On the Well-Foundedness of Adequate Orders

Thomas Chatain
Aalborg University

Joint work with Victor Khomenko
To appear in Information Processing Letters

Many thanks to Walter Vogler and Javier Esparza for fruitful discussions
Adequate Orders

Aim: finite complete prefixes of unfoldings

Definition
A strict partial order \prec on the finite configurations of the unfolding of a Petri net is called adequate if:

- it refines (strict) set inclusion \subset,
 $C \subset C' \implies C \prec C'$;

- it is preserved by finite extensions,
 \[
 \begin{cases}
 C \prec C' \\
 \text{Mark}(C) = \text{Mark}(C') \\
 E \sim E'
 \end{cases} \implies C \oplus E \prec C' \oplus E';
 \]
Adequate Orders

Aim: finite complete prefixes of unfoldings

Definition
A strict partial order \prec on the finite configurations of the unfolding of a Petri net is called adequate if:

- it refines (strict) set inclusion \subseteq,
 \[C \subseteq C' \implies C \prec C'; \]

- it is preserved by finite extensions,
 \[\begin{align*}
 C &\prec C' \\
 \text{Mark}(C) &= \text{Mark}(C') \\
 E &\sim E'
 \end{align*} \implies C \oplus E \prec C' \oplus E'; \]

- it is well founded.
The Case of Safe Petri Nets

Theorem

Well-foundedness of \triangle is a consequence of the other requirements.
A Corollary of Preservation by Finite Extensions

Definition
For a linearisation u of a configuration C, denote $\sigma(u) \in (\mathcal{RM} \times T)^*$ the word:

$((\text{current marking}, \text{next transition}), \ldots, (\text{current marking}, \text{next transition}))$

Definition
$C \leftarrow C'$ if there are linearisations u and u' such that $\sigma(u)$ is a strict subword of $\sigma(u')$.

(subword: erase letters, like BREAD)

Theorem
In safe Petri nets, $C \leftarrow C' \implies C \triangleright C'$
A Corollary of Preservation by Finite Extensions

Proof

\[u = e_1 \ldots e_{|u|} \]
\[u' = e'_1 \ldots e'_{|u'|} \]

There exist \(1 \leq i_1 < \cdots < i_{|u|+1} = |u'| + 1 \) s.t. \(\sigma(u)_n = \sigma(u')_{i_n} \)

Denote \(C_n \overset{\text{def}}{=} \{e_1, \ldots, e_n\} \)
\[C'_n \overset{\text{def}}{=} \{e'_1, \ldots, e'_{i_{n+1}-1}\} \]

Let \(j \) be the smallest index such that \(i_j \neq j \).

\[\begin{align*}
\triangleright & \quad C_{j-1} \subset C'_{j-1}, \text{ then } C_{j-1} \triangleleft C'_{j-1} \\
\triangleright & \quad \{e_j\} \sim \{e'_i\} \text{ and } \text{Mark}(C_{j-1}) = \text{Mark}(C'_{j-1}), \text{ then } \\
& \quad C_{j-1} \oplus \{e_j\} \succeq C'_{j-1} \oplus \{e'_i\} \\
\triangleright & \quad \begin{cases}
C_{j-1} \oplus \{e_j\} = C_j \\
C'_{j-1} \oplus \{e'_i\} \subseteq C' \\
\end{cases}, \text{ then } C_j \triangleleft C' \\
\triangleright & \quad \ldots \\
\triangleright & \quad C_n \triangleleft C'_n, \text{ i.e. } C \triangleleft C'
\end{align*} \]
The Case of Safe Petri Nets

Proof

1. Assume $C_1 \triangleright C_2 \triangleright \ldots$
2. There exist $i < j$ such that $C_i \leftarrow C_j$
3. $C_i \triangleleft C_j$: contradiction

Detail of point 2

- Assume $|C_1| < |C_2| < \ldots$
- For each n, let u_n be a linearisation of the events of C_n.
- By Higman’s lemma, there exist i, j such that $\sigma(u_i)$ is a subword of $\sigma(u_j)$.

Higman’s lemma
In any infinite set of finite words over a finite alphabet, there exist two words u and v such that u is a subword of v.
Weak vs. strong preservation by finite extensions

Strong preservation:
\[
\forall C \triangleleft C' \text{ such that } \text{Mark}(C) = \text{Mark}(C') \\
\forall E' \forall E \sim E' \quad C \oplus E \triangleleft C' \oplus E'
\]

Weak preservation:
\[
\forall C \triangleleft C' \text{ such that } \text{Mark}(C) = \text{Mark}(C') \\
\forall E' \exists E \sim E' \quad C \oplus E \triangleleft C' \oplus E'
\]

Weak preservation ensures completeness
Counter-example with Weak Preservation

\[p_1 \xrightarrow{a} \]
\[p_2 \xrightarrow{b} \]

\[p_1 \xrightarrow{a} p_1 \xrightarrow{b} p_2 \xrightarrow{b'} p_2' \]
\[\cdots \]

\[n \quad a^n \quad a^n b \quad a^n b' \]

\[
\begin{array}{c}
\cdots \\
3 \\
2 \\
1 \\
0 \\
n \\
a^n \\
a^n b \\
a^n b'
\end{array}
\]
Summary of the results

<table>
<thead>
<tr>
<th></th>
<th>weak preservation</th>
<th>strong preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>safe</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>unsafe</td>
<td>×</td>
<td>?</td>
</tr>
</tbody>
</table>
Counter-example with strong preservation (unbounded net)

\[
p_1 \quad a \quad p_1 \quad a \quad p_1 \quad a \quad p_1 \quad \cdots
\]

\[
b \quad p_2 \quad b \quad p_2 \quad b \quad p_2 \quad \cdots
\]

\[
0 \quad 1 \quad 2 \quad 3 \quad \cdots \quad n \quad a^n \quad a^n b
\]
Summary of the results

<table>
<thead>
<tr>
<th></th>
<th>weak preservation</th>
<th>strong preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>safe</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>bounded</td>
<td>×</td>
<td>?</td>
</tr>
<tr>
<td>unbounded</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>
The Case of Bounded Petri Nets with Strong Preservation

Theorem
Well-foundedness of \(\triangleleft \) is a consequence of the other requirements.
Summary of the results

<table>
<thead>
<tr>
<th></th>
<th>weak preservation</th>
<th>strong preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>safe</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>bounded</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>unbounded</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>
Even Stronger Preservation

Definition

Extendible order:

\[\begin{align*}
C & \triangleleft C' \\
E & \sim E'
\end{align*} \implies C \oplus E \triangleleft C' \oplus E' \]

(even if \(\text{Mark}(C) \neq \text{Mark}(C') \))

Theorem

Well-foundedness of \(\triangleleft \) is a consequence of the other requirements.
Summary of the results

<table>
<thead>
<tr>
<th></th>
<th>weak preservation</th>
<th>strong preservation</th>
<th>extendible order</th>
</tr>
</thead>
<tbody>
<tr>
<td>safe</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>bounded</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>unbounded</td>
<td>×</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Variants

Preservation by single-event extensions

Other isomorphisms: pomset, Parikh

- Sufficient for completeness
- The results are not affected
Conclusion

- Interest: no need to prove well-foundedness
- Works in the most common cases

Remarks

- Single-event extensions are sufficient for completeness.
- Variants of isomorphisms do not affect the results.
- Simpler proofs with pre-order \sqsubseteq instead of strict order \lhd.