nets with Strong
Preservation

Theorem
Well-foundedness of <1 is a consequence of the other
requirements.

12 /17



Summary of the results

weak strong
preservation | preservation
safe v
bounded X \ v
unbounded X
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Even Stronger Preservation

Definition
Extendible order:

1l
gjg, — CpE<xCaF

(even if Mark(C) # Mark(C"))

Theorem
Well-foundedness of <1 is a consequence of the other
requirements.
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Summary of the results

weak strong extendible
preservation | preservation order
safe v
bounded X v
unbounded \ v
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Variants

Preservation by single-event extensions

Other isomorphisms: pomset, Parikh

» Sufficient for completeness

» The results are not affected
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Conclusion

» Interest: no need to prove well-foundedness

» Works in the most common cases

Remarks
» Single-event extensions are sufficient for completeness.

» Variants of isomorphisms do not affect the results.

» Simpler proofs with pre-order < instead of strict order <.
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