
Teak:  A token-flow 
implementation for 

Balsa
Andrew Bardsley

School of Computer Science
The University of Manchester



Balsa, Tangram and 
Haste

• The Balsa system generates Handshake 
Component/Circuit (HC) implementations 
of descriptions in the Balsa language

• Modelled on Tangram from Philips

• Tangram has become Haste/TiDE

• Balsa system includes a compiler, netlist 
generator, simulator, visualisation system



Balsa outings

• DMA controller for Amulet3 *

• mixed sync/async design

• SPA - ARM in Balsa (G3CARD) *

• Slow! A few MIPS in 180 nm

• nanoSpa - reworked SPA built for speed

• Silistix UART (Async 2008) ‘twig’
* in silicon



Improving Balsa
• Local efforts to increase Balsa 

performance:

• Tibi Chelcea - burst-mode controller 
resynthesis

• Luis Plana, Luis Tarazona - new FV 
components, compound control 
components (nanoSpa)

• Sam Taylor - data-driven HCs.  New 
language



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

!



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

!



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

!



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

!



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

!



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

!



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

!



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

! !



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

! !



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

! !



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||

! !



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||



HC compilation
• Channel construction:   channel c : T

• c <- E || c -> V

E V

||



Why push stages?

• Reflects the way people want to write 
descriptions

• Reflects the way other implementation 
styles work - exploit other work more 
easily

• Enclosure flexibility - put your storage/
decoupling where you like

• Promise of concurrency



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
!



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
!



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
!



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
!



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
!



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V
! !



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V



Teak compilation
• Channel construction:   channel c : T

• c <- E || c -> V

J

F

E

J

F V



The cost

• More components in unoptimised form

• Need to insert storage/handshake 
decoupling as a post-processing step

• The Balsa language no longer has as much 
guaranteed enclosure/sequencing

• select not as useful

• ‘stand-alone’ multiplexing more difficult



Tool setup

• New Balsa compiler: teak

• Balsa -> Breeze.  Targets:

• balsac - balsa-c style HCs

• teak - teak components

• balsa-netlist used for netlisting

• teak components described in ABS



Completed

• teak compiler,  ABS component descs.

• Sparkler - simple Sparc description

• Simulated at gate level from teak

• 200% gate count, 30% slower than 
example/dual_b.  Not bad for a first cut

• nanoSpa - compiled, almost works



Still to do

• Pipeline latch insertion

• currently inserting them everywhere

• Many peephole optimisations

• Get nanoSpa working, other examples

• Better component descriptions

• Behavioural simulation and visualisation


